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Enhanced chiral logarithms in partially quenched QCD
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| discuss the properties of pions in “partially quenched” theories, i.e., those in which the valence and sea
guark massesy, andmg are different. | point out that for lattice fermions which retain some chiral symmetry
on the lattice, e.g., staggered fermions, the leading order prediction of the chiral expansion is that the mass of
the pion depends only amy,, and is independent ofig. This surprising result is shown to receive corrections
from loop effects which are of relative sizaginm,, and which thus diverge when the valence quark mass
vanishes. Using partially quenched chiral perturbation theory, | calculate the full one-loop correction to the
mass and decay constant of pions composed of two nondegenerate quarks, and suggest various combinations
for which the prediction is independent of the unknown coefficients of the analytic terms in the chiral La-
grangian. These results can also be tested with Wilson fermions if one uses a nonperturbative definition of the
guark mass[S0556-282(97)01423-9

PACS numbeps): 12.38.Gc, 12.39.Fe, 14.40.Aq

I. INTRODUCTION pion mass vanishes. The negative quark masses are then an
artifact of usingk.(mg=0) instead ofx.(mg) in the defini-
This note is inspired by recent work of the SESAM Col- tion of my,.*
laboration, in which they have studied the light meson spec- My main aim in this note is to discuss how the results
trum with two degenerate flavors of dynamical Wilson would change were one to use fermions for which some rem-
guarks[1]. They have calculated the masses of particlesiant of the continuum chiral symmetry survives discretiza-
composed not only of sea quarks, but also of valence quarkson. What | have in mind are staggered and “domain-wall”
with masses which can differ from those of the sea quarks. Ifiermions[3].2 In the former case an axial subgroup of the
the latter case they are studying a “partially quenched”SU(4) chiral symmetry remains on the lattice, while in the
theory. They find that, for their range of quark masgﬁﬁ, latter the full chiral symmetry is broken only by exponen-
can be well represented by a linear function of the valencdally small corrections. The only property of both types of
and sea quark masses. For example, the mass of the ndermion that | need is that these symmetries become exact
singlet pion composed of two degenerate valence quarks afhen the lattice quark mass vanishes. If | then assume that
massm,,, calculated with a sea quark mass, takes the the chiral symmetry associated with the valence quark is bro-
form ken dynamically, with the formation of a nonzero condensate
(gvQy), it follows that there will be a Goldstone pion whose
5 mass vanishes whan,=0. In other words, the assumption
M{(My M) witson= CyMy+ CsM, (1) of dynamical breaking of the valence quark chiral symmetry
implies

with cy~cg. The casen,=mg corresponds to unquenched
pions in two-flavor QCD, for which the pion mass vanishes Myv(my=0mg)=0. @)
in the chiral limit in the expected way. What is surprising

about Eq.(1) is that if one works at fixedns, but extrapo-  Numerical evidence suggests that such symmetry breaking
Iatesmv—>0., thenM,,, does not vanish. Instead one must goqgoes occur for all values of the sea quark m@ssluding the

to a negative valence quark masey=—(Cs/Cy)Ms, 10  guenched casmig— ).

make the mass of the valence pion vanish. | now add to this the assumption of linearity, namely, that

As explained in Ref[1], this peculiarity is easily under- gq_ (1) holds also for staggered fermions. These two assump-
stood in terms of the properties of Wilson fermions. Thetigns then imply thats=0, so that

point is that chiral symmetry is completely broken by the
lattice regularization, and so the value of hopping parameter 5
x at which the valence quark mass vanishes depends on the MYv(My ,Ms)|staggered CvMy- ©)
parameters of the theory. In particular it depends on the sea
guark mass, and so one should define a variable critical hop=————
ping parameterk.(mg). The quark masses in Eql) are, 1Even though one expecis to depend omyg, the strength of the
however, defined am=(2«x) *—[2x.(mg=0)]"1, where  dependence of found in Refl] is surprising, and has interesting
kc(mg=0) is the critical value for which the unquenched implications for the extraction of physical quark masg2s

2For the sake of brevity, | will refer only to staggered fermions in

the following, although all such references apply equally to domain-
*Electronic address: sharpe@phys.washington.edu wall fermions.
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In other wordsMyy, is independent of the sea quark mass, atheory [5,6], one finds a correction proportional to
least for smallmg where linearity applied.If correct, this mvmglnm\,. Heremy is a parameter which, in the QCD chi-
would be a surprising result. For example, one could obtaimal Lagrangian, gives the’ its mass. There is some numeri-
the mass dependence of the physical light pion mass withowal evidence supporting this prediction, but the situation is
the need to work with physical sea quarks. This seems immuddied by the possibility that finite volume errors mimic
plausible on physical grounds. For one thing, the cloud othe chiral logarithm. For a review, see R7]. The new
light mesons surrounding the pion dependsne But per-  predictions presented here provide another way of searching
haps such effects are of higher order than linear in the exfor chiral logarithms, and thus may help clarify the situation
pansion in the quark masses—indeed, loop effects in chirdh quenched QCD. The advantage of partially quenched
perturbation theory lead to correctionsl\rtfT proportional to  theories is that, for reasons explained in the following, the
mélnmq. unknown parametem, does not appear in the predictions.

In fact, | will show that such loop effects are enhanced in  This note is organized as follows. In Sec. Il | give a brief
the partially quenched theory. Although the leading termdescription of the method of calculation, and then present the
does take the form of Eq3), the dominant correction for results for pion masses and decay constants in Sec. lll. Sec-
small my is proportional tom,mglnm,,. For fixed mg this  tion IV contains some general comments on predictions for
correction gets arbitrarily large relative to the leading orderpartially quenched baryons, and Sec. V some conclusions.
term asmy—0. Thus, as one approaches this limit, the va-
lence pion mass obtains a significant dependencengn
This breakdown of Eq(3) occurs because the assumption of
linearity fails, due to the appearance of nonanalytic terms. Partially quenched chiral perturbation theory has been de-
The assumption that the valence pion mass vanishes wheseribed in detail in Ref[4]. | give here a summary of the
my— 0 remains valid. aspects relevant to the present calculation.

My main conclusion is thus that one cannot ig, with Consider a theory with two valence quarks, of masgs
unphysical sea quark masses to give an accurate estimatearfdm,, andN=1 unquenched quarks of masg. To can-
the mass of the physical pion. What one can Msg, for, cel internal loops containing the valence quarks one needs

however, is to provide a sensitive test of loop effects pretwo ghost quark§commuting quark fields]) with masses

dicted for the partially quenched theory. To this end, | havey, andm,. For N=2 this is the theory studied in Refl].
calculated the one-loop corrections to both the pion mass andollecting all fields into a vector,

decay constant, as a function of valence and sea quark
masses, using partially quenched chiral perturbation theory

Il. CALCULATION

[4]. In general these predictions depend on unknown con- Q=(Av1,9v2,0s1.9s2, - - - Asn: A1, v2), 4
stants multiplying the analytic terms (ﬁ(mé), but for cer-
tain combinations the analytic terms cancel. one sees that the chiral symmetry is the graded group

A similar deviation from linearity is predicted fcM\Z,V in SU(2+N|2) X SU(2+N|2)g. The chiral Lagrangian con-
fully quenched QCD. Using quenched chiral perturbationsistent with this symmetry is

2 f2 1
L= Zstr(aﬂza“?) + Zstr(XET+2X)+ agpd, @ Do—mid3, + 282

+2passti(9, S S ST+ 3 x]) + apsti xS T+ 3 x) 2+ agsti xS xS T+ 3y S )+ - - (5)

{agsti(a,2o*SNst(x 2T+ x)

Here 3, = exp(d®/f) contains all the Goldstone bosons, in- tions. In particular, | have omitted the arbitrary function of
cluding the flavor-singlet fieftl®,=strd/\3. The quark &, which can multiply each term.

masses enter through=2uM, whereM is the mass matrix The terms multiplied by the coefficientg are nonleading

in the chiral expansion, since they contain an additional
power ofp? or m compared to the leading order terfiBhey

with N entries ofms. | have only kept those terms in the give rise to the corrections to physical quantities which are

Lagrangian that will be required for the following calcula- @nalytic in the external momenta and quark masses. The
other source of corrections is loop diagrams involving verti-

ces and propagators coming from the leading order Lagrang-
*This result is for fixed bare coupling,, because the “constant” 1an. These give rise to the nonanalytic “chiral logarithms,”
¢y depends upou,.
“The factor of\/§ in ®, is chosen so that, if the same normaliza-
tion were used in the corresponding QCD chiral Lagrangian, one °For a full list of these higher order terms see, for example, Ref.
would findm?, = mg/(1+ ag) + O(mg). [8].

M =diag'm;,m,,mg,Msg, . . . ,Mg, My, M,), (6)
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as well as analytic contributions. The typical size of bothflavor-singlet component. Consider, for example, the propa-
higher order corrections iBZ/A)Z(, where the chiral scale is gator of the meson with flavor compositioallq\/l_ In

A, =4nf. quenched QCD this is
The parameters in the chiral Lagrangiaf—, mg, ag ,
and «;—are not knowra priori. They are fungtions di, the 1 (m(2)+ aep?)/3
number of sea quarks, and thus are different for QCD S P)= 535 7
(N=3) and theN=2 case considered in Rdfl]. The most p+Mi;  (p*+Miy

useful predictions of partially quenched chiral perturbation
theory are thus those that depend on as few of these paramhereM?2,=2um, is the leading order mass. The first term
eters as possible. is the usual nonsinglet propagator, while the second arises
The calculation of the one-loop corrections to the masseffom “hairpin” diagrams in which the quark and antiquark
and decay constants is straightforward. It is very similar agnnihilate. It is the second term which leads to enhanced
all stages to the corresponding calculation in quenched QCDxhiral logarithms. The corresponding propagator in the par-
which has been discussed in Rd#5,6]. The only significant tially quenched theory is different because of the possibility
difference occurs in the propagators of mesons which have af internal loops of sea quarks. The resulf43

1 (M2+ agp?)/3 1
GNP~ = TP ®
p*+Mi; (p*+M1)* 1+ (NRB)(My+ aep)/(p*+Ms9
_ (MtaepdBl MA-ME[ 1 1 +M§S—M§1 1 ©
1+ ae(N/3) \(mz_Mil)Z{pz"‘Mil p?+M2] M2-M%; (p?+Mip?)
|
Here remainder, we can discard terms suppressed by powers of
N3 M2 M24M?2, etc., for these are of the same size as two-loop
|\72=( )Mo+ Mss (10) terms which are not included. The propagator then simplifies
1+ C((D(N/S) to
is the mass of the singlets’”” meson in the unquenched SU 1 1 1 M2 M2,
(N) sector of the theory. Similar results hold for the other ~ G{i¥(p*)~ 5——— Nl oz ——— .
flavor-singlet propagators. p*+M1, pe+M1; (p™+M7y b

The 7’ massM does not vanish in the chiral limit. In the
following, I will simplify the calculation by assuming that Note that the double-pole term remaif@sd is the source of
the »' is a heavy particle, i.e.l,\7I~AX, so that it can be the enhanced chiral logarithmsut that the unknown pa-
integrated out of the theory. This is equivalent to assumingametersmg andag do not appear. In the unguenched theory
that the ratiodM34M?2, M7,/M?, etc., are small. This is cer- (Mss=Myj), the propagator goes over to the usual form,
tainly reasonable forN=3, for which we know that With only a single pole, and with the M/term projecting
I\7I~M,,,1phy3~1GeV. Even forN=2, it is a sensible ap- against then’. The corresponding form for the off-diagonal
proximation, since they’ will be comparable in mass to the Propagator between a meson of compositippay, and
vector mesons, which we do not include in the chiral La-q\,qy, is
grangian.

This assumption leads to two simplifications. First, inte- 1[M3s—M%,
L , 2., 132 GHopH~—— +[1-2]].

grals involving the ' propagator 14“+M<) can be 12 N| M2,—M2, p2+ M2
dropped. These integrals can be expanded in powers of 2 TH 1 (12)
M24M?2, M3,/M?, etc., and their contributions can be ab-
sorbed by changing the coefficients in the chiral Lagrangian. . RESULTS
For the quantities considered here the effechybfoops is to
shift u, ag, andag, as | have checked by explicit calcula- | have calculated the complete one-loop correction to the
tion. Since we do not know these parametargriori, we  mass and decay constant of a pion with compositigpgy».
lose nothing by dropping the contribution from thé propa- | call theseM,, andf,,, respectively. Note that this state is

gator. Indeed, this allows the results 8= 3 to be matched a flavor nonsinglet, and so there are no disconnected contri-
directly onto those from the usual QCD chiral Lagrangian,butions to its propagator. Various limits of the general result
from which the#’ has been integrated out. are of interest.

The second simplification is of the part GﬁQ) which If m;=m, one obtains a nonsinglet pion composed of
remains after they’ contribution has been removed. In this degenerate valence quarks. | refer to the results in this limit
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asM; andfqq, or generically asM,,, andf,,, . This agrees with the result from standard chiral perturbation
Setting m,=mg one obtains a pion with only one theory[9].

guenched quark. | refer to the results for this pionMags The enhanced chiral logarithmic corrections discussed in

andf,s or, generically, aMy s andfys. the Introduction appear in the result fod2,, Eq. (15):

The casen;=m,=mg is special, for then one is consid- These are corrections of relative simglnm,,. Enhanced cor-
ering the physical unquenched pion in which the valence aneections are present also in the general result,(E4), if we
sea quarks have the same mA3#is case deserves a sepa-takem; andm, to zero in fixed ratio. They are absent, how-
rate notation, and | follow Ref1] by denoting its mass and ever, from the mass of the pion composed of one valence
decay constantlgsandfgg, respectively. quark and one sea quark. This is obtained by settipg my,

There is no problem in principle extending the calculationand m,=mg, yielding
to pseudoscalars which have a flavor-singlet component. |
have not done so for two reasons. First, the results involve a 1
number of unknown constants not present in the expressions [MZs]1 100p= M(mv+ms)[—yvv|n)’vv+ yvs(2ag— as)
for the nonsinglet massdan example is given in Ref4]). N
Second, nearly all simulations calculate only nonsinglet
masses, because the annihilation diagrams needed for singlet +ysN(2ag— a4)]_ 17
states require much greater computational resources.

The leading order results for nonsinglet pions are

The chiral correction here is of relative simg,/Inm,,, and
[Miz]tree: u(mp+my),  [frolyes=f. (13 thus vanishes whem,,— 0.
The fact that all the loop terms are proportional tdN 1/
The result forM ;, agrees with that given in the Introduction, appears to be an accident. One might have expected terms
Eq. (3). In particularM, is, at leading order, independent of proportional toN, since there aré\ mesons of the form
the sea quark massg. gvQs Which can appear in loops. It turns out, however, that
| have calculated the one-loop results using dimensionasuch contributions cancel in the final result. What remains is
regularization and MSubtraction. To present these | use thethe contribution from loops involving “hairpin” vertices.
notation thaty;,= u(m;+ mz)/Af(, Yss= 2Mms/A,2(, etc., The corresponding results for decay constants are
where A, =4mf. The result for the nonleading contribution
to the pion mass is

N
T 1- Z(ylslnyls+ Y2siny2s)
[M iz] 1loop— u(mg+my)

1 (Y1Y2o—Ysdi12, Y11 1
11y1(Yss— Y1) Iny11— VoA Yss— Y22 INY22 togl — 0 In=—+Y1,—Yss| + 5 a5Y12
x{ = 2N\ yaomyin Y22 2
N Y22~ Y11
+ a4N yss, (18)
+y12(2a8—a5)+y55{\l(2a6—a4)]. (14
fuv

N 1
—=1—=yydnyyst 5 asyyy+ asNyss, (29
The constantsy; are to be evaluated at the scale. In the f 2 7VSTOVS g TRIVV T TATISS

degenerate limit this becomes

1 o1 N ydnyust yednysd — o yadn2lry
[M\Z/V]lloop: Zﬂmv[N[(Zyvv_yss)|nyvv+(YVV_YSS)] f 4 IVSTIVS T ISSIIS 4N\ S Yss ss

1
— +-a + ayNyse. (20
+yuu(2ag— a5>+ysw<2a6—a4>]. (15 Yvu| T g asYvsT aallss

If we further setm,=msg, we obtain Comparing these with the results for masses, we see that the
enhanced chiral logarithms survive here fipg but not in
1 fyy, which is the opposite of the situation for the masses.
[M&dl1 00— 2Mms[—YSényss+YSs[(2as—as) For both quantities the enhanced logarithms are multiplied
N by 1N. The decay constants do, however, have contributions
proportional toN, but from logarithms which are not en-
+N(2ag— a4)]} . (16 hanced.
To give a sense of the size and form of the corrections, |
display the results for th&'V, VS, andSSpions forN=2.
5This is only true folN=2. One cannot make a nonsinglet pion if TO convert meson masses to physical units | take
there is only a single flavor of sea quark. Thus\i£ 1, the results f=0.1 GeV (which is the approximate value for this con-
for My, in the limit thatm;=m,=mg do not correspond to those stant in QCD. To convert quark masses to units of the
for an unquenched pion. physical strange quark mass;, | assume the leading order



7056 STEPHEN R. SHARPE 56

= 0.2 T T T T T T T T ‘

M, *(GeV?)
Ln[Mlzz//«L(m1+m2)]
A I R B B

0.0 0.5 1.0
(m,+m,)/2m

strange

strange

FIG. 1. Predictions for pion masses using values for the param- FIG. 2. Predictions for IMZ\/2umy, INMZdu(m,+mg), and
eters discussed in the text. The solid and short-dashed curves shdWMad2ums, including one-loop contributions, plotted against the
MVV and MVS' |nc|ud|ng one- |00p contributions, p|0tted agamst average quark mass. Notation as in Flg 1. The three sets of curves
my . The three sets of curves correspondnig=mg, my/2, and  for VV andVSmesons correspond tos=mg/4, mg/2, andmg as
mg/4 as one moves from top to bottom. The long-dashed curve i§ne moves from left to right.
the result forM és at one loop plotted againstg.
a large range of quark massel.is also difficult to separate

logarithms from the Ih,, behavior associated with finite vol-
result umg= MK phys- This ignores the shift due to the one- yme effectd7,10.
loop corrections, but, as we will see, these corrections are of An alternative approach is to consider quantities in which
moderate size. Finally, | set the analytic constants,g, to  the analytic terms cancel. One example is the difference be-
zero. This is the simplest choice given that we do not knowween the masses ®V andV S mesons composed of quarks
what values to use fdl=2. | have checked that the essen- having the same average mass evaluated at the same sea
tial features of the plots are unchangedjf_g are set to the quark mass. This vanishes at the tree level, but not at one
values they take in QCD. loop:

Figure 1 shows the one-loop predictions for the masses of
theVV andVS pions plotted against the valence quark mass MZ,(my,mg) — M3¢(m,=2m; —mg, ms)
my, for three values of the sea quark masg=m¢/4, m¢/2,
andmg;. This range is chosen to cover the typical values for
“light” quarks used in present simulations. The chiral ex- _2'“m1 yzzlny +y22 Y- (21)
pansion is likely to break down at the upper end of this
range. By construction, th®V and VS curves must cross This may also be a more practical difference to study in
whenmy=mg. For purposes of comparison, | have also in-detail as it relies only on changing the valence quark mass.
cluded the one-loop result fon 2 plotted againsmg. Once one has determined this difference is, for small

Lowest order chiral perturbation theory predicts that allenough quark mass, a prediction of partially quenched chiral
curves are linear, with the three f,, and that forMgg  perturbation theory free of unknown parameters. To illustrate
coinciding, while the curves fokl, 5 have half the slope of this prediction | have included the results for & mesons
those forMy,. We see that, although one-loop correctionsin Fig. 2, but now plotted against the average quark mass
do change this prediction, the major features of the leadingmy+mg)/2 rather thanm,,. The quantity in Eq.(21) is
order result remain. The most significant change is kg ~ simply the difference between thev andV Scurves at fixed
andMggno longer coincide, with the curves fby,, show- Ms. This brings out a strikingand seemingly accidenjal
ing some curvature. prediction of chiral perturbation theory: The curves K¢,

To magnify the difference betwee,y andMgg, itis ~ andM?Zghave the same derivative mt,=mg. This is true at
advantageous to consider quantities in which the leading ofeading order and is not affected by loop corrections. Be-
der quark mass dependence has been removed. One sumuse of this, the predicted difference between\theand
guantity, Ir[Mle,u(mﬁ m,) ], is plotted in Fig. 2. The en- VS curves is smalland gets smaller as the quark masses
hanced chiral logarithm causes th& curves to diverge as decrease
my—0. A similar divergence is predicted for quenched
QCD, and plots of this kind are a useful way of searching for
this divergence. Such a search will not, however, be easy.’One cannot overcome this problem by considering the difference
For one thing, it is hard to distinguish logarithms from the between thé/V andS Scurves—this cancels the analytic term pro-
linear dependence predicted by analytic terms unless one hasrtional to 2¢g— a5, but leaves the term proportional ta@— a,.
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f1o

Rege=——=
Viafa

at fixed mg. This quantity was introduced by Bernard and
Golterman as a way of testing chiral perturbation theory for
guenched QCIP5], but turns out also to be useful in partially
guenched theories. The analytic contributions cancBga,

and one finds

(29)

f12/f

111 yuy y
Rag— H 11Y22  Yu }

1=+ In—+
2N [Y22— Y11 Y22 Yz
—ysg{—ylz Iny—ll+1

. (25)
Yoo—Yi1 Y22

d | \
1.0 : . . " .
0.0 0.5 10 It is again legitimate to use the actual pion masses when

m. ) /2m gvalu_ating this result. No_te th_at the prediction for t_his_ guan-
(M +m5) /210 1 range tity diverges asm;—0 with fixed m, and mg. A similar

FIG. 3. Results for decay constants plotted against averagdivergence 2is pr;adicted for quenched QCD, wiffy 2N re-
quark mass. Notation as in Fig. 1. As one moves from top to botplaced bymg/3A % [5].
tom, the three sets of curves correspondrtg=mg, mg/2, and

Ms/4. IV. BARYON MASSES

One can also consider a generalization of this difference The enhanced chiral loops which lead to the divergences
which allows more flexibility in testing the predictions of @lso appear in other quantities. In particular, one can use
chiral perturbation theory. Imagine working at fixed, and  partially quenched chiral perturbation theory to study the be-

picking three valence quark masses which satisfy havior of baryon masses, using a straightforward extension
of the methods developed for quenched banydris. | have
m;+mg=2m,. (22 not carried out a detailed calculation, but it is easy to deter-

mine the general form of the dependence on the quark
The quantity of interest is the relative difference between thénasses. The result for baryons composed of three degenerate
masses of the “13” and “22” mesons. This vanishes at thevalence quarks is

tree level, but at one loop takes the form 5 5 5 5
Myyv=Mo+ciMyyMsgt oMy +CzMggtO(My,).

M35~ Mgzz i{ Y11(Yss— Y10 In(Y11/Y22) _ Yu~VYss (26)
M§3+ M%z 2N Y33~ Y1 2 This form applies for both spin 1/2 and 3/2 baryons, although
the coefficientgincluding M) depend on the spin. The co-
+(13) 23) efficient ¢, can in principle be predicted in terms of the
| pion-nucleon coupling& andD, and the decay constaft

The other coefficients ard-dependent unknown constants.
In evaluating the right-hand sid®HS) of this expression it  The term proportional te, is the analogue of the enhanced
is legitimate to use the pion masses themselves, rather thamiral logarithms found above. It does not divergeras—0,
their lowest order expression in terms of quark masses, sindsut it is the dominant correction for sufficiently smail, at
the difference is a two-loop effect. The same is true for Eqfixed mg. This is no longer true in the unquenched limit,
(22). my=mg, for then thec, term is of O(M2J).

The results for decay constants are shown in Fig. 3. | have
plotted them against the average quark mass so that the ana-
lytic contributions cancel in the difference betwelkp, and
fysat fixedms.® It turns out that, as for pion masses, ¥¥ Partially quenched theories are a step on the way from
and VS curves have the same derivativeray=mg. Note  quenched to full QCD. They allow one to partially probe the
that the corrections are of moderate size even fodynamics of light quarks by sending the valence quark mass
my ,Ms~Mmg. The only exception is thdt,s diverges in the towards zero, while holding the sea quark mass fixed. In this

V. CONCLUSIONS

limit my,—0 due to the enhanced chiral logarithm. paper | have investigated the errors that this procedure intro-
One way of looking for this enhanced logarithm is to form duces. The situation turns out be rather subtle in that the
the ratio errors only show up at nonleading order, but they neverthe-

less divergd(in relative siz¢é asmy—0. | have suggested a
number of combinations of pion masses and decay constants
81t should be borne in mind, however, that the detailed shape ofvith which to search for such divergences.
the curves, and the difference between¥h¢ andSSresults, does The entire discussion has assumed that we know what the
depend on the choice ef, and as. lattice quark masses are, as is the case for staggered fermi-
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ons. As mentioned in the Introduction, with Wilson fermions nation of the quark masses, E¢81), (23), and(25) can still
there are problems in determining the quark mass from thee tested with Wilson fermions.

hopping parameter in partially quenched theories. These

problems can be avoided, however, by determining the quark

mass nonperturbatively using the PCAC equation. In this ACKNOWLEDGMENTS

way the predictions can be tested for Wilson fermions. The

only disadvantage compared to staggered fermions is that the | thank Tanmoy Bhattacharya and Rajan Gupta for discus-
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