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We calculate theBB parameter, relevant forB̄0-B0 mixing, from a lattice gauge theory simulation atb56.0.
The bottom quarks are simulated in the static theory, the light quarks with Wilson fermions. Improved smear-
ing functions produced by a variational techniqueMOST are used to reduce statistical errors and minimize
excited-state contamination of the ground-state signal. We obtainBB(4.33 GeV)50.9824

14 (stat)218
13 (syst)

which corresponds toB̂B 5 1.4026
16 (stat)226

14 (syst) for the one-loop renormalization-scheme-independent
parameter. The systematic errors include the uncertainty due to alternative~less favored! treatments of the
perturbatively calculated mixing coefficients; this uncertainty is at least as large as residual differences between
Wilson-static and clover-static results. Our result agrees with extrapolations of results from relativistic~Wil-
son! heavy quark simulations.@S0556-2821~97!03023-3#

PACS number~s!: 12.38.Gc, 12.38.Bx, 12.39.Hg, 14.40.Nd

I. INTRODUCTION

The experimental observation ofB̄0-B0 mixing allows, in
principle, the extraction of theuVtdu Cabibbo-Kobayashi-
Maskawa~CKM! matrix element@1,2#. The overdetermina-
tion of the CKM matrix is a high-precision test of the stan-
dard model of particle physics and is regarded as a potential
harbinger of new physics. The dominant uncertainty in the
extraction ofuVtdu from experimental measurements is due to
theoretical factors from nonperturbative QCD. The key fac-
tor is BBf B

2 , where f B is the B-meson semileptonic decay
constant andBB is the ‘‘bag constant’’ for theB meson,
defined as the ratio of the matrix element of the operator
relevant for the mixing to its value in the vacuum-saturation
approximation~VSA!.

There have been a large number of lattice gauge theory
simulations which have calculated thef B decay constant;
however, much less work has been done on the calculation of
the BB parameter. The earliest result@3# suggested that the
VSA works quite well; this result was unanticipated and is
quite nontrivial, as was reiterated by Soni@2#. Later results
by other groups are surprisingly scattered, with significant
disagreement in some cases@4# and with some results mark-
edly different than that suggested by VSA. Here we argue
that, in fact, most raw lattice data are consistent with VSA
~including ours which are quite precise due to the use of
improved smearing functions! and that groups differ due to
their choices of how to relate these to the full-theory con-
tinuum value. We argue that although large systematic un-
certainties remain due to unknown higher-order contribu-
tions in the mixing coefficients, it is possible to formulate the
calculation in a way which is stable against changes in nor-
malization ~such as tadpole improvement!. Our result is in
accord with VSA and is also in agreement with the large-
mass extrapolation of calculations@2# which use relativistic,
rather than static, heavy quarks.

Some of the first attempts at simulating the static theory
calculated both the decay constant and theBB parameter
@5,6#. However, the required perturbative matching coeffi-
cients were not known; these have since been computed by
Flynn et al. @7#. Their analysis showed that additional opera-
tors, not included in the first simulations, are required to
estimate theBB parameter.

Until recently, the simulation of the static theory was
problematic because of excited-state contamination of the
ground-state signal@8–10#. The development of variational
techniques@11,12# has finally allowed a reliable extraction of
the decay constant. In this paper, we use a modern varia-
tional technique@12# to obtain accurate estimates of the lat-
tice matrix elements and combine these with the mixing co-
efficients to calculate the staticBB parameter. At two
conferences@13,14#, we have reported preliminary results for
the value ofBB from this simulation.

Section II outlines the method of extracting the relevant
matrix elements from lattice correlation functions; Sec. III
summarizes our numerical results. Section IV contains a
summary of the perturbative-matching techniques which,
rather explicitly, details our preferred way of organizing the
calculation; we argue that our method reduces systematic
errors in the matching coefficients which are then estimated
in Sec. V. In Sec. VI, a comparison is made to other groups
as an illustration of the differences in the methods discussed
in Sec. V. The conclusion follows as Sec. VII.

II. NUMERICAL TECHNIQUES

The static-lightBB parameter is obtained from a combi-
nation of two- and three-point hadronic correlation functions.
The required three-point function is

C3,X~ t1 ,t2!5(
xW1

(
xW2

^0uT@x~ t1 ,xW1! OX~0,0W ! x~ t2 ,xW2!#u0&,

~2.1!

which has a fermion operator inserted at the spacetime origin
between two externalB-meson operatorsx. The times are

*Now at Department of Physics, University of Utah, Salt Lake
City, UT 84112.

PHYSICAL REVIEW D 1 DECEMBER 1997VOLUME 56, NUMBER 11

560556-2821/97/56~11!/6993~19!/$10.00 6993 © 1997 The American Physical Society



restricted to the ranget1.0.t2. We use the spatially ex-
tendedB-meson interpolating field

x~xW ,t !5(
rW

f ~rW ! q̄~ t,xW1rW !g5b~ t,xW !, ~2.2!

wheref is a smearing function chosen@12# to project out the
ground state efficiently. The four-fermion operatorsOX ~with
XP$L,R,N,S%) are defined1 as @7#

OL5 b̄gm~12g5!q b̄gm~12g5!q,

OR5 b̄gm~11g5!q b̄gm~11g5!q,

ON5@2 b̄~12g5!q b̄~11g5!q12 b̄~11g5!q b̄~12g5!q

1 b̄gm~12g5!q b̄gm~11g5!q

1 b̄gm~11g5!q b̄gm~12g5!q#,

OS5 b̄~12g5!q b̄~12g5!q. ~2.3!

The operatorsOR andON are introduced in the lattice and
contribute towardsOL because of the poor chiral behavior of
Wilson quarks. The operatorOS is introduced in the con-
tinuum and contributes because of the matching of full QCD
to the static theory.

With the smeared-sink–local-source~SL! two-point func-
tion defined as

C2~ t1!5(
xW1

^0uT@x~ t1 ,xW1! b̄~0,0W !g4g5q~0,0W !#u0&

~2.4!

the ‘‘raw’’ lattice-static parametersBX are calculated via the
ratio of three- and two-point functions

BX~ t1 ,t2!5
C3,X~ t1 ,t2!

~8/3!C2~ t1!C2~ t2!
——→
ut i u@1

BX . ~2.5!

The BB parameter itself can then be determined from the
BX[BOX

, extracted from fits of the Monte Carlo data to the
form of Eq. ~2.5!, as the linear combination

BB5ZBL
BL1ZBR

BR1ZBN
BN1ZBS

BS , ~2.6!

where the perturbatively calculated mixing coefficientsZBX

are defined in Sec. IV. Rather than this ‘‘fit-then-combine’’
method, our quoted results will be from the ‘‘combine-then-
fit’’ method:

BB~ t1 ,t2!5 (
X5L,R,N,S

ZBX
BX~ t1 ,t2! ——→

ut i u@1

BB . ~2.7!

For infinite statistics, the two methods should give identical
results.

We exploit time-reversal symmetry by averaging the cor-
relators overt andT2t, whereT is the length of the lattice
in the time direction. We fix one of the timest1 in Eqs.~2.5!
and ~2.7! and vary the othert2; the result is fitted to a con-
stant. The fits include correlations in time, but not in the
chiral extrapolation~a choice forced upon us by our limited
statistics!. The entire fitting procedure is bootstrapped~see,
for example, Ref.@15#! to provide robust estimates of the
statistical errors. An estimate of the systematic error due to
the choice of interval is made by calculating the variance of
the results from using all ‘‘reasonable’’ time intervals around
our favorite one.

A major problem with simulations that include static
quarks is that the signal-to-noise ratio decreases very quickly
with time @8,16,17#; therefore, the operator which creates the
B meson must project onto the ground state at very early
times—before the signal is lost in the noise. Experience with
the calculation of thef B decay constant in the static theory
has shown that reliable results can be obtained only if the
B-meson operator is smeared with a very accurate ‘‘wave
function,’’ which can be obtained from a variational calcu-
lation on the lattice. We use the same smearing function as
was used in our calculation off B in the static approximation.
This was obtained from the variational technique, called
MOST @12#, which we have developed for this purpose.

To demonstrate the effectiveness of the smearing function
produced byMOST, we show in Fig. 1 the effective-mass plot
@ lnC2

LS(t)/C2
LS(t11) versust11/2# for the two-point correla-

tion function using a local (d function! sink at timet and an
optimally smeared source at time 0. The effective-mass plot
has plateaued at smallt ~indicating the absence of significant
excited-state contamination! before the signal-to-noise ratio
has degenerated, so that a very precise mass and amplitude
can be obtained by fitting over an early time range. If, in-
stead, the same smearing function is used at the sink, with a
local (d function! source, then it will still effectively remove
excited-state contamination. Yet, as demonstrated in Fig. 2,
this fact is obscured by much larger statistical fluctuations.
~Since the spatial points are summed over at the sink to

1We choose a standard normalization for which the VSA value for
OL is (8/3)f B

2mB
2 .

FIG. 1. Effective massm(t11/2)5 lnC(t)/C(t11) from the LS
~local sink, smeared source! two-point correlation functionC(t).
The source was smeared with an optimal smearing function pro-
duced by theMOST @12# algorithm which was designed to eliminate
excited-state contamination.
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project out zero momentum regardless of which smearing
function is used, smearing at the sink provides only marginal
improvement in the signal and increases noise. In contrast,
smearing at the source greatly enhances the signal and de-
creases the noise. For the local source the static quark is
restricted to the spatial origin, and thus the statistics are
poorer@9#.!

We note that once an ‘‘optimal’’ smearing source has
been obtained from the two-point function using a varia-
tional technique, it can be used directly in other calculations.
The three-point function does not need to be formulated as a
variational problem, although ground-state dominance
should still be monitored using the mass splitting between
the excited and ground states.

The static quark never evolves in space from the origin
because the four-fermion operator is at the spacetime origin.
The B-meson operator is constructed by smearing the light
quark relative to the heavy quark@Eq. ~2.4!#. Figure 3 shows
a schematic of the quark flow resulting from the Wick con-
traction of Eq.~2.1!. The resulting two-point correlators are
smeared-sink–local-source~SL! correlators, which are much

more noisy than local-smeared~LS! correlators~as argued
above! even though in the infinite-statistics limit they are
equal. Since three-point functions are, in general, noisier
than two-point functions, the ‘‘effective-mass’’ plots for
these are even noisier than that for the SL two-point func-
tion; it would be hopeless to get a precise result for a static-
light-meson matrix element without using a prohibitively
large number of configurations. But fortunately, because the
BB parameter is aratio of matrix elements@Eq. ~2.5!#, the
noise is reduced due to the cancelation of correlated fluctua-
tions between the numerator and denominator.

It has been argued that the productBBf B
2 and perturbative

corrections to it should be calculated directly since it, rather
thanBB , is the phenomenologically important quantity. But
there are several compelling reasons for calculatingf B and
BB separately. First, although the calculation ofBB , as for
BBf B

2 , is intrinsically more involved than is that off B ~both
analytically, in the determination of perturbative corrections,
and computationally!, the numerical value ofBB is more
stable than is the value of eitherBBf B

2 or f B . Certainly,f B is
a very important physical quantity in its own right; it should
be and is calculated separately. For this, one need only cal-
culate a two-point function. However, the statistical fluctua-
tions for f B are quite large; without the use of a reliable
smearing function obtained variationally, excited-state con-
tamination can be substantial and can mislead interpretation.
~This may explain the scatter in the world summary of lattice
calculations off B @9,10#.! Also, since its lattice-spacing de-
pendence is rather large, especially when using the static
approximation, its continuum extrapolation is delicate and
prone to large systematic errors. Much computing effort is
required to evaluate this simple quantity. However,BB ~or
BBf B

2) requires the calculation of a three-point, in addition to
a two-point, correlation function. Since it is more involved, it
is usually determined in a secondary calculation after the
primary calculation off B and so fewer groups are likely to
calculate it. Yet, as borne out by our data, sinceBB can be
extracted from a ratio of three- to two-point functions which
are strongly correlated, a quite precise value can be obtained,
with an optimal choice of smearing function, from relatively
few configurations. The calculational overhead~both compu-
tational and analytical! is large compared to the computa-
tional expense. Thus a handful of groups can fix precisely the
value ofBB once and for all, leaving for the wider commu-
nity the task of applying improvements in algorithms and
computers to the simplerf B . In the future,BB ~in contrast to
f B andBBf B

2) need not be recalculated with every generation
of improvements.

Secondly, just as the numerical value ofBB is stable be-
cause of cancelations of correlated fluctuations in numerator
and denominator, we argue that so too are its perturbative
corrections when linearized as is demonstrated in Secs. IV
and V. The perturbatively calculated coefficients forBB are
likely more reliable than those for the productBBf B

2 . Like-
wise, these are less likely to need updating with the next
generation of improvements in analytic methods.

Thirdly, it seems as though VSA is a surprisingly good
approximation for theBB parameter. This is an important
qualitative statement, of use to model builders, which should
not be obscured by poor-statistics attempts to calculate the
productBBf B

2 .

FIG. 2. Same as for Fig. 1 but for the SL~smeared sink, local
source! two-point correlation function. The same optimal smearing
function is used to eliminate excited-state contamination, but statis-
tical errors are larger since the source is~necessarily! a delta func-
tion.

FIG. 3. Schematic diagram of the quark flow for the three-point
correlation function of Eq.~2.1!. The ‘‘targets’’ are intended to
represent the smearing of the light quark relative to the static quark.
The static quarks are restricted to the spatial origin.

56 6995CALCULATION OF THE BB PARAMETER IN THE . . .



III. NUMERICAL RESULTS

The simulations were carried out on a 203330 lattice,
calculated on 32 gauge configurations, atb56.0.~This num-
ber of configurations is more than adequate for a precise
estimate of theBB parameter with small statistical error since
an efficient smearing function is used. The use of anad hoc
smearing function would have required an order of magni-
tude more configurations.! The simulations were quenched;
the gauge configurations were generated using the standard
Wilson pure-glue action. The gauge configurations were
fixed into Coulomb gauge.~An ultraconservative gauge-
fixing convergence criterion was used such that¹W •AW was
decreased to less than 1029 its unfixed value.! The gauge-
fixing was done only to choose smearing functions, but since
these cancel in ratios of correlation functions all results are
gauge invariant~in the infinite-statistics limit!. Wilson light-
quark propagators, with hopping-parameter valuesk50.152,
0.154, 0.155, and 0.156 were used in our analysis. The value

of kc used was 0.157 and the value ofk-strange was 0.155
@18#.

Figure 4 shows, for the operatorOL , the ratio of the
three- and two-point correlation functionsBL(t1 ,t2), Eq.
~2.5!, which asymptotically equalsBL for large Euclidean
times.@In the figureBL(t1 ,t2) is graphed as a function oft2
with t1522 held fixed.# In fact, ‘‘large times’’ are remark-
ably small (*2) because of the effectiveness of the smear-
ing function in efficiently eliminating excited-state contami-
nation, a fact supported by Fig. 1.

As with any lattice calculation of correlation functions,
there is freedom in the choice of fit range and a balance
needs to be struck between fitting over too-early times, for
which systematic errors due to excited-state contamination
may be non-negligible, and over too-late times, for which
statistical errors will be unnecessarily large. In Fig. 5 we
display atmin plot: the values for the fits of the rawBL value
~at k50.156) plotted for several choices of fit range.~All of
our fits take into account the correlations in Euclidean time
using the full-covariance matrix. For our central fit range, the
values of the fits differ little whether or not the correlations
are included.! The flatness of the plateau in Fig. 4 reflects the
insensitivity of the fitted value to the choice of fit range. For
this and other plots we choose as our central valuest1522

FIG. 4. RawB parameter for theOL operator from Eq.~2.5!.

FIG. 5. The dependence on the fitted rawBL parameter on the
choice oft1, the~fixed! time position of one interpolating field, and
on the fit ranget2,min2t2,max of the other. Clustered points have
different t2,max. All fits take into account correlations int2, and are
not displayed if the naive quality of fitQ does not exceed 0.2.

FIG. 6. Same as for Fig. 4 but for theOR operator.

FIG. 7. Same as for Fig. 4 but for theON operator.
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and 3<t2<6, a moderately aggressive choice which has
good x2/NDF (0.83/3, 0.59/3, 0.41/3, 0.68/3 fork50.152,
0.154, 0.155, 0.156, respectively!, small statistical errors,
and fit-range systematic errors which are smaller than, but
comparable to, the statistical errors. The fit-range systematic
errors are determined from the standard deviation of all
‘‘reasonable choices.’’

Figures 6, 7, and 8 show similar plots for the raw lattice
values forBR , BN , andBS , respectively. Figure 9 shows the
ratio of correlation functions defined in Eq.~2.7! from which
the desiredBB parameter is extracted. Again, the plot pla-
teaus early with small statistical errors. Figure 10 shows that,
again, the value is insensitive to the choice of fit region.~For
our central choice of fit range, thex2/NDF are 0.74/3, 0.57/3,
0.43/3, 0.67/3 fork50.152, 0.154, 0.155, 0.156, respec-
tively.! We could also calculate the finalBB parameter from
the appropriate linear combination of the four fitted raw val-
uesBL , BR , BN , andBS , as in Eq.~2.6!. The x2/NDF are
good forBR ~0.71, 0.67, 0.55, 0.33! andBN ~0.60, 0.42, 0.36,
0.40!. The worstx2/NDF are forBS ~1.38, 1.30, 1.14, 0.85!.
The two procedures, combine-then-fit versus fit-then-

combine, could give different answers in principle~for finite
statistics!, but in practice we see little difference.

As shown in Table I, each raw latticeB parameter is close
to 1.0 with small statistical errors, so our final value2 for
BB(mb

!) is also close to 1.0, the VSA value, with similarly
small statistical errors.

IV. PERTURBATIVE MATCHING

To calculate the continuum value of theBB parameter, our
‘‘raw’’ lattice results, listed in Table I, must be multiplied by
a lattice-to-continuum perturbative matching coefficient. Af-
ter we finished the first analysis of our data@13#, we found
that our value forBB was approximately 30% higher than the
result of a similar simulation by the UKQCD Collaboration
@21#. We suspected that this difference was due to more than
just the difference in the actions. This motivated us to do a
very careful study of the perturbative matching, using the
results in the literature, so that we obtained the ‘‘best value’’
of BB using the information available to us.~This is dis-
cussed further in Secs. V, VI, and VII.! We also studied the
systematic errors in the perturbative matching to find the
reason for the disagreement between the UKQCD Collabo-
ration’s result and ours.

For convenience, we shall refer to theDB52 effective
Hamiltonian, obtained from the standard model by integrat-
ing out the top quark and the heavy vector gauge bosons, as
the ‘‘full’’ theory although this is also an effective field
theory. The perturbative matching is broken into two stages:
full QCD to the continuum-static theory and the continuum-
static theory to the lattice-static theory. For the matching of
full QCD to the continuum-static theory, the relevant pertur-
bative results have been calculated to do a next-to-leading-
order analysis of the ln(m/mb) terms. The use of
renormalization-group-improved perturbation theory reduces
the renormalization-scheme dependence and the effects of
the different ways of definingg5 in dimensional regulariza-
tion @22#.

2BB is evaluated atmb
! , which is the scale at which the running

mass ism(mb
!)5mbpole

54.72 GeV@11,19,20#.

FIG. 8. Same as for Fig. 4 but for theOS operator. Note the
normalization as explained in Table I.

FIG. 9. The ratio of~the linear combination of! three-point func-
tions to two-point functions which approachesBB for large Euclid-
ean times.

FIG. 10. Same as for Fig. 5 but for theBB parameter itself.
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Two scales are necessary for the perturbative matching:
the scalemb5O(mb) of the matching to the full theory~we
choosemb5mb

! , wheremb
! is defined as mentioned earlier in

footnote 2! and the scalem of the matching to the lattice
theory ~we choosem5q!, which is determined from the
Lepage-Mackenzie scale formulation@23# as discussed later
in this section!. Also, as emphasized by Ciuchiniet al. @24#,
it is important to check the stability of the perturbative coef-
ficient at next-to-leading order as the renormalization scale is
changed.

We choose, as do others@21,25,26#, to evaluate the full-
theory operatorOf at mb :

^Of~mb!&5 (
i 5L,S

C i
f c~mb ;m!^Oi

c~m!&, ~4.1!

where terms of order 1/m have been dropped. We use a
double-argument notation similar to Ref.@26# to emphasize
that this matching of the continuum-static theory to the full
theory involves two theories (f and c) and two scales (mb

and m). C i
f c(mb ;m) includes a running of the scale in the

continuum-static theory which can be written explicitly due
to the form of the solution to the renormalization group
equation~RGE! for the coefficients~see, for example,@27#!:

C i
f c~mb ;m!5C j

f c~mb ;mb!S TgexpH 2E
gc~m!

gc~mb! ĝc~ ḡ !

bc~ ḡ !
dḡJ D

j i

[C j
f c~mb ;mb!~ÛT! j i

c ~mb ,m!. ~4.2!

Since we focus on the transformation of the operators, we
treat the coefficientsC as a row vector and transpose (T) the
matrix U to be consistent with the common notation forU
@28,29# which treats the coefficients as a column vector:
(CT) i

c f(m;mb)5Û i j
c (m,mb)(CT) j

c f(mb ;mb) for which

Ûc~m,mb!5TgexpS E
gc~mb!

gc~m! ĝcT~ ḡ !

bc~ ḡ !
dḡD . ~4.3!

The superscript-labelc indicates that the variables are for the
continuum-static theory in which some degrees of freedom
have been removed. Notice that the continuum-static scale-
evolution matrix scales only the static-theory argument of
the coefficient. Thus, Eq.~4.1! becomes

^Of~mb!&5 (
i , j 5L,S

C i
f c~mb ;mb!~ÛT! i j

c ~mb ,m!^Oj
c~m!&,

~4.4!

which is read, right-to-left, as ‘‘The static theory operator is
scaled fromm to mb where it is matched to the full theory.’’

An alternative, not used here, is to evaluate the full theory
operator at the same scalem as is the static-theory operator,
so that

^Of~m!&5 (
i 5L,S

C i
f c~m;m!^Oi

c~m!&

5 (
i , j 5L,S

~ÛT! f~m,mb!C i
f c~mb ;mb!~ÛT! i j

c ~mb ,m!

3^Oj
c~m!&. ~4.5!

@The generalization to multiple full-theory operators would

include full-theory subscripts onOf , (ÛT) f , andC i
f c .# Equa-

tion ~4.5! reads, right-to-left, ‘‘The continuum-static theory
operator is scaled in the static theory fromm to mb where it
is matched the full theory and then scaled back frommb to m
in the full theory.’’ If U is treated to lowest order, summing
neither the leading nor subleading order logarithms, then this
reduces to the approach used by Flynnet al. @7# who do not
use the RG. The full-theory anomalous dimension appears
there since this approach includes running the scale in the
full theory.

Returning to Eqs.~4.1! and ~4.4!, matching in the con-
tinuum ~with mb5mb

! andm5q!) gives

^Of~mb
!!&5CL

f c~mb
! ;q!!^OL

c~q!!&1CS
f c~mb

! ;q!!^OS
c~q!!&.

~4.6!

We use the solution of the RG equation for a matrix of op-
erators which is discussed by Ciuchiniet al. @25# and
Buchalla@26# in more detail:

TABLE I. The raw latticeB parameters for the operatorsOL , OR , ON , andOS which appear in the
lattice-continuum matching, and the linear combinationBO

L
full[BB as a function ofk and extrapolated tokc .

The first errors are statistical~bootstrap! and the second are systematic due to choice of fit range. Note that
OS has a VSA value different from that ofOL ; with our normalization for the rawB parameters~a common

denominator equal to the VSA value ofOL) 2
8
5 BS would identically equal 1 if VSA were exact.
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CL
f c~mb

! ;q!!5CL
f c~mb

! ;mb
!!

3S as
c~mb

!!

as
c~q!!

D p0,L
c

F11
as

c~mb
!!2as

c~q!!

4p
p1,L

c G
1CS

f c~mb
! ;mb

!!
g0S,L

c

g0L,L

c 2g0S,S

c

3F S as
c~mb

!!

as
c~q!!

D p0,L
c

2S as
c~mb

!!

as
c~q!!

D p0,S
c G , ~4.7a!

CS
f c~mb

! ;q!!5CS
f c~mb

! ;mb
!!S as

c~mb
!!

as
c~q!!

D p0,S
c

~4.7b!

with

p0,i5@g0i ,i
/~2b0!# and p1,i5@p0,i~g1i ,i

/g0i ,i
2b1 /b0!#.

~4.8!

In Table II we list the values of the anomalous dimensions of
the various operators required in this calculation~all calcu-
lated using the naive dimensional regularization scheme!.
The coefficients from the first and second terms of theb
function are defined as

b0[
b0

4p
5

112~2/3!nf

4p
, b1[

b1

16p2
5

1022~38/3!nf

16p2
.

~4.9!

TABLE II. Anomalous dimensions as defined by various groups and used here. Thep’s are defined in Eq.
~4.8!. All the results have been calculated using the naive dimensional regularization scheme.

Ref.
Their

notation
Our

notation Value

Ciuchini et al. @25#, Buchalla@26# g11
(0)

g0L,L

c 28
Giménez @30# 4g1

~1!u
MS

Ciuchini et al. @25#, Buchalla@26# g11
(1)

g1L,L

c
2

4

9S202126
p2

6
2 16nfDGiménez @30# 16g1

~2!u
MS

Ciuchini et al. @25#, Buchalla@26# g21
(0) g0S,L

c 4
3

Ciuchini et al. @25#, Buchalla@26# g22
(0) g0S,S

c 2
8
3

Ciuchini et al. @25#, Buchalla@26# d1 p0,L
c

ĝ0L,L

c

2b0

Ciuchini et al. @25#, Buchalla@26# d2 p0,S
c

ĝ0S,S

c

2b0

Ciuchini et al. @25#, Buchalla@26# 2J p1,L
c p0,L

c Sg1L,L

c

g0L,L

c 2
b1

b0
D

Duncanet al. @11,31–34#

g0 g0,A
c 24

g1 g1,A
c 2254

9
2

56p2

27
1

20nf

9

Buraset al. @35# g0 g0L,L

f 4

Buraset al. @35# g1 g1L,L

f (271
4
9 nf)

p0,A
f 0

p1,A
f 0
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To obtain the leading-log expressions from the explicit solu-
tions of the renormalization group equations that we quote,
all quantities with a subscript 1 are omitted. In Eq.~4.7b! the
higher-order terms ofUc have been dropped when multiplied
by CS

f c becauseCS
f c is of orderas . We found that the inclu-

sion of theCS
f c(UT)S,L

c term in our analysis was less than
0.05% of theCL

f c(UT)L,L
c term; this is smaller than the few

percent effect which was quoted in Refs.@25,26#. Our ratio
of the coupling atm to that atmb was close to 1 because the
automatic scale-setting procedure selected a scaleq! which
was close tomb

! . As the difference between the scalesm and
mb gets bigger, (UT)S,L

c , which includes the leading off-
diagonal terms in the anomalous dimension matrix, gets
larger.

We will now discuss the matching of the continuum-static

theory to the lattice-static theory. The relevant perturbative
calculations have been done by Flynnet al. @7#. We want to
calculate the full theory atmb

! :

^Of~mb
!!&5CL

f c~mb
! ;q!!@ZL

cl~q!;a!^OL
l ~a!&1ZR

cl~q!;a!

^OR
l ~a!&1ZN

cl~q!;a!^ON
l ~a!&]

1CS
f c~mb

! ;q!!ZS
cl~q!;a!^OS

l ~a!&, ~4.10!

whereZcl(q!;a) relates the bare lattice-static theory matrix
element to the renormalized continuum-static theory matrix
element. After linearizing the productCf c(mb

! ;q!)Zcl(q!;a)
and allowing a separate coupling for continuum-static (as

c)
and for lattice static (as

l ) we find

^Of~mb
!!&5H S as

c~mb
!!

as
c~q!!

D p0,L
c

F11
as

c~mb
!!2as

c~q!!

4p
p1,L

c 1
as

c~mb
!!

4p
~214!1

as
l ~q!!

4p
@4ln~q!2a2!221.7#G

2
1

4F S as
c~mb

!!

as
c~q!!

D p0,L
c

2S as
c~mb

!!

as
c~q!!

D p0,S
c Gas

c~mb
!!

4p
~28!J ^OL

l ~a!&1S as
c~mb

!!

as
c~q!!

D p0,L
c

H as
l ~q!!

4p
~21.61!^OR

l ~a!&

1
as

l ~q!!

4p
~214.4!^ON

l ~a!&J 1S as
c~mb

!!

as
c~q!!

D p0,S
c

as
c~mb

!!

4p
~28!^OS

l ~a!&, ~4.11!

where we have updated the results of Flynnet al. @7# by including (UT)S,L
c @25,26#, by choosing the convention that the

static-light two-point function be fit to theAe2mt model @21,36#, and by including tadpole improvement@37#.
Throughout this paper we assume the convention that thef B decay constant is extracted from the heavy-light correlators

using the modelAe2mt. Using this model changes the heavy-quark wave-function renormalization integral, denotede, to a
reduced valuee(R) ~see Eichten and Hill@36#!. As mentioned by the UKQCD Collaboration@21#, this changes theDL5265.5
of Flynn et al. ~the additive constant in the matching of the continuum-staticOL

c operator to the lattice operator! to DL
(R)5

238.9. However,e(R) also appears inZA
cl ; thus, the final values for the coefficients of theB parameters are independent of this

choice if the ratio is linearized inac anda l . In addition, any tadpole-improvement effects alter the three-point function by
twice as much as each two-point function; linearizing the ratio cancels these effects exactly. However, when considering the
three-point function and two-point function separately, one ought to include the effects of tadpole improvement. This changes
the DL

(R)5238.9 to DL
(R,tad)5221.7, as in Eq.~4.11!. The large perturbative factors of the wave-function renormalization

largely cancel in the expression for theBB parameters.
To calculate the coefficients ofBB , the renormalization coefficient of the axial current in the static approximation is

required@31–34,36,38#; we linearized the results quoted in Duncanet al. @11#:

ZA[CA
f c~mb

! ;q!!ZA
cl~q!;a!

5S as
c~mb

!!

as
c~q!!

D p0,A
c

F11
as

c~mb
!!2as

c~q!!

4p
p1,A

c 1
as

c~mb
!!

4p S 2
8

3D1
as

l ~q!!

4p
@2ln~q!2a2!218.59#G , ~4.12!

where the218.59 is from using thee(R) mentioned above as well as including tadpole improvement. If tadpole improvement
had not been used, then this value would be227.16. Ife had been used instead ofe(R), then this value would be240.44. As
long as one is consistent between Eqs.~4.11! and ~4.12!, these effects cancel out of the linearized result forBB .

The perturbative coefficients for theBB parameter can be obtained by dividing the four-fermion results by the square ofZA

and expanding the expressions linearly inas :
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BB~mb
!!5H S as

c~mb
!!

as
c~q!!

D p0,L
c

22p0,A
c

F11
as

c~mb
!!2as

c~q!!

4p
~p1,L

c 22p1,A
c !1

as
c~mb

!!

4p S 2
26

3 D1
as

l ~q!!

4p
~15.41!G

2
1

4F S as
c~mb

!!

as
c~q!!

D p0,L
c

22p0,A
c

2S as
c~mb

!!

as
c~q!!

D p0,S
c

22p0,A
c Gas

c~mb
!!

4p
~28!J BL1S as

c~mb
!!

as
c~q!!

D p0,L
c

22p0,A
c

H as
l ~q!!

4p
~21.61!BR

1
as

l ~q!!

4p
~214.4!BNJ 1S as

c~mb
!!

as
c~q!!

D p0,S
c

22p0,A
c

as
c~mb

!!

4p
~28!BS , ~4.13a!

BB~mb
!![ZBL

BL1ZBR
BR1ZBN

BN1ZBS
BS ,

~4.13b!

where ZBX
5Lin(ZX /ZA

2)5Lin@(CX
f cZX

cl)/(CA
f cZA

cl)2#, X is

one of $L,R,N,S%, and ‘‘Lin’’ signifies that the ratio is lin-
earized as explained later in Sec. V. The wave-function nor-
malization factors of the quarks cancel between the numera-
tor and denominator; no tadpole factors are required for this
calculation if the coefficients are linearized. We also note
from the values in Table II thatp0,L

c 22p0,A
c is identically

zero. However,p0,S
c 22p0,A

c and p1,L
c 22p1,A

c are not. If Eq.
~4.13b! were expanded into explicit ln(m/mb) terms, then to
first order the perturbative matching coefficients would not
contain any logs.

To calculate numerical values of the coefficients, we
choose values for the scalesmb andm, and for the couplings
as

c andas
l . For as

l , we useaV , the coupling introduced by
Lepage and Mackenzie@23#. We use the plaquette value
2 lnW1150.5214 atb56.0. In the quenched approximation
(nf50),

2 ln~W11!5
4p

3
aVS 3.41

a D F12aVS 3.41

a D ~1.19!G ,
~4.14!

which uses a lattice coupling which evolves with the form

as~m!5H b0lnS m2

L2D 1
b1

b0
lnF lnS m2

L2D G J 21

, ~4.15!

where theb are defined in Eq.~4.9!. Equation~4.14! defines
aV and givesLVa50.169.

Because the continuum-to-lattice matching is known only
to one loop, these perturbative expressions are sensitive in
principle to the value of the scale used in the matching. This
dependence can only be reduced by calculating higher-order
loops. However, Lepage and Mackenzie@23# have described

a plausible procedure for determining the scale and they have
successfully tested this method for a number of quantities.

The Lepage-Mackenzie scaleq! is obtained from

^ ln~qa!2&5

E d4q f~q! ln~q2!

E d4q f~q!

, ~4.16!

q!a5expS 1

2
^ ln~qa!2& D , ~4.17!

where f (q) is the finite integrand of the lattice graphs; note
that f (q) is defined by assuming that all the perturbative
expressions are expanded linearly in the coupling. We used
the integrands of Flynnet al. @7#. ~These have been con-
firmed by Borrelli and Pittori@39#.! In Table III, we show the
value of the scale for several operators. Our value for the
scale for the static-light axial current,q!a52.18, agrees with
the calculation by Herna´ndez and Hill@37#.

The Lepage-Mackenzie scales for the individual operators
in Table III are all around 2.0; however, the combined op-
erator forBO

L
full has a lower scale of 1.22.~The scale quoted

for BO
L
full in the original preprint and conference proceeding

@14# was incorrect.! Morningstar@40# also found very low
scales for the perturbative renormalization of the quark mass
in NRQCD ~also see the comments by Sloan@41#!; though
this could be related to renormalon effects@42#. Using the
scale of 1.22 gave large perturbative corrections. The
Lepage-Mackenzie scale-setting procedure could be con-
fused by taking the ratio of matrix elements of two operators
that are approximately the same~obviously it would be in-
appropriate for the case of two equal operators becausef
would be identically zero!. We chose to use the scale of
2.18/a as this is a typical scale for bothAm andOL

full .

TABLE III. Renormalization scales determined by the Lepage-Mackenzie prescription for the axial-
vector currentAm , for the raw lattice operatorOL , and forOL

full , are similar. Using this prescription for a
ratio of matrix elements~as for BB) is unstable, as described in the text; therefore, we choose 2.18 as the
scale appropriate forBB .
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We usedLQCD
(5) 50.175 GeV from Duncanet al. @11#.

They chose values fora21 obtained from the charmonium
system due to the low systematic errors. Although they do
not quote a value fora21 at b56.0, they did extrapolateLV
from a21 at b55.7, 5.9, and 6.1 in order to finda21 at
b56.3. We used this idea to interpolate toa2152.1 GeV for
b56.0. We also used their method for calculatingmb

! ; how-
ever, our number differs slightly because of the difference
between the form of Eq.~4.15! and

as~m!5
1

b0ln@~m2/L2!#
F12

b1

b0
2

ln@ ln~m2/L2!#

ln~m2/L2!
G .

~4.18!

With the full-to-continuum scale set asmb5mb
!54.33 GeV

and the continuum-to-lattice scale set byma5q!a52.18,
we find as

c(mb
!)50.21 andas

l (q!)50.18.
Using a Monte Carlo technique, we estimated the error on

the staticBB parameter due to varying the values of the
parameters used in the perturbation theory. A sample of one
thousand was generated using uniform deviates for the renor-

malization scale, lattice spacing, the continuumLQCD, and
the bottom quark mass. The central value for each ‘‘input’’-
parameter distribution was set equal to our best value, based
on those used in Refs.@11,37#. Rather than assume that the
input parameters are known to three significant figures, we
took up to 20% of this value to be the standard deviation for
each input parameter. The final results were sorted numeri-
cally and the 68% error range was taken as the ‘‘output’’
error. This procedure should produce more accurate esti-
mates of errors than naive error analysis. Table IV shows the
resulting error in the coefficients. Table V shows the corre-
sponding error inBB . The BB parameter is very insensitive
to rather large changes in these parameters. Variations of
20% in these parameters change theBB parameter by less
than the statistical bootstrap errors. It is particularly impor-
tant that the results are not sensitive to the lattice spacing
because there are a wide range of possible lattice spacings
that could have been used:a2151.94 GeV from the string
tension @43#, a2152.3 GeV from ther mass @18#, and
a2152.4 GeV from Upsilon spectroscopy@44#.

To compare the results ofBB parameters, in the next sec-
tion we list our results in terms of the one-loop and the

TABLE IV. The absolute changes from our preferred values of the coefficientsZBL
, ZBR

, ZBN
, andZBS

as

the parametersq!a, a21, mb
! , and LQCD

(5) , are varied by 10 and 20 % first individually, and then jointly
~‘‘All’’ !, from our preferred values. We do not imply and need not assume that the input parameters are
known to three significant figures~indeed the coefficients are quite insensitive to 20% variations in the values
of the parameters!; rather, we chose central values based on Refs.@11,37#.
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two-loop renormalization-group-invariant parameter@35#.
We also scaleBB down to 2.0 GeV for the comparison to
some other groups which is discussed later~Sec. VI!.

To compare at one-loop, we scaledBB and calculatedB̂B
using

BB~m1!5S as~m1!

as~m2! D
p0,L

f
22p0,A

f

BB~m2!, ~4.19!

B̂B5as~m2!2~p0,L
f

22p0,A
f

!BB~m2!, ~4.20!

wherep is defined in Eq.~4.8! with the relevant anomalous
dimensions listed in Table II. For the one-loop calculation,
we used

as
21~m!5b0lnF S m

L D 2G . ~4.21!

Although a one-loop calculation is traditional, one can
also calculate a two-loop renormalization-group-invariantB̂B
parameter since the required perturbative calculations have
been done:

BB~m1!5S as~m1!

as~m2! D
p0,L

f
22p0,A

f

3S 11
as~m1!2as~m2!

4p
~p1,L

f 22p1,A
f ! DBB~m2!,

~4.22!

B̂B5as~m2!2~p0,L
f

22p0,A
f

!

3S 12
as~m2!

4p
~p1,L

f 22p1,A
f ! DBB~m2!. ~4.23!

Again p is defined in Eq.~4.8! and the relevant anomalous
dimensions are listed in Table II. Equation~4.15! was used
to scaleBB and calculateB̂B to second order.

In making a comparison to other groups, one can use
either BB evaluated at some scale orB̂B . There are disad-
vantages to both. For the former, either a common scale
needs to be agreed upon orBB must be scaled. For the latter,
the dependence ofB̂B on the choice ofnf and L is not
negligible;B̂B can vary by as much as 4 to 5 %~see Sec. V!.
This dependence is also relevant to using one-loop versus
two-loop because the difference in the value ofL (nf ) be-

tween Eqs.~4.21! and ~4.15! can vary by as much as 10%.
The advantage to comparingBB at some scale is that the
dependence onnf andL is less significant ('1%, see Table
V!. Also, given a value forBB(mb

!), one can quote a value
for B̂B using either 4 or 5 flavors sincemb

! is the boundary
betweennf 5 4 and 5 flavors. These give different constant
values ofB̂B for the different flavor regimes. One should be
explicit about which is quoted.

Even though the numerical results are for the quenched
theory, we usenf55 for m>mb

! and nf54 for m<mb
! .

There is some evidence from studies of the QCD coupling
that the effects of omitting dynamical fermions can be mod-
eled by using the correct number of flavors in theb function
~see Sloan@41# for a review!.

V. SYSTEMATIC ERRORS IN THE MATCHING

The discussion until now has not revealed any large sys-
tematic errors in the perturbative matching that could explain
the difference between our result and UKQCD’s. In this sec-
tion we investigate the systematic error caused by combining
the perturbative coefficients for the two-point and three-point
functions in different ways to form the matching coefficient
for the BB operator. The UKQCD Collaboration found a
20% effect when they changed the way they organized their
perturbative coefficients@21#.

We consider three different ways of calculating the coef-
ficients ZBX

to consider these effects. For convenience, we

define the following, whereX is one of$L,R,N,S,A%:

ZX[product of ~CX
f cZX

cl!

5S as
c~mb

!!

as
c~q!!

D p0,X
c

S 11
as

c~mb
!!2as

c~q!!

4p
p1,X

c

1
as

c~mb
!!

4p
~DX

c ! D S 11
as

l ~q!!

4p
@dX

l ln~q!a!21DX
l # D ,

~5.1!

Lin~ZX![ linearization of ~CX
f cZX

cl!

5S as
c~mb

!!

as
c~q!!

D p0,X
c

S 11
as

c~mb
!!2as

c~q!!

4p
p1,X

c

1
as

c~mb
!!

4p
~DX

c !1
as

l ~q!!

4p
@dX

l ln~q!a!21DX
l # D .

~5.2!

TABLE V. The absolute changes inBB , from Eq.~2.6!, due to changes in the coefficientsZBL
, ZBR

, ZBN
,

andZBS
as the parametersq!a, a21, mb

! , andLQCD
(5) are varied jointly by 10% and 20% from our preferred

values.

56 7003CALCULATION OF THE BB PARAMETER IN THE . . .



We wish to compare three forms of linearization: ‘‘fully lin-
earized’’ Lin(ZL /ZA

2), ‘‘not linearized’’ ZL /ZA
2 , and ‘‘par-

tially linearized’’ Lin(ZL)/Lin(ZA)2. The UKQCD Collabo-
ration compared their Lin(ZL)/Lin(ZA)2 to ZL /Lin(ZA)2

when they found their 20% effect inBB . SinceCA
f c is very

close to 1, Lin(ZA) is approximately equal toZA . Thus com-
paring their preferred Lin(ZL)/Lin(ZA)2 to their alternative
ZL /Lin(ZA)2 is essentially the same as comparing
Lin(ZL)/Lin(ZA)2 ~partially linearized! to ZL /ZA

2 ~not linear-
ized!.

To allow a direct comparison with others, our not-
linearized results have changed somewhat from those re-

ported in the conference proceedings@14# and the original
preprint of this article which calculated the not-linearized

result forZR andZN as @as
c(mb

!)/as
c(q!)#p0,L

c
ZX

cl rather than
CL

f cZX
cl .

In Table VI we show the coefficients of the individualBB
parameters for the three different linearizations described,
both with and without tadpole improvement. Table VII
shows the corresponding value forB̂B at both one-loop and
at two-loops. The variation among the three different linear-
izations of the non-tadpole-improved coefficients is much
larger than for the tadpole-improved coefficients. Because
there are equal numbers of quarks in the numerator and de-

TABLE VI. The effects of different linearizations on the coefficients: The errors on the coefficients are
the statistical errors of varying the parametersq!a, a21, mb

! , andLQCD
(5) by 20% from our preferred values.

The error bars onBB(mb
!) are the bootstrap errors.BB(mb

!) is the chiral extrapolation of the ‘‘combine-then-
fit’’ values from Eq.~2.7!.

TABLE VII. From the BB(mb
!) result extracted by Monte Carlo, listed in Table VI, we calculated aB̂B

with both 4 and 5 flavors~see text!. The Lin(ZX /ZA
2) results are our preferred values. As mentioned in the

text, B̂B varies withnf andL (nf ) as well as with loop order.

7004 56CHRISTENSEN, DRAPER, AND MCNEILE



nominator, the individualBB parameters should be indepen-
dent of the wave-function normalization of both the heavy
and the light quarks. This implies that the coefficients should
be independent of tadpole improvement. Tables VI and VII
show that this is only true for the fully linearized quantity
Lin(ZL /ZA

2).
From Table VI, the overall change inBB(mb

!) for the
three different linearizations, when calculated with the
tadpole-improved coefficients, is 20%. However, when cal-
culated from non-tadpole-improved perturbative coefficients,
BB(mb

!) can change by a much larger factor. This suggests
that the order-a2 effects may be large. While these can be
treated in a variety of ways, we think that they can be treated
well or treated poorly. For example, the use of tadpole im-
provement stabilizes the central values and reduces statistical
errors. The UKQCD Collaboration did not use tadpole im-
provement, which suggests that their perturbative coeffi-
cients may be unnecessarily sensitive to their choice of lin-
earization.~Their preferred choice is what we call ‘‘partially
linearized’’; they also considered what we call ‘‘not linear-
ized.’’! Their decision not to use tadpole improvement was
forced upon them by the way they implemented the light-
quark field rotations which were required to removeO(a)
corrections to matrix elements@15#.

We rank the various organizations of perturbation theory
in decreasing order of preference: fully linearized, not linear-
ized, partially linearized. We discuss, in turn, several~re-
lated! disadvantages with partially linearizing: larger relative
statistical errors, increased sensitivity to the value of the lat-
tice coupling constant~via choice of prescription!, and non-
optimal handling of order-a2 terms. First, due to the larger
off-diagonal coefficients in the terms of the sum in Eq.
~4.13b!, the numerical result forBB(mb

!) using non-tadpole-
improved partially linearized coefficients~the last row of
Table VI! has a larger relative statistical error than do the
results from the other choices of linearization.

Secondly, we studied the stability of the results from three
groups: theb56.2 clover-static UKQCD simulation@21#,
theb56.0 clover-static Gime´nez-Martinelli simulation@45#,
and ourb56.0 Wilson-static simulation~both tadpole im-
proved and not-tadpole improved!. All three of these groups
that have done staticBB simulations used slightly different
ways of evaluating the perturbative coefficients. We have
analyzed all simulation data consistently to facilitate com-
parisons of the results. We compared the linearizations for
two lattice couplings@ ã and aV(q!a52.18)# and for sum-
ming the logarithms@using renormalization-group~RG!
techniques# versus not summing the logarithms. These are
discussed further in Sec. VI. We see the same trends in each
group’s data. Each group’s partially linearized result is less
stable under variations ofa than is their not linearized or
fully linearized. Their fully linearized result is close to their
not-linearized result; these are 20% higher than their par-
tially linearized result.

Thirdly, we believe that partial linearization does a poor
job of organizing higher-order terms. The treatment of
O(a2) terms in partially linearized coefficients causes the
low values seen by all groups by linearizing some terms but
not the whole ratio. We prefer the fully linearized method
because it removes all of theseO(a2) terms~as in a Taylor

expansion! by linearizing the whole ratio. Fully or not lin-
earizing the coefficients treats theO(a2) terms more appro-
priately than does partially linearizing.

Our preferred choice of linearization~full ! can also be
motivated by the nonperturbative renormalization method,
introduced by the Rome-Southampton group@46#. The non-
perturbative renormalization method forBB parameter would
be very similar to that used to obtain the renormalization
constants for the kaonB parameter@47,48#, in which all the
factors of the lattice wave function normalization of the
quarks cancel explicitly for theB parameter. In perturbation
theory, this corresponds to our preferred full linearization.
The nonperturbative method only determines the lattice part
of the renormalization factor; a choice of linearization would
still have to be made for the continuum factor. However, the
continuum factor can and should be calculated to next to
leading order@46#, making it less sensitive to the different
choices of linearizations.

In summary, our preference for the treatment of the coef-
ficients is to linearize fully the ratio@in the notation of this
section,ZBL

is Lin(ZL /ZA
2)#. This gives a result which has no

order-a2 terms, which is insensitive to the inclusion of tad-
pole improvement and to the wave-function normalization
model by allowing explicit cancelations, and which reduces
the statistical errors inBB . The quantitative consequences of
our choice are discussed in the following section where we
compare the results of different groups.

Just as the numerical value ofBB is stable because of
cancelations of correlated fluctuations in numerator and de-
nominator, we have argued that so too are its perturbative
corrections when fully linearized. The fully linearized pertur-
batively calculated coefficients forBB are likely more reli-
able than those for the productBBf B

2 , the quantity which is

required in the analysis ofB̄ 0-B0 mixing experiments. In the
Appendix, we discuss our recommendation for how to lin-
earize the productBBf B

2 .

VI. WORLD COMPARISON

In Table VIII ~IX !, we show a collection of results from
several groups scaled to giveBB(mb

!), BB(2.0 GeV), and the

one-loop~two-loop! renormalization-group-invariantB̂B pa-
rameter. Results from both static and relativistic-quark simu-
lations are shown. The simulations using relativistic heavy
Wilson quarks@2,3,49,50# calculate theBB parameter for
quark masses around charm and extrapolate up to the physi-
cal mass, using a fit model of the form

BB5BB
01

BB
1

M
. ~6.1!

The value ofBB
0 should be the same as the static theory

result. ~It is better to do a combined analysis of relativistic
and static quarks to obtain a value forBB .) We call BB

0 the
‘‘extrapolated-static’’ value.

Tables VIII and IX show that values forBB obtained from
Wilson action simulations are basically consistent; the small
differences can be explained by small lattice-spacing and
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finite-volume effects. Our result is consistent with that of
Bernard and Soni, as reported by Soni@2#, for the extrapo-
lated static Wilson fermions.

After the original version of this article was completed,
data have been made available which allow a more detailed
comparison between ourselves~on the high end of the world
results! and others~on the low end!. First, we have added the
updated numbers from Gime´nez and Martinelli @45# to
Tables VIII and IX. Secondly, we note that Wittig@52# has a
nice review on the subject of leptonic decays of lattice heavy
quarks, in which he compares the results of UKQCD@21#,
Giménez and Martinelli@45#, and the preprint of this article.

In his Sec. 4.2, Wittig offers Table 9 for comparison,

using our non-tadpole-improved results. We find that the
tadpole-improved Wilson results improve the non-tadpole-
improved results, so we prefer to compare their clover-
improved results to our tadpole-improved results. Our analo-
gous comparison results in the numbers listed in Table X.

In the comparison, we usenf55 andLQCD
(5) 50.175 GeV

which result inas
cont(mb54.33 GeV)50.21. We also use our

two-loop LVa50.169 to scaleaV
latt(q!52.18a21)50.18.

Both as are with two-loops from Eq.~4.15!. We also com-

pare usingã56/(4pbu0
4), which is 0.132 for the UKQCD

Collaboration@21#, 0.1458 for Gime´nez and Martinelli@45#,
and 0.198 for us.~For each group, we usedu051/8kc to

TABLE VIII. The authors’ numbers, quoted at the listed value form2, have been scaled using Eq.~4.19!
to m52.0 GeV and tomb

!54.33 GeV. Theslanted numbers are those that the cited authors quote. We

calculatedBB(mb
!) in the Static-Wilson case and then scaled it to 2.0 GeV usingnf54 and calculated aB̂B

with both 4 and 5 flavors~see text!. The value quoted by this work uses the fully linearized tadpole-improved

coefficients. The JLQCD Collaboration cite theirL ’s asnf50 values. When Abadaet al. quotes aB̂B for the
Wilson quarks, they usenf50. We scaled both groups’ results using bothnf50 andnf54.

Method Ref. b
m2

~GeV! B(m2) nf

L
~MeV! B(2.0)

Two loop
B(4.33) B̂B

Static-Clover @21# 6.2 mb55.0 0.69(4)
5 130 - - 1.02(6)
4 200 0.75~4! 0.70~4! 0.98~6!

Static-Clover @21# 6.2 mb55.0 0.81~4!
5 130 - - 1.19~6!

4 200 0.87~4! 0.82~4! 1.14~6!

Static-Clover @45# 6.0 mb55.0 0.54(4)
5 151 - - 0.79(6)
4 200 0.59~4! 0.55~4! 0.77~6!

Static-Clover @45# 6.0 mb55.0 0.76(5)
5
4

151
200

-
0.82~5!

-
0.77~5!

1.11(7)
1.08~7!

Static-Wilson
this

work
6.0 mb

!54.33 0.98(4)
5
4

175
226

-
1.05~4!

0.98(4)
1.40~6!
1.36~6!

Extrap. Static @2# 5.7-6.3 m52.0 1.04(5)
4
4

200
226

1.04(5)
0.97~5!
0.97~5!

1.36~7!
1.34~6!

Extrap. Static @49# 6.4 m53.7 0.90(5)
0
4

200
200

0.94~5!
0.95~5!

0.89~5!
0.89~5!

1.21~7!
1.25~7!

Wilson-Wilson @2# 5.7-6.3 m52.0 0.96(6)
4
4

200
226

0.96(6)
0.90~6!
0.89~6!

1.25~8!
1.24~8!

Wilson-Wilson @2,3# 6.1 m52.0 1.01(15)
4
4

200
226

1.01(15)
0.94~13!
0.94~14!

1.32~20!
1.30~19!

0 239 0.96~5! 0.90~5! 1.21~6!

Wilson-Wilson @50# 6.1 mb55.0 0.895(47) 4 239 0.98~5! 0.91~5! 1.25~7!

5 183 - - 1.29~7!

0 246 0.90~6! 0.85~6! 1.14~8!

Wilson-Wilson @50# 6.3 mb55.0 0.840(60) 4 246 0.92~6! 0.85~6! 1.17~8!

5 189 - - 1.20~9!

Wilson-Wilson @49# 6.4 m53.7 0.86(5)
0
4

200
200

0.90~5!
0.91~5!

0.85~5!
0.85~5!

1.16(7)
1.19~7!

Sum rule @51# mb54.6 1.00(15)
5
4

175
227

-
1.08~16!

-
1.00~15!

1.43~22!
1.39~21!
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calculateã .! In addition, since the original UKQCD results3

do not sum the logarithms~using RG techniques!, Table X
lists both summing logs (S) and not summing the logs (S” ).

Rather than calculate aq!a @Eq. ~4.17!# and aLVa @Eq.
~4.14!# for the clover action, we used our values. SinceaV is
a function of (q!a/LVa), aV(q!) is the same for all three
groups. We note thata2152.9 was used for UKQCD and
a2152.1 was used for both Gime´nez and Martinelli and
ourselves. Sinceq!a was chosen to be 2.18 for all three
groups, the scales in the comparison of Table X are different.
This is the reason that the UKQCDS” results differ from
their S results. TheS” results are more sensitive to the scale
of the perturbative matching.

Though not listed in the table, we are able to reproduce

the results of both UKQCD@21# and Giménez and Martinelli
@45# for mb55.0 GeV, m5a21, nf54, and LQCD

(4)

50.200 GeV when we tailor the respective calculations ac-
cording to the method presented in each paper.4 Also, we
agree with the results of Wittig@52# for our S-aV entries
when we use his parameters.

Both the UKQCD Collaboration’s and Gime´nez’s and
Martinelli’s quoted values for the staticBB are lower than all
of the other results. One possible reason for these low results
is that they used the clover action for the light quarks, which
does not have corrections to the continuum limit that are

3UKQCD did investigate the use of renormalization group im-
proved perturbation theory, but they did not use it to calculate their
final results.

4To reproduce UKQCD’s@21# 0.69(4) and 0.81~the latter is our

conversion of their quotedB̂51.19), do not sum the logs, usema5

1, and do not include the cross term, (UT)LS
c , in the coefficient of

OL . To reproduce Gime´nez’s and Martinelli’s@45# Table III, sum
the logs and include the cross term, but usema51, even for the
aV(q!a52.18) case.

TABLE IX. This table repeats the analysis in Table VIII, using thetwo-loop renormalization group
invariantBB parameter.

Method Ref. b
m2

~GeV! B(m2) nf

L
~MeV! B(2.0)

Two loop
B(4.33) B̂B

Static-Clover @21# 6.2 mb55.0 0.69(4)
5 130 - - 1.09~6!

4 200 0.74~5! 0.70~4! 1.05~6!

Static-Clover @21# 6.2 mb55.0 0.81~4!
5 130 - - 1.27~6!

4 200 0.86~4! 0.81~4! 1.23~6!

Static-Clover @45# 6.0 mb55.0 0.54(4)
5 136 - - 0.86(6)
4 200 0.58~4! 0.54~4! 0.82~6!

Static-Clover @45# 6.0 mb55.0 0.76(5)
5
4

136
200

-
0.77~5!

-
0.81~5!

1.21(8)
1.16~8!

Static-Wilson
this

work
6.0 mb

!54.33 0.98(4)
5
4

175
246

-
1.04~4!

0.98(4)
1.50~6!
1.46~6!

Extrap. Static @2# 5.7-6.3 m52.0 1.04(5)
4
4

200
246

1.04(5)
0.98~5!
0.98~5!

1.49~7!
1.46~7!

Extrap. Static @49# 6.4 m53.7 0.90(5)
0
4

200
200

0.93~5!
0.94~5!

0.89~5!
0.89~5!

1.29~7!
1.35~7!

Wilson-Wilson @2# 5.7-6.3 m52.0 0.96(6)
4
4

200
246

0.96(6)
0.91~6!
0.90~6!

1.37~9!
1.35~9!

Wilson-Wilson @2,3# 6.1 m52.0 1.01(15)
4
4

200
246

1.01(15)
0.96~14!
0.95~14!

1.44~21!
1.42~21!

0 239 0.94~5! 0.90~5! 1.29~7!

Wilson-Wilson @50# 6.1 mb55.0 0.895(47) 4 239 0.96~5! 0.90~5! 1.35~7!

5 183 - - 1.36~7!

0 246 0.88~6! 0.85~6! 1.21~9!

Wilson-Wilson @50# 6.3 mb55.0 0.840(60) 4 246 0.90~6! 0.85~6! 1.26~9!

5 189 - - 1.30~9!

Wilson-Wilson @49# 6.4 m53.7 0.86(5)
0
4

200
200

0.89~5!
0.90~5!

0.85~5!
0.85~5!

1.24(7)
1.29~7!

Sum rule @51# mb54.6 1.00(15)
5
4

175
227

-
1.07~16!

-
1.00~15!

1.54~23!
1.50~22!
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linear in the lattice spacing, whereas the standard Wilson
fermion action does have such artifact terms. However, the
Wilson results are stable over four different lattice spacings,
which implies that the lattice artifact terms alone cannot ac-
count for the difference between the clover results and the
Wilson numbers.

Table X shows that the not-linearized~and fully linear-
ized! static clover results forBB are larger than the partially
linearized results, as is discussed in the original papers. The
clover-static results that use the not-linearized matching are
in better agreement, though still low, with the results from
simulations which use relativistic heavy quarks to simulate
theb quark~see Table VIII!. All the published data@2,49# on
calculatingBB using relativistic heavy quarks favor a nega-
tive value ofBB

1 in Eq. ~6.1!. For consistency, the static value
of BB should be higher than the value ofBB extrapolated to
the b quark mass. This is true for our result and favors the
higher clover-static results.

The various choices made in the calculation have non-
negligible effects. One can choose which action to use~Wil-
son vs clover!, whether or not to tadpole improve, and which
linearization method to use. The choice between our tadpole-
improved Wilson-static action and the non-tadpole-improved
clover-static action has a 15% effect in both the fully and
not-linearized (S-aV) cases. This is a 20% effect for the
partially linearized case. In addition, tadpole-improvement
stabilizes the Wilson-static results to the extent that one can
make a better comparison of different linearizations between
tadpole-Wilson static and clover static than between non-
tadpole-Wilson static and clover static. Finally, there is a
20% effect due to choice of linearization for either action.
This linearization effect is at least as large as the effect due
to choice of action. For reasons given in Sec. V, our favorite
choice of linearization is the fully linearized treatment.

A similar trend can be seen in each group’s results: par-
tially linearized values are smaller and less stable than either
not-linearized or fully linearized values. This is due to
O(a2) terms which may or may not cancel to varying de-
grees. The partially linearized treatment only linearizes part
of the ratio which causes its value to be misleadingly low.
The not-linearized and fully linearized treatments are better
because they do not do this. The fully linearized treatment is
preferred because it treatsO(a2) terms uniformly by remov-
ing them~as one does in an expansion!.

VII. CONCLUSION

Our primary result from this tadpole-improvedb56.0
Wilson-static calculation isBB(mb

!)50.9824
14

218
13 , where the

errors are statistical~bootstrap! and systematic, respectively.
The overall systematic error is obtained in quadrature from
the following: 23

13 from the choice of fit range,22
11 from the

parameter dependence of the perturbative-calculated mixing
coefficients, and218

10 due to the the choice of linearization of
the coefficients, as was discussed in Sec. V. The unusual
asymmetry of the latter systematic error reflects our prefer-
ence for a particular choice of linearization~‘‘full’’ !. Our
second favorite choice~‘‘not-linearized’’! results in a central
value of 0.96. We quote a very conservative systematic error
to encompass our least favorite choice (0.80 from ‘‘partial
linearization’’! even though we have argued against this
choice. Systematic errors from finite lattice spacing and from
quenching are not estimated.

Tables VIII and IX show that values forBB obtained from
Wilson action simulations are basically consistent; the small
differences can be explained by small lattice-spacing and
finite-volume effects. The simulations all favor a negative
value ofBB

1 in Eq. ~6.1! @2#. For consistency, this implies that

TABLE X. Comparison between the fit-then-combine@Eq. ~2.6!# analysis forB(mb) of the three groups’
data. These numbers are formb

!54.33 GeV,q!52.18a21, and nf55. FL is fully linearized, NL is not
linearized, and PL is partially linearized. M1, M2, and M3 refer to the notation of Gime´nez and Martinelli
@45# and Wittig @52#. We list both our tadpole-improved~tad! and our non-tadpole-improved~no-tad! results.
The errors are roughly estimated from statistical errors on the rawBX values and approximate errors on the

coefficients. See the text for comments onã andaV .
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the static value ofBB should be higher than the value ofBB

extrapolated to theb quark mass. Our number is on the high
end of the comparison in Table VIII and is consistent with
that of Bernard and Soni@2# who use extrapolated static Wil-
son fermions.

In Sec. V we investigated the effect of changing the way
the four-fermion operator renormalization and the axial-
current renormalization were combined to form the matching
coefficient for theBB parameter. We presented arguments
that suggested that our preferred way of organizing the
continuum-to-lattice matching~full linearization! was supe-
rior to any other method we considered. We also showed that
making a different choice could lower the result by as much
as 20%. Besides the linearizations, Table X shows a 15%
difference due to choice of action between our tadpole-
improved b56.0 Wilson-static and the non-tadpole-
improvedb56.0 and 6.2 clover-static results in the fully and
not-linearized cases.~The Wilson results are at the high end
of the world data and the clover results are at the low end.!
Partial linearization leaves a 20% effect due to choice of
action. The effect due to choice of linearization is at least as
large as the effect due to choice of action.

Although all organizations of perturbation theory at one-
loop are theoretically equal, some are more equal than oth-
ers. Fully linearizing gives a result which has no order-a2

terms and which is insensitive to the inclusion of tadpole
improvement and to the wave-function normalization model
by allowing explicit cancelations~which reduces the statisti-
cal errors inBB).

In our perturbative-matching procedure we included next-
to-leading order log terms and organized the perturbative
matching in a way that we believe reduces higher-order cor-
rections. Also we used the automatic scale-setting procedure
of Lepage and Mackenzie to find the ‘‘best’’ scale to use in
the lattice-to-continuum matching. The agreement of our re-
sults with relativistic heavy quark results supports our pro-
cedure. Our conclusion is that for the Wilson-static case, the
use of tadpole improvement and of a fully linearized treat-
ment of the mixing coefficients is preferred. Of course, this
may become less important numerically with increased cou-
pling and/or improved actions; however, we still recommend
the procedure.

Although sensible things can be done to reduce the effects
of higher-order perturbative corrections in the lattice-to-
continuum matching, this will remain the dominant uncer-
tainty in the calculation ofBB in the static theory. In prin-
ciple, ‘‘all’’ that is required is a calculation of the two-loop
anomalous dimension of theOL and Am operators on the
lattice. Although this calculation is very difficult, new devel-
opments in lattice perturbation theory for Wilson quarks@53#
and a new stochastic way of doing lattice perturbation theory
@54# may make these calculations more tractable in the fu-
ture. A more immediate solution would be to use the numeri-
cal renormalization technique, developed by the Rome-
Southampton group@46#, which has already been used to
determine the lattice perturbative coefficients for staticf B
@48#, for the kaonBK parameter@47#, and for other important
quantities.

The relative consistency of the WilsonBB results moti-
vates a large study using both relativistic and static quarks in
the same simulations to constrain the interpolation to theB

mass. To constrain the systematic errors, the results of simu-
lations with different lattice spacings and volumes should be
combined to take the continuum limit. This kind of study
will also help to control the perturbative-matching errors, as
the effects of the higher-order perturbative terms are reduced
as the continuum limit is taken.~A nice example of this for
the effects of different renormalization prescriptions on light-
quark decay constants has been given by the GF11 group
@55#.!

Once mixing in theB s
0-Bs

0 system has been measured
experimentally, the results can be combined with data from
B 0-B0 mixing experiments to calculate theVts /Vtd ratio of
CKM matrix elements. The advantage of calculating this ra-
tio is that various uncertain standard-model factors cancel.
However, a value ofBBs

f Bs

2 /BBf B
2 is required. As there are a

large number of lattice results on the calculation off Bs
/ f B

@10#, here we concentrate on the ratioBBs
/BB .

Using a fit model which is linear in the quark mass, we
obtain BBs

/BB50.9921
11(1). @The first error is statistical

~bootstrap! and the second is the standard deviation of the
fitted value for ‘‘reasonable choices’’ of fit range.# Even
though the ratioBBs

/BB is determined quite precisely, it is

not resolved whetherBBs
is greater than or less thanBB since

the BB parameter is found to depend weakly on the quark
mass. Other groups@21,50,56# have reported similar find-
ings. Most lattice simulations have found thatf Bs

is between

ten and twenty percent larger thanf B @10#. Bernardet al.
@56# have extracted the ratio ofBsf Bs

2 /BBf B
2 directly by doing

individual fits to the three-point function in relativistic quark
simulations. This is a promising approach for relativistic
heavy quarks. We did not try it because of concerns about
the signal-to-noise ratio and about the size of the perturbative
coefficients in the static theory.

Our result also contains an unknown systematic error due
to quenching. Quenched chiral perturbation theory predicts
the effects of quenching to be small forBB @57,58#; this
conclusion was confirmed by Bernard and Soni@2# who cal-
culatedBB in both quenched and dynamical simulations. In
Soni’s review@2# of the lattice calculation of weak matrix
elements at theLattice ’95 conference, he quotes a value of
BB(2 GeV)51.060.15 ~90% confidence! as his best esti-
mate of the BB parameter. Our result,BB(2 GeV)
51.0524

14
219
13 , is consistent with this value and with the

vacuum-saturation-approximation value 1.
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APPENDIX: LINEARIZATION STRATEGY FOR BBF B
2

In the analysis ofB 0-B0 mixing experiments the value of
BBf B

2 is required. Here we discuss the linearization options
for combiningBB and f B from a variety of linearizations of
these quantities. If a not-linearizedBB is multiplied with a
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not-linearized (f B)2, then the only order-a2 effects which
remain are due specifically to not linearizing the numerator
of BB . We estimate this effect to be on the order of 10%. If
one multiplies a partially linearizedBB with a linearizedf B ,
Lin(ZA)2, then there should be no order-a2 effects due to the
product. However, if one mixes a linearized with a not-
linearized BB and f B , then there can be terms of almost
20%. Although the difference betweenZA and Lin(ZA) is
smaller than 5%, the difference between Lin(ZA)2 and
Lin(ZA

2) is just over 15%. The practical drawback of using a
BB which is not linearized or is partially linearized is that
there are order-a2 terms present which may or may not can-
cel when theBB is combined with anf B .

The practical drawback to using the fully linearizedBB is
linearizing the productBBf B

2 . This is easily remedied. The
fully linearizedBB , Bfl , essentially has the form

Bfl5~11acA1a lC!Braw, ~A1!

where theBR , BN , andBS can be included by adjusting the
values ofA andC appropriately. When this is combined with
the square of the linearizedf ,

f lin5~11acD1a lE! f raw ~A2!

it would be convenient to get a linearized result with no
order-a2 terms:

~11acA1a lC12acD12a lE!Braw~ f raw!2. ~A3!

Since

~11aA!S 11a
B

11aAD5~11aA1aB!, ~A4!

this is straightforward to accomplish. The product ofBfl with
the linearized square of

f lin8 5S 11ac
D

~Bfl /BL
raw!

1a l
E

~Bfl /BL
raw!

D f raw ~A5!

gives Eq. ~A3! with no order-a2 terms due to coefficient
multiplication. OurBL

raw value can be read from the first row
of Table I.

While the product of the partially linearizedBB with the
linearized f B also does not have any order-a2 terms due to
coefficient multiplication, the partially linearizedBB by itself
has order-a2 terms which are on the order of 18%~See
Tables VI and VII!. The advantage of our method is that all
three quantitiesBB(mb

!), f B(mb
!), and BBf B

2(mb
!) have no

order-a2 terms due to coefficient multiplication, and that
BB(mb

!) is stable against the inclusion of tadpole improve-
ment and the choice of wave-function normalization.
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