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At zero temperature, in the chiral limit the amplitude forp0 to decay into two photons is directly related to
the coefficient of the axial anomaly. At any nonzero temperature, this direct relationship is lost: while the
coefficient of the axial anomaly is independent of temperature, in a thermal bath the anomalous Ward identities
do not uniquely constrain the amplitude forp0→gg. Explicit calculation shows that to lowest order about zero
temperature this amplitude decreases.@S0556-2821~97!00423-2#

PACS number~s!: 12.39.Fe, 11.10.Wx, 11.30.Qc, 11.30.Rd

I. INTRODUCTION

In field theory, currents which are conserved classically
may not be quantum mechanically@1#. For example, in mass-
less QED the conservation of the axial vector current is vio-
lated by the axial anomaly. The Adler-Bardeen theorem
states that with the proper regularization scheme, the coeffi-
cient of the anomaly, as computed at one loop order, is exact
to all orders in perturbation theory. Moreover, the axial
anomaly does not change if the fermions propagate in either
a thermal bath or a Fermi sea@2–4#.

In vacuum, one of the most striking manifestations of the
axial anomaly is the decay of a neutral pion into two pho-
tons, as the amplitude is directly proportional to the coeffi-
cient of the axial anomaly in QED@1,5#. A natural supposi-
tion is then that because the axial anomaly does not change
with temperature, neither does the amplitude forp0→gg
@6,7#.

In this paper we show that the story is more involved. We
compute with a gauged nonlinear sigma model@8# which
properly incorporates all anomalies by inclusion of the
Wess-Zumino-Witten~WZW! term @9–13#. The effective
Lagrangian forp0→gg is

Lpgg5S e2Nc

48p2D 1

f p
p0FabF̃ab, ~1.1!

where f p;93 MeV is the pion decay constant,Nc53 is the
number of colors, etc.

In Sec. II we start by computing the effects of pion loops
on the amplitude of Eq.~1.1!, using the WZW action to one
loop order in vacuum@14#. The form of the WZW action is
constrained by topology@10#, so after the dust of calculation
settles, in vacuum the result is trivial: the only effect of the
pion loops is to change a bare pion decay constant into a
renormalizedf p .

We then extend the calculations to soft, cool pions at low
temperature@15#. In this paper we work exclusively with two
flavors in the chiral limit. The restriction to two flavors is
done for ease of calculation, and is otherwise inessential. The
chiral limit, mp50, is assumed because then the pion decay
amplitude is directly related to the axial anomaly; for calcu-
lations atmpÞ0 at nonzero temperature; see@7,16#. We be-
lieve that our results are relevant formpÞ0 ~as in vacuum!,
but more detailed analysis is required to establish this.

At nonzero temperature, calculations in a background
field formalism@15# show that to;T2/ f p

2 , the zero tempera-
ture pion decay constant is replaced by a temperature-
dependent form@17,18#:

f p~T!5S 12
1

12

T2

f p
2 D f p . ~1.2!

Thus a second guess for the change ofLpgg with tempera-
ture would be that the zero temperaturef p is replaced by
f p(T). Sincef p(T) decreases to;T2/ f p

2 , if true the ampli-
tude,;1/f p(T), would increase to this order.

In Sec. III we evaluate precisely the same diagrams as at
zero temperature to;T2/ f p

2 . The result, Eq.~3.10!, is the
sum of two terms: one has exactly the form of Eq.~1.1!, with
f p replaced byf p(T), but there is also a second term, special
to nonzero temperature. This type of term was derived re-
cently in nonlinear sigma models in the absence of gauge
fields@15#: it is nonlocal, analogous to the hard thermal loops
of hot gauge theories@19#. Forp0→gg, to order;T2/ f p

2 we
find that the sum of these two terms is such that instead of
increasing, like;1/f p(T), the amplitude decreases, like
; f p(T), Eq. ~3.9!.

In Sec. IV we give a general analysis of the relationship
between the chiral Ward identities and the amplitude for
p0→gg. As is standard@5#, we use the anomalous Ward
identity to relate a three point function of currents to the
amplitude forp0→gg. At zero temperature, this relationship
is precise because of the Sutherland-Veltman theorem@20#
~in a slight abuse of terminology!. The proof of the
Sutherland-Veltman theorem depends crucially upon Lorentz
invariance. A heat bath, however, provides a preferred rest
frame; extending an analysis of Itoyama and Mueller@3#, we
show that consequently, the Sutherland-Veltman theorem
does not apply at any nonzero temperature. This is why
p0→gg changes with temperature, even though the
anomaly does not: besides the contributions fromp0→gg,
because there is no Sutherland-Veltman theorem at nonzero
temperature, there are other terms which enter to ensure that
the Adler-Bardeen theorem is satisfied.

In Sec. V we demonstrate these general arguments by
computing the correlator between one axial and two vector
currents in the nonlinear sigma model to one loop order,
;T2/ f p

2 . At nonzero temperature, new tensor structures arise
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in this correlator; these structures are why the Sutherland-
Veltman theorem is inapplicable atTÞ0. Nevertheless,
when all terms are added together, we find that the Adler-
Bardeen theorem remains valid to one loop order. This is a
useful and nontrivial check of our result forp0→gg.

Technical details are relegated to several appendixes. The
WZW action is discussed in Appendix A. Various formulas
for hard thermal loops are collected in Appendix B. We use
the imaginary time formalism at nonzero temperature in this
paper, but show in Appendix C how the same results follow
in the real time formalism. Lastly, in Appendix D we com-
pute another anomalous amplitude, that forg→ppp @22#, at
low temperature.

While the principal concern of our work is thermal field
theories, we hope that some of our dicussion, especially that
in Sec. IV, might be of more general interest. Perhaps under-
standing whyp0→gg is not tied to the axial anomaly at
nonzero temperature helps us better understand this relation
at zero temperature.

II. p˜gg IN VACUUM

We start by computing the effects of pion loops on the
amplitude for p→gg in vacuum. At one loop order, the
relevant diagrams are Figs. 1~a!–1~d!: Fig. 1~a! gives the
pion field renormalization constant,Zp ; Fig. 1~b!, the renor-
malized pion decay constantf p , while corrections to the
amplitude itself are given by Figs. 1~c! and 1~d!.

For the ‘‘tadpole’’ type diagrams of Figs. 1~a!, 1~b!, and
1~c! we use a trick. To compute Fig. 1~a! we expand the full
Lagrangian, Eq.~A10!, to quartic order in the pion field:

L5
1

2
~]apW !21

1

6 f b
2@~pW •]apW !22pW 2~]apW !2#1•••.

~2.1!

In all expressions from the appendix, we need to use the bare
pion decay constant,f b , instead of the renormalized quantity
f p , as one loop effects changef b into f p . For the quartic
terms, contracting two out of the four pion fields in all pos-
sible ways gives

^L&.
1

2S 12
2

3

I0

f b
2D ~]apW !2[

1

2
~]apW r !

2. ~2.2!

where

I05^p2&5E d4K

~2p!4

1

K2 . ~2.3!

While this integral is quadratically divergent, we ignore
regularization, since its actual value is irrelevant for our pur-
poses. In Eq.~2.2! p r5p/AZp is the renormalized pion
field, and so

Zp511
2

3

I0

f b
2

. ~2.4!

For the pion decay constant, instead of Fig. 1~b! we ex-
pand the axial vector currentJ5,a

a of Eq. ~A11! to cubic order
in the pion field:

J5,a
a 5 f b]apa2

2

3 f b
~pW 2]apa2papW •]apW !1•••.

~2.5!

Contracting all pairs of pion fields,

^J5,a
a &5S 12

4

3

I0

f b
2D f b]apa[ f p]ap r

a , ~2.6!

so that

f p5S 12
I0

f b
2D f b . ~2.7!

As is typical of nonlinear sigma models, unphysical, off-
shell quantities such asZp , Eq. ~2.4!, depend upon the pa-
rametrization of the coset space, while physical expressions,
such as that forf p in Eq. ~2.7!, do not.

Turning to the amplitude forp0→gg, from Eq.~1.1! it is

M5gpgg
b «abgde1

ae2
bP1

gP2
d ; ~2.8!

P1 andP2, ande1 ande2 are the momenta and the polariza-
tion vectors of the two photons, both of which lie on the
mass shell,P1

25P2
25P1•e15P2•e250. At tree level, the

bare couplinggpgg
b satisfies

f bgpgg
b 5

e2Nc

12p2 . ~2.9!

The right-hand side of Eq.~2.9! is precisely the coefficient of
the axial anomaly in QED@1#.

To evaluate Fig. 1~c! we expand the anomalous current
for the coupling to two photons, Eqs.~A7!, ~A11!, and
~A14!, to cubic order in the pion field:

FIG. 1. One loop corrections to thepgg vertex.
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Lpgg5S e2Nc

48p2D 1

f b
«abgdFabAgF S 12

2

3

pW 2

f b
2 D ]dp3

1
2

3 f b
2pW •]dpW p3G1•••. ~2.10!

Contracting two pion fields,

^Lpgg&.S 12
4

3

I0

f b
2D S e2Nc

48p2D «abgdFabAg]dp3.

~2.11!

The two distinct diagrams of Fig. 1~d! require more effort:

Md58S e2Nc

48p2D 1

f b
3«abgdP1

bP2
de1

aGgs~P2!e2
s

1~P1 ,e1
P2 ,e2!, ~2.12!

where

Gab~P!5E d4K

~2p!4

KaKb

K2~K2P!2[
I0

2
@dab2Pab~P!#.

~2.13!

This peculiar separation of terms inGab(P) is done in an-
ticipation of the results at nonzero temperature. In vacuum,
for P250, Pab(P);PaPb, and so because of the Levi-
Civita symbol,Pab(P) does not contribute toMd. Hence
Eq. ~2.12! reduces to a form proportional to the original term
in Eq. ~2.8!. Putting everything together, the renormalized
couplinggpgg equals

gpgg5F11S 1

3
2

4

3
12DI0

f b
2Ggpgg

b 5S 11
I0

f b
2D gpgg

b .

~2.14!

The 1/3 comes from a factor ofAZp for the renormalized
pion field, Fig. 1~a! and Eq.~2.4!, the 24/3 from Fig. 1~c!,
Eq. ~2.11!, and the 2 from Fig. 1~d!, Eqs.~2.12! and ~2.13!.
Hence at one loop order,

f pgpgg5
e2Nc

12p2 . ~2.15!

Comparing Eqs.~2.9! and~2.15!, we see that the anomaly is
not renormalized to one loop order@1#: separate divergences
in f p andgpgg cancel in the product@14#.

III. p˜gg AT LOW TEMPERATURE

We now compute the decay for a cool pion, at a tempera-
ture T! f p @15#. The diagrams are identical, the only differ-
ence is that we need to compute atTÞ0. For the tadpole
diagrams of Figs. 1~a!, 1~b!, and 1~c!, the integral is the
analogy of Eq.~2.3!:

^p2&5T (
n52`

1` E d3k

~2p!3

1

K2 . ~3.1!

We use the imaginary time formalism,K25k0
21kW2, k5ukW u,

andk052pnT for integraln; after doing the sum overn, the
Bose-Einstein statistical distribution function,
n(v)51/@exp(v/T)21#, appears:

^p2&5E d3k

~2p!3

1

2k
@112n~k!#[I01IT5I01

T2

12
;

~3.2!

I0 is the value of the integral at zero temperature. Henceforth
we drop theT50 part of any integrals, assuming that they
turn bare into renormalized quantities, such asf b into f p ,
throughout.

The calculation of temperature-dependent corrections to
the pion decay constant proceeds as in the previous section.
Ignoring ultraviolet renormalization, in Eq.~2.7! we replace
I0 by IT , and f b by f p , to obtain

f p~T!5S 12
IT

f p
2 D f p5S 12

1

12

T2

f p
2 D f p . ~3.3!

which was quoted in the introduction, Eq.~1.2!.
Thus if anything unusual happens at nonzero temperature,

it can only be from the diagram of Fig. 1~d!. Unlike the
tadpole diagrams, this diagram has nontrivial momentum de-
pendence, and so we must be more precise in specifying the
external momenta. To compute scattering in a thermal bath,
we continue the euclidean momentap0 to a minkowski en-
ergyv by p052 iv101. Following @15# we further assume
that each momentum is not only cool but soft, taking both
uvu,p!T! f p .

For scattering between soft, cool pions, in@15# we
showed that the leading temperature corrections are directly
analogous to the hard thermal loops of hot gauge theories
@19#. We used the background field method, but only in the
absence of external gauge fields. While the perturbative cal-
culations which follow are thus less elegant, they illustrate
the physics more directly. From the perspective of@15#, there
is nothing special aboutp0→gg; the connection to the axial
anomaly will be clarified later.

We introducedGab(P),

dGab~P!5
T2

24
@dab2dPab~P!#, ~3.4!

with

T2

24
dPab~P!'T (

n52`

1` E d3k

~2p!3H dab

2

1

K22
KaKb

K2~K2P!2J .

~3.5!

The ' sign denotes that only the hard thermal loops in the
integral are retained, which we denote bydGab(P) and
dPab(P). The hard thermal loops are the terms;T2, and
are given explicitly in Appendix B.

Up to an overall constant,dPab is the same hard thermal
loop as appears in the polarization tensor for a photon in
thermal equilibrium. For a thermal photon, the screening of
time-dependent electric and magnetic fields implies that the
mass shell is atP2;e2T2. For the sake of simplicity we
assume that the photons do not thermalize; then the only
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photons which propagate are transverse modes on the light
cone,P1

25P2
250. The polarization vectors for these modes

are purely spatial vectors which satisfyP•e50.
From Eq.~2.12!, the contribution to the amplitude from

Fig. 1~d!, Md, involvesGab(P)eb for one of the two pho-
tons on their mass shell. Using Eq.~B6! of Appendix B,

dPab~P!ebuP2505ea, ~3.6!

whereeb is the polarization vector for the photon with mo-
mentumP. Only the first term on the right-hand side of Eq.
~B7! contributes, as terms indPab(P) which are;Pb or nb

drop out after contraction witheb. From the definition of
dGab, Eq. ~3.4!,

dGab~P!ebuP25050. ~3.7!

Consequently, while at zero temperature Fig. 1~d! contrib-
utes to the amplitude forp0→gg, to leading order at non-
zero temperature its contribution vanishes identically, Eq.
~3.7!.

Knowing that Fig. 1~d! does not contribute, it is then easy
to read off the one loop corrections to the couplinggpgg to
;T2/ f p

2 , gpgg(T). As in Eq.~3.3!, we start with Eq.~2.14!,
and then replaceI0 by IT , and f b by f p . We keep the 1/3
from Fig. 1~a!, the24/3 from Fig. 1~c!, but replace the12
from Fig. 1~d! by 0, to obtain

gpgg~T!5F11S 1

3
2

4

3
10D IT

f p
2 Ggpgg5S 12

IT

f p
2 D gpgg .

~3.8!

Notice that while Eq.~2.7! is precisely analogous to Eq.
~3.3!, because of the difference in Fig. 1~d!, Eq. ~2.14! is not
analogous to Eq.~3.8! — there is a difference in sign. Con-
sequently,

gpgg~T!5S 12
1

12

T2

f p
2 Dgpgg . ~3.9!

As discussed in the Introduction, naively one might guess
that Eq. ~2.15! generalizes to nonzero temperature just by
replacing f p and gpgg with f p(T) and gpgg(T), respec-
tively. This is wrong: to ;T2/ f p

2 , instead of
gpgg(T);1/f p(T), as would be guessed from Eq.~2.15!,
insteadgpgg(T); f p(T), Eq. ~3.9!. We do not know why, to
leading order about low temperature,gpgg(T) decreases in
exactly the same manner asf p(T).

Our result in Eq.~3.8! differs from that found by Dobado,
Alvarez-Estrada, and Gomez@7#. These authors consider the
same model, but findgpgg(T)5gpgg to ;T2/ f p

2 . Our re-
sults agree except for Fig. 1~d!, which we believe was treated
incorrectly @23#.

Before continuing, following@15# we construct the effec-
tive Lagrangian forp0→gg to ;T2/ f p

2 . In dGab(P) of Eq.
~3.4!, the term;dab is easy to include. At zero temperature,
Eq. ~2.13!, this term is the only part of Fig. 1~d! which con-
tributes,12 in Eq.~2.14!, and turns 1/f b in gpgg into 1/f p in
gpgg

r . Thus to;T2/ f p
2 , the effect of Figs. 1~a!, 1~c!, and the

term ;dab in dGab(P) of Fig. 1~d! is just to change 1/f p

into 1/f p(T) in the original Lagrangian,Lpgg of Eq. ~1.1!.

Including the termdPab(P) is less trivial. Because of
Eq. ~B1!, it must be constructed out of transverse quantities.
Using Eq.~B8!, we find that to;T2/ f p

2 , the effective La-
grangian forp0→gg is

Lp0gg~T!5S e2Nc

48p2D 1

f p~T!
p0FabF̃ab

2
T2

12f p
2 S e2Nc

48p2D E dV k̂

4p
Hga

K̂aK̂b

2~]•K̂ !2
Fgb .

~3.10!

In this expressionF̃ab5eabgdFgd/2,

Hab5]aHb2]aHb , ~3.11!

and

Ha5
1

f p
«abgdFbg]dp0. ~3.12!

The vectorK̂5( i ,k̂) and the integration over the anglek̂ are
discussed following Eq.~B2!.

The nonlocal term in Eq.~3.10! is specific to finite tem-
perature. At zero temperature, there is no other term besides
Eq. ~1.1! that contributes top0→gg for photons on the
mass-shell. In the terminology of the nonlinear sigma model
@8#, the operator of Eq.~1.1! is O(P4), while operators at
next to leading order areO(P6). These operators, however,
are either proportional toP1

2 or P2
2, and so vanish on the

photon~s! mass shell, ormp
2 , and so vanish in the chiral

limit. Thus in the vacuum, the only possible change in Eq.
~1.1! is the transmutation off b into f p , Sec. II. At nonzero
temperature, however, there are new nonlocal terms which
arise, Eq.~3.10!. Because they are nonlocal, these new terms
are alsoO(P4), and so as important as Eq.~1.1! @15#. This is
the technical reason why the amplitude forp0→gg depends
nontrivially upon temperature.

IV. p0
˜gg AND THE AXIAL ANOMALY

In the previous section we found that the amplitude for
p0→gg diminishes to leading order in an expansion about
low temperature, Eq.~3.9!. The question we address in this
section is why is this amplitude tied to the coefficient of the
axial anomaly at zero temperature, Eq.~2.15!, but not at
nonzero temperature?

We work in the chiral limit to leading order about zero
temperature,;T2/ f p

2 , because then we can make certain
technical assumptions which simplify the discussion. The
general case is considered at the end of this section.

Define the vector currentJa and the axial vector current
in the isospin-3 direction,J5,g

3 . The vector current is con-
served,

]aJa50, ~4.1!

while the axial current is anomalous,
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]aJ5,a
3 52

e2Nc

48p2
FabF̃ab. ~4.2!

By the Adler-Bardeen theorem, the coefficient of the right-
hand side is exact to one loop order@1#, and is independent
of temperature and density@2–4#.

One quantity we can compute is the~thermal! three point
Green’s function between two vector, and one axial vector,
current:

Tabg~P1 ,P2 ;T!52 ie2E d4X1d4X2ei ~P1•X11P2•X2!

3
Tr@e2H/TJa~X1!Jb~X2!J5,g

3 ~0!#

Tr~e2H/T!
,

~4.3!

whereH is the Hamiltonian. ThenTabg satisfies current con-
servation,

P1
aTabg5P2

bTabg50, ~4.4!

and the anomalous Ward identity,

QgTabg52
e2Nc

12p2«abgdP1
gP2

d , ~4.5!

Q5P11P2.
To relate the anomalous Ward identity to the amplitude

for pion decay we follow Shore and Veneziano@5#. At low
temperature the pion couples to the axial current as

^0uJ5,a
a upb~Q!&5 iQa f pdab. ~4.6!

~This is not valid to;T4/ f p
4 ; then the relation is more com-

plicated,@18#.!
To obtain the amplitude forp0→gg, we introduceQ2

times the matrix element between two QED currents and a
pion:

Tab5e2Q2E d4X1d4X2ei ~P1•X11P2•X2!

3
Tr@e2H/TJa~X1!Jb~X2!p~0!#

Tr~e2H/T!
. ~4.7!

This is related to the pion decay amplitude, Eq.~2.8!, as

M5 lim
Q2→0

e1
ae2

bTab . ~4.8!

Subtracting the one pion pole term from Eq.~4.3! gives
T̂abg , which by construction is one pion irreducible:

T̂abg5Tabg1 f pQg

1

Q2Tab . ~4.9!

Again, by current conservation

P1
aT̂abg5P2

bT̂abg50, ~4.10!

while the anomalous Ward identity, Eq.~4.5!, becomes

QgT̂abg5 f pTab2
e2Nc

12p2«abgdP1
gP2

d . ~4.11!

The trick is now to try to deduce general relations using just
Eqs. ~4.10!, ~4.11!, and Bose symmetry between the two
photons,P1 ,a
P2 ,b.

We first discuss zero temperature, where we can invoke
Euclidean invariance. The most general pseudotensorT̂abg
which satisfies all of our conditions involves three terms:

T̂abg5T1«abgd~P1
d2P2

d!1T2~«agdkP2
b2«bgdkP1

a!P1
dP2

k

1T3~«agdkP1
b2«bgdkP2

a!P1
dP2

k . ~4.12!

Current conservation, Eq.~4.10!, gives

T11P1
2T21P1•P2T350, ~4.13!

while from the anomalous Ward identity, Eq.~4.11!,

22T15 f pgpgg2
e2Nc

12p2 . ~4.14!

Combining these two relations we obtain

2P1
2T212P1•P2T35 f pgpgg2

e2Nc

12p2 . ~4.15!

Putting the photons on their mass shellP1
25P2

2, the left-hand
side in Eq.~4.15! reduces toQ2T3. This is zero on the pion
mass shell,Q2→0, since by definitionT̂ is one pion irreduc-
ible, and so cannot have a pole;1/Q2. Hence the left-hand
side of Eq.~4.15! vanishes, and we obtain the desired rela-
tion betweengpgg and the coefficient of the axial anomaly,

05 f pgpgg2
e2Nc

12p2 , ~4.16!

which is Eq.~2.13!.
This analysis, and especially the tensor decomposition of

Eq. ~4.12!, is identical to the derivation of the Sutherland-
Veltman theorem@20#. Historically, this theorem predated
the anomaly, and was used to conclude thatgpgg50. By
adding the axial anomaly through the anomalous Ward iden-
tity of Eq. ~4.11!, however, we obtaingpgg;e2Nc / f p , Eq.
~4.16!. From a modern perspective, then, it is precisely the
Sutherland-Veltman theorem which relates the axial anomaly
to the amplitude forp0→gg, and tells us at zero tempera-
ture the left-hand side of Eq.~4.16! vanishes.

This is no longer true at nonzero temperature. Following
Itoyama and Mueller@3#, we write the most general tensor
decomposition ofT̂abg . In a thermal bath, however, Euclid-
ean symmetry is lost, and the rest frame of the thermal bath,
which we take asnm5(1,0W ), enters. Some of the possible
tensors include
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T̂abg5T1«abgd~P1
d2P2

d!1T2~«agdkP2
b2«bgdkP1

a!P1
dP2

k

1T3~«agdkP1
b2«bgdkP2

a!P1
dP2

k

1T4n•Q«abdkP1
dP2

kng1T5~n•P2«agdknb

2n•P1«bgdkna!P1
dP2

k1•••. ~4.17!

We have only included the terms inT̂ which contribute to the
Ward identities of Eq.~4.10! and ~4.11!. Current conserva-
tion gives

T11P1
2T21P1•P2T31~n•P1!2T550, ~4.18!

while the anomalous Ward identity fixes

22T11~n•Q!2T45 f p~T!gpgg~T!2
e2Nc

12p2 , ~4.19!

from which follows

2P1
2T212P1•P2T31~n•Q!2T412~n•P1!2T5

5 f p~T!gpgg~T!2
e2Nc

12p2 . ~4.20!

Putting all fields on their mass shell,P1
25P2

250, Q2→0,
and assuming as before thatT3 has no pole;1/Q2, we ob-
tain

~n•Q!2T412~n•P1!2T55 f p~T!gpgg~T!2
e2Nc

12p2 .

~4.21!

Since the terms on the left-hand side involve onlyn•Q and
n•P1, there is no reason for them to vanish even if
P1

25P2
25Q250; thus the direct connection between

gpgg(T), f p(T), and the anomaly is lost. We stress that, as
always, the Adler-Bardeen theorem remains valid, and gives
Eq. ~4.20!. It is only the Sutherland-Veltman theorem which
no longer applies at nonzero temperature.

The above analysis only applies to leading order in low
temperature,;T2/ f p

2 . This is because beyond leading order,
the pion mass shell is no longer atQ250 @18#; also, as
photons thermalize, their mass shell moves off the light cone.
This is incorporated by using Eq.~4.20! instead of Eq.
~4.21!. For instance, we can understand how the anomalous
Ward identity is satisfied in a chirally symmetric phase.
From explicit calculation in a constituent quark model@21#,
p0→gg vanishes once chiral symmetry is restored. This
does not conflict with the anomalous Ward identity since
even if gpgg(T)50, there are other terms which can ensure
that Eq.~4.20! is satisfied. For photons which do not ther-
malize, soP1

25P2
250, even assuming that at the chiral criti-

cal point that the pion mass shell isQ250, the tensorsT4
and/orT5 will in general be nonzero.

Our analysis agrees with the results of Contreras and
Loewe @16#, who computed the triangle diagram atTÞ0
with massive fermions. Their result, Eq.~1.2!, is directly
related toT̂abg . There are two terms: the first is regular,

temperature dependent, and gives the amplitude forp0→gg,
while the second is the anomaly, and is independent of tem-
perature.

At first sight it might appear peculiar that the Sutherland-
Veltman theorem applies at zero temperature, but fails at any
nonzero temperature. Even at zero temperature, however, the
Sutherland-Veltman theorem only applies in the chiral limit
when both photons are on their mass shell. Without all of
these conditions, the left-hand side of Eq.~4.13! does not
vanish, andgpgg is not given by Eq.~4.14!. An example of
this occurs when one~or both! of the photons are off the
mass shell@24#, even ifQ2→0. In particular, in the limit of
largeP2, it is known thatgpgg;e2f p /P2 @24#. Thus on the
right-hand side of Eq.~4.13!, we can neglectf pgpgg;1/P2

relative to the anomaly term,2e2Nc /(12p2), and Eq.~4.13!
tells us that a combination ofT2 andT3 are given entirely by
the anomaly,;e2Nc /P2.

V. THE ADLER-BARDEEN THEOREM
AT LOW TEMPERATURE

In this section we calculate the correlatorT̂abg to ;T2/ f p
2

in the nonlinear sigma model. This allows us to check ex-
plicitly the temperature dependence off p(T) and gpgg(T)
found previously in Sec. III. It is also illuminating to see
exactly which amplitudes enter at one loop order in the non-
linear sigma model, and how they conspire to satisfy the
Adler-Bardeen theorem.

At tree level in the nonlinear sigma model, there is no
direct coupling between two vector and one axial vector cur-
rents, soT15T25T350. Thus the anomalous Ward iden-
tity, Eq. ~4.5!, is satisfied entirely by the one pion reducible
term, Eq.~4.11!, with T̂abd50. This is illustrated in Fig. 2.

Contributions toT̂abg are generated at one loop order. In
order to compute these, it is necessary to compute correc-
tions to the axial current. We have computed these in two
ways. The most direct is to follow the original method of
Wess and Zumino@9#. Besides the photon fieldAa , which
couples to the electromagnetic currentJa , we also introduce
an external fieldA5,a

3 which couples to the axial currentJ5,a
3 .

One then differentiates the generating functional of Wess and
Zumino with respect to the external fieldsAa and A5,a

3 . At
one loop order, the terms required are;p1p2A5,a

3 Ab and
;p1p2A5,a

3 AbAg ; p65(p16 ip2)/A2 are the charged
pion fields. After lengthy calculation, we find

FIG. 2. One pion reducible contribution toTabd at tree level.
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DL5S eNc

48p2f p
2 D eabgdFabA5,g

3 @ i ~p2]dp12p1]dp2!

22ep1p2Ad#. ~5.1!

To leading order ine, this L is invariant under an electro-
magnetic gauge transformation:

p6~x!→ exp6 ieu~x!p6~x!,

Aa~x!→Aa~x!2]au~x!. ~5.2!

The terms inL can be viewed as corrections to the axial
current. In Appendix A we compute these corrections using
the Noether construction of the axial current. This is some-
what delicate, since it is necessary to start with a Lagrangian
density ~and not merely a Lagrangian! which is manifestly
gauge invariant. The result, Eq.~A17!, agrees with Eq.~5.1!.

Through the diagrams of Fig. 3, the couplings inDL gen-
erate the one pion irreducible terms inT̂abg .

We begin with the results at zero temperature. Given the
couplings inDL, the only tensor structure which arises from
Fig. 3 is ;eabgd(P12P2)d. Comparing with the tensors in
Eq. ~4.12!, then, at one loop order automaticallyT25T350.
For T1, we find

T15~222!S I0

f b
2D e2Nc

24p2
50. ~5.3!

The contribution;12 is from Fig. 3~a!, that;22 from the
two diagrams of Figure 3~b!. Because all of theTi ’s vanish,
current conservation~4.13! and the anomaly equation~4.14!,
are satisfied rather trivially. That the latter vanishes is
equivalent to the Sutherland-Veltman theorem, Eq.~4.16!.
This explains our results in Sec. II, where we found that at
zero temperature, the renormalization off p andgpgg exactly
compensate each other.

At nonzero temperature we can evaluateT1 . . . T5 using
the results of Sec. III. Fig. 3~a! is a tadpole diagram, and so
as at zero temperature, just contributes toT1. Thus the only
possibility for a new tensor structure is from the hard thermal
loop in Fig. 3~b!. For one ordering of momenta, Fig. 3~b!
gives

2 i
e2Nc

12p2f p
2

egdbkP2
ddGka~P1!, ~5.4!

wheredGka is given in Eq.~3.4!. Putting the photon momen-
tum P1 on its mass shell, we require the result fordPka(P1)

in Eq. ~B6!. We drop all terms indPka(P1);P1
a , Eq. ~B6!,

since they vanish upon contraction with the photon polariza-
tion tensor. The term;dka in Eq. ~B6! cancels against the
same term in Eq.~3.4!; thus at nonzero temperature, there is
no contribution toT1 from Fig. 3~b!, and

T15~210!S IT

f p
2 D e2Nc

24p2 . ~5.5!

Comparing to Eq.~5.3!, again Fig. 3~a! gives the term;12,
and Fig. 3~b! the term;0. That Fig. 3~b! does not contribute
is just like the same result forgpgg(T), Fig. 1~d! and Eq.
~3.8!.

Figure 3~b! will contribute, however, through the term
;naP1

k/(n•P1) in dPka(P1) in Eq. ~B6!. Comparing with
the tensor decomposition of Eq.~4.17!, we find

T552
1

~n•P1!2S IT

f p
2 D e2Nc

12p2
. ~5.6!

Since these are the only diagrams at one loop order,

T25T35T450. ~5.7!

Consequently,

22T152~n•P1!2T55 f p~T!gpgg~T!2
e2Nc

12p2
. ~5.8!

Thus we can see that our results satisfy current conservation,
Eq. ~4.18! and the anomaly equation of~4.21!. Last but not
least, the latter only holds givenf p(T) andgpgg(T) in Eqs.
~1.1! and ~3.8!, and so provides a nontrivial check of these
calculations.

Notice that while there is a factor of 1/(n•P1)2 in T5, it is
essentially kinematic in origin, as envisioned by Itoyama and
Mueller @3#. One factor ofn•P1 arises from the definition of
T5, Eq. ~4.17!, while the other can be seen to arise from a
directional singularity,;pi /p, in the integral of Eq.~B6!.
Further, notice that there is a~logarithmic! collinear diver-
gence in the integral of Eq.~B6!. This singularity drops out
of the full amplitude after contracting with the polarization
tensor of the photon.

VI. CONCLUSIONS

In this paper we have concentrated exclusively on the
anomalous decay ofp0→gg. We have done so because it is
the most familiar anomalous decay, and because the connec-
tion to the axial anomaly is especially close. For the colli-
sions of heavy ions at ultrarelativistic energies, though, this
is a purely academic point, since any high temperature
plasma flies apart long before ap0 has a chance to decay
electromagnetically.

Our basic point is much more general, however. While
the axial anomaly for fermions is independent of tempera-
ture, anomalous decays of mesonic fields change with tem-
perature. Processes of obvious interest for hadronic systems
include h8 into two gluons and the decays of thev meson
@21#. Electroweak processes include couplings of the axion.
Whether the changes in these couplings are physically rel-

FIG. 3. One pion irreducible contributions toTabd at one loop
order.
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evant can only be determined after detailed calculation; what
is certain is that they do change. In a cosmological context,
the mechanisms of electroweak baryogenesis involve the ef-
fective coupling of a pseudoscalar field to the Pontryagin
density for the SU~2! L gauge field. In vacuum, this coupling
is directly related to the anomalous divergence of the baryon
current. It was argued in@25# that this coupling must be
suppressed above the electroweak phase transition; presum-
ably this can be understood from our analysis. Lastly, we
note that the ’t Hooft anomaly matching conditions@26#
strongly constrain the appearance of massless bound states in
confining theories. Due to the failure of the Sutherland-
Veltman theorem, Sec. IV, these conditions are clearly much
less restrictive at nonzero temperature.

If nothing else, perhaps this gives us a greater apprecia-
tion of the wonder of the fermion axial anomaly. While ev-
ery other anomalous decays changes in complicated and de-
tailed ways, that alone remains inviolate, always.
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APPENDIX A: WZW ACTION

In this appendix we review the Wess-Zumino-Witten
~WZW! model coupled to an external photon field. Along
with establishing notation, this also enables us to discuss a
novel form of the WZW model, mentioned recently@12,13#,
and to comment about the two currents in the two-flavor
version of the WZW model.

For nf flavors, the model is constructed from anf3nf
unitary matrixg, g†g51. In the absence of gauge fields, the
action is the sum of two terms,S5S01SWZW , with
S05*d4xL0 the usual action for a nonlinear sigma model:

L05
f p

2

4
tr~]ag†]ag!. ~A1!

The generators of SU(nf) are the matricesla, normalized
as tr(lalb)52dab. This Lagrangian is invariant under
global SU(nf) l 3SU(nf) r unitary transformations,g(x)
→V l g(x)V r

† . For example, under axial transformations, for
which V l 5V r

† , the corresponding conserved current is

J5,a5Ra1La5g†]ag1~]ag!g†. ~A2!

The second piece of the action is the Wess-Zumino-Witten
term,

SWZW52 i
Nc

240p2E d5x«abgds tr ~RaRbRgRdRs!,

~A3!

where the integral is over a five-dimensional region whose
boundary is four-dimensional spacetime.

We wish to coupleg to a photon fieldAa(x) in a gauge
invariant manner. For three flavors the charge matrix is
Q51/61l3/2, and so we introduce the covariant derivative,
Da5]a1 ieAa@Q,•#. By construction, bothg and Dag

transform covariantly under local U~1! gauge transforma-
tions,Aa→Aa1]au(x), Q(x)5exp@2ieQu(x)#, g→QgQ†,
Dag→Q(Dag)Q†.

As usual, to makeL0 gauge invariant we simply replace
the ordinary by the covariant derivative,L̃05 f p

2 tr uDagu2/4.
We can also do this forSWZW by replacingRa with the
gauge covariantR̃a5g†Dag. UsingR̃a in SWZW gives some-
thing which is manifestly gauge invariant, but incomplete,
since it can be shown that the ensuing equations of motion
depend on the fifth dimension. In five dimensions, however,
there are several other gauge invariant terms which can be
added, involving powers of the~Abelian, gauge invariant!
field strength,Fab5]aAb2]bAa . The correct action then
follows uniquely by requiring that the equations of motion
are independent of the fifth dimension@12,13#,

S̃WZW52 i
Nc

240p2E d5x«abgdsH tr~R̃aR̃bR̃gR̃dR̃s!

15Fab tr@Q~ L̃g L̃ d L̃s1R̃gR̃dR̃s!#

210FabFgdtr FQ2~ L̃s1R̃s!1
1

2
Qg†QDsg

2
1

2
QgQDsg†G J . ~A4!

This expression is manifestly gauge invariant but not ob-
viously independent of the fifth dimension@27#. This is in
contrast to the usual action, in which the terms which couple
to the gauge field are manifestly four dimensional, but not
evidently gauge invariant: S̃WZW5SWZW1*d4xLWZW

A ,
where

LWZW
A 52eNcAaJa1 ie2Nc«abgd]aAbAgKd , ~A5!

where

Ja5
1

48p2
«abgd tr $Q~LbLgLd1RbRgRd!%, ~A6!

and

Ka5
1

24p2
trH Q2~La1Ra!1

1

2
~QgQg†La1Qg†QgRa!J .

~A7!

The Lagrangian~A5! is the form given by Witten@10#: it is
gauge invariant up to boundary terms.

Henceforth we follow Brihaye, Pak, and Rossi@11# and
restrict ourselves to two flavors. Introducing the pion field
pa,

g5expS i
pala

f p
D , ~A8!

then for SU~2!

g5cosf1 i
pala

ApW 2
sinf, f5

ApW 2

f p
, ~A9!
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pW 25papa. The original LagrangianL0 becomes

L05
1

2

sin2f

f2
~]apW !21

1

2 f p
2

~f22sin2f!

f4
~pW •]apW !2.

~A10!

The axial current of Eq.~A2! is

J5,a
a 54i S sinf cosf

f
]apa1

~f2sinf cosf!

f p
2 f3

pW •]apW paD .

~A11!

In the WZW term,SWZW vanishes, while using the identity,

«abc«abgdS pW •]bpW pa2
pW 2

3
]bpaD ]gpb]dpc50,

~A12!

we find that

Ja5
1

72p2f p
3

sin2f

f2
«abc«abgd]bpa]gpb]dpc.

~A13!

The chargeQ51/61l3; in going from Eq. ~A6! to Eq.
~A13!, it turns out that the contribution from the piece;l3
drops out. This demonstrates thatJa is directly proportional
to the baryon current@10#. Further, we find thatKa is pro-
portional to the axial current in the isospin-3 direction, Eq.
~A11!,

Ka5
1

96p2f p

J 5,a
3 . ~A14!

That for two flavorsJa and Ka are proportional to the
baryon and axial isospin currents does not seem to have been
recognized previously. Notice thatKa is only proportional to
the axial current for the original Lagrangian,L0; as is dis-
cussed in Sec V, the complete axial current includes contri-
butions from the WZW term. We do not know ifJa andKa
are equal to the analogous currents for three or more flavors.

To conclude, we discuss how to compute the axial current
J5,m

3 of Sec. V using the Noether construction. The general
form for the gauged axial current is rather involved. Since
we compute perturbatively, however, we just compute the
current in the same way. Under an infinitesimal axial rota-
tion, V l 5V r

†5exp( iv), the pion field transforms nonlin-
early,

pa→pa1 f pva1
1

3 f p
~2pW 2va1pW •vW pa!1•••,

~A15!

to ;v and ;p3. After performing such a transformation,
the requisite current is then the coefficient of]av3.

In the present case, however, while the Lagrangian is~of
course! gauge invariant, the Lagrangian density need not be.
In particular, the Lagrangian density of Eq.~A5! is not gauge
invariant; under a local gauge transformation, it transforms

by a total derivative. To the order at which we compute, we
add the following term to the Lagrangian density:

2
e2Nc

24p2
eabgd]a~p3Ab]gAd!2

ieNc

24p2
eabgd]a@Ab~p1]gp2

2p2]gp1!]dp3#. ~A16!

For example, the first piece contributes a Chern-Simons term
to the current. With the addition of Eq.~A16!, the Lagrang-
ian density is manifestly gauge invariant, and the axial cur-
rent is

J5,a
3 ' f p]ap31

2

3 f p
~pW •]apW p32pW 2]ap3!

1
ieNc

24p2f p
2

«abgd]bAg~p1]dp22p2]dp1!

2
e2Nc

12p2S p1p2

f p
2 D «abgdAb]gAd1••• ~A17!

WhenAa50, J5,a
3 reduces to the axial vector current in the

absence of electromagnetism,J 5,a
3 , as can be verified by

expanding Eq.~A11!. The terms linear and quadratic inAa
agree with the calculation from the Wess-Zumino consis-
tency condition, Eq.~5.1!.

This ambiguity in the construction of the axial current is
familiar. Instead of the gauge invariant, anomalous current
used in Sec. IV, by subtracting off a Chern-Simons term, we
can choose to work instead with a current which is conserved
but not gauge invariant.

APPENDIX B: HARD THERMAL LOOPS

We collect some results of hard thermal loops, with minor
differences in notation from previous work@19#. The sim-
plest hard thermal loop is the integral of Eq.~3.1!,
IT5T2/12. After that, there isdPab(P) of Eqs. ~3.4! and
~3.5!. By definition the hard thermal loop includes only the
terms;T2 in the integral, in the limit of soft external mo-
mentumP!K;T. In this approximation,Pab(P) is tran-
verse:

PadPab~P!50. ~B1!

One way of writingdPab(P) is

dPab~P!52nanb12E dV

4p
v

K̂aK̂b

P•K̂
, ~B2!

wherena5(1,0W ) and K̂5( i ,k̂); k̂ is a three vector of unit
norm, k̂251, so that K̂a is null, K̂250, and
P•K̂5 ip01pW • k̂5v1pcosu. It is a dummy variable, in that
one integrates over all directions ofk̂, as *dV k̂ /(4p). In
component form,

dP00~P!522Q1~z!,

dP0i~P!522izQ1~z! p̂i ,
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dP i j ~P!52z2Q1~z! p̂i p̂ j2
2

5S Q3~z!2Q1~z!2
5

3D
3~d i j 2 p̂i p̂ j !, ~B3!

wherez5v/p, and theQi(z) are Legendre functions of the
second kind,

Q1~z!5
z

2
lnS z11

z21D21, ~B4!

Q3~z!5
z~5z223!

4
lnS z11

z21D2
5

2
z21

2

3
. ~B5!

For p0→gg, we need the value ofdPab(P) near the
light cone,v;p1,

dPab;dab1
1

n•P
~naPb1Panb!2F lnS 2p

v2pD21GPaPb

p2
,

~B6!

wherena5(1,0W ).
An equivalent but useful expression for Eq.~B2! is

Pab~P!5E dV

4p Fdab1
K̂aK̂b

~K̂•P!2
P22

PaK̂b1K̂aPb

~K •̂P!
G ;

~B7!

from which follows

T( E d3p

~2p!3
XadPab~P!Yb

5E d4xE dV k̂

4p
~]mXa2]aXm!

K̂aK̂b

2~]•K̂ !2

3~]mYb2]bYm!. ~B8!

The Abelian field strengths of the vector fieldsXa and Yb

enter becausedPab is transverse, Eq.~B1!.

APPENDIX C: p˜gg IN THE REAL TIME FORMALISM

We found in Sec. III that the contribution from Fig. 1~d!
vanishes to orderT2/ f p

2 . In this appendix we check this re-
sult using the real time approach. In this instance, the real
time method is simple and not problematic. It also shows that
the diagram has no temperature-dependent terms whatso-
ever: the entire diagram is equal, identically, to its value at
zero temperature.

After dropping irrelevant terms proportional toP1
a , Fig.

1~d! is proportional to the integral

ebgdkP2
kE d4K

~2p!3
~2K2P1!aKg~K2P1!d

3S n~vk!

~K2P1!2
d~K2!1

n~vk2p1
!

K2
d@~K2P1!2# D

522ebgdkP1
dP2

kE d4K

~2p!3

KaKg

K•P1
d~K2!n~vk!, ~C1!

vk5k, vk2p1
5ukW2pW 1u. The physical amplitude is obtained

by contraction with the polarization vectors for the two pho-
tons. If pW 1 lies in thez direction, say, thena must lie along
the x or y directions. The angularf integration will then
vanish unlessg5a. Thus the integral reduces to

E d4K

~2p!3

vk
2 sin2u

K•P1

n~vk!

vk
@d~k02vK!1d~k01vK!#

5E d3k

~2p!3

2cosu

p1
0

n~vk!. ~C2!

This integral vanishes after integration overu; note that this
physical amplitude is free of any collinear divergences. This
confirms our results obtained with the imaginary time for-
malism.

APPENDIX D: g˜ppp AT LOW TEMPERATURE

In this section we compute the one loop corrections to the
amplitudeg→ppp for soft, cool pions. This provides an-
other, less trivial, example of hard thermal loops. Corrections
to the five dimensional Wess-Zumino-Witten term, Eq.~A3!,
have been computed in@15# using a background field
method; it would be interesting using this method to compute
the one loop corrections to the gauged WZW model, Eq.
~A5!.

To one-loop order, the corrections tog→ppp are those
of Figs. 4~a! and 4~b!.

Figure 4~a! is a tadpole diagram, which is most easily
computing by expanding Eq.~A13! in the pion field,

Lgppp.2
eNc

72p2f b
3S 12

pW 2

3 f p
2 D Aa«abc«abgd]bpa]gpb]dpc,

~D1!

and then compute as in Eq.~2.2!.
At tree level, the amplitude forpppg scattering is

FIG. 4. One loop corrections to thepppg vertex.
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M5kb«abc «abgdeaPb
a Pg

bPd
c , ~D2!

wherePa is the momentum of the pion with isospina, etc.,
and

f b
3kb5

ieNc

72p2 . ~D3!

From Eq. ~A10!, the amplitude for the scattering between
four pions is

A52
1

f b
2FdabdcdPab

2 1dacdbdPac
2 1daddbcPad

2

2
(Pi

2

3
~dabdcd1dacdbd1daddbc!G , ~D4!

wherePab5Pa1Pb , etc.
The contribution of Fig. 4~b! is

Mb5
3i

f b
2

eNc

72p2f b
3«abgdeaPd

c~Pg
a1Pg

b!Gbk~Pab!~Pk
a2Pk

b!

1 permutations, ~D5!

whereGab(Pab) is the integral of Eq.~2.13!.
In the vacuum,Gab(P)5dabI0/2, up to terms;PaPb

which drop out of the amplitude. ToO(P4),

f b
3kb5S 11~12113!

I0

f 2D ieNc

72p2 . ~D6!

The 1 comes fromZp
3/2, Fig. 1~a! and Eq.~2.4!, the21 from

Fig. 4~a! and Eq.~D1!, the13 from Fig. 4~b! and Eq.~D5!.
Using Eq. ~2.7!, then, to one loop order in vacuum~D3!
renormalizes with no change in form,

f p
3 k5

ieNc

72p2 , ~D7!

analogous to Eqs.~2.9! and ~2.15!.
At low temperature,Gab is replaced bydGab of Eqs.

~3.4! and ~3.5!. Using Eq.~B8!, we find that the effective
Lagrangian forg→ppp is similar to that forp0→gg, Eq.
~3.10!. One term is as at zero temperature, withf p replaced
by f p(T), while the second is a hard thermal loop:

Lpppg~T!52
eNc

72p2f p~T!3 Aa«abc«abgd]bpa]gpb]dpc

2
T2

12f p
2

eNc

48p2f p
3 «abcE dV k̂

4p
Hga

a K̂aK̂b

2~]•K̂ !2
Jgb

bc ,

~D8!

where

Ha,b
a 5]a~«bgdkFgd]kpa!2~a↔b!, ~D9!

Jab
bc 5]apb]bpc2]bpb]apc.
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