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How 7°— yy changes with temperature
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At zero temperature, in the chiral limit the amplitude et to decay into two photons is directly related to
the coefficient of the axial anomaly. At any nonzero temperature, this direct relationship is lost: while the
coefficient of the axial anomaly is independent of temperature, in a thermal bath the anomalous Ward identities
do not uniquely constrain the amplitude fof— . Explicit calculation shows that to lowest order about zero
temperature this amplitude decread&0556-282(197)00423-2
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[. INTRODUCTION At nonzero temperature, calculations in a background
field formalism[15] show that to~T?/f, the zero tempera-
In field theory, currents which are conserved classicallyture pion decay constant is replaced by a temperature-
may not be quantum mechanica]ll]. For example, in mass- dependent forni17,18:
less QED the conservation of the axial vector current is vio-
lated by the axial anomaly. The Adler-Bardeen theorem 2
states that with the proper regularization scheme, the coeffi- fAT)= ( 1- l—zf—z) fr (1.2
cient of the anomaly, as computed at one loop order, is exact g
to all orders in perturbation theory. Moreover, the axial )
anomaly does not change if the fermions propagate in eithef!'US @ second guess for the changeCqf,, with tempera-
a thermal bath or a Fermi s§a—4]. ture woqld be that the zero tempfrathfr; is replaced py
In vacuum, one of the most striking manifestations of thef »(T)- Sincef -(T) decreases te-T*/f7, if true the ampli-
axial anomaly is the decay of a neutral pion into two pho-tude,~1/f-(T), would increase to this order.
tons, as the amplitude is directly proportional to the coeffi- N Sec. Il we evaluate precisely the same diagrams as at
cient of the axial anomaly in QE[L,5]. A natural supposi- 2€ro temperature to-T%f2 . The result, Eq(3.10, is the
tion is then that because the axial anomaly does not changé!m of two terms: one has exactly the form of E1), with
with temperature, neither does the amplitude fdt—yy . replaced byf .(T), but there is also a second term, special
[6,7]. to nonzero temperature. This type of term was derived re-
In this paper we show that the story is more involved. Wecently in nonlinear sigma models in the absence of gauge
compute with a gauged nonlinear sigma mof&] which fields[15]: it is nonlocal, analogous to the hard thermal loops
properly incorporates all anomalies by inclusion of theof hot gauge theorig€9]. For 7°— yy, to order~T?/f2 we
Wess-Zumino-Witten(WZW) term [9—-13. The effective find that the sum of these two terms is such that instead of

Lagrangian form®— yy is increasing, like~1/f (T), the amplitude decreases, like
~f(T), Eq.(3.9.
eNe\ 1 | =ap In Sec. IV we give a general analysis of the relationship
Loyy= 4872 ET’ FapF™, (1D petween the chiral Ward identities and the amplitude for

m°— vyvy. As is standard5], we use the anomalous Ward

wheref _~93 MeV is the pion decay constamN.=3 is the identity to relate a three point function of currents to the
number of colors, etc. amplitude form®— yy. At zero temperature, this relationship

In Sec. Il we start by computing the effects of pion loopsis precise because of the Sutherland-Veltman thed2fh
on the amplitude of Eq(1.1), using the WZW action to one (in a slight abuse of terminology The proof of the
loop order in vacuuni14]. The form of the WZW action is  Sutherland-Veltman theorem depends crucially upon Lorentz
constrained by topologhl0], so after the dust of calculation invariance. A heat bath, however, provides a preferred rest
settles, in vacuum the result is trivial: the only effect of theframe; extending an analysis of ltoyama and Mu€gdr we
pion loops is to change a bare pion decay constant into ahow that consequently, the Sutherland-Veltman theorem
renormalizedf .. does not apply at any nonzero temperature. This is why

We then extend the calculations to soft, cool pions at lowr®—yy changes with temperature, even though the
temperatur¢15]. In this paper we work exclusively with two anomaly does not: besides the contributions fref- y1y,
flavors in the chiral limit. The restriction to two flavors is because there is no Sutherland-Veltman theorem at nonzero
done for ease of calculation, and is otherwise inessential. THemperature, there are other terms which enter to ensure that
chiral limit, m.=0, is assumed because then the pion decayhe Adler-Bardeen theorem is satisfied.
amplitude is directly related to the axial anomaly; for calcu- In Sec. V we demonstrate these general arguments by
lations atm,#0 at nonzero temperature; sgg16]. We be-  computing the correlator between one axial and two vector
lieve that our results are relevant for,#0 (as in vacuury ~ currents in the nonlinear sigma model to one loop order,
but more detailed analysis is required to establish this. ~T2/ffr. At nonzero temperature, new tensor structures arise

0556-2821/97/5@.1)/707712)/$10.00 56 7077 © 1997 The American Physical Society



7078 PISARSKI, TRUEMAN, AND TYTGAT 56

() D= 1-2 8| ar= st (22
<>—§ —§E (ﬁaﬂ)=§(ﬁa77r)- (2.2

@ ) where
I Z_J dK 1 )3
0o=(7)= 2tk (2.3

While this integral is quadratically divergent, we ignore
regularization, since its actual value is irrelevant for our pur-
poses. In Eq.2.2) m,=m/\Z, is the renormalized pion
field, and so

(© (d)
Z =1 2L 2.4
= +§% ( )

FIG. 1. One loop corrections to theyy vertex.

in this correlator; these structures are why the Sutherland- For the pion decay constant, instead of Figo)iwe ex-
Veltman theorem is inapplicable af#0. Nevertheless, pand the axial vector curredf , of Eq.(A11) to cubic order
when all terms are added together, we find that the Adlerin the pion field:

Bardeen theorem remains valid to one loop order. This is a

useful and nontrivial check of our result far®— yy. 2 . . .

Technical details are relegated to several appendixes. The  J5,=fpdm®— 3T(W2f9a77a—77a77' dgm)+ -,
WZW action is discussed in Appendix A. Various formulas b 2.5
for hard thermal loops are collected in Appendix B. We use
the imaginary tim_e formalis_m at nonzero temperature in thisContracting all pairs of pion fields,
paper, but show in Appendix C how the same results follow
in the real time formalism. Lastly, in Appendix D we com-
pute another anomalous amplitude, thatfes war [22], at (32 )= ( 1— 4 ﬁ) Py 2.6
low temperature. “« 3 fg

While the principal concern of our work is thermal field
theories, we hope that some of our dicussion, especially th%r,O that
in Sec. IV, might be of more general interest. Perhaps under-
standing whyw®— yy is not tied to the axial anomaly at

nonzero temperature helps us better understand this relation f=l1- Zo f 2.7
at zero temperature. ™ 2 b- :
Il. 7r— 57y IN VACUUM As is typical of nonlinear sigma models, unphysical, off-

shell quantities such a8, Eq.(2.4), depend upon the pa-
We start by computing the effects of pion loops on therametrization of the coset space, while physical expressions,
amplitude for 7— y7y in vacuum. At one loop order, the such as that fof _ in Eq. (2.7), do not.

relevant diagrams are Figs(a)-1(d): Fig. 1(a) gives the Turning to the amplitude forr®— yy, from Eq.(1.1) it is
pion field renormalization constar®,, ; Fig. 1(b), the renor-
malized pion decay constarit,, while corrections to the M:ggwgaﬁweﬁegpng; (2.8

amplitude itself are given by Figs(d and 1d).

For the “tadpole” type diagrams of Figs.(d), 1(b), and
1(c) we use a trick. To compute Fig(d) we expand the full
Lagrangian, Eq(A10), to quartic order in the pion field:

P, andP,, ande; ande, are the momenta and the polariza-
tion vectors of the two photons, both of which lie on the
mass shellP2=P3=P;-e;=P,-€,=0. At tree level, the
bare coupIinggE’Wy satisfies
1 . 1 . . - -
L=5(0om)2+ o[ (73 m) 2= TH(m)?]+ - - . )
2 6f; b e“N,
(21) fbgﬂ'yy: 12772 . (29)

In all expressions from the appendix, we need to use the barghe right-hand side of Eq2.9) is precisely the coefficient of
pion decay constanty,, instead of the renormalized quantity the axial anomaly in QED1].

f., as one loop effects chandg into f . For the quartic To evaluate Fig. (£) we expand the anomalous current
terms, contracting two out of the four pion fields in all pos-for the coupling to two photons, Eq$A7), (Al11), and
sible ways gives (A14), to cubic order in the pion field:
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Contracting two pion fields,

47, [ €N, 5
§f_2 487T2 saﬁyﬁF BA7(9577 .
b
(2.11

The two distinct diagrams of Fig.(d) require more effort:

(E,,w):( 1-

d e N
M :8 f38aﬁy5p PZElF'y(r(P )62
+(P1|El‘:\P2|€2)1 (212
where
d*K  K9KA T
Faﬁ(P) (277_)4 KZ(K_P)ZZ?[éaﬁ_HaB(P)]

(2.13

This peculiar separation of terms Iff(P) is done in an-

7079

We use the imaginary time formalisr{2=k3+k?, k=K,
andk®=2#nT for integraln; after doing the sum ovar, the
Bose-Einstein statistical distribution function,

n(w)=11exp/T)—1], appears:

(n%)= f -~

7, is the value of the integral at zero temperature. Henceforth
we drop theT=0 part of any integrals, assuming that they
turn bare into renormalized quantities, suchfgsnto f .,
throughout.

The calculation of temperature-dependent corrections to
the pion decay constant proceeds as in the previous section.
Ignoring ultraviolet renormalization, in E@2.7) we replace
o by Z7, andf, by f ., to obtain

B I\, 1712
f(T)= 1—f— f —1—22 f. (3.3

ko

TZ

12’
3.2

k[1+ 2n(K)|=To+ Tr=To+

which was quoted in the introduction, E{..2).

Thus if anything unusual happens at nonzero temperature,
it can only be from the diagram of Fig.(d). Unlike the
tadpole diagrams, this diagram has nontrivial momentum de-
pendence, and so we must be more precise in specifying the
external momenta. To compute scattering in a thermal bath,

ticipation of the results at nonzero temperature. In vacuumwe continue the euclidean momeni& to a minkowski en-

for P2=0, I1*A(P)~P*P#, and so because of the Levi- ergyw by p°=

Civita symbol, IT*4(P) does not contribute to\®. Hence

—iw+0". Following[15] we further assume
that each momentum is not only cool but soft, taking both

Eq.(2.12 reduces to a form proportional to the original term |w|,p<T<f .

in Eq. (2.8). Putting everything together, the renormalized

couplingg,, equals

IO z-0 b
(2.14

The 1/3 comes from a factor ofZ,, for the renormalized
pion field, Fig. 1a) and Eq.(2.4), the —4/3 from Fig. 1c),
Eqg. (2.11), and the 2 from Fig. @), Egs.(2.12 and(2.13.
Hence at one loop order,

1+ §—§+2

e’N,

W. (215)

fﬂ'gﬂ'yy:

Comparing Egs(2.9) and(2.15, we see that the anomaly is
not renormalized to one loop ordEt]: separate divergences

in f, andg,, cancel in the produdtl4].

. 7—yy AT LOW TEMPERATURE

We now compute the decay for a cool pion, at a tempera
ture T<f . [15]. The diagrams are identical, the only differ-

ence is that we need to compute e 0. For the tadpole
diagrams of Figs. (&), 1(b), and 1c), the integral is the
analogy of Eq(2.3):

d®k 1

(m%)= TE f P (3.

For scattering between soft, cool pions, [&5] we
showed that the leading temperature corrections are directly
analogous to the hard thermal loops of hot gauge theories
[19]. We used the background field method, but only in the
absence of external gauge fields. While the perturbative cal-
culations which follow are thus less elegant, they illustrate
the physics more directly. From the perspectivéld], there
is nothing special about’— yy; the connection to the axial
anomaly will be clarified later.

We introducesT “4(P),

T2
ST*A(P)= Z[ﬁ“ﬁ— SII*A(P)],

(3.9
with
T2 d*k (6 1 KeK?
_ aﬁ’ -
o1 (P~ Tn_Zw J(zw)( 2 K2 KAK=P)?
(3.5

The ~ sign denotes that only the hard thermal loops in the
integral are retained, which we denote By “?(P) and

5I1*P(P). The hard thermal loops are the terms?, and
are given explicitly in Appendix B.

Up to an overall constansI1*# is the same hard thermal
loop as appears in the polarization tensor for a photon in
thermal equilibrium. For a thermal photon, the screening of
time-dependent electric and magnetic fields implies that the
mass shell is aP?~e?T2. For the sake of simplicity we
assume that the photons do not thermalize; then the only
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photons which propagate are transverse modes on the light Including the termsII«A(P) is less trivial. Because of
cone,P2=P2=0. The polarization vectors for these modesEq. (B1), it must be constructed out of transverse quantities.
are purely spatial vectors which satidy e=0. Using Eg.(B8), we find that to~T2/ffT, the effective La-
From Eq.(2.12), the contribution to the amplitude from grangian form°— yy is
Fig. 1(d), MY, involvesT “#(P)¢” for one of the two pho-
tons on their mass shell. Using E@6) of Appendix B, eN.\ 1 -
L,0,,(T)= (W) f—ﬂ'OFaBF“'g
) f2(T)

T2 [€°Ne| [ dQg KeK#
f Hyo———=—F -
4w 7 _(9.K)2 7

(3.10

STII*P(P) €| p2_o=€?, (3.6)

where €? is the polarization vector for the photon with mo- _
mentumP. Only the first term on the right-hand side of Eq. 121‘,27\4&72
(B7) contributes, as terms ifl1%#(P) which are~P# or n®
drop out after contraction witle”. From the definition of
ST*A Eq.(3.9),

In this expressiorF *#= e*F7°F_ 2,
51"aﬁ( P)€B|p2:0:0. (37)
Consequently, while at zero temperature Figd) Icontrib-
utes to the amplitude forr°— yy, to leading order at non- and
zero temperature its contribution vanishes identically, Eq.
(3.7).
Knowing that Fig. 1d) does not contribute, it is then easy Ha:figaﬁwpﬁygﬂo_ (3.12
to read off the one loop corrections to the couplang,, to m
~T?f2, g.r,,(T). As in Eq.(3.3), we start with Eq(2.14), X A A
and then replac&, by Z;, andf, by f._. We keep the 1/3 The vectorK=(i,k) and the integration over the andteare
from Fig. 1(a), the —4/3 from Fig. 1c), but replace ther2  discussed following Eq(B2).
from Fig. 1(d) by 0, to obtain The nonlocal term in Eq(3.10 is specific to finite tem-
perature. At zero temperature, there is no other term besides

1 4 Ir Ir Eq. (1.1) that contributes tor®— yy for photons on the
Oy (T)=] 1+ 3” §+0 2 Oryy=| 1— 2 Oryy- mass-shell. In the terminology of the nonlinear sigma model
L m [8], the operator of Eq(1.1) is O(P*), while operators at

(38 next to leading order ar®(P®). These operators, however,

Notice that while Eq.(2.7) is precisely analogous to Eq. &€ either proportional WE or P%, and so vanish on the
(3.3, because of the difference in Figidl, Eq.(2.14) is not ~ photorts) mass shell, omZ, and so vanish in the chiral

analogous to Eq(3.8) — there is a difference in sign. Con- limit. Thus in the vacuum, the only possible change in Eg.
sequently, (1.1 is the transmutation ofy, into f ., Sec. Il. At nonzero

temperature, however, there are new nonlocal terms which
1 T2 arise, Eq(3.10. Because they are nonlocal, these new terms
Gryy(T)= ( 1- 1_2f_2) Qayy- B9 are alscO(P?), and so as important as Ed..1) [15]. This is
N the technical reason why the amplitude #et— yy depends
As discussed in the Introduction, naively one might guesdiontrivially upon temperature.
that Eq.(2.15 generalizes to nonzero temperature just by

replacing f . and g,,, with f_(T) andg,,,(T), respec- IV. 7°— 5y AND THE AXIAL ANOMALY
tively. This is wrong: to ~T2/ffr, instead of
Uuryy(T)~ 1/ (T), as would be guessed from E€R.15), In the previous section we found that the amplitude for

insteadg ,.,,,(T)~ f ,(T), Eq.(3.9.. We do not know why, to m9— yy diminishes to leading order in an expansion about
leading order about low temperatugg,.,.(T) decreases in 10w temperature, Eq3.9). The question we address in this
exactly the same manner &s(T). section is why is this amplitude tied to the coefficient of the

Our result in Eq(3.8) differs from that found by Dobado, 2axial anomaly at zero temperature, H@.195, but not at
Alvarez-Estrada, and GoméZ]. These authors consider the Nonzero temperature?

same model, but fing,.(T)=g to ~T2/f2. Our re- We work in the chiral limit to leading order about zero
’ TYY ITyy : T _T2/§2 i
sults agree except for Fig(d), which we believe was treated t€mperature~T/f7, because then we can make certain
incorrectly[23]. technical assumptions which simplify the discussion. The
Before continuing, following15] we construct the effec- 9eneral case is considered at the end of this section.
tive Lagrangian forr®— yy to ~T2/f2 . In 6T *5(P) of Eq. Define the vector current, and the axial vector current

(3.4), the term~ 6F is easy to include. At zero temperature, i the isospin-3 directionJ;y. The vector current is con-
Eq. (2.13, this term is the only part of Fig.(d) which con-  Served,

tributes,+2 in Eq.(2.14, and turns 1, in g, into 1/f _ in

9’ - Thus to~T%/f2  the effect of Figs. (), 1(c), and the 3*3,=0, 4.7
term ~ 6 in 6T *A(P) of Fig. 1(d) is just to change .

into 1/f -(T) in the original Lagrangian{ ., of Eq. (1.1). while the axial current is anomalous,
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2

Q)/;\Taﬁy:fﬂ/faﬁ_ Egsaﬁyﬁpng' (41])

By the Adler-Bardeen theorem, the coefficient of the right-The trick is now to try to deduce general relations using just
hand side is exact to one loop ordéi, and is independent Egs. (4.10, (4.11), and Bose symmetry between the two

of temperature and densifg2—4.

One quantity we can compute is tftherma) three point
Green’s function between two vector, and one axial vector

current:
,ZZX,B’y( P]_ [} P2 ,T) = iezf d4)(1dll)(2ei(Pl‘Xl+ P2'X2)

y T e "TJ,(X1)Jp(X2) 38 ,(0)]

Tr(e M) '

4.3
whereH is the Hamiltonian. Thefl, 4, satisfies current con-
servation,

P{T.5,=P5T.5,=0, (4.4
and the anomalous Ward identity,
2
y __ &N yp?d
Q"7apy=~ 1528 apysP1P2; (4.9

Q: Pl+ P2.

To relate the anomalous Ward identity to the amplitude

for pion decay we follow Shore and Veneziaff. At low
temperature the pion couples to the axial current as

(0132 | 7°(Q))=iQ,f ,56%. (4.6

(This is not valid to~T#/f% ; then the relation is more com-

plicated,[18].)
To obtain the amplitude forr®— 7y, we introduceQ?

photons,P,,a=P,,B.
We first discuss zero temperature, where we can invoke

Euclidean invariance. The most general pseudoteﬁgg;
which satisfies all of our conditions involves three terms:

;j'a,By: Tl8 aﬂy&( Pf_ Pg) + T2(8075KPZB_ SB),&KP%) prg

+ Ta(€ ayocPi € y5cP5) PIPS. (4.12
Current conservation, E¢4.10), gives
T+ P3T,+Py-P,T3=0, (4.13
while from the anomalous Ward identity, E@.11),
—2T1=f,97yy— %. (4.19
ar
Combining these two relations we obtain
2PfT2+2P1-P2T3=fﬂgﬁw—iNg. (4.15
127

Putting the photons on their mass shefl= P3, the left-hand
side in Eq.(4.15 reduces taQ?T,. This is zero on the pion
mass shellQ?—0, since by definitior is one pion irreduc-
ible, and so cannot have a potel/Q?. Hence the left-hand

times the matrix element between two QED currents and &ide of Eq.(4.19 vanishes, and we obtain the desired rela-

pion:
Ta[F ezsz d4X1d4X2€'i(P1'X1+ Py-Xy)

« Trie™"T3,(X0)Ip(X2) 7(0)]
Tr( e H/T) ’

(4.7

This is related to the pion decay amplitude, E28), as

M= lim efeg’z;ﬁ .
Q?-0

4.9

Subtracting the one pion pole term from Eg.3) gives

7,5, Which by construction is one pion irreducible:
A 1
Taﬁy:TaBﬁ'fﬁQyﬁTa/; (4.9
Again, by current conservation
P$7.5,=P57,5,=0, (4.10

while the anomalous Ward identity, E@t.5), becomes

tion betweeng ., and the coefficient of the axial anomaly,

e’N,

0= fwg'n'yy_ 12,”.2 ’

(4.19

which is Eq.(2.13.

This analysis, and especially the tensor decomposition of
Eq. (4.12), is identical to the derivation of the Sutherland-
Veltman theoren{20]. Historically, this theorem predated
the anomaly, and was used to conclude that,=0. By
adding the axial anomaly through the anomalous Ward iden-
tity of Eq. (4.11), however, we obtairgm7~e2NC/fw, Eq.
(4.16. From a modern perspective, then, it is precisely the
Sutherland-Veltman theorem which relates the axial anomaly
to the amplitude forr®— vy, and tells us at zero tempera-
ture the left-hand side of E¢4.16 vanishes.

This is no longer true at nonzero temperature. Following
Itoyama and Muellef3], we write the most general tensor

decomposition ofAZ’a,;y. In a thermal bath, however, Euclid-
ean symmetry is lost, and the rest frame of the thermal bath,

which we take amﬂ=(1,6), enters. Some of the possible
tensors include
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7:1[3)/: Tlgaﬁyé( Pf_ Pg) + T2(£a75kpg_ SB}/(SKP?) prg
+ T3(8a76KP'ZII.3_ Sﬁyﬁkpg) prg

+ T4n . QS aﬁékpfpgny‘i‘ T5(I’l . stangnB

_n.plgﬁngna)pfpg_F..._ (4.17) /Um®

We have only included the terms #which contribute to the
Ward identities of Eq(4.10 and (4.11). Current conserva-

tion gives
T, + P%Tz-i- P, -P,Ta+(n-P)2Ts=0, (4.18 FIG. 2. One pion reducible contribution @, at tree level.
while the anomalous Ward identity fixes temperature dependent, and gives the amplituderfor vy,
while the second is the anomaly, and is independent of tem-
o e’N, perature.
2T+ (N Q) T =T (T Gy (T) 52, (4.19 At first sight it might appear peculiar that the Sutherland-
Veltman theorem applies at zero temperature, but fails at any
from which follows nonzero temperature. Even at zero temperature, however, the
Sutherland-Veltman theorem only applies in the chiral limit
2p§T2+ 2P;-P,T3+(n-Q)%T4+2(n-P;)%Ts when both photons are on their mass shell. Without all of
5 these conditions, the left-hand side of E¢.13 does not
Lt (T)go(T)— €e°Ne (420  Vanish andy,,, is not given by Eq(4.14. An example of
g Y 1272 ' this occurs when onéor both of the photons are off the

mass shel[24], even ifQ?>—0. In particular, in the limit of
Putting all fields on their mass shel=P3=0, Q*>~0, largeP?, it is known thatg,,,,~ef ./P? [24]. Thus on the
and assuming as before thEg has no pole~1/Q?, we ob-  right-hand side of Eq(4.13, we can neglect .9.,,~ 1/P?

tain relative to the anomaly term; €N, /(127?), and Eq.(4.13
tells us that a combination df, andT5 are given entirely by
) ) e’N, the anomaly,~e’N./P?2.
(nQ) T4+2(npl) T5:f77(T)g77'y'y(T)_W
(4.22

V. THE ADLER-BARDEEN THEOREM

Since the terms on the left-hand side involve onhQ and AT LOW TEMPERATURE
n-P,, there is no reason for them to vanish even if ) ) A 2)e2
Piz P§=Q2=O; thus the direct connection between In this se_ctlon we calculate the gorrelaﬁrﬁy to ~T4/f2,
0.y (T), £.(T), and the anomaly is lost. We stress that, asm_t_he nonlinear sigma model. This allows us to check ex-
always, the Adler-Bardeen theorem remains valid, and giveBliCitly the temperature dependence ©f(T) andg,,,(T)
Eq. (4.20. It is only the Sutherland-Veltman theorem which found previously in Sec. lIl. It is also illuminating to see
no longer applies at nonzero temperature. gxactly yvhlch amplitudes enter at one Ioop_order in t_he non-

The above analysis only applies to leading order in low/iNé&r sigma model, and how they conspire to satisfy the
temperature;- TzlffT. This is because beyond leading order'AdIer-Bardeen theorem.

the pion mass shell is no longer =0 [18]; also, as At tree level in the nonlinear sigma model, there is no

photons thermalize, their mass shell moves off the light conec.jlreCt coupling between two vector and one axial vector cur-

This is incorporated by using Eq4.20 instead of Eq. 'eMS: SOT1=T>=T3=0. Thus the anomalous Ward iden-
(4.2)). For instance, we can understand how the anomaloud> Ed: (4.5), is s§t|s1jed entlrely.b)_/ the one plo_n reQumbIe
Ward identity is satisfied in a chirally symmetric phase.term, Eq.(4.11), with 7,4,=0. This is illustrated in Fig. 2.
From explicit calculation in a constituent quark mofi21], Contributions to7, 4, are generated at one loop order. In
m%— yy vanishes once chiral symmetry is restored. Thisorder to compute these, it is necessary to compute correc-
does not conflict with the anomalous Ward identity sincetions to the axial current. We have computed these in two
even ifg,..(T)=0, there are other terms which can ensureways. The most direct is to follow the original method of
that Eq.(4.20 is satisfied. For photons which do not ther- Wess and Zuming9]. Besides the photon field,, which
malize, soP2=P3=0, even assuming that at the chiral criti- couples to the electromagnetic currdpt, we also introduce
cal point that the pion mass shell @=0, the tensorg,  an external fieIdAga which couples to the axial curreﬂga.
and/orTs will in general be nonzero. One then differentiates the generating functional of Wess and
Our analysis agrees with the results of Contreras an@umino with respect to the external fields, andAgya. At
Loewe [16], who computed the triangle diagram &t 0 one loop order, the terms required arer™ w‘AgaAB and
with massive fermions. Their result, E@L.2), is directly ~w*w’A§’aAﬁAy; *=(w'xiw?)/\2 are the charged
related to?’algy. There are two terms: the first is regular, pion fields. After lengthy calculation, we find
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N‘\‘J in Eq. (B6). We drop all terms inSI1“*(P,)~P7, Eq.(B6),
since they vanish upon contraction with the photon polariza-
tion tensor. The term- §“ in Eq. (B6) cancels against the
same term in Eq(3.4); thus at nonzero temperature, there is
no contribution toT, from Fig. 3b), and

(@ (b)

Tr\| €N,
Tl=(2+0) Y W (55)

f
FIG. 3. One pion irreducible contributions %, at one loop
order. Comparing to Eq(5.3), again Fig. 8a) gives the term- +2,
and Fig. 3b) the term~0. That Fig. 3b) does not contribute

eN, s is just like the same result fag,,(T), Fig. 1(d) and Eq.
AL= T eaﬁ‘ytsFa,BAS,'y[l(qT 07577 —1ar 0"577 ) (38)
48717 Figure 3b) will contribute, however, through the term
—2ent T Al (5.1) ~n*Pi/(n-Py) in 8I1“¢“(P,) in Eq. (B6). Comparing with

the tensor decomposition of E@.17), we find
To leading order ire, this £ is invariant under an electro-
magnetic gauge transformation: 1 /IT e’N,

Ts=— T .
*7 (n-Py?| 121242

Since these are the only diagrams at one loop order,

(5.6
7Tt(X)—> exrr*ie(i(x)ﬂ_i(x) ,

AL(X)—=AL(X)—3,0(X). (5.2
T2:T3:T4:O. (57)

The terms inL can be viewed as corrections to the axial
current. In Appendix A we compute these corrections usingConsequently,
the Noether construction of the axial current. This is some-
what delicate, since it is necessary to start with a Lagrangian )
density (and not merely a Lagrangianvhich is manifestly —2T1=2(n-P1) T5=17(T)Gry,(T) —
gauge invariant. The result, EGA17), agrees with Eq(5.1).

Through the diagrams of Fig. 3, the couplingsNif gen-  Thys we can see that our results satisfy current conservation,
erate the one pion irreducible terms7py,, . Eq. (4.18 and the anomaly equation ¢4.21). Last but not

We begin with the results at zero temperature. Given théeast, the latter only holds givefn,(T) andg,,,(T) in Egs.
couplings inA £, the only tensor structure which arises from (1.1) and (3.8), and so provides a nontrivial check of these
Fig. 3 is~e€,5,5(P1— P,)?. Comparing with the tensors in calculations.

ZNC

1272

(5.9

Eq. (4.12), then, at one loop order automatically=T;=0. Notice that while there is a factor of W(P;)? in Ts, it is
For T4, we find essentially kinematic in origin, as envisioned by Itoyama and
Mueller[3]. One factor oin- P, arises from the definition of
Ty €N, Ts, EQ. (4.17), while the other can be seen to arise from a
T,=(2-2) % 24772: : (53 directional singularity,~p'/p, in the integral of Eq.(B6).

Further, notice that there is @ogarithmig collinear diver-
gence in the integral of EqB6). This singularity drops out
of the full amplitude after contracting with the polarization
tensor of the photon.

The contribution~ + 2 is from Fig. 3a), that~ — 2 from the
two diagrams of Figure (®). Because all of th&;’s vanish,
current conservatiot¥.13 and the anomaly equatiqd.14),
are satisfied rather trivially. That the latter vanishes is

equivalent to the Sutherland-Veltman theorem, E416). VI. CONCLUSIONS
This explains our results in Sec. Il, where we found that at
zero temperature, the renormalizationfgfandg ., exactly
compensate each other.

At nonzero temperature we can evalud@te. . . Ts using
the results of Sec. lll. Fig.(d) is a tadpole diagram, and so
as at zero temperature, just contributed{o Thus the only
possibility for a new tensor structure is from the hard thermal
loop in Fig. 3b). For one ordering of momenta, Fig(3

In this paper we have concentrated exclusively on the
anomalous decay af’— yy. We have done so because it is
the most familiar anomalous decay, and because the connec-
tion to the axial anomaly is especially close. For the colli-
sions of heavy ions at ultrarelativistic energies, though, this
ijs a purely academic point, since any high temperature

lasma flies apart long before @’ has a chance to decay
electromagnetically.

gives Our basic point is much more general, however. While
2 the axial anomaly for fermions is independent of tempera-
_ e_Nc pPIsT<a(p 5.4 ture, anomalous decays of mesonic fields change with tem-
I 2¢2 €y5/5'K 2 ( l)! ( . ) . . .
12717, perature. Processes of obvious interest for hadronic systems

include »' into two gluons and the decays of themeson
wheresI'“* is given in Eq.(3.4). Putting the photon momen- [21]. Electroweak processes include couplings of the axion.
tum P, on its mass shell, we require the result &1 ““(P) Whether the changes in these couplings are physically rel-
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evant can only be determined after detailed calculation; whatransform covariantly under local () gauge transforma-
is certain is that they do change. In a cosmological contextjons,A,—A,+d,0(xX), O (x)=exd —ieQd(x)], g—0goT,
the mechanisms of electroweak baryogenesis involve the e ,g—©(D,g)0®".

fective coupling of a pseudoscalar field to the Pontryagin As usual, to makeC, gauge invariant we simply replace

density for the S(P),_ gauge field. In vacuum, this coupling the ordinary by the covariant derivativEy=f2tr|D ,g|%/4.
is directly related to the anomalous divergence of the baryofye can also do this foSyzw by replacingR, with the
current. It was argued ifi25] that this coupling must be auge covariar®, =g'D,g. USingR., in Swau g?ves some-

suppressed above the electroweak phase transition; presu ing which is manifestly gauge invariant, but incomplete,

ably this can be understood from our analysis. Lastly, we_; : ; ; :
note that the 't Hooft anomaly matching conditiof6] since it can be shown that the ensuing equations of motion

strongly constrain the appearance of massless bound statesdepenOI on the fifth dimension. In five dimensions, however,
1gly . PP . tfitre are several other gauge invariant terms which can be
confining theories. Due to the failure of the Sutherland-

Veltman theorem, Sec. IV, these conditions are clearly muct?dded' Involving powers of theAbelian, gauge invariant

. leld strength,F,z=3,Az—dzA,. The correct action then
less restrictive at nonzero temperature. - - : :
. A . follows uniquely by requiring that the equations of motion
If nothing else, perhaps this gives us a greater apprecia-. . : . .
. ; ) : are independent of the fifth dimensigh2,13,
tion of the wonder of the fermion axial anomaly. While ev-
ery other anomalous decays changes in complicated and de-

- Ne [+ | = ===
tailed ways, that alone remains inviolate, always. Swzw= —I ﬁj d°Xe 455501 RLRER,R5R,)
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APPENDIX A: WZW ACTION —EQQJQDUQT ] - (A4)

In this appendix we review the Wess-Zumino-Witten
(WZW) model coupled to an external photon field. Along
with establishing notation, this also enables us to discuss S . X
novel form of the WZW model, mentioned recenf2,13, contrast to the _usual actlon,_ln which the_terms_ which couple
and to comment about the two currents in the two-flavor® the gauge field are manlfeftly four dimensional, but not
version of the WZW model. evidently gauge invariant: Swzw=Swzw+ S d*XL{yzw

For n; flavors, the model is constructed frommaxn;  Where
unitary matrixg, g'g=1. In the absence of gauge fields, the A -,
action is the sum of two termsS=Sy+Sywzw, With Lwzw=~€NcATo 18 Nee opys0aPpALKs,  (AS)
So=[d*xL, the usual action for a nonlinear sigma model:

This expression is manifestly gauge invariant but not ob-
yously independent of the fifth dimensid@7]. This is in

where
f2

Lo=—tr(3,97,9). (A1) 1
4 Tu= o5 0apro T{QILALL s+ ReRR)L (AB)

The generators of SW¢) are the matrices.?, normalized
as tr\®\P)=26%". This Lagrangian is invariant under and
global SUfy),XSU(n¢), unitary transformations,g(x)

—>Q/g(x)Q;'. For example, under axial transformations, for =~ 1 2 1 t N
which Q/=QI, the corresponding conserved current is g2 M Q(LatRa)+ E(QgQg Lot QY'QR.) -
A7
j5,a: Ra+ La:gT&ag—’_(aag)gT' (AZ) ( )

) o . _ The LagrangiantA5) is the form given by Witte10]: it is
The second piece of the action is the Wess-Zumino-Witteyauge invariant up to boundary terms.

term, Henceforth we follow Brihaye, Pak, and Ro$4il] and
N restrict ourselves to two flavors. Introducing the pion field
. a
Swzw= I To;zf dsxsaﬁy&, tr(R,RgR,RsR,), T,
(A3) N
g=expl——/ (A8)
where the integral is over a five-dimensional region whose g
boundary is four-dimensional spacetime.
We wish to coupleg to a photon fieldA ,(x) in a gauge then for SU2)
invariant manner. For three flavors the charge matrix is =

ay a
Q=1/6+)-\3/2, and so we introduce_ the covariant derivative, g=cosp+i i‘ sing, ¢=
D,=d,+ieA,[Q,-]. By construction, bothg and D,g \

™

f ’

w

(A9)
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2= 873 The original Lagrangiart, becomes by a total derivative. To the order at which we compute, we

add the following term to the Lagrangian density:

1sirfep . 2+i(¢2—sin2¢) .

- 2
0= 75 (dqm (7 9,m)>. e“N.
2 42 2 4 __ ¢

¢ 2t ¢ 2472

w

3 ieN; . B
Eaﬁyﬁ(ga(ﬂ- Aﬁ(gyAﬁ)_ ﬁGaB?,&(?a[AB(W (9777
(A10)

_ . — 7 d,mt)asm]. Al6
The axial current of Eq(A2) is ™y )5 ] (AL6)
. _ For example, the first piece contributes a Chern-Simons term
2 i sing cosp ay (¢p—sing cosp) - P to the current. With the addition of EGA16), the Lagrang-
5a= & o™ 12 43 T Omm - ian density is manifestly gauge invariant, and the axial cur-
H (All) rent is

In the WZW term,S,,zw vanishes, while using the identity, B ~f 9 i i(;r_a rm— 729, 7
5a mY%a @ a

3f
2
g3P% 5( T g — 77—19 ’7Ta> 9.,m29 5w°=0 ieN
apy B 3 B 4 ,(Alz) + ﬁSaﬁy5(9ﬁAy(W+ﬁ(gW7_7770§7T+)
T w
we find that €N, 7 7~
- - 12772 T Saﬁ.yé‘AlBa.yA(g_F cee (Al?)
1 sinfg .

Y € 8a375(9577a<9777b&571'°.

WhenA,=0, J'g‘,a reduces to the axial vector current in the
(A13)  absence of eIectromagnetisn:ﬁga, as can be verified by
expanding Eq(A11). The terms linear and quadratic 4,
The chargeQ=1/6+\3; in going from Eq.(A6) to Eq. agree with the calculation from the Wess-Zumino consis-
(A13), it turns out that the contribution from the pieee\; tency condition, Eq(5.1).
drops out. This demonstrates th@t is directly proportional This ambiguity in the construction of the axial current is
to the baryon currenitlQ]. Further, we find thafC, is pro-  familiar. Instead of the gauge invariant, anomalous current
portional to the axial current in the isospin-3 direction, Eqg.used in Sec. IV, by subtracting off a Chern-Simons term, we
(Al1), can choose to work instead with a current which is conserved
but not gauge invariant.

72023 @2

1
— 3
,Ca_96'n'2f T5a- (Al4) APPENDIX B: HARD THERMAL LOOPS

We collect some results of hard thermal loops, with minor

That for two flavorsJ, and K, are proportional to the gitferences in notation from previous wof&9]. The sim-
baryon and axial isospin currents does not seem to have be%st hard thermal loop is the integral of E@3.1)

recognized previously. Notice th&l, is only proportional to T,=T?/12. After that, there iSTT*A(P) of Egs. (3.4) and

the axial current for the original LagrangiaBy; as is dis- (3.5 By definition the hard thermal loop includes only the
cussed in Sec V, the complete axial current includes contricarms ~T2 in the integral, in the limit of soft external mo-

butions from the WZW term. We do not know jf, andC,, mentumP<K~T. In this approximation[1°4(P) is tran-
are equal to the analogous currents for three or more flavorge,ge-

To conclude, we discuss how to compute the axial current
JE‘M of Sec. V using the Noether construction. The general PSIT*A(P)=0. (B1)
form for the gauged axial current is rather involved. Since
we compute perturbatively, however, we just compute thédne way of writingsI1*#(P) is
current in the same way. Under an infinitesimal axial rota-

tion, Q,=Q=exp(iw), the pion field transforms nonlin- do KeK#
: SI*A(P)=2n*nf+2 | —o——, B2
early, (P) 7P ) (B2
Tt f_wd+ i(_q;zwa+7;,6377a)+ . wherena=(1,f)) and K=(i,R); k is a three vector of unit
3f. norm, k?=1, so that K* is null, K?=0, and

Al5 N > a
(AL5) P-K=ipg+p-k=w+pcod. Itis a dummy variable, in that

to ~w and ~ 3. After performing such a transformation, one integrates over all directions &f as JdQi/(4). In

the requisite current is then the coefficientagfiv®. component form,
In the present case, however, while the Lagrangiaofis 00
coursé gauge invariant, the Lagrangian density need not be. oII"(P)=—2Q4(2),

In particular, the Lagrangian density of H&5) is not gauge ' N
invariant; under a local gauge transformation, it transforms SO (P)=—2izQ.(2)p',
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. nn: 2
SII'(P)=22°Q4(2)p'p' - 5| Qa(2)~Qu(2)—
X (&;—p'p), (B3)

wherez= w/p, and theQ;(z) are Legendre functions of the
second kind,

z z+1

Qi(2)= > In(ﬁ> -1, (B4)
2(52°-3) [z+1) 5, 2

Qs3(2)= 7 In(z_1 _52 +§. (B5)

For 7°— 7y, we need the value ofI1*4(P) near the
light cone,w~p™,

2 ’

2 PepA
{25
w

1
SI1B~ 5B -5 (N“PA+Penkh)—

(B6)
wheren®=(1,0).
An equivalent but useful expression for Hg2) is
dQ KK# P*KA+ KPP
H“B(P)zf— 5P+ — - ;
A (K-P)2 (K-P)
(B7)
from which follows
T
_fd“fdm « « KeK~A
= X E(aﬂ o 04 M)W

The Abelian field strengths of the vector field§ and Y#
enter becauséll*? is transverse, EqB1).

APPENDIX C: w— vy IN THE REAL TIME FORMALISM

We found in Sec. Il that the contribution from Fig(d}
vanishes to ordeTZ/ff,. In this appendix we check this re-

sult using the real time approach. In this instance, the real
time method is simple and not problematic. It also shows that
the diagram has no temperature-dependent terms whatsg=>"""
ever: the entire diagram is equal, identically, to its value at

zero temperature.
After dropping irrelevant terms proportional B, Fig.
1(d) is proportional to the integral
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E ) E ‘ ) (+ perm.)
FIG. 4. One loop corrections to thew 7y vertex.
K d4K @ 5
eﬁy,;KPZJ'( )3(2K P *KY(K—P;)
(@) N(w —pl
X 5 8(K?) +———8[(K—P1)?]
((K— P1)?
2 Pﬁpkjl—ﬁﬁi-KaKyﬁ K?2 C1
= —2€5y5:P1P2 (2m)° K~P1( )n(wy), (C1)

o=k, r_p,=|k—py|. The physical amplitude is obtained
by contraction with the polarization vectors for the two pho-

tons. If p; lies in thez direction, say, therx must lie along
the x or y directions. The angulag integration will then
vanish unlesgy= «. Thus the integral reduces to

f d*K i sirfé n(wy)

(2m)® K-P1 o [8(ko— wi) + 3(ko+ wi)]
d*k 2co9¥
:f(zwﬁ 0? n(wy). (C2)
1

This integral vanishes after integration ov&rnote that this
physical amplitude is free of any collinear divergences. This
confirms our results obtained with the imaginary time for-
malism.

APPENDIX D: y—maww AT LOW TEMPERATURE

In this section we compute the one loop corrections to the
amplitude y— marar for soft, cool pions. This provides an-
other, less trivial, example of hard thermal loops. Corrections
to the five dimensional Wess-Zumino-Witten term, E43),
have been computed ifil5] using a background field
method; it would be interesting using this method to compute
the one loop corrections to the gauged WZW model, Eq.
(A5).

To one-loop order, the corrections 46— w7 are those
of Figs. 4a) and 4b).

Figure 4a) is a tadpole diagram, which is most easily
computing by expanding E4A13) in the pion field,

_ eNe ’ abc a b c
o238 17 3? AP € 4y 50T, 0 5T,
b ™

(DY)

and then compute as in E(R.2).
At tree level, the amplitude fofrmy scattering is
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M= kpe?Pe saﬁygeapngpc , (D2)
whereP? is the momentum of the pion with isospi etc.,

and

ieN

fbezﬁ. (D3)

From Eq.(A10), the amplitude for the scattering between

four pions is

1
A=~ 2 83P5°UP2 + 59°5PIPZ + 579sPP2
i
— —— (830504 520504+ 524500) | (D4)
whereP,,=P,+P,, etc.
The contribution of Fig. &) is

3i eN; a Br a_
]?z—fs%gyaf «P5(P5 +PP PP (Pap) (P— P?)

+ permutations, (DY)

wherel'*3(P,,) is the integral of Eq(2.13.
In the vacuum'*#(P) = 6%f7,/2, up to terms~ P*P#
which drop out of the amplitude. TO(P%),

farp= (D6)

2| 7202

o ieNg
1+(1— 1+3)

7087

The 1 comes fronzf;’z, Fig. 1(a) and Eq.(2.4), the —1 from
Fig. 4@ and Eq.(D1), the +3 from Fig. 4b) and Eq.(D5).
Using Eq.(2.7), then, to one loop order in vacuugb3)
renormalizes with no change in form,

ieN;
727’

3

w

K= (D7)

analogous to Eqg2.9) and(2.15.

At low temperatureI'*? is replaced bysI'*? of Egs.
(3.4 and (3.5. Using Eq.(B8), we find that the effective
Lagrangian fory— mrrar is similar to that form®— yy, Eq.
(3.10. One term is as at zero temperature, Withreplaced
by f .(T), while the second is a hard thermal loop:

777'”77(T) 72:7°f (T) As e? aﬁvﬁaﬁwa(ngbaﬁﬂ'c
2 . > ol B
3 T eN; cabcf koHa KK Jpc
12f727487T2f?7 4 ya_(a.R)Z B’
(D8)
where
Hz,ﬁz&a(sﬁyé‘KFyﬁaKWa)_(a“_’,B); (Dg)

Jbﬁ d wbﬁﬁwc— &Bwbﬁaﬂ'c.
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