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Asymptotic limits and the structure of the pion form factor
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We use dispersive techniques to address the behavior of the pion form facdr-a® and Q>—0. We
perform the matching with the constraints of perturbative QCD and chiral perturbation theory in the high-
energy and low-energy limits, leading to four sum rules. We present a version of the dispersive input which is
consistent with the data and with all theoretical constraints. The results indicate that the asymptotic perturba-
tive QCD limit is approached relatively slowly, and give a model-independent determination of low-energy
chiral parameterd.S0556-282(97)02123-1

PACS numbd(s): 12.39.Fe

We are fortunate to have the rigorous techniques of perwith q,=(p’—p), In its twice subtracted form, the disper-
turbative QCD{1] and chiral perturbation theof] describ-  sion relation for the pion form factor reads
ing the high- and low-energy domains of the strong interac-
tions, respectively. The only comparatively rigorous g* (> ds Imf_(s)
techniques that apply to the intermediate energy region are f.(0?)=1+Kqg>+ el P R T (2
lattice simulationg3] and dispersion relationgt]. Disper- amz> STQTle

sive techniques are increasingly being combined with th(?])ur results are independent of the number of subtractions,

other theoretical methods in order to provide as much contrqD ; . : . X
) X . ut this form is most useful in presenting our techniques. We
as possible throughout all energy regions. The simplest cases

are the two point functions of vector and axial-vector cur- ave |mpo_sed the norm_allzanon constrafm(O)zl,_and the
rents[5], which are associated with the Weinberg sum rulesconStamK Isa subtraction canstant to be determined below.
[6] and other related sum rules. The next simpliest example At the high-energy end, perturbative QCD tells us that the

is the three point function of the pion electromagnetic formaszy_mptoztlc behavior of the pion form factdr7], with
factor. The purpose of this paper is to discuss the dispersivg -Ta
treatment of the pion form factor. We apply chiral con- o 2 ) 5

straints at low energy and incorporate the behavior of pertur- f_(Q?)=16m as(QI)F7 _ 64m Fa @)
bative QCD at the highest energies. This leads to four sum m Q? 9 QAn(Q¥A?)

rules, two of which are reasonably obvious and two which

are new. In addition, the dispersive treatment allows us tquith F_=93 MeV.

address the question of how fast the form factor approaches The fact that this decreases faster tha@?limplies three
the asymptotic QCD behavi¢7]. sum rules when combined with E(). The fact that there is

Dispersion relations are sometimes used in setting up Ao term proportional t&? asQ?— o« implies a sum rule for
framework for experimental analyses which incorporates thehe subtraction constant

constraints of analyticity. They can be used to check the
consistency of real and imaginary parts of a data analysis. 1 (>
Our use here differs from these procedures because we are K= ;L , ZIMiA(S). (4)
addressing a different question. Our prime interest is in ex- M

ploring the T“atCh'”g of the theoret_lca}l ana_lyses of d'ﬁer.emCorrespondingly, there is no constant termQgs— o, which
energy regions. For example, within chiral perturbation . .

. . o . . requires a sum rule that can be found by Taylor expanding
theory the most interesting dynamical information appears 'r%he denominator at larg@?, yieldin
the real parts of amplitudes and form factors. The chiral co- Y 9
efficients which also occur in the real parts are determined in ‘

L . 1(~ ds
principle by the matching of the low-energy theory to the full 1=— —Imf_(s). (5)
theory of QCD. Dispersion relations provide a semi- mJam? S
phenomenological method to accomplish this matching, re- 5 _ _ _
lating nontrivial dynamical information in QCD to the pa- Finally, the lack of a 10“ term in the asymptotic region
rameters of the low-energy expansion. Likewise dispersiofmplies that
relations contain information on the transition to the high-
energy domain of perturbative QCD. Our methods are de- 1

. . 0=— ds Imf (s). (6)
signed to explore some of these connections. m2

The form factor is defined by

IS

)4
These sum rules are contingent on the convergence of the
em o+ 5 . integrals. This is especially relevant for the last one, but we
(w35 =1(a°) (p+p") () will see that the integral is just barely convergent.
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At the low-energy end, the pion form factor has beenhigh-energy limit to identify the sum rule of E¢G). Disper-
calculated to two loops in chiral perturbation theory. Thesion relations connect the high- and low-energy limits by
result is providing constraints on the whole analytic function.

We now turn to the construction of a representation of

) 2Ly , 4 6 Imf __(s) which is consistent with both the data and with
f=(q ):1"'?‘1 +eva '+ 0(a), (7) " theoretical constraints. The easiest step is at low energy,
g where chiral symmetry requires the struct{igé
" mt 9= AT s, 12
— mf (s)= —————0(s—4m_) + O(s).
I () mi’ f lqur 96’77'2F721_
e A Chbrer Ui S R = TG
d K T In the intermediate-energy region, we have data on both the
1 I 1 fa ing here, the physics is just that of theesonance. We take

} real and imaginary parts df_.(s). There is nothing surpris-

Imf _(s) from a fit to the data in Ref9]. Matching with the
_ low-energy limit is simple, as the resulting function is easily
In this expression, the parametar§’(x) andcy, f,, f, adjusted to approach E(L2) ass—0. .
are renormalized parameters from tEé¢ and E® chiral For the high-energy end, we need to choose an asymptotic

Lagrangians, respectively.{’(x) can in principle be mea- form for Imf.(s) which yields Eq.(3) when inserted in a
sured in other reactions, although it is most common to exdispersion relation. To see that this is the appropriate proce-

tract it from this form factor. One obtains a dispersion sumdure, we consider dividing the dispersive integral into two
rule for L{?(«) by expanding the chiral result arougd=0  Ppieces, with the transition pars being large enough that
to find thatL{’(u) is related to the subtraction constait aboves=s we are in asymptotic high-energy behavior for

cy= +
¥ 1672F2| 60m2  16m2F2

defined above. The precise relation is Imf .(s):
2Ly 2Ly 1 m> 1(s  Imf(s) 1r= Imfys)
o 2be_2be (W) /|n—”+1 G fog?)==] ,ds——+—| _ds—-. (13
F2 F2 96772F127\ u? mJamZ  s+Q ) s+Q

Here and in what follows we drop reference to the chiralln the first integral the integrand is ;inite and the range is
constantf ; since its effect is so small due to the factor of finite so that the result is a”f’i'y“c !nQ aroundQ”— . As
a consequence, the logarithm in the QCD form for the

2 . . . . . T .
m7 multiplying it in Eq. (8). Note that relation forLg is  5qymptotic limit cannot be reproduced from the first integral,
m(t?)ependent of the arbitrary scalg as the dependence of ang must come from the—c behavior of Inf(s) in the
Lg’(n) on u is compensated by the explicit behavior  second integral. The form of the imaginary part which guar-
displayed above. This exercise can be repeated to find thgntees the proper asymptotic limit is
term at orderQ?, both in the dispersion relation and in the

chiral expansion. The result is 643 F2
Imf_(s)=— . (14)
1 [ 1 1, 1 (= ds 9 s In%(s/A?)
Cy= Py~ >+ - =—J ,3Imf(s). . ) o _ .
167 le 60m:  167°F.| TJam.S This result is of course expected, as it it the imaginary part

(100  which follows from an analytic continuation of E¢B). This
o ) . form also allows the high-energy sum rule, E6), to con-
The derivation above used a twice subtracted relationygrge.

however, this was not a required feature. The same results A finaj step is the matching between the intermediate- and
can be obtained from dispersion relations with d'ﬁe””ghigh—energy forms of Irfii(s). The only model dependence
numbers of subtractions. It is an interesting feature, typicaj, o procedure comes at this point, as there can be match-
of dispersion relations, that the same sum rule can follownq procedures which differ in some details. However, the
from the constraints on the high-energy end in some derivagompination of data and sum rules turn out to be highly
tions yet emerge in the low-energy limit in another. This constraining. We require that the matching be such that we
occurs because dispersion relations tie together the h'9|%'atisfy the high-energy sum rule E@) and the normaliza-
energy and low-energy behaviors. As an example, let Ugop, integral Eq.(5). For these to be satisfied, the negative
briefly describe how these sum rules would be derived usingajyes of Inf_(s) obtained from the asymptotic form at

an unsubtracted dispersion relation: larges must extend to fairly low energies in order to be able
to cancel the known positive contribution effects of the

f(o?)= ijw ds Im f.(s) . (11  This is a powerful constraint. There is certainly some ambi-

i m)am2  s—qg’—ie guity in the precise form in the matching region, but we have

found a relatively simple solution. This is depicted in Fig. 1,
In this case, the sum rules of E@S), (9), and(10) all follow showing a smooth matching slightly above 1 GeV.
from Taylor expanding aroung?=0, while Eq.(6) follows If we use this form for Infi,(s) in a dispersion relation,
from the g>— limit, whereas we had previously used the we clearly have no predictive power in the intermediate-
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FIG. 1. Fit to the imaginary part of the pion form factor satis-  FIG. 2. The real part of the pion form factor at lar@g. The

fying the consistency constraints described in the text. dashed line indicates the asymptotic prediction of perturbative QCD
with A=0.3 GeV.

energy region where our method is data driven. The pre-
dictions come from the approaches to the asymptotic regions. Imf_(s) = 7m28(s—m?) (16)
Within a dispersive framework the transitions to the low- ” P P
energy and high-energy limits are both determined largely
by the numerically important intermediate energy region. : .
Our results are presented graphically in Fig. 2. On the Iow-EC_ker’ P'Ch,’ f';md de Ratfael argzu_ed ghat VMD_ determlnes the
energy side the structure of the real part of the form factor iChiral coefficients at the scale”=mj,. The dispersive ap-
governed by the low-energy constraints of E¢8),(10). proach provides a different answer — VMD determines not
These are predicted by the dispersion relations to have th@mply the chiral coefficient.§’(x) but rather the scale in-

form dependent combination of the coefficient plus a specific
) 5 combination of chiral logs, i.eL 4 in EQ. (9).
M N m; Fo (= ds On the high-energy side, we see from Fig. 2 that the
Ly’ ()= S| In—+1 |+ — —Imf _(s) . A .
1927 w? 2m)am2 s asymptotic QCD limit is approached rather slowly. In a dis-

persive framework this is due to the large contributions of
=0.0074, (19  the soft physics region, most notably theresonance. The
4 residual effects of the soft physics continues to be larger than
cy=4.1GeV", the somewhat small perturbative contribution out to reason-
ably high energies. This result is consistent with quark model
calculationg 11], but is far less model dependent.
The techniques of dispersion relations provide a partial

f,=6.6

. _ (r) .
using u=m,, . The result forLy’ agrees with the standard | : .
result, derived from the real part of the form factor. This is bridge between the low-energy techniques of chiral perturba-

just a consistency condition for the dispersion relation. ofion theory and the high-energy techniques of QCD. The
greater conceptional interest is the way that the dispersiofimPlest exploration of these methods involve two point
method embodies the underlying physics of vector mesofUnctions. T_he present work involves a_three_ point function
dominanceVMD), and the way that it resolves the issue of @nd hence is a step towards the consideration of yet more
the scale dependence of the chiral coefficients in VMDI. difficult matrix elements such as the nonleptonic amplitudes
Vector dominance is motivated by a narrow width approxi-responsible for electromagnetic mass differefi® or weak
mation to the dispersion integral: decays.
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