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I discuss the properties of pions in ‘‘partially quenched’’ theories, i.e., those in which the valence and sea
quark massesmV andmS are different. I point out that for lattice fermions which retain some chiral symmetry
on the lattice, e.g., staggered fermions, the leading order prediction of the chiral expansion is that the mass of
the pion depends only onmV , and is independent ofmS . This surprising result is shown to receive corrections
from loop effects which are of relative sizemSlnmV , and which thus diverge when the valence quark mass
vanishes. Using partially quenched chiral perturbation theory, I calculate the full one-loop correction to the
mass and decay constant of pions composed of two nondegenerate quarks, and suggest various combinations
for which the prediction is independent of the unknown coefficients of the analytic terms in the chiral La-
grangian. These results can also be tested with Wilson fermions if one uses a nonperturbative definition of the
quark mass.@S0556-2821~97!01423-9#

PACS number~s!: 12.38.Gc, 12.39.Fe, 14.40.Aq

I. INTRODUCTION

This note is inspired by recent work of the SESAM Col-
laboration, in which they have studied the light meson spec-
trum with two degenerate flavors of dynamical Wilson
quarks @1#. They have calculated the masses of particles
composed not only of sea quarks, but also of valence quarks
with masses which can differ from those of the sea quarks. In
the latter case they are studying a ‘‘partially quenched’’
theory. They find that, for their range of quark masses,Mp

2

can be well represented by a linear function of the valence
and sea quark masses. For example, the mass of the non-
singlet pion composed of two degenerate valence quarks of
massmV , calculated with a sea quark massmS , takes the
form

MVV
2 ~mV ,mS!u Wilson5cVmV1cSmS, ~1!

with cV'cS . The casemV5mS corresponds to unquenched
pions in two-flavor QCD, for which the pion mass vanishes
in the chiral limit in the expected way. What is surprising
about Eq.~1! is that if one works at fixedmS , but extrapo-
latesmV→0, thenMVV does not vanish. Instead one must go
to a negative valence quark mass,mV52(cS /cV)mS , to
make the mass of the valence pion vanish.

As explained in Ref.@1#, this peculiarity is easily under-
stood in terms of the properties of Wilson fermions. The
point is that chiral symmetry is completely broken by the
lattice regularization, and so the value of hopping parameter
k at which the valence quark mass vanishes depends on the
parameters of the theory. In particular it depends on the sea
quark mass, and so one should define a variable critical hop-
ping parameterkc(mS). The quark masses in Eq.~1! are,
however, defined asm5(2k)212@2kc(mS50)#21, where
kc(mS50) is the critical value for which the unquenched

pion mass vanishes. The negative quark masses are then an
artifact of usingkc(mS50) instead ofkc(mS) in the defini-
tion of mV .1

My main aim in this note is to discuss how the results
would change were one to use fermions for which some rem-
nant of the continuum chiral symmetry survives discretiza-
tion. What I have in mind are staggered and ‘‘domain-wall’’
fermions @3#.2 In the former case an axial subgroup of the
SU~4! chiral symmetry remains on the lattice, while in the
latter the full chiral symmetry is broken only by exponen-
tially small corrections. The only property of both types of
fermion that I need is that these symmetries become exact
when the lattice quark mass vanishes. If I then assume that
the chiral symmetry associated with the valence quark is bro-
ken dynamically, with the formation of a nonzero condensate

^ q̄VqV&, it follows that there will be a Goldstone pion whose
mass vanishes whenmV50. In other words, the assumption
of dynamical breaking of the valence quark chiral symmetry
implies

MVV~mV50,mS!50. ~2!

Numerical evidence suggests that such symmetry breaking
does occur for all values of the sea quark mass~including the
quenched casemS→`).

I now add to this the assumption of linearity, namely, that
Eq. ~1! holds also for staggered fermions. These two assump-
tions then imply thatcS50, so that

MVV
2 ~mV ,mS!ustaggered5cVmV. ~3!

*Electronic address: sharpe@phys.washington.edu

1Even though one expectskc to depend onmS , the strength of the
dependence of found in Ref.@1# is surprising, and has interesting
implications for the extraction of physical quark masses@2#.

2For the sake of brevity, I will refer only to staggered fermions in
the following, although all such references apply equally to domain-
wall fermions.
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In other words,MVV is independent of the sea quark mass, at
least for smallmS where linearity applies.3 If correct, this
would be a surprising result. For example, one could obtain
the mass dependence of the physical light pion mass without
the need to work with physical sea quarks. This seems im-
plausible on physical grounds. For one thing, the cloud of
light mesons surrounding the pion depends onmS . But per-
haps such effects are of higher order than linear in the ex-
pansion in the quark masses—indeed, loop effects in chiral
perturbation theory lead to corrections toMp

2 proportional to
mq

2lnmq .
In fact, I will show that such loop effects are enhanced in

the partially quenched theory. Although the leading term
does take the form of Eq.~3!, the dominant correction for
small mV is proportional tomVmSlnmV . For fixed mS this
correction gets arbitrarily large relative to the leading order
term asmV→0. Thus, as one approaches this limit, the va-
lence pion mass obtains a significant dependence onmS .
This breakdown of Eq.~3! occurs because the assumption of
linearity fails, due to the appearance of nonanalytic terms.
The assumption that the valence pion mass vanishes when
mV→0 remains valid.

My main conclusion is thus that one cannot useMVV with
unphysical sea quark masses to give an accurate estimate of
the mass of the physical pion. What one can useMVV for,
however, is to provide a sensitive test of loop effects pre-
dicted for the partially quenched theory. To this end, I have
calculated the one-loop corrections to both the pion mass and
decay constant, as a function of valence and sea quark
masses, using partially quenched chiral perturbation theory
@4#. In general these predictions depend on unknown con-
stants multiplying the analytic terms ofO(mq

2), but for cer-
tain combinations the analytic terms cancel.

A similar deviation from linearity is predicted forMVV
2 in

fully quenched QCD. Using quenched chiral perturbation

theory @5,6#, one finds a correction proportional to
mVm0

2lnmV . Herem0 is a parameter which, in the QCD chi-
ral Lagrangian, gives theh8 its mass. There is some numeri-
cal evidence supporting this prediction, but the situation is
muddied by the possibility that finite volume errors mimic
the chiral logarithm. For a review, see Ref.@7#. The new
predictions presented here provide another way of searching
for chiral logarithms, and thus may help clarify the situation
in quenched QCD. The advantage of partially quenched
theories is that, for reasons explained in the following, the
unknown parameterm0 does not appear in the predictions.

This note is organized as follows. In Sec. II I give a brief
description of the method of calculation, and then present the
results for pion masses and decay constants in Sec. III. Sec-
tion IV contains some general comments on predictions for
partially quenched baryons, and Sec. V some conclusions.

II. CALCULATION

Partially quenched chiral perturbation theory has been de-
scribed in detail in Ref.@4#. I give here a summary of the
aspects relevant to the present calculation.

Consider a theory with two valence quarks, of massm1
andm2, andN>1 unquenched quarks of massmS . To can-
cel internal loops containing the valence quarks one needs
two ghost quarks~commuting quark fieldsq̃) with masses
m1 andm2. For N52 this is the theory studied in Ref.@1#.
Collecting all fields into a vector,

Q5~qV1 ,qV2 ,qS1 ,qS2 , . . . ,qSN, q̃V1 , q̃V2!, ~4!

one sees that the chiral symmetry is the graded group
SU(21Nu2)L3SU(21Nu2)R . The chiral Lagrangian con-
sistent with this symmetry is

L5
f 2

4
str~]mS]mS†!1

f 2

4
str~xS†1Sx!1aF]mF0]mF02m0

2F0
2 ,1

1

128p2 $a4str~]mS]mS†!str~xS†1Sx!

12ma5str~]mS]mS†@xS†1Sx#!1a6str~xS†1Sx!21a8str~xS†xS†1SxSx!%1•••. ~5!

Here S5exp(2iF/f) contains all the Goldstone bosons, in-
cluding the flavor-singlet field4 F05strF/A3. The quark
masses enter throughx52mM , whereM is the mass matrix

M5diag~m1 ,m2 ,mS ,mS , . . . ,mS ,m1 ,m2!, ~6!

with N entries ofmS . I have only kept those terms in the
Lagrangian that will be required for the following calcula-

tions. In particular, I have omitted the arbitrary function of
F0 which can multiply each term.

The terms multiplied by the coefficientsa i are nonleading
in the chiral expansion, since they contain an additional
power ofp2 or m compared to the leading order terms.5 They
give rise to the corrections to physical quantities which are
analytic in the external momenta and quark masses. The
other source of corrections is loop diagrams involving verti-
ces and propagators coming from the leading order Lagrang-
ian. These give rise to the nonanalytic ‘‘chiral logarithms,’’3This result is for fixed bare coupling,g0, because the ‘‘constant’’

cV depends upong0.
4The factor ofA3 in F0 is chosen so that, if the same normaliza-

tion were used in the corresponding QCD chiral Lagrangian, one
would find mh8

2
5m0

2/(11aF)1O(mq).

5For a full list of these higher order terms see, for example, Ref.
@8#.
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as well as analytic contributions. The typical size of both
higher order corrections isp2/Lx

2 , where the chiral scale is
Lx54p f .

The parameters in the chiral Lagrangian—f , m, m0, aF ,
anda i—are not knowna priori. They are functions ofN, the
number of sea quarks, and thus are different for QCD
(N53) and theN52 case considered in Ref.@1#. The most
useful predictions of partially quenched chiral perturbation
theory are thus those that depend on as few of these param-
eters as possible.

The calculation of the one-loop corrections to the masses
and decay constants is straightforward. It is very similar at
all stages to the corresponding calculation in quenched QCD,
which has been discussed in Refs.@5,6#. The only significant
difference occurs in the propagators of mesons which have a

flavor-singlet component. Consider, for example, the propa-
gator of the meson with flavor compositionq̄V1qV1. In
quenched QCD this is

G11
~Q!~p2!5

1

p21M11
2

2
~m0

21aFp2!/3

~p21M11
2 !2

, ~7!

whereM11
2 52mm1 is the leading order mass. The first term

is the usual nonsinglet propagator, while the second arises
from ‘‘hairpin’’ diagrams in which the quark and antiquark
annihilate. It is the second term which leads to enhanced
chiral logarithms. The corresponding propagator in the par-
tially quenched theory is different because of the possibility
of internal loops of sea quarks. The result is@4#

G11
~PQ!~p2!2

1

p21M11
2

52
~m0

21aFp2!/3

~p21M11
2 !2

1

11~N/3!~m0
21aFp2!/~p21MSS

2 !
~8!

52
~m0

21aFp2!/3

11aF~N/3! S M̃22MSS
2

~M̃22M11
2 !2F 1

p21M11
2

2
1

p21M̃2G1
MSS

2 2M11
2

M̃22M11
2

1

~p21M11
2 !2D . ~9!

Here

M̃25
~N/3!m0

21MSS
2

11aF~N/3!
~10!

is the mass of the singlet ‘‘h8’’ meson in the unquenched SU
(N) sector of the theory. Similar results hold for the other
flavor-singlet propagators.

Theh8 massM̃ does not vanish in the chiral limit. In the
following, I will simplify the calculation by assuming that
the h8 is a heavy particle, i.e.,M̃'Lx , so that it can be
integrated out of the theory. This is equivalent to assuming
that the ratiosMSS

2 /M̃2, M11
2 /M̃2, etc., are small. This is cer-

tainly reasonable forN53, for which we know that
M̃'Mh8,phys'1GeV. Even forN52, it is a sensible ap-
proximation, since theh8 will be comparable in mass to the
vector mesons, which we do not include in the chiral La-
grangian.

This assumption leads to two simplifications. First, inte-
grals involving the h8 propagator 1/(p21M̃2) can be
dropped. These integrals can be expanded in powers of
MSS

2 /M̃2, M11
2 /M̃2, etc., and their contributions can be ab-

sorbed by changing the coefficients in the chiral Lagrangian.
For the quantities considered here the effect ofh8 loops is to
shift m, a6, anda8, as I have checked by explicit calcula-
tion. Since we do not know these parametersa priori, we
lose nothing by dropping the contribution from theh8 propa-
gator. Indeed, this allows the results forN53 to be matched
directly onto those from the usual QCD chiral Lagrangian,
from which theh8 has been integrated out.

The second simplification is of the part ofG11
(PQ) which

remains after theh8 contribution has been removed. In this

remainder, we can discard terms suppressed by powers of
MSS

2 /M̃2, etc., for these are of the same size as two-loop
terms which are not included. The propagator then simplifies
to

G11
~PQ!~p2!'

1

p21M11
2

2
1

NS 1

p21M11
2

1
MSS

2 2M11
2

~p21M11
2 !2D .

~11!

Note that the double-pole term remains~and is the source of
the enhanced chiral logarithms!, but that the unknown pa-
rametersm0

2 andaF do not appear. In the unquenched theory
(MSS5M11), the propagator goes over to the usual form,
with only a single pole, and with the 1/N term projecting
against theh8. The corresponding form for the off-diagonal
propagator between a meson of compositionq̄V1qV1 and
q̄V2qV2 is

G12
~PQ!~p2!'2

1

NS MSS
2 2M11

2

M22
2 2M11

2

1

p21M11
2

1@1↔2# D .

~12!

III. RESULTS

I have calculated the complete one-loop correction to the
mass and decay constant of a pion with compositionq̄V1qV2.
I call theseM12 and f 12, respectively. Note that this state is
a flavor nonsinglet, and so there are no disconnected contri-
butions to its propagator. Various limits of the general result
are of interest.

If m15m2 one obtains a nonsinglet pion composed of
degenerate valence quarks. I refer to the results in this limit
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asM11 and f 11, or generically asMVV and f VV .
Setting m25mS one obtains a pion with only one

quenched quark. I refer to the results for this pion asM1S
and f 1S or, generically, asMVS and f VS.

The casem15m25mS is special, for then one is consid-
ering the physical unquenched pion in which the valence and
sea quarks have the same mass.6 This case deserves a sepa-
rate notation, and I follow Ref.@1# by denoting its mass and
decay constantMSS and f SS, respectively.

There is no problem in principle extending the calculation
to pseudoscalars which have a flavor-singlet component. I
have not done so for two reasons. First, the results involve a
number of unknown constants not present in the expressions
for the nonsinglet masses~an example is given in Ref.@4#!.
Second, nearly all simulations calculate only nonsinglet
masses, because the annihilation diagrams needed for singlet
states require much greater computational resources.

The leading order results for nonsinglet pions are

@M12
2 # tree5m~m11m2!, @ f 12# tree5 f . ~13!

The result forM12 agrees with that given in the Introduction,
Eq. ~3!. In particular,M12 is, at leading order, independent of
the sea quark massmS .

I have calculated the one-loop results using dimensional
regularization and MS̄subtraction. To present these I use the
notation thaty125m(m11m2)/Lx

2 , ySS52mmS /Lx
2 , etc.,

whereLx54p f . The result for the nonleading contribution
to the pion mass is

@M12
2 #1 loop5m~m11m2!

3H 1

N Fy11~ySS2y11!lny112y22~ySS2y22!lny22

y222y11
G

1y12~2a82a5!1ySSN~2a62a4!J . ~14!

The constantsa i are to be evaluated at the scaleLx . In the
degenerate limit this becomes

@MVV
2 #1 loop52mmVH 1

N
@~2yVV2ySS!lnyVV1~yVV2ySS!#

1yVV~2a82a5!1ySSN~2a62a4!J . ~15!

If we further setmV5mS , we obtain

@MSS
2 #1 loop52mmSH 1

N
ySSlnySS1ySS@~2a82a5!

1N~2a62a4!#J . ~16!

This agrees with the result from standard chiral perturbation
theory @9#.

The enhanced chiral logarithmic corrections discussed in
the Introduction appear in the result forMVV

2 , Eq. ~15!:
These are corrections of relative sizemSlnmV . Enhanced cor-
rections are present also in the general result, Eq.~14!, if we
takem1 andm2 to zero in fixed ratio. They are absent, how-
ever, from the mass of the pion composed of one valence
quark and one sea quark. This is obtained by settingm15mV
andm25mS , yielding

@MVS
2 #1 loop5m~mV1mS!H 1

N
yVVlnyVV1yVS~2a82a5!

1ySSN~2a62a4!J . ~17!

The chiral correction here is of relative sizemVlnmV , and
thus vanishes whenmV→0.

The fact that all the loop terms are proportional to 1/N
appears to be an accident. One might have expected terms
proportional toN, since there areN mesons of the form
q̄VqS which can appear in loops. It turns out, however, that
such contributions cancel in the final result. What remains is
the contribution from loops involving ‘‘hairpin’’ vertices.

The corresponding results for decay constants are

f 12

f
512

N

4
~y1Slny1S1y2Slny2S!

1
1

2NS y11y222ySSy12

y222y11
ln

y11

y22
1y122ySSD1

1

2
a5y12

1a4NySS, ~18!

f VV

f
512

N

2
yVSlnyVS1

1

2
a5yVV1a4NySS, ~19!

f VS

f
512

N

4
~yVSlnyVS1ySSlnySS!2

1

4NS ySSln
yVV

ySS
1ySS

2yVVD1
1

2
a5yVS1a4NySS. ~20!

Comparing these with the results for masses, we see that the
enhanced chiral logarithms survive here inf VS but not in
f VV , which is the opposite of the situation for the masses.
For both quantities the enhanced logarithms are multiplied
by 1/N. The decay constants do, however, have contributions
proportional toN, but from logarithms which are not en-
hanced.

To give a sense of the size and form of the corrections, I
display the results for theVV, VS, andSSpions forN52.
To convert meson masses to physical units I take
f 50.1 GeV ~which is the approximate value for this con-
stant in QCD!. To convert quark masses to units of the
physical strange quark massmst, I assume the leading order

6This is only true forN>2. One cannot make a nonsinglet pion if
there is only a single flavor of sea quark. Thus, ifN51, the results
for M12 in the limit that m15m25mS do not correspond to those
for an unquenched pion.
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resultmmst5MK,phys
2 . This ignores the shift due to the one-

loop corrections, but, as we will see, these corrections are of
moderate size. Finally, I set the analytic constants,a4–8, to
zero. This is the simplest choice given that we do not know
what values to use forN52. I have checked that the essen-
tial features of the plots are unchanged ifa428 are set to the
values they take in QCD.

Figure 1 shows the one-loop predictions for the masses of
theVV andVS pions plotted against the valence quark mass
mV , for three values of the sea quark mass,mS5mst/4, mst/2,
andmst. This range is chosen to cover the typical values for
‘‘light’’ quarks used in present simulations. The chiral ex-
pansion is likely to break down at the upper end of this
range. By construction, theVV and VS curves must cross
whenmV5mS . For purposes of comparison, I have also in-
cluded the one-loop result forMSS

2 plotted againstmS .
Lowest order chiral perturbation theory predicts that all

curves are linear, with the three forMVV and that forMSS
coinciding, while the curves forMVS have half the slope of
those forMVV . We see that, although one-loop corrections
do change this prediction, the major features of the leading
order result remain. The most significant change is thatMVV
andMSS no longer coincide, with the curves forMVV show-
ing some curvature.

To magnify the difference betweenMVV and MSS, it is
advantageous to consider quantities in which the leading or-
der quark mass dependence has been removed. One such
quantity, ln@M12

2 /m(m11m2)#, is plotted in Fig. 2. The en-
hanced chiral logarithm causes theVV curves to diverge as
mV→0. A similar divergence is predicted for quenched
QCD, and plots of this kind are a useful way of searching for
this divergence. Such a search will not, however, be easy.
For one thing, it is hard to distinguish logarithms from the
linear dependence predicted by analytic terms unless one has

a large range of quark masses.7 It is also difficult to separate
logarithms from the 1/mV behavior associated with finite vol-
ume effects@7,10#.

An alternative approach is to consider quantities in which
the analytic terms cancel. One example is the difference be-
tween the masses ofVV andVSmesons composed of quarks
having the same average mass evaluated at the same sea
quark mass. This vanishes at the tree level, but not at one
loop:

M11
2 ~m1 ,mS!2M2S

2 ~m252m12mS ,mS!

52mm1

1

NH y22ln
y11

y22
1y222y11J . ~21!

This may also be a more practical difference to study in
detail as it relies only on changing the valence quark mass.
Once one has determinedf , this difference is, for small
enough quark mass, a prediction of partially quenched chiral
perturbation theory free of unknown parameters. To illustrate
this prediction I have included the results for theVS mesons
in Fig. 2, but now plotted against the average quark mass
(mV1mS)/2 rather thanmV . The quantity in Eq.~21! is
simply the difference between theVV andVScurves at fixed
mS . This brings out a striking~and seemingly accidental!
prediction of chiral perturbation theory: The curves forMVV

2

andMVS
2 have the same derivative atmV5mS . This is true at

leading order and is not affected by loop corrections. Be-
cause of this, the predicted difference between theVV and
VS curves is small~and gets smaller as the quark masses
decrease!.

7One cannot overcome this problem by considering the difference
between theVV andSScurves—this cancels the analytic term pro-
portional to 2a82a5, but leaves the term proportional to 2a62a4.

FIG. 1. Predictions for pion masses using values for the param-
eters discussed in the text. The solid and short-dashed curves show
MVV

2 and MVS
2 , including one-loop contributions, plotted against

mV . The three sets of curves correspond tomS5mst , mst/2, and
mst/4 as one moves from top to bottom. The long-dashed curve is
the result forMSS

2 at one loop plotted againstmS .

FIG. 2. Predictions for lnMVV
2 /2mmV , lnMVS

2 /m(mV1mS), and
lnMSS

2 /2mmS , including one-loop contributions, plotted against the
average quark mass. Notation as in Fig. 1. The three sets of curves
for VV andVS mesons correspond tomS5mst/4, mst/2, andmst as
one moves from left to right.

7056 56STEPHEN R. SHARPE



One can also consider a generalization of this difference
which allows more flexibility in testing the predictions of
chiral perturbation theory. Imagine working at fixedmS , and
picking three valence quark masses which satisfy

m11m352m2 . ~22!

The quantity of interest is the relative difference between the
masses of the ‘‘13’’ and ‘‘22’’ mesons. This vanishes at the
tree level, but at one loop takes the form

M13
2 2M22

2

M13
2 1M22

2
5

1

2NH y11~ySS2y11!ln~y11/y22!

y332y11
2

y112ySS

2

1~1↔3!J . ~23!

In evaluating the right-hand side~RHS! of this expression it
is legitimate to use the pion masses themselves, rather than
their lowest order expression in terms of quark masses, since
the difference is a two-loop effect. The same is true for Eq.
~21!.

The results for decay constants are shown in Fig. 3. I have
plotted them against the average quark mass so that the ana-
lytic contributions cancel in the difference betweenf VV and
f VS at fixedmS .8 It turns out that, as for pion masses, theVV
and VS curves have the same derivative atmV5mS . Note
that the corrections are of moderate size even for
mV ,mS'mst. The only exception is thatf VS diverges in the
limit mV→0 due to the enhanced chiral logarithm.

One way of looking for this enhanced logarithm is to form
the ratio

RBG5
f 12

Af 11f 22

~24!

at fixed mS . This quantity was introduced by Bernard and
Golterman as a way of testing chiral perturbation theory for
quenched QCD@5#, but turns out also to be useful in partially
quenched theories. The analytic contributions cancel inRBG,
and one finds

RBG215
1

2NH F y11y22

y222y11
ln

y11

y22
1y12G

2ySSF y12

y222y11
ln

y11

y22
11G J . ~25!

It is again legitimate to use the actual pion masses when
evaluating this result. Note that the prediction for this quan-
tity diverges asm1→0 with fixed m2 and ms . A similar
divergence is predicted for quenched QCD, withySS

2 /2N re-
placed bym0

2/3Lx
2 @5#.

IV. BARYON MASSES

The enhanced chiral loops which lead to the divergences
also appear in other quantities. In particular, one can use
partially quenched chiral perturbation theory to study the be-
havior of baryon masses, using a straightforward extension
of the methods developed for quenched baryons@11#. I have
not carried out a detailed calculation, but it is easy to deter-
mine the general form of the dependence on the quark
masses. The result for baryons composed of three degenerate
valence quarks is

MVVV5M01c1MVVMSS
2 1c2MVV

2 1c3MSS
2 1O~MVV

3 !.
~26!

This form applies for both spin 1/2 and 3/2 baryons, although
the coefficients~including M0) depend on the spin. The co-
efficient c1 can in principle be predicted in terms of the
pion-nucleon couplingsF andD, and the decay constantf .
The other coefficients areN-dependent unknown constants.
The term proportional toc1 is the analogue of the enhanced
chiral logarithms found above. It does not diverge asmV→0,
but it is the dominant correction for sufficiently smallmV at
fixed mS . This is no longer true in the unquenched limit,
mV5mS , for then thec1 term is ofO(MSS

3 ).

V. CONCLUSIONS

Partially quenched theories are a step on the way from
quenched to full QCD. They allow one to partially probe the
dynamics of light quarks by sending the valence quark mass
towards zero, while holding the sea quark mass fixed. In this
paper I have investigated the errors that this procedure intro-
duces. The situation turns out be rather subtle in that the
errors only show up at nonleading order, but they neverthe-
less diverge~in relative size! asmV→0. I have suggested a
number of combinations of pion masses and decay constants
with which to search for such divergences.

The entire discussion has assumed that we know what the
lattice quark masses are, as is the case for staggered fermi-

8It should be borne in mind, however, that the detailed shape of
the curves, and the difference between theVV andSSresults, does
depend on the choice ofa4 anda5.

FIG. 3. Results for decay constants plotted against average
quark mass. Notation as in Fig. 1. As one moves from top to bot-
tom, the three sets of curves correspond tomS5mst , mst/2, and
mst/4.
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ons. As mentioned in the Introduction, with Wilson fermions
there are problems in determining the quark mass from the
hopping parameter in partially quenched theories. These
problems can be avoided, however, by determining the quark
mass nonperturbatively using the PCAC equation. In this
way the predictions can be tested for Wilson fermions. The
only disadvantage compared to staggered fermions is that the
predictions will hold up to discretization errors ofO(a)
rather thanO(a2). Even without a nonperturbative determi-

nation of the quark masses, Eqs.~21!, ~23!, and~25! can still
be tested with Wilson fermions.
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