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We study QCD at nonzero quark density, zero temperature, infinite coupling using the Glasgow algorithm.
An improved complex zero analysis gives a critical pointmc in agreement with that of chiral symmetry
restoration computed with strong coupling expansions, and monomer-dimer simulations. We observe, how-
ever, two unphysical critical points: the onset for the number densitym0, and ms the saturation threshold,
coincident with pathological onsets observed in past quenched QCD calculations. An analysis of the probabil-
ity distributions for particle number supports our physical interpretation of the critical pointmc , and offers a
new intepretation ofm0, which confirms its unphysical nature. The perspectives for future lattice QCD calcu-
lations of the properties of dense baryonic matter are briefly discussed.@S0556-2821~97!02121-8#

PACS number~s!: 12.38.Mh, 11.15.Ha, 12.38.Gc

I. INTRODUCTION

Numerical simulations of lattice QCD at high tempera-
tures are making quantitative theoretical predictions which
will be confronted with experiments at the BNL Relativistic
Heavy Ion Collider~RHIC! and the CERN Large Hadron
Collider ~LHC! @1#. However, numerical simulations of QCD
in an environment rich in baryons lags far behind. Phenom-
enologically we know that nuclear matter can exist up to a
density of four times ordinary matter in neutron stars, and
that higher density will eventually induce deconfinement and
chiral symmetry restoration because of asymptoptic freedom.
Current estimates from phenomenological nuclear models
@2# place the critical chemical potential between 1000 and
1600 MeV, and the critical baryon density between 2 or 20
times that of ordinary nuclear matter.

As it is well known, the reason behind this poor knowl-
edge is the lack of a reliable calculational scheme for lattice
QCD at high baryon densities@3#. A solid theoretical formu-
lation for finite density QCD was made ten years ago@4,5#,
but, since the resulting action is complex, probabilistic simu-
lation methods fail. Early approaches considered the
quenched approximation, which omits the complex fermion
determinant, but it produced unphysical results@6–10#. To
obtain reliable results the determinant should be included,
and the Glasgow method has been proposed to tackle this
challenge@11–17#. Although we are ultimately interested in
the weak coupling, continuum limit, the strong coupling
limit of QCD is attractive for several reasons:~1! There are

analytic results coming from the strong coupling expansion
@18–20# and numerical results from monomer-dimer simula-
tions @21#; ~2! the theory confines and spontaneously breaks
chiral symmetry. In this paper we will use these features of
strongly coupled lattice QCD to test and shed light on simu-
lation methods which could be used at any coupling@22#.

This paper is organized into two main sections, Method
and Results.

Methodis part review and part illustration of our method
of analysis. We first review the Glasgow method, and the
relevant observables~Sec. II A!. We continue by illustrating
some features which will help our numerical analysis. We
will first discuss~Sec. II B! the pathologies found in calcu-
lations on isolated configurations. In Sec. II C we will dis-
cuss how the Glasgow algorithm can escape from these
single-configuration pathologies, and build the physical sig-
natures for the critical pointmc where chiral symmetry is
restored.

In Results, after discussing some generalities of the gen-
eration of the gauge ensemble~Sec. III A!, we show that the
Glasgow method results for the baryon current inherit some
of the quenched or single-configuration pathologies~Sec.
III B !. Nevertheless, we will successfully measure the critical
chemical potentialmc ~Sec. III C! and we will discuss in
detail the interplay of successes and failures of the results.
Comprehensive results for an extended range of masses are
given in Sec. III D. In Sec. III E we will present an alterna-
tive reanalysis of the critical region which will use probabil-
ity distributions. We will confirm there the estimate of the
critical pointmc , and we will offer a new intepretation of the
pathological region.

We conclude with a brief summary and discussion.*Affiliated with the UKQCD Collaboration.
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II. METHOD

Given the failure of the quenched approximation to deal
with the problem of the chiral phase transition at high quark
density, the natural conclusion is that dynamical quark simu-
lations are essential. However, the complex measure of the
functional integration with nonzero chemical potential poses
a severe problem for such simulations. One simulation
method which circumvents this problem is based on the ex-
pansion of the grand-canonical partition function~GCPF! in
powers of the fugacity. The GCPF (Z) can be written as the
ensemble averagêuM (m,m)u/uM (0,m)u& where uM (m,m)u
is the fermion determinant at chemical potentialm and quark
massm in lattice units~lattice spacinga51): i.e.,

Z5
*@dU#@dU†#uM ~m,m!ue2Sg[U,U†]

*@dU#@dU†#uM ~0,m!ue2Sg[U,U†]
, ~1!

whereU are matrices representing the gauge degrees of free-
dom andSg is the standard Wilson gauge action. The fer-
mion matrix M is that describing four flavors of staggered
fermions.

The fermionic determinant can be expressed explicitly as
a function ofm by

det@M ~m,m!#5e23mns
3ntdet~P2em!. ~2!

The lattice size isns
3nt and P is the propagator matrix~in-

dependent ofm) @7#

P5S 2GV V

2V 0 D , ~3!

whereG contains all the spacelike gauge links and the quark
bare mass, andV all the forward timelike links of the fermi-
onic matrixM .

det@M (m,m)# can be computed in a basis where the
propagator matrix is diagonal:

det@M ~m,m!#5e23mns
3nt )

k51

6ns
3nt

~lk2em!. ~4!

We recognize that the zeros of the determinant in theem

plane are the eigenvalues of the propagator matrix. The sym-
metry of the eigenvalues of the propagator matrix
lk1 j5ei2p j /ntlk for j 50 to nt21, together with the poly-
nomial decomposition

)
j 50

nt21

~ei2p j /ntb2x!5~bnt2xnt! ~5!

yield the equivalent representation

det@M ~m,m!#5e23mns
3nt)

k51

6ns
3

~lk
nt2emnt! ~6!

and dictates the general structure of the characteristic poly-
nomial det@M (m,m)#

det@M ~m,m!#5 (
k523ns

3

3ns
3

bie
kmnt. ~7!

Note the dependence onm is now via the fugacityf 5emnt.
Hence, measurement of the average of the characteristic

polynomials@normalized byuM (0,m)u# in the ensemble gen-
erated at update massm andm50 will give Z(m,m) explic-
itly as a function ofm at that mass.

This representation leads to a polynomial expansion of
Z(m) in powers of the fugacity whose coefficients are func-
tions of the gluonic fields.

Z~m!5 (
k523ns

3

3ns
3

^bi&e
kmT5 (

k523ns
3

3ns
3

Qkf k. ~8!

This expansion is just that of the GCPF expanded in terms
of the canonical partition functions~CPF’s! for a fixed num-
ber of quarks~antiquarks! on the lattice. Thermodynamical
averages, which can be calculated as logarithmic derivatives
of the GCPF, are then given explicitly as functions ofm.

The relative value of the CPF’s can characterize the prop-
erties of the system as well. For example, the relative weight
of the triality-bearing to the triality-zero CPF’s can signal
whether the system is in the confined or deconfined phase. In
the confined phase the ensemble average of the triality-
bearing CPF’s must be zero. This leads to

Z~m!5 (
k5ns

3

ns
3

Q3kf 3k. ~9!

One can also explore the phase structure of the simulated
system by examining the distribution of the zeros of the
GCPF in the complex chemical potential~or fugacity! plane
@23,24#. These zeros correspond to the singularities of the
thermodynamic potential and will converge in the thermody-
namic limit, (L→`) towards any criticalm in the physical
domain.

In the following we also show that one can regard the
zeros of the averaged characteristic polynomial as the
‘‘proper’’ ensemble average of the eigenvalues of the propa-
gator matrix. This interpretation of the zeros as reflecting the
ensemble average of the eigenvalues could be important in
the interpretation of ‘‘unexpected’’ onset chemical potentials
in ensembles of limited statistics.

A. Observables

The starting point of our analysis is the GCPFZ com-
puted with the Glasgow algorithm. Our raw data are the
CPF’sQN and our basic observables are the particle number
density and the zeros of the GCPF in the complex fugacity
plane.
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Most of our discussions will consider the current
^J0(m,m)& or equivalently the particle number density, de-
fined as

^J0~m,m!&5
1

V

] ln@Z~m,m!#

]m
5

1

V

] ln^det@M ~m,m!#&
]m

.

~10!

The singular behavior of the current can result from sin-
gularities in the density of baryonic states~particularly ap-
parent in the zero-temperature limit!. These singularities
could be purely lattice artifacts and vanish in the continuum
limit. However, they may instead reflect continuum spectral
features, such as gaps in the spectrum or abrupt changes in
the dispersion relation of the baryonic excitations. A chiral
phase transition is one such possibility. A spectrum of
chirally symmetric baryonic excitations will follow a gapless
relativistic dispersion relation, contrary to the dispersion of
particles with broken chiral symmetry. If the disappearance
of the mass gap occurs together with the deconfinement tran-
sition, quark states will emerge instead of collective colorless
baryonic excitations. Thus, them dependence ofJ0 should
determine the phase structure of dense baryonic matter, an
alternative to the evaluation of the chiral condensate.

Differentiating the action with respect tom reveals the
operator form of the charge, and one sees that the current is
the expectation value of the number of paths through the
links in the time direction@4#. In this sense the current can be
defined on isolated configurations, where it reduces to

J0
i ~m,m!5

1

V

] ln$det@M ~m,m!#%

]m
. ~11!

In the quenched ensemble ln@det(M )# is differentiatedbefore
taking the statistical average,

^J0&
q~m,m!5

1

VK ] ln$det@M ~m,m!#%

]m L , ~12!

and we recognize that

^J0~m,m!&q5^J0
i ~m,m!&. ~13!

In the following them andm dependence will be left implicit
wherever this does not create ambiguities.

B. Failures on isolated configurations
and the quenched model

The early work by Gibbs@7# made it clear that the behav-
ior of some observables measured on isolated configurations
at finite density can be pathological. Since the analysis of
isolated configurations is a necessary step in any lattice
simulation, the impact of his result may be broader than its
original motivation— to understand the pathologies of the
quenched approximation.

Our renewed interest was prompted by two consider-
ations. First, our results presented in Sec. III A below show
clear relics of the quenched pathologies discussed in Gibbs’
paper: the onsetm0 where the currentJ0 departs from zero is
at half the pion mass. Second, published results on four fer-

mion models@25,26# do not have such pathologies. How-
ever, both models share the same pattern of chiral symmetry
breaking, and both models have Goldstone modes. Why,
then, is there a difference at finite density? We decided to
reexamine the behavior of observables on isolated configu-
rations in order to test the Gibbs scenario in a more general
framework, and to gain some understanding of the process of
statistical averaging in the two models. This paper is devoted
to QCD, and the results for four fermion models will be
presented elsewhere.

First consider the behavior of the current on isolated con-
figurations.J0

i follows from Eqs.~11! and ~4!:

J0
i 5211

1

V(
i 51

6V

z/~z2l i ! ~14!

~here and in the following we use Gibbs’ notationz5em @7#!.
In the zero-temperature case the sum over complex poles can
be conveniently done by contour integration, yielding

J0
i 5

1

V (
1,ul i u,em

1. ~15!

The threshold for the currentJ0 on isolated configurations
is triggered by the lowest zero of the determinant. In turn, the
zeros of the determinant are given by the eigenvalues of the
propagator matrix that, as emphasized by Gibbs, are con-
trolled by the mass spectrum of the theory. The argument,
which we briefly summarize for the sake of completeness,
requires the calculation of the hadronic spectrum on repli-
cated lattices, i.e., lattices which have been strung togetherd
times in the time direction and the limitd→` is taken, in
order to replace finite sums with contour integrations. This
procedure is justifiable at zero temperature.

The expression for the inverse of the fermion matrix,
G(t1 ,t2), on the replicated lattices reads~slightly simplify-
ing Gibbs’ notation!

G~ t1 ,t2!5(
k

Aalk
t12t2 , ~16!

where theAa are the amplitudes which can be related to the
eigenvectors of the propagator matrix, and thelk are the
corresponding eigenvalues.

Equation ~16! shows that the exponential decay of
G(t1 ,t2) at large timelike separation is controlled by the
eigenvalues of the propagator matrix. In other words, the
eigenvalue spectrum calculated on isolated configurations
should be closely related to the physical mass spectrum. In
particular, Gibbs concluded that the smallest mass statemp

is related to the lowest eigenvalue:

mp52lnulminu. ~17!

This identification was clear in simulations done by Gibbs
because the pion propagator was very similar configuration
by configuration although, strictly speaking, masses are
properties only of the statistical ensemble.

The Gibbs argument has been reformulated and verified
by Davies and Klepfish@8#. Pathologies of isolated configu-
rations, the role of confinement, and other issues are also
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discussed in@9,10#. All of these works confirm that on iso-
lated configurations there is a singularity at a value of the
chemical potential close to half the pion mass.

Therefore, the results on isolated configurations are quali-
tatively different from those expected of the statistical en-
semble.

Some of the problems with the quenched model can be
understood from Eq.~13!: the quenched current is a simple
average of the one-configuration current, and the quenched
ensemble retains the pathological features observed on iso-
lated configurations.

C. The statistical ensemble and the full model

We can now focus on the interplay between the one-
configuration or quenched results and ensemble results. How
can statistical averaging remove the problems observed on
isolated configurations? Equivalently, how can the Glasgow
averaging discussed above improve upon the quenched ap-
proximation?

Consider the fugacity expansion forZ, Eq. ~8!. By rein-

stating a factore3ns
3ntm we see thatZ is a polynomial of

degree 6ns
3nt56V in the variablez5em. Z can then be writ-

ten in terms of its zerosa i in the z plane:

Z5e3Vm)
i 51

6V

~z2a i !. ~18!

Recall thatZ5^det(M )& and compare formulas~18! and
~4! which we rewrite here:

detM5e3Vm)
i 51

6V

~z2l i !. ~19!

We see that the zeros of the partition function are the
‘‘proper’’ ensemble average of the eigenvalues of the fermi-
onic propagator matrix, or, equivalently, of the zeros of the
determinant.

Manipulations analogous to those of Eqs.~14! and ~15!
lead to the current

J05
1

V (
1,ua i u,em

1. ~20!

Let us search for other critical points past the first onset.
From Eq.~20! we see that discontinuities inJ0 are associated
with a high density of zeros on circles with radiusemc in the
fugacity plane. More generally, the density of the modulos of
zeros in theem plane is the derivative ofJ0 with respect to
m, i.e., the quark number susceptibility. Interestingly, the
relevant quantities controlling the critical behavior of the
current are indeed the modulos of the complex zeros.

It is worth noticing that, once theZ3 symmetry is en-
forced @Eq. ~9!#,

Z5e3ns
3m)

i 51

2V

~z32b i !. ~21!

The zeros in the complex planez should then come in trip-
lets, corresponding to cubic roots of certain complex num-
bersb i . In principle ~in practice things can be very differ-

ent! the effect of theZ3 symmetry can simply amount to a
redistribution of phases with no effect on the moduli. That
would not affect the critical behavior, since the critical be-
havior is triggered by the moduli themselves. The unphysical
quenched onsets could certainly survive theZ3 symmetry of
the full ensemble.

The zeros of the partition function drive the critical be-
havior of the full model as the zeros of the determinant drive
the critical behavior of isolated configurations, hence of the
quenched model. In the process of going from the zeros of
the determinant to the zeros of the grand canonical partition
function, the pathological results observed on isolated con-
figurations should turn into the physics of the full model: the
fake critical points should disappear, the real phase transi-
tions of the full model should emerge.

III. RESULTS

We present here our numerical results. All the back-
ground material, when not explicitly referenced, can be
found in the previous section.

The generation of the configurations of gauge fields is
described inthe ensemble. In the number densitywe review
past results from the quenched approximation, from the
monomer-dimer simulation of the full four-flavor model and
from the strong coupling expansion of the four-flavor model.
We present the results obtained with the Glasgow method on
various lattice sizes, and we highlight the main similarities
and differences among the Glasgow results and the above-
mentioned ones. A discussion of finite size effects is pre-
sented as well. In this and in the subsequent subsection, the
emphasis is on the presentation of the main features of the
results. We then limit ourselves to a discussion of one rep-
resentative mass value,mq50.1.

In the determination of the critical pointwe focus on the
analysis of the complex zeros in theem plane. We contrast
the pattern of zeros with that of the eigenvalues of the fer-
mion propagator. We show how simulations of the full
model produce a clear signature for the critical pointmc .

In light and heavy masseswe will present our complete
set of results. The light masses will offer information about
the chiral limit. We confirm that our estimatemc remains
constant, and different from zero whenm→0. We demon-
strate the dependence ofmc on the bare mass in the heavy
quark regime. In the summary plot the results are compared
with the strong coupling expansion, and the monomer-dimer
calculations.

The analysis of the probability distributionconsists of a
self-consistent analysis of the critical region which exploits
the form of the probability distribution as a function of the
chemical potential. This analysis further validates our esti-
mate of the critical pointmc and, in addition, offers a new
intepretation of the onset regionmo .

A. The ensemble

The Glasgow algorithm takes as input an ensemble of
configurations at zero chemical potential. At infinite gauge
coupling we can generate configurations either with the usual
hybrid Monte Carlo procedure or just choosing random
SU~3! matrices — this corresponds to a different normaliza-
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tion for the partition function. First, we reproduced the re-
sults of Barbour, Davies, and Sabeur@11#, which show that
the reweighting actually works on a 24 lattice provided the
statistics are high enough. Some preliminary runs were per-
formed on a 44 lattice to check that the results were indeed
independent of the algorithm chosen for the generation of the
configuration. We finally selected a random generator which
produces decorrelated configurations.

We will present results on a 64 lattice for bare mass val-
ues ranging from 0.05 to 1.5 and on a 84 lattice for masses
0.08 and 0.1. The number of gauge field configurations ana-
lyzed ranges from a small sample of 25 on the 84 lattice
mq50.08,.100 configurations on the same lattice,mq50.1,
and several hundred configurations on the 64 lattices.

B. The number density

We studiedmq50.1 on 64 lattices where we can contrast
the results with those obtained~1! in the quenched case,~2!
with the monomer-dimer simulation, and~3! with the ana-
lytic results of the strong coupling expansions. Let us briefly
review methods~2! and ~3!.

The monomer-dimer approach~valid only at infinite cou-
pling! writes the strong coupling action in a fashion suitable
for computer simulations. It begins with the standard lattice
QCD action with four flavors of staggered fermions and in-
tegrates out the completely disordered gauge fields. Confine-
ment is enforced exactly and the short-ranged interactions
between fermions allow the Grassman integrals to also be
done exactly. The resulting action can be interpreted graphi-
cally in terms of ‘‘monomers’’ and ‘‘dimers,’’ familiar con-
structions in statistical physics. This representation of the
theory is well suited for computer simulations since the
dreaded sign problem of the fermion determinant is not nu-
merically significant in this basis~on small lattices!. Com-
puter simulations atmq50.1 @21# show a sharp transition at
m50.69(1) where the chiral condensate falls from its zero-
m value ~essentially! to zero, and the number densityJ0
jumps from zero~essentially! to a fully occupied lattice,
J051.0. These results agree with those of the traditional
strong coupling expansion, as they should.

The strong coupling expansion@18–20# at mq50.1 pre-
dicts, in fact, a strong first-order transition atm50.65 ~the
small difference inmc can probably be accounted for by 1/d
corrections!. The analytic expressions of the strong coupling
expansion show a feature not seen in the monomer-dimer
simulations: a mixed phase form0,m,ms where ordinary
confined hadronic matter coexists with the saturated lattice
phase@10#.

The quenched results@10# were characterized by a ‘‘for-
bidden region’’ ranging from m05mp/250.32 to
ms.mB /3.1.0. m0 andms are close to the extrema of the
mixed phase predicted by the strong coupling expansions
mentioned above. There is no remnant of the critical point
for chiral symmetry restorationmc.0.65 predicted by the
same expansion.

Our motivation in undertaking the 64 calculations, was, of
course, to see results completely different from the quenched
calculations and very similar to the monomer-dimer results.

These expectations were only partially borne out. We in-
deed found a signature atmc , but also the persistence ofm0

and ms . These results are shown in Fig. 1 for the number
density obtained with the Glasgow method on a 64 lattice at
mq50.1. The Glasgow results are distinguished from the
quenched ones by a small jump atm.0.7.mc , suggesting
restoration of chiral symmetry. Other than that, the Glasgow
and quenched results are very similar.

We then moved to a larger lattice to study the sensitivity
to size and temperature. Would the small hint of a disconti-
nuity at m.0.7 become more pronounced? Would the dy-
namical results differ more substantially from the quenched
ones?

The answer was in the negative. Neverthless, we did learn
something from these runs.

In Fig. 2, we show a detailed comparison of the results on
the two lattices, 64 and 84, mq50.1 ~note the different scales

FIG. 1. Quark number density from the Glasgow algorithm.
mq50.1 on a 64 lattice. The onsetm0, and the saturation pointms ,
are the same as the ones observed in the quenched approximation.
The critical point for chiral symmetry restoration measured in a
monomer-dimer calculation ismc50.69(1), coincident with the
little gap observed in our results. The same monomer-dimer results
would, however, predict a very sharp transition with a critical den-
sity close to zero, in agreement with the results of the strong cou-
pling expansion.

FIG. 2. Finite size effects atmq50.1. We show details of the
critical regions aroundm0 and mc for mq50.1 for two different
lattices. The thick lines are for the 84 lattice, the thin lines for the
64.
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on the right and left sides!. By blowing up the picture of the
number density, we see that the density itself deviates from
zero atm.0. This effect is very small~note the scale! and it
is sensitive to temperature, the number density being sup-
pressed, as expected, on the colder lattice.

The most interesting point is that temperature effects are
greatly lessened form.m0. One might have well thought
that the increase atm0 reflects a thermal excitation of bary-
ons. This does not seem to be the case: only form,m0 do
we observe the expected, physical pattern of finite tempera-
ture effects. This disappears form.m0. This result supports
the belief that the rise atm0 is unphysical, as in the quenched
approximation. Of course we cannot rule out the possibility
that the situation changes on larger lattices, and we refer to
@9,10# for discussions on this point.

Temperature effects become apparent again atmc , sug-
gesting thatmc is a threshold of a new phase.

C. The determination of the critical point

We can substanstiate this intepretation ofmc by examin-
ing the zeros of the grand partition function in the complex
planeem.

The numerical strategy suggested by Sec. II, Eq.~20! is
straightforward: observe the distribution of the modulos of
the zeros, or, equivalently, search for a strip of high densities
in the em plane. This criterion is numerically more conve-
nient than the conventional Lee-Yang analysis, which only
uses the zero whose imaginary part is closest to the real axes.
It is also very natural: it says that the number density counts
the density of states in the fermionic sector.

This strategy is demonstrated in Fig. 3 where we show the
distribution of zeros~in practice, of the logarithms of their
moduli! accompanying Fig. 1. The signal atmc50.687(15)
is very clear, and in excellent agreement with the monomer-
dimer resultsmc50.69(1).

Figure 4 contrasts zeros of the determinant and zeros of
the GCPF on an 84 lattice. The signal atmc in the full model
is quite clear.

As discussed above, the upper and lower parts of the fig-
ure can also be seen as full and quenched results. As a by-
product of our investigation, we see clearly why the search

of further critical points in the quenched calculations was
futile @27,10#: the eigenvalue distribution is almost ‘‘flat.’’

Unfortunately, the upper and lower parts of the figure also
show strong signals atm0 and ms : the behavior at the two
side peaks does not change as we pass from the quenched to
the full model. This gives us another view of the puzzling
persistence of the onset noticed in the previous subsection.
The Glasgow simulation method has failed to reproduce the
published monomer-dimer results.

We can also look at the zeros themselves, which we dis-
play in Fig. 5. As anticipated in the discussion, we observe a
dense line, which follows the predictionuemu5emc. We also
see a ring of zeros at half the pion mass, and note that the
zeros fill up the entire regionm0–ms .

In summary, we have seen how the small discontinuity
observed in the current manifests itself in the histogram of
zeros: the density of zeros is thederivativeof the number
density, so a small ‘‘discontinuity’’ inJ0 corresponds to a
distinct signal in the histogram of zeros.

Will more statistics eventually cancel the onsets atm0 and
ms? Even if we have not observed any dramatic effect by
increasing the number of configurations, insufficient statis-
tics remains a possibility, especially sinceZ3 invariance has
not been completely achieved yet, and since it is possible
that the precision required to achieve the cancellation of the
unwanted onset is prohibitively high. It is also possible that

FIG. 3. Histogram of zeros accompanying Fig. 1. Note~a! the
peak atmc50.687(15) matching the small jump, to be contrasted
with the monomer-dimer resultsmc50.69(1), ~b! the correspon-
dence of the extrema of the histogram with the onsetm0 of the
current and its saturationms .

FIG. 4. Histogram of the zeros of the full model~top!, and
histogram of the zeros of the determinant~bottom!, hence of the
quenched approximation.mq50.1, on an 84 lattice.
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the polynomial representation for the GCPF is ill-
conditioned@28#.

D. Heavy and light masses

All the results we have discussed above were formq50.1.
It is instructive to explore both light and heavy masses. Light
masses are important for the chiral limit. There we expect the
critical point mc to remain constant and different from zero.
Heavy masses change the critical point and allow a more
detailed comparison of our results with the monomer-dimer–
strong-coupling approaches.

We studied the sensitivity to the quark mass close to the
chiral limit (0.05,mq,0.1). We noted the stability of the
central peak and the shift of the lower peak, which is asso-

ciated with the onset of the current at one-half of the pion
mass.

Finally, we have also simulated larger masses. We appre-
ciated the shifting in the central peak, and also its broaden-
ing — probably due to the fact that at large quark mass the
transition is washed out. Interestingly, the current onset at
larger quark mass is, apparently, smaller than half the pion
mass — a surprising result since atmq51.5 in the quenched
model the critical region shrinks to zero@6# — certainly this
adds to the complication and the confusion associated with
m0 .

However, even if the interpretation of the critical region at
this stage is largely subjective, the estimate of the critical
point mc seems reasonably sound.

We then conclude our Results section with the summary
of Fig. 6.

E. The analysis of the probability distributions

In this section we reexamine the critical region by study-
ing the probability distribution for the particle number.

Write

Z5 (
n523V

3V

Wn ~22!

and normalize such thatZ51. Wn is then the probability that
a system in a grand canonical ensemble hasn particles.

Using the numerical results for the GPF above@see Eq.
~8!#, the shapes of the probability distributionsWn5Qnemntn

for different chemical potentials can be drawn as a function
of n, and the critical region can be studied using standard
statistical mechanics analysis.

For a transition in a classical ensemble in the infinite vol-
ume limit, the distribution ofWn should have a single peak
in a pure phase, and a flat distribution at the critical point,
where all values of the particle number between the two
extrema should be equally likely.

The current̂ J0& can be written as

^J0&5
1

V (
n523V

3V

nWn . ~23!

We draw in Fig. 7 the probability distribution for small
chemical potential. Atm50 ~solid line! the distribution is
symmetric around the origin: look at the two satellite peaks
of equal height.̂ J0& equals zero as it should. Atm50.1
~dashed line! the distribution becomes asymmetric, reflecting
the enhancement~suppression! of the forward ~backward!
propagation: the peak on the left decreases, the one on the
right increases. Positive and negative states are still both
contributing to the probability distribution. The net^J0&
moves immediately off zero, but it is very, very small~look
again at picture 2!. The distribution broadens on smaller lat-
tices, which accounts for the pattern of finite size effects seen
in the same picture.

At m5m0 the scenario changes completely: a secondary
maximum develops at positiven, and the distribution moves
to the positiven region. We show this behavior for both
mq50.1 andmq50.08 in Fig. 8. Form.m0 the negative

FIG. 5. Zeros in theem plane form50.1 84 lattice. The critical
line is the thin line inside the denser regionem5emc.

FIG. 6. Summary of the results for the critical pointmc , and
current onsetm0. mc follows the prediction of the mean field analy-
sis of @18# ~solid line!. The onset is close to half the pion mass at
small mass, and below half the pion mass formq.0.5 .
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states do not contribute. This behavior is correlated with the
sharp increase ofJ0 plotted before and should be related to
changes in the theory’s spectrum, perhaps reflecting patholo-
gies of the quenched case such as the ‘‘ funny pions’’@10# or
Stephanov’s condensates@29#. The distribution is now
roughly symmetric, and its broadening on smaller lattices
does not affect its average value^J0&. This behavior is com-
patible with the absence of strong volume effects, Fig. 2.

Next, the critical region: we see the expected broadening
of the probability distribution atmc ~Figs. 9 and 10!. Finite
size effects become important again form.mc . Note, in
particular, in Fig. 10, the sensitivity tom on a very fine scale:
the three central plots are form50.68, 0.683, 0.7.

In Fig. 11 we summarize these observations by plotting
W0, the probability that the system has zero particle number,
and the integrated probabilities W15(Wn ,n.0;
W25(Wn ,n,0. The logarithmic scale of the plot makes it
easy to see that backward and forward propagations are en-
hanced and suppressed by the same factor at smallm. Cor-
respondingly, the contribution ofn50 must decrease. At
m5m0, n50 equals the overall contribution from.0. For
m.m0 only positiven’s contribute toZ.

These results suggest thatm0 is the threshold for a phase
with only positive propagation. Perhaps this observation is a
clue to the nature of the phasem.m0. Recall that mean field
analysis predicts the threshold of the mixed phase~broken

FIG. 7. Probability distributions for a small chemical potential
at mq50.1 on the 84 lattice. The solid line ism50, the dashed
lines, from top to bottom atn50, are form50.1, 0.2, 0.3.

FIG. 8. Probability distributions around the onsetm0 for
mq50.08~top! andmq50.1 ~bottom! on an 84 lattice. The leftmost
histogram~solid! at mq50.08 is form50.28, the rightmost is for
m50.34. Bezier interpolations~from Gnuplot! are shown for
m50.28, 0.30, 0.32, 0.34. Atmq50.1, m50.32, 0.34, 0.36, 0.38
from left to right. For both masses atm0 the probability distribution
moves on the positiven axes.

FIG. 9. Probability distributions in the critical region at
mq50.1, on the 84 ~top! and the 64 ~bottom!. m is ~0.6, 0.683,
0.75!, from left to right~top!, and~0.5, 0.6, 0.695, 0.75, 1! ~bottom!.
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phase and/or saturated phase! at m.m0. Future work should
address possible relations between these observations.

We believe thatmc indicates a physical critical point. All
approaches~except the pathological quenched case! predict a
transition or, at least, a clear change of behavior of observ-
ables here. From the point of view of this section it is rela-
tively easy to understand the robustness of this result: the
probabilities plotted here underlie all the observables dis-
cussed earlier and the ‘‘flatness’’ of the distributions, which
locates the critical point, is a qualitative feature which should
appear in all the numerical procedures.

IV. OUTLOOK

We have reached a partial understanding of the algorithms
and we can point out some successes and failures.

On the positive side, the method gives clear signs of the
critical pointmc which should be the point of chiral symme-
try restoration. The method also gives a current onsetm0 far
different from mc . This is most likely unphysical: it is not
seen in the monomer-dimer results, it is the same as the
pathological quenched onset, and it is the threshold of a
phase characterized by forward propagation. Unfortunately,

sinceJ0, and other observables such as the energy density,
deviate from zero at the unphysicalm0 point, their values
nearmc cannot be trusted. So, although the present algorithm
givesmc accurately, it does not make any other phenomeno-
logically reliable predictions.

We expect that the early onsetm0 should disappear in a
correct calculation. Physical arguments support this view as
well as the monomer-dimer and strong coupling expansions
discussed here. It might be that a high statistics run of the
present algorithm will cancelm0. In this case the method
would be impractical, but, at least, not conceptually wrong.
If this were true, we should develop a strategy to monitor the
convergence of the method to the correct statistical en-
semble, and to remove unphysical contributions to observ-
ables due to partial ‘‘cancellations’’ of unwanted onsets.

A very unpleasant possibility, which we cannot exludea
priori , is that the results we are observing are indeed the final
results at finite chemical potential with the Glasgow method.
In this case, monomer-dimer simulations and strong coupling
calculations would differ from the Glasgow results. This re-
sult would indicate intrinsic difficulties of the finite density
lattice gauge theory simulation strategies. Some of these
have been discussed in the text.

We might also suspect that the problems stem from hav-
ing generated configurations at zero chemical potential. This
explanation is suggested from the standard problems encoun-
tered by reweighting procedures, and from the behavior ob-
served in the Gross-Neveu model@3#. In this case the Glas-
gow method can be improved if a better starting point were
invented. This is a worthwhile direction to pursue.

At the present point, we have to accept that ensemble
averaging does not help to suppress the pathologies of iso-
lated configurations. It might well be that a satisfactory
simulation of finite density QCD requires an algorithm
which produces physical results on each configuration. A
promising development of this sort isxQCD @30#, where an
irrelevant 4F term is added to the standard QCD action used
here.xQCD has the advantage that chiral symmetry breaking
and the generation of a dynamical quark mass occurs con-
figuration by configuration and the pion ands excitations
are explicitly free ofm dependence. In fact,xQCD simula-
tions do not suffer from the severem0 pathologies seen here
@26#, but additional work, both theoretical and practical, is
needed to see ifxQCD really produces only physical results.
Research in this topic is in progress.
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FIG. 10. Probability distributions on the 84 lattice,mq50.1, for
m 5 ~0.5, 0.6, 0.68, 0.683, 0.7, 0.8, 0.9!. Only the Bezier interpo-
lations are shown. The complete results for severalm values can be
seen in Fig. 9.

FIG. 11. W0 ~solid!, and integrated probabilitiesW1 and W2

~dashed! at mq50.1, on the 84 lattice.
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