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We use dispersive techniques to address the behavior of the pion form factor asQ2→` and Q2→0. We
perform the matching with the constraints of perturbative QCD and chiral perturbation theory in the high-
energy and low-energy limits, leading to four sum rules. We present a version of the dispersive input which is
consistent with the data and with all theoretical constraints. The results indicate that the asymptotic perturba-
tive QCD limit is approached relatively slowly, and give a model-independent determination of low-energy
chiral parameters.@S0556-2821~97!02123-1#

PACS number~s!: 12.39.Fe

We are fortunate to have the rigorous techniques of per-
turbative QCD@1# and chiral perturbation theory@2# describ-
ing the high- and low-energy domains of the strong interac-
tions, respectively. The only comparatively rigorous
techniques that apply to the intermediate energy region are
lattice simulations@3# and dispersion relations@4#. Disper-
sive techniques are increasingly being combined with the
other theoretical methods in order to provide as much control
as possible throughout all energy regions. The simplest cases
are the two point functions of vector and axial-vector cur-
rents@5#, which are associated with the Weinberg sum rules
@6# and other related sum rules. The next simpliest example
is the three point function of the pion electromagnetic form
factor. The purpose of this paper is to discuss the dispersive
treatment of the pion form factor. We apply chiral con-
straints at low energy and incorporate the behavior of pertur-
bative QCD at the highest energies. This leads to four sum
rules, two of which are reasonably obvious and two which
are new. In addition, the dispersive treatment allows us to
address the question of how fast the form factor approaches
the asymptotic QCD behavior@7#.

Dispersion relations are sometimes used in setting up a
framework for experimental analyses which incorporates the
constraints of analyticity. They can be used to check the
consistency of real and imaginary parts of a data analysis.
Our use here differs from these procedures because we are
addressing a different question. Our prime interest is in ex-
ploring the matching of the theoretical analyses of different
energy regions. For example, within chiral perturbation
theory the most interesting dynamical information appears in
the real parts of amplitudes and form factors. The chiral co-
efficients which also occur in the real parts are determined in
principle by the matching of the low-energy theory to the full
theory of QCD. Dispersion relations provide a semi-
phenomenological method to accomplish this matching, re-
lating nontrivial dynamical information in QCD to the pa-
rameters of the low-energy expansion. Likewise dispersion
relations contain information on the transition to the high-
energy domain of perturbative QCD. Our methods are de-
signed to explore some of these connections.

The form factor is defined by
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sion relation for the pion form factor reads
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Our results are independent of the number of subtractions,
but this form is most useful in presenting our techniques. We
have imposed the normalization constraintf p(0)51, and the
constantK is a subtraction constant to be determined below.

At the high-energy end, perturbative QCD tells us that the
asymptotic behavior of the pion form factor@7#, with
Q252q2, is
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with Fp593 MeV.
The fact that this decreases faster than 1/Q2 implies three

sum rules when combined with Eq.~2!. The fact that there is
no term proportional toQ2 asQ2→` implies a sum rule for
the subtraction constant

K5
1

pE4mp
2

` ds

s2 Imf p~s!. ~4!

Correspondingly, there is no constant term asQ2→`, which
requires a sum rule that can be found by Taylor expanding
the denominator at largeQ2, yielding
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Finally, the lack of a 1/Q2 term in the asymptotic region
implies that
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These sum rules are contingent on the convergence of the
integrals. This is especially relevant for the last one, but we
will see that the integral is just barely convergent.

PHYSICAL REVIEW D 1 DECEMBER 1997VOLUME 56, NUMBER 11

560556-2821/97/56~11!/7073~4!/$10.00 7073 © 1997 The American Physical Society



At the low-energy end, the pion form factor has been
calculated to two loops in chiral perturbation theory. The
result is
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with
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In this expression, the parametersL9
(r )(m) and cV , f̄ 1, f̄ 2

are renormalized parameters from theE4 and E6 chiral
Lagrangians, respectively.L9

(r )(m) can in principle be mea-
sured in other reactions, although it is most common to ex-
tract it from this form factor. One obtains a dispersion sum
rule for L9

(r )(m) by expanding the chiral result aroundq250
to find thatL9

(r )(m) is related to the subtraction constantK
defined above. The precise relation is
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Here and in what follows we drop reference to the chiral
constant f̄ 1 since its effect is so small due to the factor of
mp

2 multiplying it in Eq. ~8!. Note that relation forL̄ 9 is
independent of the arbitrary scalem, as the dependence of
L9

(r )(m) on m is compensated by the explicitm behavior
displayed above. This exercise can be repeated to find the
term at orderQ4, both in the dispersion relation and in the
chiral expansion. The result is
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The derivation above used a twice subtracted relation;
however, this was not a required feature. The same results
can be obtained from dispersion relations with differing
numbers of subtractions. It is an interesting feature, typical
of dispersion relations, that the same sum rule can follow
from the constraints on the high-energy end in some deriva-
tions yet emerge in the low-energy limit in another. This
occurs because dispersion relations tie together the high-
energy and low-energy behaviors. As an example, let us
briefly describe how these sum rules would be derived using
an unsubtracted dispersion relation:
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In this case, the sum rules of Eqs.~5!, ~9!, and~10! all follow
from Taylor expanding aroundq250, while Eq.~6! follows
from the q2→` limit, whereas we had previously used the

high-energy limit to identify the sum rule of Eq.~5!. Disper-
sion relations connect the high- and low-energy limits by
providing constraints on the whole analytic function.

We now turn to the construction of a representation of
Imf p(s) which is consistent with both the data and with
theoretical constraints. The easiest step is at low energy,
where chiral symmetry requires the structure@8#
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In the intermediate-energy region, we have data on both the
real and imaginary parts off p(s). There is nothing surpris-
ing here, the physics is just that of ther resonance. We take
Imf p(s) from a fit to the data in Ref.@9#. Matching with the
low-energy limit is simple, as the resulting function is easily
adjusted to approach Eq.~12! ass→0.

For the high-energy end, we need to choose an asymptotic
form for Imf p(s) which yields Eq.~3! when inserted in a
dispersion relation. To see that this is the appropriate proce-
dure, we consider dividing the dispersive integral into two
pieces, with the transition parts̄ being large enough that
aboves5 s̄ we are in asymptotic high-energy behavior for
Imf p(s):
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In the first integral the integrand is finite and the range is
finite so that the result is analytic in 1/Q2 aroundQ2→`. As
a consequence, the logarithm in the QCD form for the
asymptotic limit cannot be reproduced from the first integral,
and must come from thes→` behavior of Imf p(s) in the
second integral. The form of the imaginary part which guar-
antees the proper asymptotic limit is
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This result is of course expected, as it it the imaginary part
which follows from an analytic continuation of Eq.~3!. This
form also allows the high-energy sum rule, Eq.~6!, to con-
verge.

A final step is the matching between the intermediate- and
high-energy forms of Imf p(s). The only model dependence
in our procedure comes at this point, as there can be match-
ing procedures which differ in some details. However, the
combination of data and sum rules turn out to be highly
constraining. We require that the matching be such that we
satisfy the high-energy sum rule Eq.~6! and the normaliza-
tion integral Eq.~5!. For these to be satisfied, the negative
values of Imf p(s) obtained from the asymptotic form at
larges must extend to fairly low energies in order to be able
to cancel the known positive contribution effects of ther.
This is a powerful constraint. There is certainly some ambi-
guity in the precise form in the matching region, but we have
found a relatively simple solution. This is depicted in Fig. 1,
showing a smooth matching slightly above 1 GeV.

If we use this form for Imf p(s) in a dispersion relation,
we clearly have no predictive power in the intermediate-
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energy region where our method is data driven. The pre-
dictions come from the approaches to the asymptotic regions.
Within a dispersive framework the transitions to the low-
energy and high-energy limits are both determined largely
by the numerically important intermediate energy region.
Our results are presented graphically in Fig. 2. On the low-
energy side the structure of the real part of the form factor is
governed by the low-energy constraints of Eqs.~9!,~10!.
These are predicted by the dispersion relations to have the
form

L9
~r !~m!5

1

192p2S ln
mp

2

m2
11D 1

Fp
2

2pE4mp
2

` ds

s2 Imf p~s!

50.0074, ~15!

cV54.1 GeV24,

f̄ 256.6

using m5mh . The result forL9
(r ) agrees with the standard

result, derived from the real part of the form factor. This is
just a consistency condition for the dispersion relation. Of
greater conceptional interest is the way that the dispersion
method embodies the underlying physics of vector meson
dominance~VMD !, and the way that it resolves the issue of
the scale dependence of the chiral coefficients in VMD@10#.
Vector dominance is motivated by a narrow width approxi-
mation to the dispersion integral:

Imf p~s!5pmr
2d~s2mr

2!. ~16!

Ecker, Pich, and de Rafael argued that VMD determines the
chiral coefficients at the scalem25mr

2 . The dispersive ap-
proach provides a different answer — VMD determines not
simply the chiral coefficientL9

(r )(m) but rather the scale in-
dependent combination of the coefficient plus a specific

combination of chiral logs, i.e.,L̄ 9 in Eq. ~9!.
On the high-energy side, we see from Fig. 2 that the

asymptotic QCD limit is approached rather slowly. In a dis-
persive framework this is due to the large contributions of
the soft physics region, most notably ther resonance. The
residual effects of the soft physics continues to be larger than
the somewhat small perturbative contribution out to reason-
ably high energies. This result is consistent with quark model
calculations@11#, but is far less model dependent.

The techniques of dispersion relations provide a partial
bridge between the low-energy techniques of chiral perturba-
tion theory and the high-energy techniques of QCD. The
simplest exploration of these methods involve two point
functions. The present work involves a three point function
and hence is a step towards the consideration of yet more
difficult matrix elements such as the nonleptonic amplitudes
responsible for electromagnetic mass difference@12# or weak
decays.
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