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Random matrix triality at nonzero chemical potential
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We introduce three universality classes of chiral random matrix ensembles with a nonzero chemical potential
and real, complex or quaternion real matrix elements. In the thermodynamic limit we find that the distribution
of the eigenvalues in the complex plane does not depend on the Dyson index, and is given by the solution
proposed by Stephanov. For a finite number of degrees of freedpme find an accumulation of eigenvalues
on the imaginary axis for real matrices, whereas for quaternion real matrices we find a depletion of eigenvalues
in this domain. This effect is of order {N. In particular for the real case the resolvent shows a discontinuity
of order 14/N. These results are in agreement with lattice QCD simulations with staggered fermions and recent
instanton liquid simulations both for two colors and a nonzero chemical potdi8E$56-282(97)04221-5

PACS numbgs): 12.38.Lg, 11.30.Qc, 11.30.Rd, 12.38.Gc

Recently, non-Hermitian random matrices with eigenval- The continuum Euclidean QCD partition function fidg
ues scattered in the complex plane have received a great ddivors with massesn; and chemical potentiale can be
of attention in both condensed matfdr-5] and QCD[6,7].  written as an average over the Yang-Mills action:
In condensed matter they have been used in problems rang-
ing from neural network$1] to the depinning transition of Ne
vortices in disordered superconduct4s5]. In QCD, they Z(m,M)=<le de('Y'D+mf+M')’0)> (@
are relevant at a nonzero chemical potential when the Dirac - Sqco
operator is non-Hermitian. In this paper we introduce three
universality classes of non-Hermitian random matrices withwherey-D is the Euclidean Dirac operator ang, are Eu-
the global symmetries of the QCD partition function. This clidean Dirac matrices. In lattice QCD, the chemical poten-
allows us to interpret certain characteristic features ofial is incorporated by including a fact@* in the forward
quenched Dirac spectra at a nonzero chemical poteintal time links and a factoe™ * in the backward time links. This
with the fermion determinant ignored in generating the fieldimplementation does not affect the symmetry relations dis-
configurationgas signatures of antiunitary symmetries. Suchcussed below.
signatures have been found in condensed matter applications TO obtain a random matrix theory corresponding to Eq.
as well[2,3,5. (1) we first write the Dirac operator in a chiral basis. Then
In quenched simulations of QCD it appears that the criti-the u-independent nonzero matrix elements are replaced by
cal chemical potentiak, is proportional to the pion mass Gaussian distributed random variables corresponding to the
which vanishes in the chiral limit agm (m is the quark antiunitary_symmetries of the QCD _p_artition fgnction. In
mas3 rather than to the baryon mass which remains nonzergnalogy with the random matrix partition function at zero
for m—0 [8,9]. This long-standing puzzle has been resolved 17] and nonzero temperatuf@4], for Ny flavors, this parti-
in a first successful application of random matrix theory totion function is defined asee[15] for a review
QCD at a nonzero chemical potent{@]. The explanation
[10,6] is that the quenched limit is the limN;—0 of a
partition function with the fermion determinant to the power
N replaced by its absolute value. Such a partition function
develops a condensate with Goldstone bosons consisting oftéere, C is an arbitraryN X N matrix with real, complex, or
quark and a conjugate quark. Meanwhile, several other studjuaternion real matrix elements. The integration measure
ies have confirmed this work]. DC is the Haar measure. The probability distributiB(C)
The above discussion was fbli,=3. ForN,=2 the situ- is given by
ation is different[11]. Then the Dirac operator is self-
conjugate, leading to a real fermion determinant. Because in P(C)=exd —N(B/2)32TrCC"]. 3)
this case also baryons can be Goldstone bosons, we expect a
critical chemical potential ofuc~ m. Mathematically, the ~From now on we will work in units wher& =1.
Dirac operator folN.=2 has an additional antiunitary sym-  In the case oN.=3 (8=2) there are no antiunitary sym-
metry. As is well known in random matrix theory, the anti- Mmetries and the Dirac operator is given[i8y (C is complex
unitary symmetries lead to three different universality classes
[12,13 characterized by the so-called Dyson ingeéx8=1
for real, B=2 for complex, andB3=4 for quaternion real
matrix elements In this paper we study a random matrix
model of the QCD partition function at a nonzero chemicalHere, and in Eqs(6) and(8) below,  is proportional to the
potential for all three values g8. identity.

N¢

Z<m,m=f DCP<C)H defD(pw)+mil. (2
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D(u)=
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For N.=2, the Dirac operator in Eq1) is subject to an ber of eigenvalues remained on the real axisdpelow a
additional antiunitary symmetrj13]. We stress that a non- critical value. Below we will show that the fraction of purely
zero chemical potential does not violate this symmetry. Foimaginary eigenvalues of the mod@) with =1 scales as

continuum fermiongand naive lattice fermiongl6]) in the ~ ~1/\/N. (Our convention and the conventions [ef.5] for
fundamental representation we have the eigenvalues differ by a factor)
) However, spectral correlations of the lattice QCD Dirac
[C72K,iyD(x)]=0, (3 operator in four dimensions are given by the invariant ran-

dom matrix ensemblef20] even for relatively weak cou-
pling. Moreover, explicit calculations of the inverse partici-
pation ratio in an instanton liquid model shows delocalized
Dirac eigenfunction$21]. Therefore, it seems that the mod-
els in which the states are localizedat 0 are inappropri-
ate for QCD applications.

whereC is the charge conjugation matrix anglD () is the
continuum Dirac operator gi+#0. Because Cm,K)?=1, it

is possible to find a basis in which the Dirac operator is real
If we notice thatuy, is Hermitian, we arrive at the follow-
ing random matrix Dirac operator:

0 CHpu In the remainder of this paper we study the spectrum of
D(u)= T , (6)  the random matrix modef2). The generating function is
—C'+u O given by
where C is an arbitrary real matrix. Quenched instanton . :
simulations atu# 0 are in this clas§18]. Z=(det'(z—D)det(z* —D")). (10
For staggered fermions thgmatrices are absent and for
Nc=2 the antiunitary symmetry is given 4§19 The resolvent is defined &(z) = + d,InZ/2nN and the spec-
tral density in the complex plane is given b
[72K,D(w)]=0, (7) y plex p 9 y

p(X,¥)=0dG(2)/7. The quenched approximation is ob-

whereDS(u) is the staggered Dirac operator at-0. Be- tained as the limin—0 at the end of the calculation. For
cause ,K)2=—1, we can organize the matrix elements of integern, this partition function can be analyzed in standard
the Dirac operator into real quaternions. For anfashion[22,6]. First we write the determinants as Grassmann

(anti)Hermitean Dirac operator the antiunitary symmetry re-Ntégrals. Then we perform the average over the random ma-
sults in a pairwise degeneracy of the eigenvalues. This gdtrices resulting in a four-fermion interaction. If we bosonize
generacy is broken gt#0. Then the eigenvalues d3S this interaction and integrate out the fermions, we arrive at a

occur in complex conjugate pairs. In this symmetry clasdPartition function that is amenable to a saddle-point approxi-

with =4 the random matrix model is given by mation. At u# 0 this analysis was performed by Stephanov
for Hermitian random matrices. The analysis =1 and
0 C+ul B=4 is somewhat more complicat¢?2]. However, in both
D(u)= (8)  cases we succeeded in solving the saddle-point equations

-C'+u1 0 ) ; ot -
with the remarkable result that for the normalization defined
where the matrix elements & are real quaternions aridis by Eqg. (3), the solution coincides with the one obtained for

the unit quaternion. In addition tBS for N.=2, this class B=2. For all values of3, the resolvent can be evaluated for

also contains the Dirac operator for gauge fields in the ad@rPitrary integer values of. To leading order in M we find
joint representatiofil3] for N.>2. that the result is independent of Because of the absolute

In all three cases the spectral densityat 0 is a semi- yalue of the determinant in Eule), the generating_function
circle which in the normalization defined by E®) (with IS @ smpoth_ fu_nctlon oh. This guarantees the existence of
3 =1) is given by the repllc:_a limit. _

Numerical results for the random matrix ensembles de-
1 fined in Eqs.(4), (6), and(8) are shown in Fig. 1. We show
pscM)=5— V4—A% (9 results foru=0.15 andu=0.5. The dots represent the ei-
genvalues in the complex plane. The solid line is the analyti-

The above random matrix models apply to universalitycal result[6] for the boundary of the eigenvalues given by
classes in which the eigenfunctions @t=0 areextended the_algebraic curve yC+4u?)(u?—x?)?+x*=4u*(u?
The eigenvalues corresponding lazalizedwave functions —X°). For =1 andB3=4 we observe that the spectral den-
are statistically independent with spectral correlations giver$ity deviates significantly from the saddle-point result. For
by the Poisson ensemble. A random matrix model in this8=1 we find an accumulation of eigenvalues on the imagi-
class without a chiral structure was recently considered imary axis whereas fo=4 we find a depletion of eigenval-
[4,5]. At u#0, it was found that eigenfunctions with com- ues in this domain. This depletion can be understood as fol-
plex eigenvalues are extended whereas eigenfunctions wilRws. Foru=0 all eigenvalues are doubly degenerate. This
real eigenvalues remain localized as for 0. The surprising degeneracy is broken at#0 which produces the observed
result of this study was that a localization transition wasrepulsion of the eigenvalues.
observed in one dimension. In the present context the ex- The number of purely imaginary eigenvalues appears to
tended states can be interpreted as the emergence of a n@sale asyN, which explains that this effect is not visible in
zero baryon number density when the eigenvalues scatter i leading-order saddle-point analysis. From a perturbative
the complex plane ai+ 0. Another remarkable result of this analysis of Eq.(10) one obtains a power series inNL/
study[4] was that in the thermodynamic limit a finite num- Clearly, the\/N dependence requires a truly nonperturbative
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FIG. 1. Scatter plot of the reak} and the imaginary partg/§ of the eigenvalues of the random matrix Dirac operator. The valugs of
and u are given in the labels of the figure. The solid curve shows the analytical result for the boundary.

analysis of Eq(2). Such ayN scaling behavior is typical for of the perturbing operator is of the order of the level spacing
the regime of weak non-Hermiticity first identified by Fyo- of the unperturbed matrithis conventions differ from ours
dorovet al. [3]. by a factori). Apparently, the fraction of purely imaginary
A similar cut below a cloud of eigenvalues was found in €igenvalues is not modified by the chiral structure of the
instanton liquid simulations foN,=2 atu#0 [18]and ina ensemble®). Asymptotically, for u/N>1, this fraction is
random matrix model of arbitrary real matric§g]. The  given byay~1/u\aN.
depletion of the eigenvalues along the imaginary axis was It is well known that the replica trick fails in some cases
observed earlier in lattice QCD simulations with staggered24]. For example, it fails for the unquenched partition func-
fermions[23]. tion [6]. More typically, it fails in cases where the the saddle
In Fig. 2 we plot the fraction of imaginary eigenvalues point is given by a nontrivial manifold24]. In the limit
versusu /N for u equal to 0.05, 0.1, and 0.2 ahMdranging 4—0 andz real, the partition function has a higher degree of
from 10 to 1000. The solid line represents the analyticaBymmetry. Therefore, in the lim\i— oo with 4N fixed, the
result due to Efetoy5]: solution of the saddle-point equations is given by a nontrivial
manifold, and there is no guarantee that the replica trick will
2 1 work. In order to obtain truly nonperturbative results one has
ao:f Psc(?\)dhf dt exp{—N[27upsdN)]t?}, to rely on the supersymmetric method for random matrix
-2 0 11 theory [25]. This method was extended to non-Hermitian
1D complex matrices i26,3] and to arbitrary real matrices in

wherepgc is defined in Eq(9). This result was obtained for [5].' The appllcatlon of the supersymmetric _method to the
hiral ensembles will eventually provide us with an explana-

an ensemble of independent real symmetric matrices per-

turbed by an antisymmetric matrix in the limit that the norm lon of_the scaling behavior of the number of purely imagi-
nary eigenvaluef27].

Stephanov has shown analytically that the quenched ap-

AL B L L L proximation does not work fog=2. Specifically, the un-
B ] guenched partition functio®) for N¢#0 results in a non-

08 — — zero chiral condensate below a critical valueuofHowever,
B n in the quenched case, given by the-0 limit of Eq. (10),

oo T ] the chiral condensate is zero at gay-0. The situation for
0.6 — - B=1 andB=4 is different. Then in both cases the fermion
B i determinant is real for reat. (For 8=4 this follows by
- - using the identityg* = o,qo, for a quaternion real element

oA B g.) Therefore, for reak, the generating functiofil0) for n
- - replicas is identical to the partition functid®) for 2n fla-
0.2 — _ vors with mass. As mentioned above, the saddle-point re-
- - sult for the resolvent defined by the generating functitd)
B i does not depend on and gives the quenched result for
T T T TR B n—0. We thus conclude that quenching works for an even
0.0 1.0 2.0 3.0 4.0 5.0

LN number of flavors. Consequently, chiral symmetry will be
restored for arbitrarily small nonzere, whereas a conden-
FIG. 2. The fraction of real eigenvalues, versusuN, for ~ sate of a quark and a conjugate quark develops. Indeed, this
three different values ofx and matrices ranging fromi=10 to ~ phenomenon has been observed in the strong coupling limit
N=1000. The solid line shows Efetov’s res{d2]. of lattice QCD with two colorg19,28§.
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In conclusion, atu# 0 we have found that the depletion nary eigenvalues gi #0 might remain finite in the thermo-
of Dirac eigenvalues on the imaginary axis observed in latdynamic limit. For two colors, this might lead to unexpected
tice QCD simulations and the accumulation of Dirac eigen-chiral properties in the continuum limit @t 0. Clearly, this
values found in instanton liquid simulatiorfboth for two possibility deserves further attention.
colors and quencheds a generic feature related to the anti-
unitary symmetries of the Dirac operator. If it turns out that ~ This work was partially supported by the U.S. DOE Grant
the Dirac eigenfunctions are localizedat=0 (see[29] for =~ No. DE-FG-88ER40388. Edward Shuryak and Yan Fyo-
lattice results in this directionthe fraction of purely imagi- dorov are thanked for useful discussions.

[1] H. J. Sommers, Phys. Rev. LeB0, 1895(1988. [15] J. VerbaarschdtNucl. Phys.(Proc. Supp). 53, 88 (1997)].

[2] B. Khoruzhenko, J. Phys. 29, L165 (1996. [16] For Wilson fermions the antiunitary symmetry is

[3] Y. Fyodorov, B. Khoruzhenko, and H. Sommers, Phys. Lett. A [ vsC7,K,y5yDW]=0, but ther term violates the chiral sym-
226, 46 (1997; Phys. Rev. Lett79, 557 (1997. metry, {ys,ysyDW}#0 (see[20]).

[4] N. Hatano and D. R. Nelson, Phys. Rev. L&, 570(1996.  [17] E. Shuryak and J. Verbaarschot, Nucl. Phys560, 306

[5] K. B. Efetov, Phys. Rev. Letfr9, 491(1997). (1993.

[6] M. Stephanov, Phys. Rev. Leit6, 4472(1996. [18] Th. Schier, hep-ph/9708256.

[7] R. Janik, M. Nowak, G. Papp, and |. Zahed, Phys. Rev. Lett.[lg] S. Hands and M. Teper, Nucl. Phy&347, 819 (1990.
77, 4876(1996; cond-mat/9612240; J. Feinberg and A. Zee, [20] M. Halasz and J. Verbaarschot, Phys. Rev. L@t 3920
cond-mat/9703087; M. Halasz, A. Jackson, and J. Verbaar- (1995; M. Halasz, T. Kalkreuter, and J. Verbaarschotl_at-
schot, Phys. Lett. BB95 293 (1997; Phys. Rev. D56, 5140 tice 96, [15], p. 266.

(1999. [21] J. C. Osborn and J. Verbaarsctiiot preparatioin

[8] I. Barbouret al., Nucl. Phys.B275 296 (1986; M. P. Lom-
bardo, J. Kogut, and D. Sinclair, Phys. Rev. &, 2303 [22] ?19?5 Halasz and J. Verbaarschot, Phys. Rev5R 2563

(1996. . . .
[9] W. Wilcox, S. Trendafilov, and E. Mendel, iattice '94, [23] C. Baillie, K. Bowler, P. Gibbs, I. Barbour, and M. Rafique,
Proceedings of the International Symposium, Bielefeld, Ger- Phys. Lett. B197, 195(19&_;7)'
many, edited by F. Karsoét al.[Nucl. Phys. B(Proc. Supp). [24] J. Verbaarschot and M. Zirnbauer, J. PhyslA1093(1985.
[25] K. Efetov, Adv. Phys.32, 53 (1983; J. Verbaarschot, H.

42, 557 (1995)]. Efetov _
[10] A. Gocksch, Phys. Rev. Let6l, 2054 (1988. Weidenmiier, and M. Zirnbauer, Phys. Ref29, 367 (1985.

[11] J. Kogut , Nucl. PhysB225, [FS9], 93 (1983. [26] Y. Fyodorov and H. Sommers, JETP Ldi83, 1026(1996.
[12] F. J. Dyson, J. Math. Phy8, 140 (1962. [27] M. A. Halaszet al. (in preparation

[13] J. Verbaarschot, Phys. Rev. Let2, 2531(1994. [28] E. Dagotto, F. Karsch, and A. Moreo, Phys. Lett1898B, 421
[14] A. D. Jackson and J. Verbaarschot, Phys. Rev53) 7223 (1986.

(1996; T. Wettig, A. Schfer, and H. Weidenmiier, Phys.  [29] K. Jansen, C. Liu, H. Simma, and D. Smith, liattice '96
Lett. B 367, 28 (1996. [15], p. 262.



