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Generic consequences of a supersymmetric(ll) gauge factor at the TeV scale
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We consider an arbitrary supersymmetri¢l)Jgauge factor at the TeV scale, under which the two Higgs
superfieldsH , of the standard model are nontrivial. We assume that there is a singlet supBrfietth that
H,H,S is an allowed term in the superpotential. We discuss first the generic consequences of this hypothesis
on the structure of the two-doublet Higgs sector at the electroweak energy scale, as Z¥@ll asixing and
the neutralino sector. We then assume the existence of a grand unified symmetry and universal soft
supersymmetry-breaking terms at that scale. We further assume that the additibnial biroken radiatively
via a superpotential term of the fortrh®S, whereh andh® are exotic color-triplet fields which appear iy E
models. We show that the ()-breaking scale and the parameterfAar,/v, are then both predicted as
functions of theH;H,S coupling.[S0556-282(97)06323-4

PACS numbd(s): 12.60.Cn, 12.10.Dm, 12.60.Jv

[. INTRODUCTION scalar component of is to acquire a nonzero vacuum ex-
pectation valugVEV) so as to break this (1), then above
If supersymmetry is broken at the TeV energy scale andhis breaking scale, ngeH;H, superpotential term exists.
the standard SU(3)X SU(2). X U(1)y gauge symmetry is This is a possible resolution of the so-calladproblem in
not extended, then supersymmetry protects the theory frorthe MSSM where the magnitude of this term is unspecified.
nondecoupling contributions of physics above a Té}Yand  We then derive its nondecoupling effects on the two-doublet
we get the minimal supersymmetric standard méW#s$SM) Higgs sector at the 100 GeV scale. Although these have been
[2]. However, if the gauge symmetry is extended also at theliscussed previously3-5] in specific models, we present
TeV energy scale and it breaks down to that of the standartere the most general analysis. We show that the upper
model together with the supersymmetry, there will be in genbound on the mass of the lighter of the two neutral scalar
eral new important phenomenological consequences, ndiosons exceeds that of the MSSM and increases as a function
only at the TeV scale, which is of course obvious, but also abf the U1) gauge coupling. Our results are summarized in
the 100 GeV scale, which may not be as obvipds5]. I Fig. 1 which includes previous upper bounds as specific iso-
fact, as will be shown in this paper, the parameters of the twdated points.
scales may also be related if the universality of soft In Sec. Ill, we specialize to a class of U(linodels de-
supersymmetry-breaking terms is assumed. rivable from Eg, of which the U(1), and U(1); models are
A particularly interesting extension of the MSSM is the special cases. This material is not new, but rather to establish
inclusion of an extra () factor at the TeV energy scale. notation and to facilitate the discussion of new results in
The motivation for this could be theoretical. If the standardsubsequent sections. We also make contact with Sec. Il here
model is embedded in a larger symmetry group of rankin Egs.(26)—(29).
greater than 4, such as 8l0) (rank 5 or Eg4 (rank 6, then In Sec. IV, we discuss how the ned/ mixes with the
an extra W1) gauge factor is very possible. This is especiallystandardZ in the general case, and formulate the effects in
true for the supersymmetric Emodel [6,7] based on the terms of the oblique parametess, s0r S, T,U in the U(1),
EgX Eg heterotic string. Specifically, if only flux loops are models. We also discuss the generic neutralino sector.
invoked[8] to break E down to SU(3)} X SU(2) X U(1)y, Analogous discussions were given previously only for the
then a specific extra () [conventionally known as U(1) U(1)y model[5].
is obtained. RemarkablyJ(1), is also phenomenologically In Sec. V, we present our main results. We show how
implicated [9] by the experimentalR,=I"(Z—bb)/I'(Z supersymmetric scalar masses are affected by the &xtra
—hadrons) excess. Another possible clue is the totality oferms from U(1),. Combining this with the results of Secs.
neutrino-oscillation experimentgsolar, atmospheric, and Il and Ill, and assuming universal soft supersymmetry-
laboratory which suggest that there are at least four neutri-breaking terms at the grand-unification scale, we show that
nos. This has been shohO] to have a natural explanation there is a relationship between the U{Iyacuum expecta-
in terms of the E superstring model with a specific(l)  tion value(which we require to be in the TeV rangand the
called U(1),. well-known parameter tg#=v, /v, used in the MSSM. This
In Sec. ll, we consider a generic extra supersymmetrids achieved by the simple observation that the paramet%,rs
U(1) gauge factor at the TeV energy scale with two doubletm%, and mfz of the two-doublet Higgs potential must be
superfielddH , and a singlet superfield such thaH;H,Sis  matched with their derived values from the renormalization-
an allowed term in the superpotentifiNote that ifS has a  group evolution of the appropriate quantities at the grand-
nonzero charge under the aditionally as is the case if the unification energy scale, as given by E{s4)—(69).
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FIG. 1. The upper bound on the lighter Higgs boson nmagsas a function of% for various values oé. In all cases, we find the allowed
value off = f, that maximizesn,, . In the top curve, we find the pdii=f, anda=a, that maximizesn, whereas the value @f is held fixed
as labeled for the other curves. The points corresponding topthié, and exotic left-right models, described in Sec. Ill, are marked by
arrows.

Finally, in Sec. VI, we have some concluding remarks. 1o, v e : ;
Vnggz[(q)l‘Dl) F(PyD) +2(PP1)(PrPy)
Il. TREE-LEVEL NONDECOUPLING
AT THE 100 GeV SCALE —4(‘131‘1)2)(‘1);‘1)1)]‘*‘ Egz[_qﬂqa cold ]2
. . ) 1 1¥+1 2%¥2
As the U1) gauge factor is broken together with the su-
persymmetry at the TeV scale, the resulting heavy scalar 1 L
particles have nondecoupling contributions to the interac- +§g§[—aq>{<b1—(1—a)<1>§<1>2+ Yx1?. (5)
tions of the light scalar particldd]. Consequently, the two-
doublet Higgs structure is of a more general form than that o
the minimal supersymmetric standard model. Previous SP&:12— 22,2 i TP 2
s . =2g%u?, and the (®!d,)\V2Rey coupling is v2u(f
cific examples have been givé8-5|. Here we present the —gza)gXHence the effg)c%civé)@@?\; cougling?)\ i gi\(/en
most general analysis. We denote the scalar components Bf X =1 1
H;, Hy, and S as &, ®,, and y, respectively. Under
SU(3)cXSU(2) X U(1)yxXU(1)x, we then have

Let {x)=u; then, J2Rey is a physical scalar boson with

1
=7 (01+0) +gra’~

_ g(f 1 2gx
q)l: _ |~ 1121_ E; —a ’ (1) 1 f4
: =z(0i+g))+2af’~ . (6)
. Ox
o 1
= ~ I Similarly,
®, 4 (1,22, 1+al, (2 y 4
0 A =1( 2t 2)+2(1—a)f2—f @)
x=x"~(1,1,0;D, 3 27729179 92’
where each last entry is the arbitrary assignment of that sca- 1 1 f4
lar multiplet under the extra U(%)with couplingg, , assum- Ng=— _g§+ _g§+ f2— —, (8)
ing of course that the superpotential has the tékH,S. 4 4 Ox
The corresponding scalar potential contains thus .
et t T fay N oo Ny=— 595+ 12, 9
Ve=fP(P D) (PP1) + (P11 +DyPy) xx], (4 2

and, from the gauge interactions, where the two-doublet Higgs potential has the generic form
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V=m2dId, + medId,+ m2y(dld,+dld)) same proof also goes through with an extrel)We im-
prove on Ref[12] in this case by computing exactly how the
off-diagonal nondecoupling terms affect the upper bound on
m,,, resulting in Fig. 1 as shown. ﬁAf/gfu is not small as

: " we have assumed, then the reductiorvtof Eq. (10) is not
N 4(P D) (P Py). (10 valid [13].

From Eqs.(6)—(9), it is clear that the MSSM is recovered in
the limit f=0. [Note thatm3,#0 only after U1) symmetry
breaking and it would be proportional foif universal soft As already mentioned in the Introduction, an extra super-
supersymmetry breaking is assunied.et <¢?'2>Ev1'2, symmetric U1) gauge factor at the TeV scale is a very vi-
tanB=v,/v,, andv?=v3i+v3; then, thisV has an upper able possibility from the spontaneous breakdown qf E

bound on the lighter of the two neutral scalar bosons giverConsider the following sequential reduction:
by

1 dlTd,)? 1 ®ld,)? dId,)(DID
"’2)\1( 1P1) +27\2( 2P N(D D) (DP,Dy)

Ill. U (1) GAUGE FACTOR FROM E (6)

Es—SQ10)[ X U(1),], (15)
2 _ 2 i H
(M) max= 202 [ N 1C0$ B+ N\ osint B+ 2(\ 3+ N 4) siP Bcog B] SAU10)—+SUS)[XU(1) ], 16
+ €, (11
SU(5)—SU(3)c X SU(2) [ XU(1)y]. 17
where we have added the radiative correcfibh] due to the
t quark and its supersymmetric scalar partners, i.e., At each step, a 1) gauge factor may or may not appear,
depending on the details of the symmetry breaking. Assum-
3g5m; m2 ing that a single extra (1) survives down to the TeV energy
€= Wvln 1+H2 : (120 scale, then it is generally given by a linear combination of

U(1), and U(1), which we will call U(1),.

We note also that the soft supersymmetry-breaking term Under  the maximal subgroup_ SU(@XSUG)L

fAf(DIq)2X+H-C- (from which we obtainmZ,=fAu) also XSU(3)g, the fundamental representation of 5 given by
contributgs tan, and generates some additional qu;’;\rtig sca- 27=(3,3,1)+(3*,1,3*)+(1,3",3). (18)

lar couplings. However, we assume here that/g;u is

small, because we are mainly interested in the case where thénder the subgroup SU(XU(1),xU(1),, we then have
electroweak Higgs sector has two relatively light doublets - . .

and not just one light doublet. Using Eq8)—(9), we obtain 27=(10;1-1[(u,d),u%e"]+(5%;1,3)[d" (ve,€)]

+(1;1,-5)[N]+(5;—2,2)[h,(E°,Ng)]
+(5%;-2,-2)[h% (v, B)]+(1;4,0[S], (19

2) = M2coL28+ e+ r A e (13
(mh)max_ 7C0S2B+€ \/EG,: g)2<!

where where the W1) charges refer to 26Q,, and 2/10Q, . Note
that the known quarks and leptons are contained in

3 1 (10;1-1) and (5;1,3), and the two Higgs scalar doublets
A=3T(2a=1)coszp- 500522'8' 19 are represented by ,E) and ES,Ng). Let
If A>0, then the MSSM bound can be exceeded. However, Q,=Q cosx—Q,sina; (20)

f2 is still constrained from the requirement thit be
bounded from below. We note here that althoighof Eq.
(4) andVy, of Eq. (5) are non-negative for any value bfV
of Eq. (10) is not automatically bounded from below. This 27=(10:2)+(5*;:— 1)+ (1:5)+ (5:—4)+ (5*: — 1)
simply means that iff is too large, the minimum of the
original potential only breaks the extrg1) but not the elec- +(1;5), (21
troweak gauge symmetry. Giveg, and a, we can vary
cos 28 andf to find the largest numerical value of,. We  Where 2/15Q, is denoted. TheN model [10] is obtained
show in Fig. 1 this upper bound an, as a function ofj? for ~ With tana=— 1//15, resulting in
several specific values af The valuea, is chosen in the top . .. ] ] .. ]
curve to maximizem, for a given value ofgZ. This upper 2r=(10;)+(5%:2) +(L;0) +(5:=2)+(5 ’_3)+(1’(3)2’)
bound increases ag increases. However, it is reasonable to
assume thag, cannot be too large. In fact, in the specific where 2/10Qy, is denoted. This model is so called because
models to be discussed in the next sectigh<0.16. As  the superfieldN hasQy=0. It allows S to be a naturally
shown in Fig. 1, even fog>2(=0.5, the upper bound is only light singlet neutrino and is ideally suited to explain the to-
about 190 GeV. tality of all neutrino-oscillation experiments, i.e., so[d#],

It should be mentioned that an upper boundrophas  atmospherid15], and laboratory{16]. It is also a natural
been previously obtaingd 2] assuming that there is no extra consequence of an alternative @0 decompositiorj17] of
U(1) at the supersymmetry-breaking scale. However, theEg, i.e.,

then, then model[7,9] is obtained with taa=+/3/5 and we
have
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16=[(u,d),u",e%h" (ve,E);S], (23 These three specific points have been singled out in Fig. 1.

Furthermore, when we take the squark masses to be about 1
10=[h,(E,N§);d%,(ve,€)], (24  TeV we find the largest numerical value wf, in the U(1),
models to be about 142 GeV, as compared to 128 GeV in the
MSSM, and it is achieved with

1=[N], (25)
which differs from the conventional assignment by how the I~
SU(5) multiplets are embedded. tana= — M (29)
3—cos28 "’

Identifying ®,, ®,, and y with the scalar components of
(ve,E), (ES,NE), andS of which we can choose one copy
of each via a discrete symmetf¢0] to be the ones with \yhich s possible in they model, i.e., a=+3/5 and
VEV's, we see that the general anaylsis of the previous SeGosB=—1.
tion is applicable for this class of (l)-extended model$Of
course, more than one copy afd,E), (E°,Ng), or S could
have VEV's, but that would lead to a much less constrained IV. Z-Z" AND NEUTRALINO SECTORS
scenario} Assuming that U(1) is normalized in the same  tpg part of the Lagrangian containing the interaction of
way as U(1)£, we flngj it to be a very.good approximation ®,, and y with the vector gauge bosom(i=1,2,3), B,

[5] to haveg;=(5/3)g7. We then obtain, for they model,  gnqz7’ belonging to the gauge factors SU(2)U(1)y, and
U(1)x, respectively, is given by

2_25 5 _1 26
gx_36911 a_sy ( ) ) ) )
B 192 191 : pul
L= 3#—7’7'iAi/'L+ 78“+|gxa2 #dy
and, for theN model,
I 192, 101 B " ’
25 3 + || d _TTiAi _TB +|gx(1—a)Z (Dz
2 2
gxzﬂglv a.:g, (27)
+(*=ig,Z" )X, (30)

whereas, in the exotic left-right modg3,17],
where 7, are the usual 2 Pauli matrices. With the defini-

20 21— i 2
, (91103)(1 Sinf fw) a=tarfy. (29 tion Z=(g9,A3;—9,B)/gz, whereg,=g7+05, the mass-

T 4(1-2sitoy) squared matrix spanning andZ’ is given by
|
, (1295(vi+v3) 920, —avi+(1-a)vl]
22| gyg —avi+(1-apwd] 202[u+a%i+(1-a)%]]’ &0
|
Let the mass eigenstates of tAeZ’ system be Note thatZ, has essentially the same mass as the physical

scalar boson/2Rey discussed earlier.
) ) So far, our discussion of th&-Z' sector is completely
Z,=Zcof+Z'sing, Z,=-—Zsind+Z'coss; (32)  general. However, in order to make contact with experiment,
we have to specify howd’ interacts with the known quarks

then, the experimentally observed neutral gauge boson %nd leptons. In the class of U(nodels from &, all such

identified in this model ag,, with the mass given by Couplings are determined. In particular, we have

11 \Ft
slan

2
1 2 Ox= \ﬁgaco&z, a= - ) (35)
M2 =M2=2g%? 1-(sitp-a) | (33 V3 2

Using the leptonic widths and forward-backward asymme-
tries of Z, decay, the deviations from the standard model are
and conveniently parametrizefd 8]:

it 1( \/5 )2 1)2~
Sl ,B—Z 1- gtam F—aemT, (36

c
N

gz .
=— 2gx(smz,(i’—a) ;

(34) €1=

N
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1 , 1 \F v? U
€= 7(3- J15tamy)| sir?3— Sl 1= Vigtane | | o=— Fsitay (37)
! 1-3 \/§ ! 1 \/§
€=, gtal’n"f‘ m\/ + gtam
. 1 \/§ v? CanD
X S|n2,8—§ 1- gtam ?—m\/ (38

Since the experimental errors on these quantities are fractions of a percefeV is allowed.
In the MSSM, there are four neutralingsvo gauge fermions and two Higgs fermignshich mix in a well-known 4x 4
mass matri19]. Here we have six neutralinos: the gauginos of U(and the third component of SU(2) the Higgsinos of

E‘f and ¢2, the U(1) gaugino, and the Higgsino. The corresponding mass matrix is then given by

[ M, 0 _(.31101/\/E
0 M, 92U1/\/§
_9101/\/5 gzl/l/\/E 0
M=
9i2/N2  —gal\2 fu
0 0 _gxavl\/E
L 0 0 fUz

where M, , are allowed W1) and SU2) gauge-invariant

Majorana mass terms which break the supersymmetry softly.
Note that without the last two rows and columns, the abovqa

matrix does reduce to that of the MSSMfifl is identified
with — . However, theu parameter in the MSSM is uncon-
strained, whereas hefel is bounded and itself appears in
the Higgs potential.

Sinceg,u should be of order TeV, the neutralino mass
matrix My reduces to either aX4 or 2X 2 matrix, depend-
ing on whetherf is much less thag, or not. In the former

case, it reduces to that of the MSSM but with the stipulation

that theu parameter must be small, i.e., of order 100 GeV.
This means that the two gauginos mix significantly with the

two Higgsinos and the lightest supersymmetric particle

(LSP) is likely to have non-negligible components from all
four states. In the latter case, the effective 2 mass matrix
becomes

M1+gil}11)2/fu _glgzvlv2lfu

— 0192010, /fu

) . (40
M2+g%l}102/fu ( )

Sincevqv,/u is small, the mass eigenstates.bf); are ap-

proximately the gaugino8 and W, with massesM; and
M,, respectively. In supergravity models with uniform
gaugino masses at the grand unified the@yT) breaking
scale,

507
22 M2=0.5M5;

M. =
' 395

(41)

henceB would be the LSP, which makes it a good candidate

for cold dark matter.

010,12 0 0
—gova/\2 0 0
fu —g,av142 fu,
0 —g(1-ajN2  foy | 39
—gx(1-a)v,\2 M, g,un2
fu, g, uv2 0

V. SUPERSYMMETRIC SCALAR MASSES

The spontaneous breaking of the additiondll)Ugauge
ctor at the TeV scale is not possible without also breaking
the supersymmetrlyl0]. As a reasonable and predictive pro-
cedure, we will adopt the common hypothesis that soft
supersymmetry-breaking operators appear at the GUT scale
as the result of a hidden sector which is linked to the observ-
able sector only through gravity. Hence these terms will be
assumed to be universal, i.e., of the same magnitude for all
fields.

Consider now the masses of the supersymmetric scalar
partners of the quarks and leptons:

m3=ma+m3+mz+m3, (42)

wheremy is a universal soft supersymmetry-breaking mass
at the GUT scale,m% is a correction generated by the
renormalization-group equations running from the GUT
scale down to the TeV scale)g is the explicit mass of the
fermion partner, an(hzD is a term induced by gauge symme-
try breaking with rank reduction and can be expressed in
terms of the gauge-boson masses. In the MS8i#,is of
order M2 and does not changeng significantly. In the
U(1),-extended moder,n% is of ordeng, and will affect
mg in a nontrivial way. For example, in the case of ordinary

quarks and leptons,
3
1+ \[gtana), (43

1 3\/§t
- gana

1
AM3(10;1-1)=¢ M2,

Am3(5%;1 3)=£M2 (44)
D [t 8 z'
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FIG. 2. (a) The parameterf at 1 TeV as a function of

0.5 1 1.8 2 2.5 3 3.5

fe=f(Mg) for models with an extra (1) originating from E;. In
descending order, the curves represignpt f'(Mg)=0.5, 1.0, 2.0,

and 3.0.(b) The massM ;. as a function of ; with the same values
mz=250 GeV, Ay=

650 GeV, andmy=650 GeV for different

curves with the values df; as in(a).

This would have important consequences on the experimen-
tal search of supersymmetric particles. In factmif is not

too large, it is possible for the exotic scaldvehich may be
interpreted as leptoquarks depending on their Yukawa cou-
plings) to be lighter than the usual scalar quarks and leptons.
We have already discussed this issue in R2d).

Assuming Eq.(42), we first consider the spontaneous
breaking of U(1),, i.e., {x)=u, which requiresmf( to be
negative. This may be achieved by considering the superpo-
tential

W=fH;H,S+ f"hh®S+ X\ ;H,Qxt° (45

(where we have omitted the rest of the MSSM Yukawa cou-
plings), together with the trilinear soft supersymmetry-
breaking terms

Veor= FAFD IO x+ £/ A A RSy + N AD,Q5TC,  (46)
along with the soft supersymmetry-breaking scalar masses.
Starting with a wide range of given values ¥, the uni-
versal gaugino mass;,,,, and the universal trilinear massive
parametei\, at the GUT scale, we find thanf( does indeed
turn negative near the TeV energy scale for many typical
values off andf’. An example of this is given in Fig. 2. The
evolution ofm)z( is mostly driven byf', butf also contributes
primarily through its direct effect 0A;,. From the negative
value ofm at the TeV scale, we then obtain the predicted
mass ofZ’, i.e., Mz =(—2m%)"2 which is also the mass of
the physical scalar bosm/é Rey. However, as we will dis-
cuss shortly, the mass of th& so obtained must also be
consistent with the desired electroweak symmetry-breaking
conditions.

We assume that the top quark’s pole mass is 175 GeV and
that, at 1 TeVa¢=0.1, which corresponds i@y(M,)~0.12.

We will also assume that at the TeV scale and above, the
particle content of the model is that of three comp&fes of

— —
0.4
0.3
max
0.2
0.1}
O- | T A

—T Y

1
-1.5 -1 ~0.5

af

FIG. 3. The maximum value dof=f,,,, for which the Higgs potential is bounded from below as a functioa oflefined in Eq(20).
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mg=200 GeV, mg=300 GeV,
my=650 GeV, mg=950 GeV,
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£=0.345. =0.345.

FIG. 4. (a) tanB as a function ofw for f=0.345 andmg=200
GeV, A;=650 GeV, andmy,=650 GeV.(b) M, (solid line), |u|
(short-dashed ling andf’|u| (long-dashed lingas a function ofx
for the same values of input parameters aajn

FIG. 5. (a) tanB as a function ofx for f=0.345 andmz=300
GeV, A;=950 GeV, andm,=650 GeV.(b) M (solid line), |u|
(short-dashed ling andf’|u| (long-dashed lingas a function ofx
for the same values of input parameters agajn

E¢ and some additional field content so as to achieve gauge- Dzswzi 47)
coupling unification. The additional field content could be dinu
near the unification scale and hence provide threshold cor-
rections that allow the gauge couplings to unify, perhapgwhere u is the scalg the relevant renormalization-group
even at the string compactification scale. Another possibilityequations are
is to add an anomaly-free pair of SU(2doublet fields so as
to mimic gauge coupling unification in the MSSM. Such an
example is discussed for the=N model of Ref.[8]. This
model has the same unification scale as is possible in the
MSSM. In calculating the gauge-coupling functions, we
will in fact assume the field content of that model, but the Dinf2= -, c(Vg?+3\2+4f2+3f'2, (49)
choice of additional matter fields or threshold corrections to !
bring about gauge-coupling unification has no significant ef-
fect on our calculation. The fact that such models have three
complete27's has the noteworthy implication that the gauge
coupling at the unification scale is approximately the strong
coupling. The reason is that with three copieshofnd h¢,
the B function for ag is zero in one loop above the TeV
scale. Similarly, the gluino mass also does not evolve in this
approximation.

Defining

DInnZ=— 2. c(VgZ+ 617+ 12, (49

Dinf'2= - c{/g?+3f2+5f'2 (50)

for the Yukawa couplings,

DA=2, cVg?M,;+6\2A+ f2A;, (51)
1
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3.85 ‘ (3)

0.32 0.325 0.33 0.335 0.34 0.345

~ (b)
2500 ~ flul

2000 W= =-- T~

(GeV]

1500

1000f ~~— Mz.

0.32 0.325 0.33 0.335 0.34 0.345

with
mg=250 GeV.
=650 GeV,
Ag=650 GeV,

a=n.

FIG. 6. (a) tanB as a function of for o= » andmg=250 GeV,
Ay=650 GeV, andny=650 GeV.(b) M, (solid line), |u| (short-
dashed ling andf’|u| (long-dashed lingas a function off for the
same values of input parameters agan

DA;=2, c!"g?M;+3N2A+4f2A;+3f'2A;, (52
I

DAp =, ¢/ g?M,+32A+5f2A;, (53

for the trilinear scalar parametefs, and

Dméz—Z c¥g2+ 212X+ 32X, (54)
Dm2= —Ei cWg2+f/2X4, (55
D= —Ei cMIg2+ 12X, (56)
Dmj, = —Ei c\PVg2+£2Xq, (57)

6
5.5{
5
tanf
2.5
4 ¢
a
s (a)
-250 0 250 500 750 1000 1250
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FIG. 7. (a) tanB as a function ofA, for «= 7 and f=0.345,
mg=250 GeV, andny=650 GeV.(b) M, (solid line), [u| (short-
dashed ling andf’|u| (long-dashed lineas a function ofA, for
the same values of input parameters agan

DM, = — 2 ¢ P97+ 33X+ 12X, (58)
I

Dmg, = —Ei cl g2+ 32X, (59)

D=, cYg?+ 12X, (60)

where we have defined

X;=mg +mi+mj +AZ, (62)
Xy=mg+mg_+mg_+A7, (62)
Xpr=mi+m2+mie+AZ (63)

and the coefficients{"™?¥ have the obvious values. Further,
the gaugino mashl; scales the same as. These equations
are modified in an obvious manner if fars large enough
that\, andX\ , cannot be ignored or if there is more than one
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FIG. 8. (a) tang as a function ofm, for =7 and f=0.345,

5=250 GeV, andA,=650 GeV.(b) M/ (solid line), |u| (short-

dashed ling andf’|u| (long-dashed lineas a function ofm, for
the same values of input parameters aajn

sizable coupling serving the purposeféf which is certainly
possible since we have three copieshofand h® in these
models.

A very important outcome of Eq42) is that the U(1),

and electroweak symmetry breakings are related. To see this,

go back to the two-doublet Higgs potentidl of Eq. (10).

Using Eqgs.(6)—(9) and Eq.(35), we can express the param-

FIG. 9. (a) tang as a function ofmy for a= 7 and f=0.345,
Ay=650 GeV, andny=650 GeV.(b) M (solid line), |u| (short-
dashed ling andf’|u| (long-dashed lingas a function ofm, for
the same values of input parameters agajn

etersm2,, m3, andm3 in terms of the mass of the pseudo- On the other hand, using E¢t2), we have

scalar bosomm,, and tars:

mZ,= — m3sinBcoss, (64)
1 2
m3=masirf8— EM%COSZ@— —MZ
z
3 3f?
2sifB+|1 gtana cogB 3 coZag?

(65)

1 f2
mj=micos B+ 5 Mcos28— — M3
Z
2c08p+| 141> in? o
X|2cogp+| 1+ gtana Si ﬁ—m-
(66)
m2,=fA, (67)
2. 2. 5 29 1 3 2
My =mg+ Mgy + U= 2 1—\/gtana | M7, (68)
2. 2. 2 9 1 3 2
m2:m0+mR2—|—f —Z 1+ gtam MZ" (69)

wherem3, andm3, differ in that\, (the Yukawa coupling
of ®, to thet quark contributes to the latter but not to the
former. Both depend omg, my,,, Ag, and the various gauge
couplingsg;, as well asf andf’. Matching Eqs.(64)—(66)
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with Egs.(67)—(69) allows us to determina and targ fora  two figures are quite similar except that the mass scale in
given set of parameters at the grand-unification scale. Fig. 5b) has been pushed up relative to that shown in Fig.
We will now briefly discuss our method for findingand ~ 4(b). These choices of soft supersymmetry-breaking param-
tang for a given set of universal soft supersymmetry- €ters are fairly typical in that generally we neey to be at
breaking parametensi; , mo, andA, at the GUT scale and least twice as great asyg to find a solution. Further, if we
the Yukawa coupling, when such a solution exists. First, want to have a solution for alk less than some valuéy,
we guess a value for t@nso as to choose a value fof. We ~— Mmust be positive and of orden,.
then form a tabIe[MZ,,mle,méz,Af](f’) for many very In Figs. 6-9, we illustrate the effects of varying the pa-
closely spaced values df extending up to wheré’(Mg)  rametersf, mg, Ag, andm for a fixed value ofa= 5. We
reaches its perturbative limit. By “closely spaced values oflook at the solutions for tg# andM;: (as well asju| and
f/,” we mean that between two consecutive entries in thef’|u]) when the four input parameters are varied one at a
table, none of the four parameters differs by more than 1%time around the point=0.345 andng =250 GeV,A,= 650
Second, we guess a value fbty, which lies within the GeV, andmy=650 GeV. Note from Fig. 6 that with decreas-
range in the table, so as to choasg,;, ma,, andA; fromthe  ing f, tan3 and My, both increase. We do not exterfd
entry of the table which haldl;, closest to this value. Third, above 0.345 so as to avoid the upper bound coming from
we equate the right-hand sides of E§5) + Eg. (66) and  Fig. 3. We find also that we cannot decredsauch below
Eq.(68) + Eq.(69) to solve form,i as a linear function ofi2 0.32 for this example and still have a solution for the elec-
and codB. Fourth, using the previous result fami we  troweak breaking. To use smaller values fofone would
equate the right-hand sides of E¢85), (66), (68), and(69)  have to increase the scale of the soft supersymmetry-
to solve foru? as a function of cdg of the form of a linear  breaking parameters. In Fig. 7, we look at the effect of vary-
function divided by another linear function. Fifth, using the ing A,. The range ofA, examined is restricted because any
expressions from the previous two steps we equate the righgxtension in either direction would require values M.
hand sides of Eq(64) with that of Eq.(67) and solve nu-  |arger than can be reached via thehh®S term with f’
merically for co, and hence taf, by first searching for a ithin the perturbative regime. In Fig. 8, we vamy,. Note
root close to the value corresponding to our original guessga; with increasingn,, the predicted taf increases signifi-
for tang. In doing this fifth step, one needs to chodse>0 44y andM,, decreases. In this example, increasing
or fu<0 analogous tg.>0 or u<0 in the MSSM, and then beyond 1200 GeV would predict avi;, less than 500 GeV

‘r;@efk f At?f/i;n 226 >OS?|nUtf|22t talksin gﬁn\flljsliz\?vta cc\)ﬁlth and a tap greater than 10. The lower limit of 500 GeV for
pIiAngs anc; taﬁﬁ bseepoéitive as ,WeII ag our convention for Mo used here is dge to the Same reason as jUSt given for the
the trilinear coupling parameters, solutions exist only for range ofA, plotteq in the previous figure. !n F.Ig' 9, we show

' the effect of varying the gluino mass which is also here the

u<0. Nex, if a solution to these steps has been found, W&UT scale universal gaugino mass. With increasing gluino

start the entire cycle over using the Yalues for,&a_m_sz,_ . mass, tap decreases whild,, increases. The upper limit
just calculated as the new “guessed” values. This iteration is

continued until the predicted tanand M, become fixed to of 350 GeV used here for the gluino mass again corresponds

. to about the size of that parameter for this example where
0,
a reasonable accuragye demand about 5% accuracyhis increasing it anymore would require values of larger than

process can be speeded up by adding a sixth step to the cyg &n be reached perturbatively through the renormalization-

which repeats the third through fifth steps until the prediction . : _—
for tang and M, become fixed for the table found in the group equations. We find the general trends of Fig. 6—9 to be

ical of other choi f parameter val wher nsisten
second step of the cycle. typical of other choices of parameter values where consistent

Before we discuss our results, we remind the readerfthat solutions exist.

has a maximum possible value’ that comes from requirin F mg is demanded to be less than about 1 TQV, then in
that the Higgs potential be bounded from below and whic eneral i< 10, where theb an_dr YUK‘?‘W‘?‘ _couplmgs are
depends on the additional). We plot this maximum value small er_mugh not to co_ntnbute_ _5|gn|f|c§mtly to the

. : o : renormalization-group equations. It is interesting to note that
f max @S a function ofx [see Eq(20)] in Fig. 3. In particular, . > 2 >

. in contrast to the MSSM, whereni—m;=—mg (\y)

the » model required to be less than about 0.35, whereas, ) ) . . _ R
for =0, f could be as great as 0.46. Note thatjasap- =~ (Ma+mz)cosB, solutions with ta<1 in principle are
proacesm/2, f,... approaches 0. From Fig(d, one can see Possible here due to the TeV scdleterms. However, to
that if f is small enough so that=7 is allowed, then have such a solution in practice witm{P®?~175 GeV
f(Mg) will always be perturbatively small for a perturba- means having\(m;) greater than its fixed-point value of
tively valuedf’. In our examples, we will only be interested about 1.22 withag= a4(1 TeV)~0.1 where the gauge cou-

in values off <0.35. plings run according to the additional exotic field content as
In Fig. 4, we show the predicted values of gaandM,, ~ we have chosen.
as a function ofw for f=0.345 andmz=200 GeV,A,=650 If fA;/gZu, whereg2=(2/3)g%coga is not small, then

GeV, andmy=650 GeV. In accordance with Fig. 3, we are Egs. (64)—-(66) have additional contributions, but they are
only interested in showinfy| less than about 0.7. We have always suppressed by?/u? relative to m%zzfAfu, and
also plotted the magnitudpi| of the VEV of the singlet hence our numerical results on famnd M., etc., do not
Higgs bosony and the masg’|u| of the exotic fermion change appreciably. The corrections are only important if the
h(h®). In Fig. 5, we show the similar situation fé,=0.345 masses and splittings of the two Higgs doublets are consid-
andmg=300 GeV,A;=950 GeV, andny,=950 GeV. These ered.
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VI. CONCLUSIONS known two-doublet Higgs potential are constrained as shown
0y Eqgs.(64)—(69). We then obtain consistent numerical so-

. We hgve shown in this paper that there are many !nteres utions to these constraints and demonstrate how t{ig-U
ing and important phenomenological consequences if we as-

. reaking scale and the parameterfaiv,/v, are related
sume the existence of asupersymmetr(&)Lgaug_e facto_r at through theH;H,S coupling. Our results are presented in
the TeV energy scale. We assume that there is a Higgs Stz ¢ g e '
perfieldS which is a singlet under the standard gauge group gs. '

but which transforms nontrivially under this extra1) so During the final stage of gompletln_g this manuscript, we
. . . became aware of Rd21], which also discusses electroweak
that it may break the latter spontaneously without breakin

the former. We assume also tHai{H,S is an allowed term %ymmetry breaking with an additional supersymmetrid)u

in the superpotential. We then analyze the most general forro o< factor, but the emphasis there is on the ¢aseD.
Iperp - . y mostg : he case’#0 is also discussed there, but the conclusion is
of the Higgs potential and derive an upper limit on the lighter . s L
. that whereas the breaking of the additiondlllUradiatively
of the two neutral scalar Higgs bosons of the two-doublet .

! C H
Higgs sector as shown in Fig. 1. This generalizes the well?'2 the term f’hh"S, already noted in Ref[7], can be

known case of the minimal supersymmetric standard modegfr;'ﬁgegvalltr;:;geirtsﬂozzﬁnstftpivr;%(mi?igg'?;ag'?ﬁliazg:s
We then specialize to the case where this ext(d) Us couplin scenarioy Our approach is essentiall gortho onal
derivable from a E model with the particle content given by ping ' pp y 9 '

its fundamental7 representation. We discuss the effect onWe concentrate on solutions where _th(al}.lscale is much .
Z-7' mixing and the oblique parameters, 5 as well as the larger than the electroweak scale. With the two scales being
extended neutralino mass matrix. We then work out in detai|mm]ateIy related through the matching of Eds4)—(66)

; ith Egs. (67)—(69), it is in fact highly nontrivial to find
the consequences for supersymmetric scalar masses. We nqQtg, .. . . X ) : .
. Solutions which are consistent with this matching even with
that the mere existence of a spontaneously brokéh) U

. oh . an arbitraryf’. We note also that our examples are models
gauge factor at the TeV scale implies new important correc-

tions to these masses through the so-caeterms which with complete g particle content and, in our approximation,

. . ; ) the Yuk ling is bounded h in Fig. 3. In th
are now dominated bMi, instead ofjusM§|n the MSSM. e Yukawa couplind is bounded as shown in Fig nthe

. 4 ) s more general case, the bound bincreases as the trilinear
This changes the entire supersymmetric scalar particle SPeEpupling increases

trum and should not be overlooked in future particle
searches.

Assuming universal soft supersymmetry-breaking terms
at the GUT scale, we match the electroweak breaking param- We thank Biswarup Mukhopadhyaya for important dis-
eters with the corresponding ones from thél)JUbreaking. cussions. This work was supported in part by the U.S. De-
Specifically, the values ofn?, m3, and m3, in the well-  partment of Energy under Grant No. DE-FG03-94ER40837.
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