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We introduce three universality classes of chiral random matrix ensembles with a nonzero chemical potential
and real, complex or quaternion real matrix elements. In the thermodynamic limit we find that the distribution
of the eigenvalues in the complex plane does not depend on the Dyson index, and is given by the solution
proposed by Stephanov. For a finite number of degrees of freedom,N, we find an accumulation of eigenvalues
on the imaginary axis for real matrices, whereas for quaternion real matrices we find a depletion of eigenvalues
in this domain. This effect is of order 1/AN. In particular for the real case the resolvent shows a discontinuity
of order 1/AN. These results are in agreement with lattice QCD simulations with staggered fermions and recent
instanton liquid simulations both for two colors and a nonzero chemical potential.@S0556-2821~97!04221-5#

PACS number~s!: 12.38.Lg, 11.30.Qc, 11.30.Rd, 12.38.Gc

Recently, non-Hermitian random matrices with eigenval-
ues scattered in the complex plane have received a great deal
of attention in both condensed matter@1–5# and QCD@6,7#.
In condensed matter they have been used in problems rang-
ing from neural networks@1# to the depinning transition of
vortices in disordered superconductors@4,5#. In QCD, they
are relevant at a nonzero chemical potential when the Dirac
operator is non-Hermitian. In this paper we introduce three
universality classes of non-Hermitian random matrices with
the global symmetries of the QCD partition function. This
allows us to interpret certain characteristic features of
quenched Dirac spectra at a nonzero chemical potential~i.e.,
with the fermion determinant ignored in generating the field
configurations! as signatures of antiunitary symmetries. Such
signatures have been found in condensed matter applications
as well @2,3,5#.

In quenched simulations of QCD it appears that the criti-
cal chemical potentialmc is proportional to the pion mass
which vanishes in the chiral limit asAm ~m is the quark
mass! rather than to the baryon mass which remains nonzero
for m→0 @8,9#. This long-standing puzzle has been resolved
in a first successful application of random matrix theory to
QCD at a nonzero chemical potential@6#. The explanation
@10,6# is that the quenched limit is the limitNf→0 of a
partition function with the fermion determinant to the power
Nf replaced by its absolute value. Such a partition function
develops a condensate with Goldstone bosons consisting of a
quark and a conjugate quark. Meanwhile, several other stud-
ies have confirmed this work@7#.

The above discussion was forNc53. ForNc52 the situ-
ation is different @11#. Then the Dirac operator is self-
conjugate, leading to a real fermion determinant. Because in
this case also baryons can be Goldstone bosons, we expect a
critical chemical potential ofmc;Am. Mathematically, the
Dirac operator forNc52 has an additional antiunitary sym-
metry. As is well known in random matrix theory, the anti-
unitary symmetries lead to three different universality classes
@12,13# characterized by the so-called Dyson indexb ~b51
for real, b52 for complex, andb54 for quaternion real
matrix elements!. In this paper we study a random matrix
model of the QCD partition function at a nonzero chemical
potential for all three values ofb.

The continuum Euclidean QCD partition function forNf
flavors with massesmf and chemical potentialm can be
written as an average over the Yang-Mills action:

Z~m,m!5K )
f 51

Nf

det~g•D1mf1mg0!L
SQCD

, ~1!

whereg•D is the Euclidean Dirac operator andgm are Eu-
clidean Dirac matrices. In lattice QCD, the chemical poten-
tial is incorporated by including a factorem in the forward
time links and a factore2m in the backward time links. This
implementation does not affect the symmetry relations dis-
cussed below.

To obtain a random matrix theory corresponding to Eq.
~1! we first write the Dirac operator in a chiral basis. Then
the m-independent nonzero matrix elements are replaced by
Gaussian distributed random variables corresponding to the
antiunitary symmetries of the QCD partition function. In
analogy with the random matrix partition function at zero
@17# and nonzero temperature@14#, for Nf flavors, this parti-
tion function is defined as~see@15# for a review!

Z~m,m!5E DCP~C!)
f

Nf

det@D~m!1mf #. ~2!

Here,C is an arbitraryN3N matrix with real, complex, or
quaternion real matrix elements. The integration measure
DC is the Haar measure. The probability distributionP(C)
is given by

P~C!5exp@2N~b/2!S2TrCC†#. ~3!

From now on we will work in units whereS51.
In the case ofNc>3 (b52) there are no antiunitary sym-

metries and the Dirac operator is given by@6# ~C is complex!

D~m!5S 0 iC1m

iC†1m 0 D . ~4!

Here, and in Eqs.~6! and~8! below,m is proportional to the
identity.
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For Nc52, the Dirac operator in Eq.~1! is subject to an
additional antiunitary symmetry@13#. We stress that a non-
zero chemical potential does not violate this symmetry. For
continuum fermions~and naive lattice fermions@16#! in the
fundamental representation we have

@Ct2K,igD~m!#50, ~5!

whereC is the charge conjugation matrix andigD(m) is the
continuum Dirac operator atmÞ0. Because (Ct2K)251, it
is possible to find a basis in which the Dirac operator is real.
If we notice thatmg0 is Hermitian, we arrive at the follow-
ing random matrix Dirac operator:

D~m!5S 0 C1m

2CT1m 0 D , ~6!

where C is an arbitrary real matrix. Quenched instanton
simulations atmÞ0 are in this class@18#.

For staggered fermions theg matrices are absent and for
Nc52 the antiunitary symmetry is given by@19#

@t2K,DS~m!#50, ~7!

whereDS(m) is the staggered Dirac operator atmÞ0. Be-
cause (t2K)2521, we can organize the matrix elements of
the Dirac operator into real quaternions. For an
~anti-!Hermitean Dirac operator the antiunitary symmetry re-
sults in a pairwise degeneracy of the eigenvalues. This de-
generacy is broken atmÞ0. Then the eigenvalues ofDS

occur in complex conjugate pairs. In this symmetry class
with b54 the random matrix model is given by

D~m!5S 0 C1m1

2C†1m1 0 D , ~8!

where the matrix elements ofC are real quaternions and1 is
the unit quaternion. In addition toDS for Nc52, this class
also contains the Dirac operator for gauge fields in the ad-
joint representation@13# for Nc>2.

In all three cases the spectral density atm50 is a semi-
circle which in the normalization defined by Eq.~3! ~with
S51! is given by

rSC~l!5
1

2p
A42l2. ~9!

The above random matrix models apply to universality
classes in which the eigenfunctions atm50 are extended.
The eigenvalues corresponding tolocalizedwave functions
are statistically independent with spectral correlations given
by the Poisson ensemble. A random matrix model in this
class without a chiral structure was recently considered in
@4,5#. At mÞ0, it was found that eigenfunctions with com-
plex eigenvalues are extended whereas eigenfunctions with
real eigenvalues remain localized as form50. The surprising
result of this study was that a localization transition was
observed in one dimension. In the present context the ex-
tended states can be interpreted as the emergence of a non-
zero baryon number density when the eigenvalues scatter in
the complex plane atmÞ0. Another remarkable result of this
study @4# was that in the thermodynamic limit a finite num-

ber of eigenvalues remained on the real axis form below a
critical value. Below we will show that the fraction of purely
imaginary eigenvalues of the model~6! with b51 scales as
;1/AN. ~Our convention and the conventions of@4,5# for
the eigenvalues differ by a factori .!

However, spectral correlations of the lattice QCD Dirac
operator in four dimensions are given by the invariant ran-
dom matrix ensembles@20# even for relatively weak cou-
pling. Moreover, explicit calculations of the inverse partici-
pation ratio in an instanton liquid model shows delocalized
Dirac eigenfunctions@21#. Therefore, it seems that the mod-
els in which the states are localized atm50 are inappropri-
ate for QCD applications.

In the remainder of this paper we study the spectrum of
the random matrix model~2!. The generating function is
given by

Z5^detn~z2D !detn~z* 2D†!&. ~10!

The resolvent is defined asG(z)51]zlnZ/2nN and the spec-
tral density in the complex plane is given by
r(x,y)5]z* G(z)/p. The quenched approximation is ob-
tained as the limitn→0 at the end of the calculation. For
integern, this partition function can be analyzed in standard
fashion@22,6#. First we write the determinants as Grassmann
integrals. Then we perform the average over the random ma-
trices resulting in a four-fermion interaction. If we bosonize
this interaction and integrate out the fermions, we arrive at a
partition function that is amenable to a saddle-point approxi-
mation. At mÞ0 this analysis was performed by Stephanov
for Hermitian random matrices. The analysis forb51 and
b54 is somewhat more complicated@22#. However, in both
cases we succeeded in solving the saddle-point equations
with the remarkable result that for the normalization defined
by Eq. ~3!, the solution coincides with the one obtained for
b52. For all values ofb, the resolvent can be evaluated for
arbitrary integer values ofn. To leading order in 1/N we find
that the result is independent ofn. Because of the absolute
value of the determinant in Eq.~10!, the generating function
is a smooth function ofn. This guarantees the existence of
the replica limit.

Numerical results for the random matrix ensembles de-
fined in Eqs.~4!, ~6!, and~8! are shown in Fig. 1. We show
results form50.15 andm50.5. The dots represent the ei-
genvalues in the complex plane. The solid line is the analyti-
cal result@6# for the boundary of the eigenvalues given by
the algebraic curve (y214m2)(m22x2)21x254m2(m2

2x2). For b51 andb54 we observe that the spectral den-
sity deviates significantly from the saddle-point result. For
b51 we find an accumulation of eigenvalues on the imagi-
nary axis whereas forb54 we find a depletion of eigenval-
ues in this domain. This depletion can be understood as fol-
lows. Form50 all eigenvalues are doubly degenerate. This
degeneracy is broken atmÞ0 which produces the observed
repulsion of the eigenvalues.

The number of purely imaginary eigenvalues appears to
scale asAN, which explains that this effect is not visible in
a leading-order saddle-point analysis. From a perturbative
analysis of Eq.~10! one obtains a power series in 1/N.
Clearly, theAN dependence requires a truly nonperturbative
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analysis of Eq.~2!. Such aAN scaling behavior is typical for
the regime of weak non-Hermiticity first identified by Fyo-
dorov et al. @3#.

A similar cut below a cloud of eigenvalues was found in
instanton liquid simulations forNc52 atmÞ0 @18# and in a
random matrix model of arbitrary real matrices@2#. The
depletion of the eigenvalues along the imaginary axis was
observed earlier in lattice QCD simulations with staggered
fermions@23#.

In Fig. 2 we plot the fraction of imaginary eigenvalues
versusmAN for m equal to 0.05, 0.1, and 0.2 andN ranging
from 10 to 1000. The solid line represents the analytical
result due to Efetov@5#:

a05E
22

2

rSC~l!dlE
0

1

dt exp$2N@2pmrSC~l!#2t2%,

~11!

whererSC is defined in Eq.~9!. This result was obtained for
an ensemble of independent real symmetric matrices per-
turbed by an antisymmetric matrix in the limit that the norm

of the perturbing operator is of the order of the level spacing
of the unperturbed matrix~his conventions differ from ours
by a factori !. Apparently, the fraction of purely imaginary
eigenvalues is not modified by the chiral structure of the
ensemble~6!. Asymptotically, formAN@1, this fraction is
given bya0;1/mApN.

It is well known that the replica trick fails in some cases
@24#. For example, it fails for the unquenched partition func-
tion @6#. More typically, it fails in cases where the the saddle
point is given by a nontrivial manifold@24#. In the limit
m→0 andz real, the partition function has a higher degree of
symmetry. Therefore, in the limitN→` with m2N fixed, the
solution of the saddle-point equations is given by a nontrivial
manifold, and there is no guarantee that the replica trick will
work. In order to obtain truly nonperturbative results one has
to rely on the supersymmetric method for random matrix
theory @25#. This method was extended to non-Hermitian
complex matrices in@26,3# and to arbitrary real matrices in
@5#. The application of the supersymmetric method to the
chiral ensembles will eventually provide us with an explana-
tion of the scaling behavior of the number of purely imagi-
nary eigenvalues@27#.

Stephanov has shown analytically that the quenched ap-
proximation does not work forb52. Specifically, the un-
quenched partition function~2! for NfÞ0 results in a non-
zero chiral condensate below a critical value ofm. However,
in the quenched case, given by then→0 limit of Eq. ~10!,
the chiral condensate is zero at anymÞ0. The situation for
b51 andb54 is different. Then in both cases the fermion
determinant is real for realz. ~For b54 this follows by
using the identityq* 5s2qs2 for a quaternion real element
q.! Therefore, for realz, the generating function~10! for n
replicas is identical to the partition function~2! for 2n fla-
vors with massz. As mentioned above, the saddle-point re-
sult for the resolvent defined by the generating function~10!
does not depend onn and gives the quenched result for
n→0. We thus conclude that quenching works for an even
number of flavors. Consequently, chiral symmetry will be
restored for arbitrarily small nonzerom, whereas a conden-
sate of a quark and a conjugate quark develops. Indeed, this
phenomenon has been observed in the strong coupling limit
of lattice QCD with two colors@19,28#.

FIG. 1. Scatter plot of the real (x) and the imaginary parts (y) of the eigenvalues of the random matrix Dirac operator. The values ofb
andm are given in the labels of the figure. The solid curve shows the analytical result for the boundary.

FIG. 2. The fraction of real eigenvalues,a0 versusmAN, for
three different values ofm and matrices ranging fromN510 to
N51000. The solid line shows Efetov’s result@12#.
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In conclusion, atmÞ0 we have found that the depletion
of Dirac eigenvalues on the imaginary axis observed in lat-
tice QCD simulations and the accumulation of Dirac eigen-
values found in instanton liquid simulations~both for two
colors and quenched! is a generic feature related to the anti-
unitary symmetries of the Dirac operator. If it turns out that
the Dirac eigenfunctions are localized atm50 ~see@29# for
lattice results in this direction!, the fraction of purely imagi-

nary eigenvalues atmÞ0 might remain finite in the thermo-
dynamic limit. For two colors, this might lead to unexpected
chiral properties in the continuum limit atmÞ0. Clearly, this
possibility deserves further attention.
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