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We study QCD at nonzero quark density, zero temperature, infinite coupling using the Glasgow algorithm.
An improved complex zero analysis gives a critical point in agreement with that of chiral symmetry
restoration computed with strong coupling expansions, and monomer-dimer simulations. We observe, how-
ever, two unphysical critical points: the onset for the number densityand ug the saturation threshold,
coincident with pathological onsets observed in past quenched QCD calculations. An analysis of the probabil-
ity distributions for particle number supports our physical interpretation of the critical pintand offers a
new intepretation ofxq, which confirms its unphysical nature. The perspectives for future lattice QCD calcu-
lations of the properties of dense baryonic matter are briefly discugS8856-282(97)02121-9

PACS numbses): 12.38.Mh, 11.15.Ha, 12.38.Gc

I. INTRODUCTION analytic results coming from the strong coupling expansion
[18—2Q and numerical results from monomer-dimer simula-
Numerical simulations of lattice QCD at high tempera-tions[21]; (2) the theory confines and spontaneously breaks
tures are making quantitative theoretical predictions whictchiral symmetry. In this paper we will use these features of
will be confronted with experiments at the BNL Relativistic strongly coupled lattice QCD to test and shed light on simu-
Heavy lon Collider(RHIC) and the CERN Large Hadron lation methods which could be used at any couplidg].
Collider (LHC) [1]. However, numerical simulations of QCD This paper is organized into two main sections, Method
in an environment rich in baryons lags far behind. Phenomand Results.
enologically we know that nuclear matter can exist up to a Methodis part review and part illustration of our method
density of four times ordinary matter in neutron stars, andf analysis. We first review the Glasgow method, and the
that higher density will eventually induce deconfinement andelevant observablgSec. Il A). We continue by illustrating
chiral symmetry restoration because of asymptoptic freedonsome features which will help our numerical analysis. We
Current estimates from phenomenological nuclear modelwiill first discuss(Sec. Il B) the pathologies found in calcu-
[2] place the critical chemical potential between 1000 andations on isolated configurations. In Sec. Il C we will dis-
1600 MeV, and the critical baryon density between 2 or 20cuss how the Glasgow algorithm can escape from these
times that of ordinary nuclear matter. single-configuration pathologies, and build the physical sig-
As it is well known, the reason behind this poor knowl- natures for the critical poini, where chiral symmetry is
edge is the lack of a reliable calculational scheme for latticaestored.
QCD at high baryon densiti¢8]. A solid theoretical formu- In Results after discussing some generalities of the gen-
lation for finite density QCD was made ten years &g, eration of the gauge ensembigec. 1l A), we show that the
but, since the resulting action is complex, probabilistic simu-Glasgow method results for the baryon current inherit some
lation methods fail. Early approaches considered thef the quenched or single-configuration pathologiSec.
guenched approximation, which omits the complex fermionlll B). Nevertheless, we will successfully measure the critical
determinant, but it produced unphysical resyiis10.. To  chemical potentialu. (Sec. Il O and we will discuss in
obtain reliable results the determinant should be includeddetail the interplay of successes and failures of the results.
and the Glasgow method has been proposed to tackle th@omprehensive results for an extended range of masses are
challengg[11-17. Although we are ultimately interested in given in Sec. Il D. In Sec. lll E we will present an alterna-
the weak coupling, continuum limit, the strong coupling tive reanalysis of the critical region which will use probabil-
limit of QCD is attractive for several reasond) There are ity distributions. We will confirm there the estimate of the
critical point i, and we will offer a new intepretation of the
pathological region.
* Affiliated with the UKQCD Collaboration. We conclude with a brief summary and discussion.
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Il. METHOD and dictates the general structure of the characteristic poly-

Given the failure of the quenched approximation to degfromial detM (x,m)]

with the problem of the chiral phase transition at high quark

3
density, the natural conclusion is that dynamical quark simu- 3ns un
lations are essential. However, the complex measure of the defM(u,m]= > , b;e M, (7)
functional integration with nonzero chemical potential poses k=—3ng

a severe problem for such simulations. One simulation

method which circumvents this problem is based on the exNote the dependence qnis now via the fugacityf =e#™.

pansion of the grand-canonical partition functi@@CPB in Hence, measurement of the average of the characteristic

powers of the fugacity. The GCPEZ) can be written as the polynomials/normalized by|M(0,m)|] in the ensemble gen-

ensemble averagdM (u,m)|/|M(0,m)|) where|M(u,m)|  erated at update massand =0 will give Z(x,m) explic-

is the fermion determinant at chemical potengiaand quark itly as a function ofu at that mass.

massm in lattice units(lattice spacinga=1): i.e., This representation leads to a polynomial expansion of

Z(u) in powers of the fugacity whose coefficients are func-

f[dU][dUT]lM(,u,m)|e*Sg[U'UT] tions of the gluonic fields.

~ [[dU][dUT]IM(0;m)]|e SU-UT

: (N
3n§ 3n§
_ , Z(w= 2 (beT= X Q. ®
whereU are matrices representing the gauge degrees of free- k=—3n3 k=—3n3
dom andS; is the standard Wilson gauge action. The fer-
mion matrix M is that describing four flavors of staggered
fermions. This expansion is just that of the GCPF expanded in terms
The fermionic determinant can be expressed explicitly a®f the canonical partition function€PF's for a fixed num-
a function of u by ber of quarks(antiquark$ on the lattice. Thermodynamical
averages, which can be calculated as logarithmic derivatives
3 of the GCPF, are then given explicitly as functionsgof
defM(u,m)]=e 3#"NsNide( P—e*). 2 The relative value of the CPF’s can characterize the prop-
erties of the system as well. For example, the relative weight
of the triality-bearing to the triality-zero CPF’'s can signal
whether the system is in the confined or deconfined phase. In
the confined phase the ensemble average of the triality-
bearing CPF’'s must be zero. This leads to

The lattice size imn, and P is the propagator matriin-
dependent ofu) [7]

-GV V
P= _y o) ) g
Z(w)= 2 Qad™. ©
whereG contains all the spacelike gauge links and the quark k=n3
bare mass, and all the forward timelike links of the fermi-

onic matrixM.
defM(u,m)] can be computed in a basis where the
propagator matrix is diagonal:

One can also explore the phase structure of the simulated
system by examining the distribution of the zeros of the
GCPF in the complex chemical potenti{ak fugacity plane
[23,24. These zeros correspond to the singularities of the

5 6n3ny thermodynamic potential and will converge in the thermody-
defM(u,m)]=e 3#sM [T (N —eH). (4)  namic limit, (L— =) towards any criticaj in the physical
k=1 ;
domain.

. . . In the following we also show that one can regard the
We recognize that the zeros of the determinant inéfie ;o 05 of the averaged characteristic polynomial as the
plane are the elgenvalues of the propagator matrix. The SYmrproper” ensemble average of the eigenvalues of the propa-
metry 8];-,,Ehe e|g'envalues of the propagator matr'xgator matrix. This interpretation of the zeros as reflecting the
N =€/ =TT for j=0 ton.—1, together with the poly-  gnsemple average of the eigenvalues could be important in
nomial decomposition the interpretation of “unexpected” onset chemical potentials

n—1 in ensembles of limited statistics.
[ (e27MB—x)=(BN—x") 5
=0 A. Observables
y|e|d the equiva|ent representation The Starting pOint of our anaIySiS is the GCPFcom-
puted with the Glasgow algorithm. Our raw data are the
6n3 CPF’'sQy and our basic observables are the particle number
3 ; . .
def M (u,m)]= e 3#nsn: A gun; 6 density and the zeros of the GCPF in the complex fugacity
{M(p,m)] I og-e  ® lane.
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Most of our discussions will consider the current mion models[25,26 do not have such pathologies. How-
(Jo(m,m)) or equivalently the particle number density, de- ever, both models share the same pattern of chiral symmetry

fined as breaking, and both models have Goldstone modes. Why,
then, is there a difference at finite density? We decided to

o m))= 1 dIn[Z(p,m)] 1 din(defM(x,m)]) reexamine the behavior of observables on isolated configu-
oL \% p \% u ’ rations in order to test the Gibbs scenario in a more general

(10 framework, and to gain some understanding of the process of
statistical averaging in the two models. This paper is devoted
The singular behavior of the current can result from sinto QCD, and the results for four fermion models will be

gularities in the density of baryonic statgsarticularly ap-  presented elsewhere.
parent in the zero-temperature limitThese singularities ~  First consider the behavior of the current on isolated con-
could be purely lattice artifacts and vanish in the continuumiqyrations.Ji, follows from Egs.(11) and (4):
limit. However, they may instead reflect continuum spectral
features, such as gaps in the spectrum or abrupt changes in _ 18
the dispersion relation of the baryonic excitations. A chiral Jo=—1+ —E z/(z—N\;) (14
phase transition is one such possibility. A spectrum of =1

chirally symmetric baryonic excitations will follow a gaplessf(here and in the following we use Gibbs’ notatipm e* [7]).

riﬁnggi\/ﬂﬁ%ﬁgﬂgg (r:ili?glo 2 rﬁ?:gt?ry I;Otrfge dg:\perei?:ng In the zero-temperature case the sum over complex poles can
P Y Y. P %e conveniently done by contour integration, yielding

of the mass gap occurs together with the deconfinement tran-
sition, quark states will emerge instead of collective colorless

1
baryonic excitations. Thus, the dependence of, should Jb:v E 1. (15
determine the phase structure of dense baryonic matter, an I<|njl<e®
alternative to the evaluation of the chiral condensate. ) ] )
Differentiating the action with respect ta reveals the The threshold for the curredt on isolated configurations

operator form of the charge, and one sees that the current i§ triggered by the lowest zero of the determinant. In turn, the
the expectation value of the number of paths through th&€ros of the detgrmlnant are given py the elge.nvalues of the
links in the time directiori4]. In this sense the current can be Propagator matrix that, as emphasized by Gibbs, are con-

defined on isolated configurations, where it reduces to  trolled by the mass spectrum of the theory. The argument,
which we briefly summarize for the sake of completeness,

requires the calculation of the hadronic spectrum on repli-
(12) cated lattices, i.e., lattices which have been strung together
I times in the time direction and the limit—« is taken, in
order to replace finite sums with contour integrations. This

In the quenched ensemblddiet(M)] is differentiatecbefore ~ Procedure is justifiable at zero temperature.

)= % Ain{defM(um)]}

taking the statistical average, The expression for the inverse of the fermion matrix,
G(t;,t,), on the replicated lattices readslightly simplify-
1/ oIn{def M (u,m)]} ing Gibbs’ notation
q =_
(30)(12,m) V< ” S+
. Glty )= AN 2, (16
and we recognize that k
<JO(M,m)>q2<\]iO(M,m)>_ (13) where theA, are the amplitudes which can be related to the

eigenvectors of the propagator matrix, and theare the
In the following thex. andm dependence will be left implicit corresponding eigenvalues.
wherever this does not create ambiguities. Equation (16) shows that the exponential decay of
G(t4,t,) at large timelike separation is controlled by the
eigenvalues of the propagator matrix. In other words, the
eigenvalue spectrum calculated on isolated configurations
should be closely related to the physical mass spectrum. In

~ The early work by Gibb$7] made it clear that the behav- particular, Gibbs concluded that the smallest mass state
ior of some observables measured on isolated configurations related to the lowest eigenvalue:

at finite density can be pathological. Since the analysis of

isolated configurations is a necessary step in any lattice M= 21N\ i (17)

simulation, the impact of his result may be broader than its

original motivation— to understand the pathologies of theThis identification was clear in simulations done by Gibbs

guenched approximation. because the pion propagator was very similar configuration
Our renewed interest was prompted by two considerby configuration although, strictly speaking, masses are

ations. First, our results presented in Sec. Il A below showproperties only of the statistical ensemble.

clear relics of the quenched pathologies discussed in Gibbs' The Gibbs argument has been reformulated and verified

paper: the onset, where the curreni, departs from zero is by Davies and Klepfisii8]. Pathologies of isolated configu-

at half the pion mass. Second, published results on four ferations, the role of confinement, and other issues are also

B. Failures on isolated configurations
and the quenched model



7066 IAN M. BARBOUR et al. 56

discussed if9,10]. All of these works confirm that on iso- ent the effect of theZ3 symmetry can simply amount to a
lated configurations there is a singularity at a value of theedistribution of phases with no effect on the moduli. That
chemical potential close to half the pion mass. would not affect the critical behavior, since the critical be-

Therefore, the results on isolated configurations are qualihavior is triggered by the moduli themselves. The unphysical
tatively different from those expected of the statistical en-quenched onsets could certainly survive #&symmetry of
semble. the full ensemble.

Some of the problems with the quenched model can be The zeros of the partition function drive the critical be-
understood from Eq(13): the quenched current is a simple havior of the full model as the zeros of the determinant drive
average of the one-configuration current, and the quenchatie critical behavior of isolated configurations, hence of the
ensemble retains the pathological features observed on isquenched model. In the process of going from the zeros of

lated configurations. the determinant to the zeros of the grand canonical partition
function, the pathological results observed on isolated con-
C. The statistical ensemble and the full model figurations should turn into the physics of the full model: the

. fake critical points should disappear, the real phase transi-
We can now focus on the interplay between the ONe%ihs of the full model should emerge.

configuration or quenched results and ensemble results. How
can statistical averaging remove the problems observed on

isolated configurations? Equivalently, how can the Glasgow Il. RESULTS
averaging discussed above improve upon the quenched ap- .
proximation? We present here our numerical results. All the back-

Consider the fugacity expansion fd@; Eq. (8). By rein-  9ground material, when not explicitly referenced, can be

tai factoredmns e thaiZ is a polvnomial of found in the previous section.
S aing asac o we se ! polynomial ¢ The generation of the configurations of gauge fields is
degree &;n;=6V in the variablez=e*. Z can then be writ-

_ , : _ described irthe ensemblelin the number densitwe review
ten in terms of its zerog; in the z plane: past results from the quenched approximation, from the

6V monomer-dimer simulation of the full four-flavor model and
Z:esvﬂl‘[ (z—a;). (18) from the strong coupling expansion of the four-flavor model.
i=1 ' We present the results obtained with the Glasgow method on

various lattice sizes, and we highlight the main similarities
Recall thatZ=(det(M)) and compare formula&l8) and  ang differences among the Glasgow results and the above-

(4) which we rewrite here: mentioned ones. A discussion of finite size effects is pre-
6V sented as well. In this and in the subsequent subsection, the

detvi =63V“H (z—\)). (19) emphasis is on th.e presentation of thg main_ features of the

i=1 results. We then limit ourselves to a discussion of one rep-

N ) resentative mass valus,=0.1.
We see that the zeros of the partition function are the |n the determination of the critical poiwe focus on the
“proper” ensemble average of the eigenvalues of the fermi-analysis of the complex zeros in tile¢ plane. We contrast
onic propagator matrix, or, equivalently, of the zeros of thethe pattern of zeros with that of the eigenvalues of the fer-

determinant. mion propagator. We show how simulations of the full
Manipulations analogous to those of Eq$4) and (15  model produce a clear signature for the critical pqint
lead to the current In light and heavy massese will present our complete
1 set of results. The light masses will offer information about
Jo== > 1 (200 the chiral limit. We confirm that our estimate. remains
Vl<|ai\<e'“ constant, and different from zero whem—0. We demon-

strate the dependence pf on the bare mass in the heavy

Let us search for other critical points past the first onsetquark regime. In the summary plot the results are compared
From Eq.(20) we see that discontinuities iy are associated  with the strong coupling expansion, and the monomer-dimer
with a high density of zeros on circles with radies in the  calculations.
fugacity plane. More generally, the density of the modulos of The analysis of the probability distributioronsists of a
zeros in thee” plane is the derivative al, with respect to  self-consistent analysis of the critical region which exploits
w, i.e., the quark number susceptibility. Interestingly, thethe form of the probability distribution as a function of the
relevant quantities controlling the critical behavior of the chemical potential. This analysis further validates our esti-
current are indeed the modulos of the complex zeros. mate of the critical poinj. and, in addition, offers a new

It is worth noticing that, once th&3 symmetry is en- intepretation of the onset regiqn, .
forced[Eq. (9)],

2V

3 A. The ensemble
z=e=+]] (£-p). (21)
i=1

The Glasgow algorithm takes as input an ensemble of
configurations at zero chemical potential. At infinite gauge
The zeros in the complex plarzeshould then come in trip- coupling we can generate configurations either with the usual
lets, corresponding to cubic roots of certain complex num-ybrid Monte Carlo procedure or just choosing random
bersB;. In principle (in practice things can be very differ- SU(3) matrices — this corresponds to a different normaliza-
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tion for the partition function. First, we reproduced the re- ' ' ' ' :
sults of Barbour, Davies, and Sabddd], which show that | M
the reweighting actually works on &' 2attice provided the :
statistics are high enough. Some preliminary runs were per- s
formed on a 4 lattice to check that the results were indeed il
independent of the algorithm chosen for the generation of the
configuration. We finally selected a random generator which < *°
produces decorrelated configurations.
We will present results on a*dattice for bare mass val- T
ues ranging from 0.05 to 1.5 and on 4 lattice for masses
0.08 and 0.1. The number of gauge field configurations ana- s} g
lyzed ranges from a small sample of 25 on tHe I&ttice &
my=0.08,=100 configurations on the same lattiog,= 0.1, 0 - . . . s
and several hundred configurations on tiedtices. ° ° * o °° k s

mu

B. The number density FIG. 1. Quark number density from the Glasgow algorithm.

. ) mg=0.10n a @ lattice. The onsef, and the saturation points,
We studiedm,=0.1 on €' lattices where we can contrast are the same as the ones observed in the quenched approximation.

the results with those obtainéd) in the quenched cas€)  The critical point for chiral symmetry restoration measured in a

with the monomer-dimer simulation, ar(8) with the ana-  monomer-dimer calculation ig..=0.691), coincident with the

Iytic results of the strong coupling expansions. Let us brieflylittle gap observed in our results. The same monomer-dimer results

review method€2) and(3). would, however, predict a very sharp transition with a critical den-
The monomer-dimer approadéhalid only at infinite cou-  sity close to zero, in agreement with the results of the strong cou-

pling) writes the strong coupling action in a fashion suitablepling expansion.

for computer simulations. It begins with the standard lattice

QCD action with four flavors of staggered fermions and in-54 us. These results are shown in Fig. 1 for the number

tegrates out the completely disordered gauge fieIds. Confin%fensity obtained with the Glasgow method on‘dditice at

ment is enforced exactly and the short-ranged |nteract|on§nq:0_1_ The Glasgow results are distinguished from the

between fermions allow the Grassman integrals to also bﬁuenched ones by a small jump @t=0.7= ., suggesting
. .

done exactly. The resulting action can be interpreted graphegioration of chiral symmetry. Other than that, the Glasgow
cally in terms of “monomers” and “dimers,” familiar con- and quenched results are very similar

structions in statistical physics. This representation of the We then moved to a larger lattice to study the sensitivity

tdheo[jy (;S yveII suti':ed fofr hcor]pput_er sdimulatipns sjnce theto size and temperature. Would the small hint of a disconti-
readed sign problem of the fermion determinant Is not Ny i 4t 1,~0.7 become more pronounced? Would the dy-

merically significant in this basieon small lattices Com- 5 ica) results differ more substantially from the quenched
puter simulations am,=0.1[21] show a sharp transition at ;.57

u=0.69(1) where the chiral condensate falls from its zero- 115 answer was in the negative. Neverthless, we did learn
w value (essentially to zero, and the number densify, something from these runs.
jumps from zero(essentially to a fully occupied lattice, In Fig. 2, we show a detailed comparison of the results on

Jo=1.0. These results agree with those of the traditionaj e o Jattices, & and &', m,=0.1(note the different scales
strong coupling expansion, as they should.

The strong coupling expansidi8-2Q at my=0.1 pre-
dicts, in fact, a strong first-order transition at=0.65 (the
small difference inu. can probably be accounted for byd1/ 22 ,
correction$. The analytic expressions of the strong coupling 2 F /4
expansion show a feature not seen in the monomer-dimer °'¢ E
simulations: a mixed phase faro<u<pus where ordinary
confined hadronic matter coexists with the saturated lattice er
phas€g10]. § oorf

The quenched resulfd0] were characterized by a “for-
bidden region” ranging from wy=m_/2=0.32 to
ms=mg/3=1.0. uy and u are close to the extrema of the
mixed phase predicted by the strong coupling expansions

24

0.001
08 [

mentioned above. There is no remnant of the critical point os |
for chiral symmetry restoratiop.=0.65 predicted by the N A
same expansion_ 00001, = 055 o3 055 o4 0.4 045 0.5 0.55 0.6 0.65 07 0.75 0.8

mu mu

Our motivation in undertaking the*@&alculations, was, of
course, to see results completely different from the quenched FiG. 2. Finite size effects an,=0.1. We show details of the
calculations and very similar to the monomer-dimer results critical regions aroundg, and w. for m,=0.1 for two different

These expectations were only partially borne out. We in4attices. The thick lines are for the* 8attice, the thin lines for the
deed found a signature at., butalsothe persistence gf, 6%
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frequency

L s
02 04 06 08 1 12

mu

FIG. 3. Histogram of zeros accompanying Fig. 1. N@ethe 02 04 0.6 0.8 1 12
peak atu.=0.687(15) matching the small jump, to be contrasted ™
with the monomer-dimer resultg.=0.691), (b) the correspon-
dence of the extrema of the histogram with the onsgtof the n
current and its saturations. 1

on the right and left sidgsBy blowing up the picture of the |
number density, we see that the density itself deviates from
zero atu=0. This effect is very smallnote the scaleand it
is sensitive to temperature, the number density being sup-
pressed, as expected, on the colder lattice.

The most interesting point is that temperature effects are
greatly lessened fopu> uy. One might have well thought
that the increase ai reflects a thermal excitation of bary-
ons. This does not seem to be the case: onlyuferu, do L
we observe the expected, physical pattern of finite tempera-"* o4 o6 o8 ! 12
ture effects. This disappears fpr> ug. This result supports
the belief that the rise aty is unphysical, as in the quenched  FIG. 4. Histogram of the zeros of the full modébp), and
approximation. Of course we cannot rule out the possibilityhistogram of the zeros of the determindbbttom, hence of the
that the situation changes on larger lattices, and we refer tguenched approximatiom,=0.1, on an 8§ lattice.

[9,10] for discussions on this point.

Temperature effects become apparent agaipatsug-  of further critical points in the quenched calculations was

mu

gesting thafu is a threshold of a new phase. futile [27,10}: the eigenvalue distribution is almost “flat.”
o B . Unfortunately, the upper and lower parts of the figure also
C. The determination of the critical point show strong signals ai, and us: the behavior at the two

We can substanstiate this intepretationu@fby examin-  side peaks does not change as we pass from the quenched to
ing the zeros of the grand partition function in the complexthe full model. This gives us another view of the puzzling
planee”. persistence of the onset noticed in the previous subsection.

The numerical strategy suggested by Sec. I, ) is  The Glasgow simulation method has failed to reproduce the
straightforward: observe the distribution of the modulos ofpublished monomer-dimer results.
the zeros, or, equivalently, search for a strip of high densities We can also look at the zeros themselves, which we dis-
in the e* plane. This criterion is numerically more conve- play in Fig. 5. As anticipated in the discussion, we observe a
nient than the conventional Lee-Yang analysis, which onlydense line, which follows the predictige”|=e*c. We also
uses the zero whose imaginary part is closest to the real axezee a ring of zeros at half the pion mass, and note that the
It is also very natural: it says that the number density countgeros fill up the entire regiopo—pus.
the density of states in the fermionic sector. In summary, we have seen how the small discontinuity

This strategy is demonstrated in Fig. 3 where we show thebserved in the current manifests itself in the histogram of
distribution of zerog(in practice, of the logarithms of their zeros: the density of zeros is thierivative of the number
modul)) accompanying Fig. 1. The signal at.=0.687(15) density, so a small “discontinuity” inJo corresponds to a
is very clear, and in excellent agreement with the monomerdistinct signal in the histogram of zeros.
dimer resultsu.=0.691). Will more statistics eventually cancel the onsetg.gand

Figure 4 contrasts zeros of the determinant and zeros gi;? Even if we have not observed any dramatic effect by
the GCPF on an8lattice. The signal at.. in the full model  increasing the number of configurations, insufficient statis-
is quite clear. tics remains a possibility, especially sinfg invariance has

As discussed above, the upper and lower parts of the figaot been completely achieved yet, and since it is possible
ure can also be seen as full and quenched results. As a bthat the precision required to achieve the cancellation of the
product of our investigation, we see clearly why the searchunwanted onset is prohibitively high. It is also possible that
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3 T LE—— — ' - ciated with the onset of the current at one-half of the pion
T mass.
Finally, we have also simulated larger masses. We appre-
8 ciated the shifting in the central peak, and also its broaden-
ing — probably due to the fact that at large quark mass the
o transition is washed out. Interestingly, the current onset at
- larger quark mass is, apparently, smaller than half the pion
mass — a surprising result sinceraj=1.5 in the quenched
: model the critical region shrinks to zef6] — certainly this
SR adds to the complication and the confusion associated with

Mo

Imm(exp(mu))
o

_ However, even if the interpretation of the critical region at
. this stage is largely subjective, the estimate of the critical
point u. seems reasonably sound.
We then conclude our Results section with the summary
. of Fig. 6.

E. The analysis of the probability distributions

-3 2 -1 0 1 2 3 In this section we reexamine the critical region by study-
Re(exp(mu)) ing the probability distribution for the particle number.
Write

FIG. 5. Zeros in the* plane form=0.1 & lattice. The critical 3V
line is the thin line inside the denser regieti=e*c. 7= z W, (22
n=-3V
the polynomial representation for the GCPF is ill-

conditioned[28]. and normalize such th@t=1. W, is then the probability that
a system in a grand canonical ensemble masrticles.
D. Heavy and light masses Using the numerical results for the GPF abdgee Eq.

All the results we have discussed above werenigr=0.1. (8], the shapes of the probability distributiong, = Q,e"™"
It is instructive to explore both light and heavy masses. Lightor different chemical potentials can be drawn as a function
masses are important for the chiral limit. There we expect th&f N, and the critical region can be studied using standard
critical point . to remain constant and different from zero. Stafistical mechanics analysis. _ o
Heavy masses change the critical point and allow a more For a transition in a'classmal ensemble in thg infinite vol-
detailed comparison of our results with the monomer-dimer-4me limit, the distribution ofV/, should have a single peak
strong-coupling approaches. in a pure phase, and a flat d_|str|but|on at the critical point,

We studied the sensitivity to the quark mass close to thdvhere all values of the particle number between the two
chiral limit (0.05<m,<0.1). We noted the stability of the ©xtrema should be equally likely.
central peak and the shift of the lower peak, which is asso- The current{Jo) can be written as

2.0 1 3V
. o mu_ full model <J0> = v E nW,. (23
n

@ mu_ full model =—_3V
x monomer-dimer
o m_pionlg(msan-lleld)
- -~ m_baryon/3 (mean-field)
| —— predicted mu_ (mean-field)

We draw in Fig. 7 the probability distribution for small
chemical potential. Aw=0 (solid line) the distribution is
symmetric around the origin: look at the two satellite peaks
of equal height{Jy) equals zero as it should. AL=0.1
(dashed lingthe distribution becomes asymmetric, reflecting
the enhancemensuppression of the forward (backward
propagation: the peak on the left decreases, the one on the
right increases. Positive and negative states are still both
contributing to the probability distribution. The néfg)

moves immediately off zero, but it is very, very smddok
H,ﬁ% ‘ / . . ‘ . again at picture R The distribution broadens on smaller lat-
%%0 0z o4 06 08 10 12 14 16 18 20 tices, which accounts for the pattern of finite size effects seen
CHEMICAL POTENTIAL in the same piCture.

FIG. 6. Summary of the results for the critical poiat, and At p= o the scenario changes completely: a secondary
current onsefso. u. follows the prediction of the mean field analy- mMaximum develops at positive, and the distribution moves
sis of [18] (solid line). The onset is close to half the pion mass atto the positiven region. We show this behavior for both
small mass, and below half the pion masstig>0.5 . my=0.1 andm,=0.08 in Fig. 8. Foru>u, the negative

- -
=} n
.

BARE QUARK MASS (m,)

e
o
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-0.015 -0.01 -0.005

FIG. 7. Probability distributions for a small chemical potential
at my=0.1 on the 8 lattice. The solid line isu=0, the dashed

lines, from top to bottom at=0, are foru=0.1, 0.2, 0.3.

0.015

02

0.16 -

01 F

Won

0.05 [

2
0.4

0.2

0.15

z o1

0.05

FIG. 8. Probability distributions around the onsgl for
mq=0.08(top) andmy= 0.1 (bottom on an & lattice. The leftmost
histogram(solid) at m;=0.08 is for u=0.28, the rightmost is for
n=0.34. Bezier interpolationgfrom Gnuplo} are shown for
#=0.28, 0.30, 0.32, 0.34. An,=0.1, ©=0.32, 0.34, 0.36, 0.38
from left to right. For both masses at, the probability distribution

moves on the positive axes.

L
0.5

0.14

012 |

01 F

0.08 |- 4

W

0.06 -

0.04

0.02

0.25

0.15 -

W—n

0.05 -

FIG. 9. Probability distributions in the critical region at
m,=0.1, on the 8 (top) and the 8 (bottom. w is (0.6, 0.683,
0.79), from left to right(top), and(0.5, 0.6, 0.695, 0.75,) 1bottom).

states do not contribute. This behavior is correlated with the
sharp increase af, plotted before and should be related to
changes in the theory’s spectrum, perhaps reflecting patholo-
gies of the quenched case such as the * funny pidri€J] or
Stephanov's condensatg®9]. The distribution is now
roughly symmetric, and its broadening on smaller lattices
does not affect its average val(&). This behavior is com-
patible with the absence of strong volume effects, Fig. 2.

Next, the critical region: we see the expected broadening
of the probability distribution ag. (Figs. 9 and 10 Finite
size effects become important again fae> .. Note, in
particular, in Fig. 10, the sensitivity t@ on a very fine scale:
the three central plots are far=0.68, 0.683, 0.7.

In Fig. 11 we summarize these observations by plotting
W, the probability that the system has zero particle number,
and the integrated probabilites Wt=3W,,n>0;

W™ =2W,,n<0. The logarithmic scale of the plot makes it
easy to see that backward and forward propagations are en-
hanced and suppressed by the same factor at smallor-
respondingly, the contribution oi=0 must decrease. At
KL= o, N=0 equals the overall contribution from0. For
Mu> o only positiven’s contribute toZ.

These results suggest thag is the threshold for a phase
with only positive propagation. Perhaps this observation is a
clue to the nature of the phage> 1. Recall that mean field
analysis predicts the threshold of the mixed phédseken
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006 T T y y sinceJ,, and other observables such as the energy density,
‘ deviate from zero at the unphysical, point, their values

005 | . nearu. cannot be trusted. So, although the present algorithm
: gives u. accurately, it does not make any other phenomeno-

004 | . 1 logically reliable predictions.

We expect that the early onsgt, should disappear in a
correct calculation. Physical arguments support this view as
well as the monomer-dimer and strong coupling expansions
discussed here. It might be that a high statistics run of the
present algorithm will cancel. In this case the method
would be impractical, but, at least, not conceptually wrong.
If this were true, we should develop a strategy to monitor the
R U A [ convergence of the method to the correct statistical en-
o P T EE— BT a— semble, and to remove unphysical contributions to observ-

n ables due to partial “cancellations” of unwanted onsets.

A very unpleasant possibility, which we cannot exlue
priori, is that the results we are observing are indeed the final
results at finite chemical potential with the Glasgow method.
In this case, monomer-dimer simulations and strong coupling
calculations would differ from the Glasgow results. This re-
sult would indicate intrinsic difficulties of the finite density
lattice gauge theory simulation strategies. Some of these

0.02 |

0.01 -

FIG. 10. Probability distributions on the48attice,mq=0.1, for
n = (0.5, 0.6, 0.68, 0.683, 0.7, 0.8, 0.Dnly the Bezier interpo-
lations are shown. The complete results for severablues can be
seen in Fig. 9.

phase and/or saturated phaaew= uy. Future work should
address possible relations between these observations. ; ;
We believe thaj. indicates a physical critical point. Al have been discussed in the text.

approachegexcept the pathological quenched daseedicta . VW€ might also suspect that the problems stem from hav-
transition or, at least, a clear change of behavior of obseniN9 generated configurations at zero chemical potential. This

ables here. From the point of view of this section it is rela-XPlanation is suggested from the standard problems encoun-
tered by reweighting procedures, and from the behavior ob-

probabilities plotted here underlie all the observables disSeTved in the Gross-Neveu mod@]. In this case the Glas-

cussed earlier and the “flatness” of the distributions, whichd®W method can be improved if a better starting point were

locates the critical point, is a qualitative feature which should"vented. This is a worthwhile direction to pursue.
appear in all the numerical procedures. At the present point, we have to accept that ensemble

averaging does not help to suppress the pathologies of iso-
lated configurations. It might well be that a satisfactory
simulation of finite density QCD requires an algorithm

We have reached a partial understanding of the algorithmwhich produces physical results on each configuration. A
and we can point out some successes and failures. promising development of this sort }QCD [30], where an

On the positive side, the method gives clear signs of thérelevant 4F term is added to the standard QCD action used
critical point . which should be the point of chiral symme- here.yQCD has the advantage that chiral symmetry breaking
try restoration. The method also gives a current opgglar ~ and the generation of a dynamical quark mass occurs con-
different from .. This is most likely unphysical: it is not figuration by configuration and the pion and excitations
seen in the monomer-dimer results, it is the same as thare explicitly free ofu dependence. In fackQCD simula-
pathological quenched onset, and it is the threshold of &ons do not suffer from the seveyg, pathologies seen here
phase characterized by forward propagation. Unfortunately26], but additional work, both theoretical and practical, is

needed to see ¥QCD really produces only physical results.

' ' ' ' y " Research in this topic is in progress.

IV. OUTLOOK
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