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Calculation of the Bz parameter in the static limit
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We calculate thd8g parameter, relevant f@30-B° mixing, from a lattice gauge theory simulation@t 6.0.
The bottom quarks are simulated in the static theory, the light quarks with Wilson fermions. Improved smear-
ing functions produced by a variational techniquesT are used to reduce statistical errors and minimize
excited-state contamination of the ground-state signal. We olBg{4.33 GeV):O.QSffl1 (statff8 (syst)
which corresponds t@B = 1.40fg (statf‘z‘s(syst) for the one-loop renormalization-scheme-independent
parameter. The systematic errors include the uncertainty due to alterflatgefavorel treatments of the
perturbatively calculated mixing coefficients; this uncertainty is at least as large as residual differences between
Wilson-static and clover-static results. Our result agrees with extrapolations of results from relatiistic

son heavy quark simulation§S0556-282(97)03023-3

PACS numbses): 12.38.Gc, 12.38.Bx, 12.39.Hg, 14.40.Nd

[. INTRODUCTION Some of the first attempts at simulating the static theory
calculated both the decay constant and By parameter

The experimental observation BP-B° mixing allows, in  [5:6]. However, the required perturbative matching coeffi-
principle, the extraction of théV,,| Cabibbo-Kobayashi- cients were not kngwn; the_se have since bee_n'computed by
Maskawa(CKM) matrix elemen{1,2]. The overdetermina- Flynn et al.[7]. Their analysis showed that additional opera-

tion of the CKM matrix is a high-precision test of the stan—tort"?" ntot t';gwed n t?e first simulations, are required to
dard model of particle physics and is regarded as a potentiﬁS LIJnr]Elilerecer?tIpartig]es?nr{ulation of the static theory was
harbinger of new physics. The dominant uncertainty in the Y, y

extraction of V| from experimental measurements is due toproblematic because of excited-state contamination of the
td P ground-state signdl8—10]. The development of variational

thec_)renca; factors from nonperturbative QQD' Th_e key faC'technique$11,12 has finally allowed a reliable extraction of
tor is Bgf, wherefg is the B-meson semileptonic decay ihe decay constant. In this paper, we use a modern varia-
constant andBg is the “bag constant” for theB meson,  tjonal techniqug12] to obtain accurate estimates of the lat-
defined as the ratio of the matrix element of the operatotice matrix elements and combine these with the mixing co-

relevant for the mixing to its value in the vacuum-saturationefficients to calculate the statiBg parameter. At two

approximation(VSA). conference$13,14], we have reported preliminary results for
There have been a large number of lattice gauge theorhe value ofBg from this simulation.
simulations which have calculated tiig decay constant; Section Il outlines the method of extracting the relevant

however, much less work has been done on the calculation @hatrix elements from lattice correlation functions; Sec. il
the Bg parameter. The earliest res{8] suggested that the summarizes our numerical results. Section IV contains a
VSA works quite well; this result was unanticipated and issummary of the perturbative-matching techniques which,
quite nontrivial, as was reiterated by Sd@i. Later results rather explicitly, details our preferred way of organizing the
by other groups are surprisingly scattered, with significantalculation; we argue that our method reduces systematic
disagreement in some cagdg and with some results mark- errors in the matching coefficients which are then estimated
edly different than that suggested by VSA. Here we arguén Sec. V. In Sec. VI, a comparison is made to other groups
that, in fact, most raw lattice data are consistent with VSAas an illustration of the differences in the methods discussed
(including ours which are quite precise due to the use ofn Sec. V. The conclusion follows as Sec. VII.

improved smearing functiopsnd that groups differ due to

their choices of how to relate these to the full-theory con-

tinuum value. We argue that although large systematic un- IIl. NUMERICAL TECHNIQUES

certainties remain due to unknown higher-order contribu- The static-lightBg parameter is obtained from a combi-

tions in the mixing coefficients, it is possible to formulate the nation of two- and three-point hadronic correlation functions.
calculation in a way which is stable against changes in norThe required three-point function is

malization (such as tadpole improvemenOur result is in

accord with VSA and is also in agreement with the large-

mass extrapolation of calculatiofig] which use relativistic,  Cyy(ty,to)=>, >, (0|7 x(t1,X1) Ox(0,0) x(t2,X)]/0),
rather than static, heavy quarks. X1 Xp 21

*Now at Department of Physics, University of Utah, Salt Lake which has a fermion operator inserted at the spacetime origin
City, UT 84112. between two externaB-meson operatorg. The times are
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restricted to the rangg >0>t,. We use the spatially ex-
tendedB-meson interpolating field

x(X,0)=2 F(r)q(t,x+1)ysb(t,X), (2.2

wheref is a smearing function chos¢h2] to project out the
ground state efficiently. The four-fermion operatékg (with
Xe{L,R,N,S}) are defineblas[7]

(’)L:b_)/M(l— Ys)qb_yu(l_ ¥s)d,
OR:b—7’M(1+ Vs)qb_Y,L(l*' ¥5)4,
On=[2b(1—¥5)qb(1+ y5)q+2b(1+ ¥5)qb(1- ys)q

+byu(1-75)qby,(1+ )q
+b7,(1+y5)9by.(1- y5)al,

Os=b(1—1vys5)qb(1—-1s)q.

The operatorDg and Oy are introduced in the lattice and

(2.3

contribute toward€), because of the poor chiral behavior of

Wilson quarks. The operatd®g is introduced in the con-

tinuum and contributes because of the matching of full QC

to the static theory.
With the smeared-sink—local-sour¢®L) two-point func-
tion defined as

Co(ty) =2, (0|7 x(t1,X1)b(0,0) y4y5a(0,0)]|0)

X1

(2.4)

the “raw” lattice-static parameteBy are calculated via the
ratio of three- and two-point functions

Cax(ty,to) Itil>1

Bx(tl 1t2) = (8/3) Cz(tl)cz(tz)

By. (2.5
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FIG. 1. Effective massn(t+ 1/2)=InC(t)/C(t+1) from the LS
(local sink, smeared sourcéwo-point correlation functiorC(t).
The source was smeared with an optimal smearing function pro-
duced by thevosT [12] algorithm which was designed to eliminate
excited-state contamination.

We exploit time-reversal symmetry by averaging the cor-
relators ovett andT—t, whereT is the length of the lattice

I:)in the time direction. We fix one of the timégsin Eqs.(2.5

and (2.7) and vary the othet,; the result is fitted to a con-
stant. The fits include correlations in time, but not in the
chiral extrapolatior(a choice forced upon us by our limited
statisticg. The entire fitting procedure is bootstrappaee,

for example, Ref[15]) to provide robust estimates of the
statistical errors. An estimate of the systematic error due to
the choice of interval is made by calculating the variance of
the results from using all “reasonable” time intervals around
our favorite one.

A major problem with simulations that include static
guarks is that the signal-to-noise ratio decreases very quickly
with time [8,16,17; therefore, the operator which creates the
B meson must project onto the ground state at very early
times—before the signal is lost in the noise. Experience with
the calculation of thdz decay constant in the static theory

The Bg parameter itself can then be determined from thehas shown that reliable results can be obtained only if the
Bx=Bo,. extracted from fits of the Monte Carlo data to the B-meson operator is smeared with a very accurate “wave

form of Eq. (2.5, as the linear combination
BBZZBLBL+ZBRBR+ ZBNBN+ZBSBS7 (26)

where the perturbatively calculated mixing coefficiezgsx

are defined in Sec. IV. Rather than this “fit-then-combine” HVEI !
“combine-then-Produced byosT, we show in Fig. 1 the effective-mass plot

method, our quoted results will be from the
fit” method:

Itil>1
Bg(t1,t2)= Zg By(ty,t) —— Bg. (2.7)
x=CRN,S

function,” which can be obtained from a variational calcu-
lation on the lattice. We use the same smearing function as
was used in our calculation 6§ in the static approximation.
This was obtained from the variational technique, called
MosT [12], which we have developed for this purpose.

To demonstrate the effectiveness of the smearing function

[InC5%(t)/C5¥t+1) versust+ 1/2] for the two-point correla-

tion function using a localq function) sink at timet and an
optimally smeared source at time 0. The effective-mass plot
has plateaued at smallindicating the absence of significant
excited-state contaminatipiefore the signal-to-noise ratio
has degenerated, so that a very precise mass and amplitude

For infinite statistics, the two methods should give identicalcan be obtained by fitting over an early time range. If, in-

results.

stead, the same smearing function is used at the sink, with a
local (5 function) source, then it will still effectively remove
excited-state contamination. Yet, as demonstrated in Fig. 2,

We choose a standard normalization for which the VSA value forthis fact is obscured by much larger statistical fluctuations.

O, is (8/3)f3m3.

(Since the spatial points are summed over at the sink to
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FIG. 2. Same as for Fig. 1 but for the Stmeared sink, local
source two-point correlation function. The same optimal smearing
function is used to eliminate excited-state contamination, but stati
tical errors are larger since the sourcériecessarilya delta func-
tion.

project out zero momentum regardless of which smeari
function is used, smearing at the sink provides only margin

improvement in the signal and increases noise. In contras
smearing at the source greatly enhances the signal and d

creases the noise. For the local source the static quark
restricted to the spatial origin, and thus the statistics ar
poorer[9].)

We note that once an “optimal” smearing source has
been obtained from the two-point function using a varia-
tional technique, it can be used directly in other calculations

The three-point function does not need to be formulated as
variational problem, although ground-state dominanc
should still be monitored using the mass splitting betwee
the excited and ground states.

The static quark never evolves in space from the origi
because the four-fermion operator is at the spacetime origi

The B-meson operator is constructed by smearing the ligh

guark relative to the heavy qualkq. (2.4)]. Figure 3 shows
a schematic of the quark flow resulting from the Wick con-
traction of Eq.(2.1). The resulting two-point correlators are
smeared-sink—local-sour¢8L) correlators, which are much
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more noisy than local-smeardlS) correlators(as argued
above even though in the infinite-statistics limit they are
equal. Since three-point functions are, in general, noisier
than two-point functions, the “effective-mass” plots for
these are even noisier than that for the SL two-point func-
tion; it would be hopeless to get a precise result for a static-
light-meson matrix element without using a prohibitively
large number of configurations. But fortunately, because the
Bg parameter is aatio of matrix element§Eqg. (2.5], the
noise is reduced due to the cancelation of correlated fluctua-
tions between the numerator and denominator.

It has been argued that the prodﬁi@tfé and perturbative
corrections to it should be calculated directly since it, rather
thanBg, is the phenomenologically important quantity. But
there are several compelling reasons for calculafiggand
Bg separately. First, although the calculationByf, as for
Bgf2, is intrinsically more involved than is that ¢f (both
analytically, in the determination of perturbative corrections,
and computationally the numerical value oBg is more
stable than is the value of eitthfé or fg. Certainly,fg is
a very important physical quantity in its own right; it should
be and is calculated separately. For this, one need only cal-
culate a two-point function. However, the statistical fluctua-

mearing function obtained variationally, excited-state con-
amination can be substantial and can mislead interpretation.
this may explain the scatter in the world summary of lattice
Balculations offg [9,10].) Also, since its lattice-spacing de-

r%ons for fz are quite large; without the use of a reliable

?:)endence is rather large, especially when using the static

approximation, its continuum extrapolation is delicate and
prone to large systematic errors. Much computing effort is
required to evaluate this simple quantity. HowevBg, (or

BBfé) requires the calculation of a three-point, in addition to

a X . . . o . .
a two-point, correlation function. Since it is more involved, it

primary calculation offg and so fewer groups are likely to
calculate it. Yet, as borne out by our data, sifecan be

Fire strongly correlated, a quite precise value can be obtained,
with an optimal choice of smearing function, from relatively
few configurations. The calculational overhgadth compu-
tational and analyticalis large compared to the computa-
tional expense. Thus a handful of groups can fix precisely the
value of Bg once and for all, leaving for the wider commu-
nity the task of applying improvements in algorithms and
computers to the simpldi; . In the future Bg (in contrast to

fg and BBfé) need not be recalculated with every generation
of improvements.

Secondly, just as the numerical valueRy is stable be-
cause of cancelations of correlated fluctuations in numerator
and denominator, we argue that so too are its perturbative
corrections when linearized as is demonstrated in Secs. IV
and V. The perturbatively calculated coefficients By are
likely more reliable than those for the prodURgfé. Like-
wise, these are less likely to need updating with the next
generation of improvements in analytic methods.

Thirdly, it seems as though VSA is a surprisingly good

FIG. 3. Schematic diagram of the quark flow for the three-pointaPproximation for theBg parameter. This is an important
correlation function of Eq(2.1). The “targets” are intended to qualitative statement, of use to model builders, which should

represent the smearing of the light quark relative to the static quarklot be obscured by poor-statistics attempts to calculate the
The static quarks are restricted to the spatial origin. productBBfé.
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FIG. 4. RawB parameter for the, operator from Eq(2.5). FIG. 6. Same as for Fig. 4 but for th@g operator.
. NUMERICAL RESULTS of k. used was 0.157 and the value ofstrange was 0.155

[18].

Figure 4 shows, for the operat@, , the ratio of the
three- and two-point correlation functior®, (t;,t,), EQq.
?2.5), which asymptotically equal8, for large Euclidean
times.[In the figureB, (t;,t,) is graphed as a function ©§

The simulations were carried out on a®2030 lattice,
calculated on 32 gauge configurationsBat 6.0. (This num-
ber of configurations is more than adequate for a precis
estimate of thdg parameter with small statistical error since
an efficient smearing function is used. The use obdrhoc | ... t,=—2 held fixed] In fact, “large times” are remark-

smearing functlpn wquld have 'requw.ed an order of magr_]"ably small &2) because of the effectiveness of the smear-
tude more configurationsThe simulations were quenched;

the auge confiqurations were enerated using the standairn function in efficiently eliminating excited-state contami-
gaug 9 9 9 nation, a fact supported by Fig. 1.

Wilson pure-glue action. The gauge configurations were As with latti leulati f lation f .
fixed into Coulomb gauge(An ultraconservative gauge- S with any lattice calculation of correlation functions,
there is freedom in the choice of fit range and a balance

fixing convergence criterion was used such tRaiA was  peeds to be struck between fitting over too-early times, for
decreased to less than 10its unfixed valug. The gauge- which systematic errors due to excited-state contamination
fixing was done only to choose smearing functions, but SINC@nay be non-negligible, and over too-late times, for which
these cancel in ratios of correlation functions all results areatistical errors will be unnecessarily large. In Fig. 5 we

gauge invariantin the infinite-statistics limit Wilson light-  gispjay at,...- plot: the values for the fits of the rai, value

quark propagators, with hopping-parameter valae.152, (5t ,.=0.156) plotted for several choices of fit rangall of

0.154, 0.155, and 0.156 were used in our analysis. The valugyr fits take into account the correlations in Euclidean time
using the full-covariance matrix. For our central fit range, the
values of the fits differ little whether or not the correlations

B, by fit-range are included. The flatness of the plateau in Fig. 4 reflects the

14 ' ' insensitivity of the fitted value to the choice of fit range. For
1.3 - x=0.156 — this and other plots we choose as our central valyes—2
>0.2
1.2 Q h
14 T T T 1 T T T T
11 q s i
m =13 20%x30, §=6.0, 32 cfg. 1~ 4
o 10 b . ‘f . £=0.156 ]
12 - Z[18;n,=5;t =2t=3] -
09 : . T ]
o = — ~ 1.1 4
T 10 § -
07 | |+t~ - 1 g ST A
0.6 | | | +709 e
! 2 3 4 > Sos |- .
2,min @D
o7 -
FIG. 5. The dependence on the fitted rByw parameter on the | ’ ‘ | | | |
. ) . . . A 0.6
choice oft4, the(fixed) time position of one interpolating field, and 0 1 3 3 " 5 8 9
on the fit ranget, min—tomax Of the other. Clustered points have Time (t,)

differentt, .« All fits take into account correlations i3, and are
not displayed if the naive quality of fif does not exceed 0.2. FIG. 7. Same as for Fig. 4 but for th@y operator.
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FIG. 8. Same as for Fig. 4 but for th®g operator. Note the
normalization as explained in Table I. FIG. 10. Same as for Fig. 5 but for tii, parameter itself.

and 3<t,=<6, a moderately aggressive choice which hascombine, could give different answers in princigfer finite
good x?/Npe (0.83/3, 0.59/3, 0.41/3, 0.68/3 far=0.152, statisticg, but in practice we see little difference.
0.154, 0.155, 0.156, respectivglysmall statistical errors,  As shown in Table I, each raw latti& parameter is close
and fit-range systematic errors which are smaller than, buo 1.0 with small statistical errors, so our final valuer
comparable to, the statistical errors. The fit-range systematiBg(m;) is also close to 1.0, the VSA value, with similarly
errors are determined from the standard deviation of albmall statistical errors.
“reasonable choices.”

Figures 6, 7, and 8 show similar plots for the raw lattice IV. PERTURBATIVE MATCHING

values forBg, By, andBg, respectively. Figure 9 shows the T lculate th i | ft ;
ratio of correlation functions defined in E®.7) from which (?, caicuiate the continuum vaiue o By parameter, our
raw” lattice results, listed in Table I, must be multiplied by

the desiredBg parameter is extracted. Again, the plot pla- lattice-t " turbati tchi Hicient. Af
teaus early with small statistical errors. Figure 10 shows thaft 'attice-to-continuum perturbative matching coetticient. Al
ter we finished the first analysis of our daf8], we found

again, the value is insensitive to the choice of fit regi¢ior ) o 1
our central choice of fit range, th€/Npg are 0.74/3, 0.57/3 that our value foBg was approximately 30% higher than the
0.43/3 0.67/3 fork=0.152 ’0 154 0.155. 0 1Sé respéc- result of a similar simulation by the UKQCD Collaboration
tively.) We could also calculate the finBlg parameter from _[213.the ds_ft;specteq tht?]t th|stQ|ﬁergI_nh9e Wa?. dute(;o m?re dthan
the appropriate linear combination of the four fitted raw val-Just the difierence in the actions. 1his motivated us to do a
uesB, . By, By, andBs, as in Eq.(2.6). The y¥/Noy are very careful study of the perturbative matching, using the

ood Ifc’)rBR’(O yl 0.67 50’55 0 33;'”"3 '(0 GOXO 42[":0 36 Tesults in the literature, so that we obtained the “best value”
840) TheRwo.rst)ézl'N ' a're f’orB (1 38N 1 '30 ,1'14’0'85’ of Bg using the information available to ugThis is dis-
The  two procedureDsF combine-then it versus. fit-then.CuUSsed further in Secs. V, VI, and ViWe also studied the

' systematic errors in the perturbative matching to find the

reason for the disagreement between the UKQCD Collabo-

1.4 | | T T T T T ration’s result and ours.

s L 20%30, §=6.0, 32 cfg. e t=-2 For convenience, we shall refer to teB=2 effective
©=0.156 ] Hamiltonian, obtained from the standard model by integrat-

12 | Z[1Sn,=5;t =2,t=3] . ing out the top quark and the heavy vector gauge bosons, as

the “full” theory although this is also an effective field

i | theory. The perturbative matching is broken into two stages:
" { { i full QCD to the continuum-static theory and the continuum-
L l

-
—_
T
1

static theory to the lattice-static theory. For the matching of
7 full QCD to the continuum-static theory, the relevant pertur-

] bative results have been calculated to do a next-to-leading-
order analysis of the Ipfm,) terms. The use of
renormalization-group-improved perturbation theory reduces
the renormalization-scheme dependence and the effects of
4 5 & 7 8 9 the different ways of definings in dimensional regulariza-
Time (t,) tion [22].

o
©
T

3/8 Cy(t,t,)/C,(t)C,(t,) ~ B,
& 5
T
|

@
32
T
I

©
>

FIG. 9. The ratio ofthe linear combination ¢tthree-point func-
tions to two-point functions which approach@g for large Euclid- 2B is evaluated am; , which is the scale at which the running
ean times. mass ism(mg) = mbpo|e:4'72 GeV[11,19,2Q.
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TABLE I. The raw latticeB parameters for the operatoy , Or, Oy, and Og which appear in the
lattice-continuum matching, and the linear combinaﬁiyEJMEBB as a function ofc and extrapolated te. .

The first errors are statisticébootstrap and the second are systematic due to choice of fit range. Note that
Os has a VSA value different from that @, ; with our normalization for the raB parameterga common

denominator equal to the VSA value 6f) — %BS would identically equal 1 if VSA were exact.

K =0.152 k£ =0.154 & = 0.155 & =0.156 ke = 0.157
B;, 1.01+%(1) 1.0272(1) 1.0273(1) 1.03%3(2) 1.0373(2)
Br 0.9671(1) 0.9615(2) 0.9572(2) 0.957%(2) 0.9573(2)
Bn 0.97+2(3) 0.9612(4) 0.9612(4) 0.9673(4) 0.9573(5)

—2Bs 1.00%%(2) 1.0072(2) 1.0072(3) 1.01+3(3) 1.0173(3)
Bg(m;) 0.9572(1) 0.96%3(2) 0.9613(2) 0.98%3(2) 0.98%4(3)

Two scales are necessary for the perturbative matching: -

the scaleu,=O(m,) of the matching to the full theorgwe (O'(p))= ZL s CP (s p) (U (e, )(OF (1)),
chooseu,=my; , wherem; is defined as mentioned earlier in e (4.4
footnote 2 and the scaleu of the matching to the lattice
theory (we chooseu=q*, which is determined from the
Lepage-Mackenzie scale formulatig23] as discussed later \yhich js read, right-to-left, as “The static theory operator is
!n_th_ls section. Also, as emphas_|_zed by Ciuchiet aI._[24], scaled fromu to u, where it is matched to the full theory.”
it is important to check the stability of the perturbative coef-

;o X - . An alternative, not used here, is to evaluate the full theory
ficient at next-to-leading order as the renormalization scale is . .
changed. operator at the same scalkeas is the static-theory operator,

We choose, as do othel21,25,24, to evaluate the full- so that
theory operato®' at uy,:
(O'(up)= 3 Cllupiml(Oi(w), @D (O'(w)= X CT(uiu)(Of(w)
where terms of order fd have been dropped. We use a _ ~ T e, . ~ e
double-argument notation similar to R¢26] to emphasize _i,jzzl_,s (U)ot i) C (s o) (U5 ()
that this matching of the continuum-static theory to the full
theory involves two theoriesf(andc) and two scales g, X(Of(,u)). (4.5

C (i) =C" (1t o)

and w). Cff(,ub;,u) includes a running of the scale in the
continuum-static theory which can be written explicitly due
to the form of the solution to the renormalization group[The generalization to multiple full-theory operators would
equation(RGE) for the coefficientdsee, for exampld27]): include full-theory subscripts 0@, (07)", andcfic_] Equa-
o herT tion (4.5 reads, right-to-left, “The continuum-static theory
T.exp| — fg (“b)Lg_)dg ) operator is scaled in the static theory fromto u,, where it
o) B%(Q) i is matched the full theory and then scaled back fiogito «
R in the full theory.” If U is treated to lowest order, summing
Eijc(,ub i) (U5 (up ). (4.2 neither the leading nor subleading order logarithms, then this
) i reduces to the approach used by Fltral. [7] who do not
Since we focus on the transformation of the operators, Wese the RG. The full-theory anomalous dimension appears
treat the coefficient€ as a row vector and transpose) (the  are since this approach includes running the scale in the
matrix U to be consistent with the common notation for ¢, theory.
[28,29 which treats the coefficients as a column vector: Returning to Eqs(4.1) and (4.4), matching in the con-
(CF" (s ) = UF (2, 116) (CT)§ (s ) Tor which tinuum (with wp=m; andx=q*) gives

. o(w ¥°T(Q) ﬁ
c :T —_— . .
D) gexp< fgw 5 ¢ 4.3 <<9f<m;>>=c{°<m;;q*><OE<q*>>+cf;<ms;q*><O§<qa>é)

The superscript-laba indicates that the variables are for the

continuume-static theory in which some degrees of freedom

have been removed. Notice that the continuum-static scaléd/e use the solution of the RG equation for a matrix of op-
evolution matrix scales only the static-theory argument oferators which is discussed by Ciuchiet al. [25] and
the coefficient. Thus, Eq4.1) becomes Buchalla[26] in more detail:
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TABLE Il. Anomalous dimensions as defined by various groups and used here.sTaee defined in Eq.
(4.8). All the results have been calculated using the naive dimensional regularization scheme.

Their Our
Ref. notation notation Value
Ciuchini et al. [25], Buchalla[26] Y9
. % -8
Gimenez[30] Ve LiL
MS
Ciuchini et al. [25], Buchalla[26] ¥
¢ 4 2024267 — 16n
Giméenez[30] 162 Y1, 3 3 i
MS
Ciuchini et al. [25], Buchalla[26] 9 Yoe, 5
Ciuchini et al. [25], Buchalla[26] ¥ Voos -3
AyC
Ciuchini et al.[25], Buchalla[26] d; PG.L 2%*
0
%
Ciuchini et al.[25], Buchalla[26] d, Pé.s S8
2bo
., b
Ciuchini et al. [25], Buchalla[26] -J PIL Sl —=— bl
'YoLVL o
Yo YB,A -4
Duncanet al.[11,31-3
[ 4 c —254 56m° 200
Y1 Y1iA T_W—’_T
Buraset al.[35] ° y(f)L ) 4
Buraset al.[35] ¥ ‘)/;'L,L (—7+3ny)
p:),A 0
pfl,A 0
with

Cle(mp ;%) =C{*(my ;m5)

a?(mﬁ)) po"‘[ 1
ag(g*)

41

yc
+CE(my ;mp)— Psi -
Yo~ Yogs
(3 C
( a,g( mg)) PoL ag( mg)) Pos

ad(q*) ad(q”)

C
ag(mg)) Pos

ag(q*)

C&(mj;q")=CE¥(m; ;m;)<

ag(mg) — ag(q*)
+ s~ b st/ iL

(4.79

(4.7b

Poj=[70,,/(2bo)] and py;=[po;( vy, / 7o, ~P1/0o)].

4.9

In Table Il we list the values of the anomalous dimensions of
the various operators required in this calculatiafi calcu-
lated using the naive dimensional regularization scheme
The coefficients from the first and second terms of the
function are defined as

bo

4m

11— (2/3)n;

by 102—(38/3n;
41 ’ B )

1672 1672

B

Bo
(4.9
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To obtain the leading-log expressions from the explicit solutheory to the lattice-static theory. The relevant perturbative
tions of the renormalization group equations that we quotecalculations have been done by Flyanal. [7]. We want to

all quantities with a subscript 1 are omitted. In E4.7b the  calculate the full theory am} :

higher-order terms dfi ¢ have been dropped when multiplied

by C becauseC is of orderas. We found that the inclu-  (Of(mg))=Cl(m};q")[Z(g*;a)( O} (a)) + 2L (q*;a)

sion of theC(UT)§, term in our analysis was less than

0.05% of theC{°(UT){ | term; this is smaller than the few (Ok(a))+Z4(q*;a)(O\(a))]
percent effect which was quoted in Refg5,26. Our ratio - o |
of the coupling afu to that atu,, was close to 1 because the +Cs'(My;9")Z5(g%a)(Ox(a)), (4.10

automatic scale-setting procedure selected a sgalehich

was close tan; . As the difference between the scajesind whereZ°(q*;a) relates the bare lattice-static theory matrix

w, gets bigger, UT)S, , which includes the leading off- element to the renormalized continuum-static theory matrix

diagonal terms in the anomalous dimension matrix, get§lement. After linearizing the produ€'®(mj;q*)Z°'(q*;a)

larger. and allowing a separate coupling for continuum-static)
We will now discuss the matching of the continuum-staticand for lattice static oiz's) we find

e m VP asmp—ala) . afmp) dqn
<of(mb)>:[(ag(qf)> {1+ Pt (— 14+ = —[4In(q 2a2)—21.7]}
1| [ asmg)\ Pt [ af(mp) | Pos] ad(mp) , aS(m) p&Lrag(qq |
4[<a§(q,)> (ag(q*)) ypl 8)}<0L(a)>+ ) 2 (~162(0k(a))
al(q") af(mp) | P95 ad(my)
* g (TLAAOM@N | T g (8HOka), (413

where we have updated the results of Flyetnal. [7] by including (UT)gL [25,26, by choosing the convention that the
static-light two-point function be fit to thée™ ™ model[21,36, and by including tadpole improveme&7].

Throughout this paper we assume the convention thafghdecay constant is extracted from the heavy-light correlators
using the modeAe ™. Using this model changes the heavy-quark wave-function renormalization integral, deneced
reduced value® (see Eichten and Hi[l36]). As mentioned by the UKQCD Collaborati¢®1], this changes thB, =—65.5
of Flynn et al. (the additive constant in the matching of the continuum-st&ficoperator to the lattice operajcio D(,_R)=
—38.9. Howevere(® also appears iﬁf\' ; thus, the final values for the coefficients of BBg@arameters are independent of this
choice if the ratio is linearized ia° and «'. In addition, any tadpole-improvement effects alter the three-point function by
twice as much as each two-point function; linearizing the ratio cancels these effects exactly. However, when considering the
three-point function and two-point function separately, one ought to include the effects of tadpole improvement. This changes
the D{P'=-38.9 toD{R®)=—21.7, as in Eq(4.11). The large perturbative factors of the wave-function renormalization
largely cancel in the expression for tBg parameters.

To calculate the coefficients d@g, the renormalization coefficient of the axial current in the static approximation is
required[31-34,36,38 we linearized the results quoted in Duncatnal. [11]:

Zpy=Cy(my;q")Z3(q";a)

ad(mp) | o4
> 1+

ag(q”)

B af(mp) —al(@) o admi)/ 8 +a's<q*>

47 1A 47 \ 3 A

[2In(q*2a?)—18.59 |, (4.12

where the— 18.59 is from using the® mentioned above as well as including tadpole improvement. If tadpole improvement
had not been used, then this value would-b27.16. Ife had been used instead &f, then this value would be-40.44. As
long as one is consistent between E@s11) and(4.12, these effects cancel out of the linearized resultBgr.

The perturbative coefficients for thi&; parameter can be obtained by dividing the four-fermion results by the squéie of
and expanding the expressions linearlyaig:
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c _,.C
) aS(my) PoL~2PgA
BB( mb) = 1 +

[ * Cf % c * | *
ag(my) —ag(q’) o oadmp) 26| ayg)
4 (PLL=2PiA)* =5~ 3T s

ad(mp) a(my) | oL 20A( ol(q*)
pe (_B)JBL+(ag(q*)) ype (—1.61)Bg

15.4
ag(q*) ( D}

1

4

c _5C c _onC
(ai(mr,))"m "o (a&ms))"os Pon

ad(q*) ad(q")

ay(q*)
- (—14.4)BN} +

a/c m*) pS’S—ZpSA C!C m*)
s( b) s( b (—8)BS, (4.133

ad(q*) am

BB(m;)EZBLBL+ZBRBR+ Zg B+ Zp Bs, a plausible procedure 'for determining the scale and the'y. have
(4.13H successfully tested this method for a number of quantities.
The Lepage-Mackenzie scaig is obtained from
where Zg =Lin(Zx/Z5)=Lin[(C¥Z})/(CKZR)%], X is
one of{L,R,N,S}, and “Lin" signifies that the ratio is lin- 4 )
earized as explained later in Sec. V. The wave-function nor- d“qf(a) In(q%)
malization factors of the quarks cancel between the numera- (In(ga)?)=
tor and denominator; no tadpole factors are required for this f d*qf(q)
calculation if the coefficients are linearized. We also note
from the values in Table Il thapg, —2pg4 is identically
zero. Howeverpgs—2pg, and p3, —2pi 5 are not. If Eq.
(4.13hH were expanded into explicit Ip{my,) terms, then to
first order the perturbative matching coefficients would not
contain any logs.
To calculate numerical values of the coefficients, we

: (4.16

1
q*a=exp<§<ln(qa)2> , (4.17

wheref(q) is the finite integrand of the lattice graphs; note
h | tor th : q d for th i that f(q) is defined by assuming that all the perturbative
choose values for the scalpg and, and for the couplings oy hressions are expanded linearly in the coupling. We used

| | L
ag andag. For ag, we useay, the coupling introduced by {he integrands of Flynret al. [7]. (These have been con-
Lepage and Mackenzig23]. We use the plaquette value fimed by Borrelli and Pittorf39].) In Table I1l, we show the

—InW,;=0.5214 atB=6.0. In the quenched approximation yajye of the scale for several operators. Our value for the

(ny=0), scale for the static-light axial currenf;a=2.18, agrees with
the calculation by Hermadez and Hill[37].
A1 3.41 3.41 . .
—In(Wy) = —ay| — || 1— ay| — | (1.19 |, _ The Lepage-Mackenzie scales for the individual (_)perators
3 a a in Table Il are all around 2.0; however, the combined op-

(4.14 erator forB@fLuu has a lower scale of 1.22The scale quoted
which uses a lattice coupling which evolves with the form for BofLuu in the original preprint and conference proceeding

1 [14] was incorrec). Morningstar[40] also found very low
] 4.15 scales for the perturbative renormalization of the quark mass
' ' in NRQCD (also see the comments by Slogtt]); though
this could be related to renormalon effe¢t2]. Using the
where theg are defined in Eq(4.9). Equation(4.14) defines scale of 1.22 gave large perturbative corrections. The
ay and givesAya=0.169. Lepage-Mackenzie scale-setting procedure could be con-
Because the continuum-to-lattice matching is known onlyfused by taking the ratio of matrix elements of two operators
to one loop, these perturbative expressions are sensitive that are approximately the samebviously it would be in-
principle to the value of the scale used in the matching. Thisippropriate for the case of two equal operators becduse
dependence can only be reduced by calculating higher-ordevould be identically zero We chose to use the scale of
loops. However, Lepage and Mackenia3] have described 2.18a as this is a typical scale for both, and (’)fL”" .

2
as(#)z[ﬁom(%) + By

|
Bo "

I
2

TABLE Ill. Renormalization scales determined by the Lepage-Mackenzie prescription for the axial-
vector current,,, for the raw lattice operato®, , and forO", are similar. Using this prescription for a
ratio of matrix elementgas forBg) is unstable, as described in the text; therefore, we choose 2.18 as the
scale appropriate foBg .

Ay Or ol Bo, Boi““ = Bpg

q'a 2.18 2.01 2.15 2.45 1.22
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TABLE IV. The absolute changes from our preferred values of the coeffit%gatsZBR, Zg,,: andZBS as
the parameters*a, a_!, m, and AS%D, are varied by 10 and 20 % first individually, and then jointly
(“All” ), from our preferred values. We do not imply and need not assume that the input parameters are
known to three significant figurégdeed the coefficients are quite insensitive to 20% variations in the values
of the parametejsrather, we chose central values based on Réfs37).

q'a a™? mp Ag%n All
2.18 2.1GeV 4.33 GeV 0.175 GeV
Zp, = 1.070
10% +0.002 +0.003 +0.003 +0.0008 +0.004
0
—0.002 —0.004 —-0.003 —0.0005 —0.005
20% +0.005 +0.006 +0.006 +0.0019 +0.008
0
—0.003 —0.009 —0.005 —0.0009 —0.009
Zp, = —0.0225
+0.0005 0.0005
10% . ; . +
—0.0006 —0.0006
+0.0009 0.0009
20% 3 ; . +
—0.0015 —0.0015
Zgy = —0.202
+0.005 +0.005
10% - - -
—0.006 —0.006
+0.008 0.008
20% - - - +
~0.012 ~0.012
Zp, = —0.137
+0.003 +0.002 +0.003
10% - -
—0.003 -0.003 —0.004
+0.006 0.005 0.006
20% : ; * +
—0.005 —0.007 —0.008

We used A$5,=0.175 GeV from Duncaret al. [11].  malization scale, lattice spacing, the continudngcp, and
They chose values foa~ ! obtained from the charmonium the bottom quark mass. The central value for each “input’-
system due to the low systematic errors. Although they dgarameter distribution was set equal to our best value, based
not quote a value foa ! at 8=6.0, they did extrapolatd,, ~ on those used in Ref§l1,37. Rather than assume that the
from a~! at 8=5.7, 5.9, and 6.1 in order to find~! at  input parameters are known to three significant figures, we
8=6.3. We used this idea to interpolateao’=2.1 GeV for 100k up to 20% of this value to be the standard deviation for

=6.0. We also used their method for calculating; how- each input parameter. The final results were sorted numeri-
' cally and the 68% error range was taken as the “output”

ever, our number differs slightly because of the difference . .
between the form of Eq4.15 and error. This procedure ;hould producg more accurate esti-
mates of errors than naive error analysis. Table IV shows the
B8, In[In(x2/A?)] resulting error in the coefficients. Table Vv ShOWS the corre-
=y P TARATA ) sponding error irBg. The Bg parameter is very insensitive
Boln[(u?/A?)] B3 In(u?A?) to rather large changes in these parameters. Variations of
(4.18 20% in these parameters change By parameter by less
than the statistical bootstrap errors. It is particularly impor-
With the full-to-continuum scale set as,=m;=4.33 GeV  tant that the results are not sensitive to the lattice spacing
and the continuum-to-lattice scale set pyp=0g*a=2.18, because there are a wide range of possible lattice spacings
we find a(my)=0.21 andag(q*)=0.18. that could have been used:'=1.94 GeV from the string
Using a Monte Carlo technique, we estimated the error onension [43], a '=2.3 GeV from thep mass[18], and
the staticBg parameter due to varying the values of thea 1=2.4 GeV from Upsilon spectroscogy4].
parameters used in the perturbation theory. A sample of one To compare the results &g parameters, in the next sec-
thousand was generated using uniform deviates for the renotion we list our results in terms of the one-loop and the

ag(p)=
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TABLE V. The absolute changes By, from Eq.(2.6), due to changes in the coefficieritgL, Zs Zgy,s
andZBS as the parametexg'a, a~1, my,, andAgéD are varied jointly by 10% and 20% from our preferred

values.
K =0.152 £ =0.154 K =0.155 K = 0.156 e = 0.157
10% +0.007 +0.007 +0.007 +0.007 +0.007
—0.009 —-0.009 —0.009 —0.009 —0.009
20% +0.013 +0.013 +0.013 +0.013 +0.013
—-0.017 -0.017 -0.017 -0.017 -0.017

two-loop renormalization-group-invariant parametg85].  tween Eqs(4.21) and(4.15 can vary by as much as 10%.
We also scaleBg down to 2.0 GeV for the comparison to The advantage to comparir§z at some scale is that the

some other groups which is discussed ldf&ec. V). dependence on; andA is less significant£ 1%, see Table
To compare at one-loop, we scalBg and calculate®; ~ V)- NSO: given a value foBg(my), one can quote a value
using for Bg using either 4 or 5 flavors sina®}, is the boundary
f . betweem; = 4 and 5 flavors. These give different constant
ag(uq) )\ PoL™2Poa values ofBjg for the different flavor regimes. One should be
Bg(a1)= ad i) Be(u2), (4.19 explicit about which is quoted.

Even though the numerical results are for the quenched
5 _ —ph —2pf ) theory, we usen;=5 for u=mj and n;=4 for u<mj.
Ba=as(uy) " For"oa'Bg(uo), 420 There is some evidence from studies of the QCD coupling
that the effects of omitting dynamical fermions can be mod-
eled by using the correct number of flavors in fhéunction
(see Sloanj41] for a review.

wherep is defined in Eq(4.8) with the relevant anomalous

dimensions listed in Table Il. For the one-loop calculation,
we used
2
M . . .
K) . (4.21 The discussion until now has not revealed any large sys-
tematic errors in the perturbative matching that could explain
Although a one-loop calculation is traditional, one canthe difference between our result and UKQCD's. In this sec-
also calculate a two-loop renormalization—group-invarég\t tion we investigate the systematic error caused by combining

parameter since the required perturbative calculations ha\}rge pgrturpatiye coefficients for the two-point ‘f.’md threg—point
unctions in different ways to form the matching coefficient

V. SYSTEMATIC ERRORS IN THE MATCHING
ag t(m)=Boln

been done:
for the By operator. The UKQCD Collaboration found a
() Py, —2PhA 20% effect when they changed the way they organized their
Ba(pq)= S—'Ml) ’ perturbative coefficientg21].
as(p2) We consider three different ways of calculating the coef-
() — el o) ficients ZBX to consider these effects. For convenience, we
S S
x| 1+ T(DLL_ZPRA) Bg(u2), define the following, wher« is one of{L,R,N,S,A}:
4.22  Zx=product of (C{’Z%)
BBZaS(MZ)*(pg,L*ZPBA) ag(mg) Pox ag(mg)—ag(q”) c
Ry I+ =7 hix
( as(/-LZ) f f as(q ) am
X|1- (p1L.—2p1a) |Bg(usy). (4.23 N R
477 pl‘L plA BLf2 ag(mb) Dc 1+ als(q ) dl I * 2+ D|
4n (DX 2, LdxIn(@"a)"+Dx]/,

Again p is defined in Eq(4.8) and the relevant anomalous
dimensions are listed in Table Il. Equatiofh.15 was used (5.0
to scaIeBB_ and caIcuIateBB to second order. Lin(Z,) =linearization of(CﬁfZi’)

In making a comparison to other groups, one can use
either Bg evaluated at some scale Eg. There are disad- ¢/ ey | Pox Cfpak\ _ Cf ik
vantages to both. For the former, either a common scale =(M) ( as(Mp) —as(a”)
needs to be agreed upon®g must be scaled. For the latter,
the dependence (ﬁB on the choice ofn; and A is not aS(m) a'(q*)
negligible;Bg can vary by as much as 4 to 5 (ee Sec. . + 54 > (DS + 54
This dependence is also relevant to using one-loop versus m ™
two-loop because the difference in the value /0f'") be- (5.2

2%(a) P

[diIn(g*a)?+DL]].
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TABLE VI. The effects of different linearizations on the coefficients: The errors on the coefficients are
the statistical errors of varying the parametets, a~*, my,, andAg%D by 20% from our preferred values.
The error bars oBg(m;) are the bootstrap errorBg(m;) is the chiral extrapolation of the “combine-then-
fit” values from Eq.(2.7).

Method ZB; ZBg ZBy ZBg BB(mg)
With tadpole improvement
Lin(Zx /Z3) 1.07010900  —0.022+3000  —0.202139%  —0.13773%%  0.98%5:%4
(Zx/23) 1.066%05%0  —0.0315000  —0275X0%  —0.246150:%  0.9600]
Lin(Zx)/Lin(Z4)® 10037001  —0.041739%%  —0.37173:92%  —0.251%3:%1°  0.8009%4
Without tadpole improvement
Lin(Zx /Z%) 1.070+3%%  —0.02213%%  —0.20273:9%  —0.137%3:9%  0.98+0%
(Zx|Z3) 1.03075:01  —0.043730%  _0.384%0:93¢  _0.343+091%  0.8779:%4
Lin(Zx)/Lin(Z4)*>  0.802%00%  —0.059700%  —0.529%0:00%  —0.358%03%  0.4913:%)

We wish to compare three forms of linearization: “fully lin- ported in the conference proceedind<l] and the original
earized” Lin(Z, /Z3), “not linearized” Z, /Z4, and “par-  preprint of this article which calculated the not-linearized
tially linearized” Lin(Z_)/Lin(Z,)?. The UKQCD Collabo-  result for Zg and Zy as[ag(mg)/ag(q*)]Pg,ng(' rather than
ration compared their Lif)/Lin(Z,)? to Z /Lin(Zx)?*  ci°z¢.
when they found their 20% effect iBg. SinceCk is very In Table VI we show the coefficients of the individuB
close to 1, LinZ,) is approximately equal td, . Thus com- parameters for the three different linearizations described,
paring their preferred Lirg, )/Lin(Z,)? to their alternative both with and without tadpole improvement. Table VII
Z_ILin(Zp)? is essentially the same as comparingshows the corresponding value g at both one-loop and
Lin(Z,)/Lin(Z,)? (partially linearized to Z,_/Z,i (not linear-  at two-loops. The variation among the three different linear-
ized). izations of the non-tadpole-improved coefficients is much
To allow a direct comparison with others, our not- larger than for the tadpole-improved coefficients. Because
linearized results have changed somewhat from those rehere are equal numbers of quarks in the numerator and de-

TABLE VII. From the Bg(m;) result extracted by Monte Carlo, listed in Table VI, we calculatdgka
with both 4 and 5 flavorgsee text The Lin(ZX/Zf\) results are our preferred values. As mentioned in the

text, By varies withn; and A(™ as well as with loop order.

One loop Two loop
Method B(4.33) ny A Bg A Bs
With tadpole improvement

175 1.40(6 175 1.50(6

Lin(Zx /Z3) 0.98(4) (©) ©)

4 226 1.36(6) 246 1.46(6)

2 5 175 1.37(6) 175 1.47(6)
(Zx/2%) 0.96(4)

4 226 1.33(6) 246 1.43(6)

. . 2 5 175 1.14(6) 175 1.23(6)
Lin(Zx)/Lin(Z 4) 0.80(4)

4 226 1.11(6) 246 1.19(6)

Without tadpole improvement

175 1.40(6 175 1.50(6

Lin(Zx /Z3) 0.98(4) ©) ©)

4 226 1.36(6) 246 1.46(6)

R 5 175 1.24(6) 175 1.34(6)
(Zx/Z%) 0.87(4)

4 226 1.21(6) 246 1.30(6)

5 175 0.70(6 175 0.75(6

Lin(Zx)/Lin(Z4)? 0.49(4) ©) (©)

4 226 0.68(6) 246 0.73(6)
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nominator, the individuaBg parameters should be indepen- expansioh by linearizing the whole ratio. Fully or not lin-
dent of the wave-function normalization of both the heavyearizing the coefficients treats tk %) terms more appro-
and the light quarks. This implies that the coefficients shouldriately than does partially linearizing.

be independent of tadpole improvement. Tables VI and VII Our preferred choice of linearizatioffull) can also be

show that this is only true for the fully linearized quantity motivated by the nonperturbative renormalization method,
Lin(Z, /Z3). introduced by the Rome-Southampton grdég]. The non-

From Table VI, the overall change iBg(m?) for the perturbative renormalization method fBg parameter would
' Bl D be very similar to that used to obtain the renormalization

three different linearizations, when calculated with the . .
tadpole-improved coefficients, is 20%. However, when Cal_constants for the kaoB paramete{47,48, in which all the

culated from non-tadpole-improved perturbative coefficientsfaCtorS of the lattice wave function normalization of the
n P b b i fuarks cancel explicitly for th& parameter. In perturbation
Bg(mg) can change by a much larger factor. This suggest

5 ) theory, this corresponds to our preferred full linearization.
that the ordew” effects may be large. While these can beThe nonperturbative method only determines the lattice part
treated in a variety of ways, we think that they can be treategf the renormalization factor; a choice of linearization would
well or treated poorly. For example, the use of tadpole im-still have to be made for the continuum factor. However, the
provement stabilizes the central values and reduces statisticébntinuum factor can and should be calculated to next to
errors. The UKQCD Collaboration did not use tadpole im-leading ordef{46], making it less sensitive to the different
provement, which suggests that their perturbative coeffichoices of linearizations.

cients may be unnecessarily sensitive to their choice of lin- In summary, our preference for the treatment of the coef-
earization(Their preferred choice is what we call “partially ficients is to linearize fully the ratifin the notation of this
linearized”; they also considered what we call “not linear- sectionZg is Lin(Z, /Z3)]. This gives a result which has no
ized.”) Their decision not to use tadpole improvement Was,er,2 terms, which is insensitive to the inclusion of tad-
forced upon them by the way they implemented the light-n,je improvement and to the wave-function normalization
quark field rotations which were required to remad€a)  odel by allowing explicit cancelations, and which reduces

corrections to matrix elemenf&5]. _ the statistical errors iBg . The quantitative consequences of
_ We rank the various organizations of perturbation theory, - chojce are discussed in the following section where we
in decreasing order of preference: fully linearized, not I|near—Compare the results of different groups.

ized, partially linearized. We discuss, in turn, seveirat
lated disadvantages with partially linearizing: larger relative
statistical errors, increased sensitivity to the value of the lat
tice coupling constanfvia choice of prescription and non-
optimal handling of order? terms. First, due to the larger
off-diagonal coefficients in the terms of the sum in Eq.
(4.13b, the numerical result foBg(m}) using non-tadpole-
improved partially linearized coefficientdéhe last row of
Table VI) has a larger relative statistical error than do the
results from the other choices of linearization.

Secondly, we studied the stability of the results from three
groups: theB=6.2 clover-static UKQCD simulatiof21],
the 8= 6.0 clover-static Gimeez-Martinelli simulatior{45],
and our 8=6.0 Wilson-static simulatiorfboth tadpole im- In Table VIII (IX), we show a collection of results from
proved and not-tadpole improvedll three of these groups several groups scaled to giBg(m;), Bg(2.0 GeV), and the
that have done _statiBB simulation_s used s_lightly different one-loop(two-loop) renormalization-group-invariarﬁB pa-
ways of evaluating the perturbative coefficients. We havgameter, Results from both static and relativistic-quark simu-
analyzed all simulation data consistently to facilitate com-|gtions are shown. The simulations using relativistic heavy
parisons of the result~s. We compared the linearizations fojyiison quarks[2,3,49,5Q calculate theBg parameter for
two lattice couplingg @ and a(q*a=2.18)] and for sum-  quark masses around charm and extrapolate up to the physi-

ming the logarithms[using renormalization-grougRG) cal mass, using a fit model of the form
technique$ versus not summing the logarithms. These are

discussed further in Sec. VI. We see the same trends in each
group’s data. Each group’s partially linearized result is less
stable under variations af than is their not linearized or
fully linearized. Their fully linearized result is close to their
not-linearized result; these are 20% higher than their par-
tially linearized result. The value ofBg should be the same as the static theory
Thirdly, we believe that partial linearization does a poorresult. (It is better to do a combined analysis of relativistic
job of organizing higher-order terms. The treatment ofand static quarks to obtain a value 8g.) We callBY the
O(a?) terms in partially linearized coefficients causes the“extrapolated-static” value.
low values seen by all groups by linearizing some terms but Tables VIII and IX show that values f@g obtained from
not the whole ratio. We prefer the fully linearized method Wilson action simulations are basically consistent; the small
because it removes all of the€§ a?) terms(as in a Taylor differences can be explained by small lattice-spacing and

Just as the numerical value & is stable because of
cancelations of correlated fluctuations in numerator and de-
hominator, we have argued that so too are its perturbative
corrections when fully linearized. The fully linearized pertur-
batively calculated coefficients fd@g are likely more reli-
able than those for the produBgf3, the quantity which is

required in the analysis d@ °-B® mixing experiments. In the
Appendix, we discuss our recommendation for how to lin-
earize the produdBgf3.

VI. WORLD COMPARISON

1
Bg=B2+ %. (6.2)
B M
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TABLE VIII. The authors’ numbers, quoted at the listed value ggr have been scaled using E4.19
to ©=2.0 GeV and tom;=4.33 GeV. Theslantednumbers are those that the cited authors quote. We
calculatedBg(my) in the Static-Wilson case and then scaled it to 2.0 GeV usingd and calculated 8;
with both 4 and 5 flavorgsee text The value quoted by this work uses the fully linearized tadpole-improved
coefficients. The JLQCD Collaboration cite thdits asn;=0 values. When Abadet al. quotes EBB for the
Wilson quarks, they use;=0. We scaled both groups’ results using baoth=0 andn;=4.

Mo A Two loop .
Method Ref. B (Gev) B(u2) n; (MeV) B(2.0) B(4.33) Bg
Static-Clover [21] 6.2 my=5.0 0.69(4) ;38 0 7@ 07 0( 2 ;'gé(;)
. 130 - - 1.1
Static-Clover [21] 6.2 m,=5.0 0.814) 200 0.874) 0.824) 1 132;
Static-Clover ~ [45] 6.0 m,=5.0 0.54(4) ;3(1) 0 554) 0 55; 4 8;3((3)
Static-Clover ~ [45] 6.0 m,=5.0 0.76(5) ;gé 0 8'2(5) 0 7'7(5) 1(1);((77))
o this . 175 - 1.406)
Static-Wilson work 6.0 mj=4.33 0.98(4) 226 1.054) 0.98(4) 1.366)
Extrap. Static  [2] 5.7-6.3 u=2.0 1.04(5) ;gg 1.04(5) 8'3;8 1223

200 0945 0.895  1.217)

Extrap. Static  [49] 6.4 pn=3.7 0.90(5) 200 0955  0.895) 1.257)

Wilson-Wilson [2] 5.7-6.3 =20 0.96(6) ggg 0.96(6) 8'28((2; gig
. : - 200 0.9413 1.3220)
Wilson-Wilson [2,3] 6.1 pu=2.0 1.01(15) 296 1.01(15) 0.9414) 1.3019)

239  0.965) 0.905) 1.21(6)
239  0.985) 0.915) 1.257)
183 - - 1.297)

Wilson-Wilson  [50] 6.1 m,=5.0 0.895(47)

246 0.906) 0.856) 1.148)
246 09260 0.856) 1.178)
189 - - 1.209)

200 0.905 0.855)  1.16(7)
200 0.915 0.855  1.197)

Wilson-Wilson  [50] 6.3 mp,=5.0 0.840(60)

Wilson-Wilson  [49] 6.4 u=3.7 0.86(5)

175 - - 1.4322)
227 1.0816 1.0015 1.3921)

O PO | OO OO | AP | BEADdIDdO|A~H &2 B @ ) B 20 R~ 62 B I ¢

Sum rule [51] mp,=4.6 1.00(15)

finite-volume effects. Our result is consistent with that ofusing our non-tadpole-improved results. We find that the
Bernard and Soni, as reported by S@Bj, for the extrapo- tadpole-improved Wilson results improve the non-tadpole-
lated static Wil_sqn fermiqns. . _ improved results, so we prefer to compare their clover-
After the original version of this article was completed, improved results to our tadpole-improved results. Our analo-

data have been made available which allow a more detailegous comparison results in the numbers listed in Table X.
comparison between ourselv@s the high end of the world i — (5) —
resulris) and othergon the low endl Firstgwe have added the !n the corppacrolson, we use =5 andAgco=0.175 Gev
Undated numbers from Gimez and. Martinell [45] to which result ina$°"(m,=4.33 GeV)=0.21. We also use our

b two-loop Aya=0.169 to scalea(q*=2.18"1)=0.18.

Tables VIII and IX. Secondly, we note that Witti§2] has a ,
nice review on the subject of leptonic decays of lattice heawyPOth @s areé with two-loops from Eq(4.15. We also com-

guarks, in which he compares the results of UKQ{Z1], pare usinga7=6/(47rﬂug), which [s 0.132 for the UKQCD
Gimenez and Martinell{45], and the preprint of this article. Collaboration[21], 0.1458 for Gimaez and Martinell{45],
In his Sec. 4.2, Wittig offers Table 9 for comparison, and 0.198 for us(For each group, we usedy=1/8« to
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TABLE IX. This table repeats the analysis in Table VIII, using ttweo-loop renormalization group
invariantBg parameter.

M2 A Two loop A

Method Ref. B (GeV) B(u2) n; (MeV) B(2.0) B(4.33) Bg
Static-Clover [21] 6.2 m,=5.0 0.69(4) ;38 . 745) . 7&4) 11(?5?2;
Static-Clover [21] 62 m,=5.0 0.814) ;gg oo 081 1122:;2;
Static-Clover  [45] 6.0 m,=5.0 0.54(4) ;gg . 5@ . 54;4) 8.22(;)
Static-Clover  [45] 6.0 my=5.0 0.76(5) ;gg o 7'7(5) o 8-:|(5) 1?61((88))

o this . 175 - 1.506)
Static-Wilson work 6.0 mj=4.33 0.98(4) 246 1.044) 0.98(4) 1.466)
Extrap. Static  [2] 5.7-6.3 u=2.0 1.04(5) ;gg 1.04(5) 8'328 132((2

200 0.935) 0.895) 1.297)

Extrap. Static  [49] 6.4 pn=3.7 0.90(5) 200 0945  0.8905) 1.357)

Wilson-Wilson [2] 5.7-6.3 u=2.0 0.96(6) ggg 0.96(6) 83(11(2; 12;(3;
. . 3 200 0.9614) 1.4421)
Wilson-Wilson [2,3] 6.1 pn=2.0 1.01(15) 246 1.01(15) 0.0514) 1.4221)

239  0.945) 0.905) 1.297)
239  0.965) 0.905) 1.357)
183 - - 1.367)

Wilson-Wilson  [50] 6.1 mp,=5.0 0.895(47)

246 0.885)  0.856) 1.21(9)
246 0.906) 0.856) 1.269)
189 - - 1.309)

200 0.895 0.855)  1.24(7)
200 0.905 0.855  1.297)

Wilson-Wilson  [50] 6.3 m,=5.0 0.840(60)

Wilson-Wilson  [49] 6.4 pn=3.7 0.86(5)

175 - - 1.54(23)
227 1.0716) 1.0015 1.5022)

OO | PO OO OO | A |PADdIdDO || PO ||| o )]

Sum rule [51] mp=4.6 1.00(15)

calculatea.) In addition, since the original UKQCD results  the results of both UKQCIP21] and Gimeez and Martinelli
do not sum the logarithm@using RG techniqu@sTable X ~ [45] for m,=5.0GeV, u=a', ni=4, and A§Y,
lists both summing logsY) and not summing the logg).  =0.200 GeV when we tailor the respective calculations ac-
Rather than calculate @‘a [Eq. (4.17)] and aAya [Eq.  cording to the method presented in each pépalso, we
(4.14)] for the clover action, we used our values. Siageis ~ agree with the results of Witti§52] for our %-ay entries
a function of @*a/Aya), ay(q*) is the same for all three When we use his parameters. .
groups. We note thaa~1=2.9 was used for UKQCD and Both the UKQCD Collaboration’s and Gimez's and
a~1=2.1 was used for both Gimez and Martinelli and Martinelli’'s quoted values for the stati®; are lower than all
ourselves. Since*a was chosen to be 2.18 for all three of the other results. One possible reason for these low results
groups, the scales in the comparison of Table X are differents that they used the clover action for the light quarks, which
This is the reason that the UKQCD results differ from does not have corrections to the continuum limit that are
their 2 results. The¥, results are more sensitive to the scale
of the perturbative matching.
Though not listed in the table, we are able to reproduce “To reproduce UKQCD’§21] 0.69(4) and 0.81the latter is our
conversion of their quoteBl=1.19), do not sum the logs, ugea=
1, and do not include the cross terthTofS, in the coefficient of
3UKQCD did investigate the use of renormalization group im- O, . To reproduce Girmeez’s and Martinelli's[45] Table Ill, sum
proved perturbation theory, but they did not use it to calculate theithe logs and include the cross term, but yse=1, even for the
final results. ay(gq*a=2.18) case.
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TABLE X. Comparison between the fit-then-combiieg. (2.6)] analysis forB(m,) of the three groups’
data. These numbers are for;=4.33 GeV,q*=2.18"1, andn;=5. FL is fully linearized, NL is not
linearized, and PL is partially linearized. M1, M2, and M3 refer to the notation of G&nend Martinelli
[45] and Wittig[52]. We list both our tadpole-improveiad) and our non-tadpole-improveédo-tad results.
The errors are roughly estimated from statistical errors on theBrawalues and approximate errors on the

coefficients. See the text for comments @rand a, .

Bg(4.33GeV) UKQCD [21] G&M [45] Tad. No-tad.
5 @ 0.84(5) 0.85(4) 0.97(4) 0.97(4)

FL ) 0.83(5) 0.85(3) 0.97(4) 0.97(4)
y & 0.75(5) 0.84(4) 0.96(4) 0.96(4)

ay 0.77(5) 0.84(3) 0.96(4) 0.96(4)

5 @ 0.85(5) 0.84(3) 0.95(4) 0.81(4)

NL a1 0.82(5) 0.82(3) 0.96(4) 0.87(4)
v é 0.78(5) 0.83(3) 0.94(4) 0.80(4)

oy 0.76(5) 0.81(3) 0.95(4) 0.86(4)

5 @ 0.72(5) 0.70(3) 0.75(4) 0.30(3)

PL v 0.62(4) 0.62(3) 0.80(4) 0.49(4)
z & 0.60(4) 0.68(3) 0.73(4) 0.27(3)

ay 0.54(4) 0.61(3) 0.78(4) 0.47(4)

linear in the lattice spacing, whereas the standard Wilson A similar trend can be seen in each group’s results: par-
fermion action does have such artifact terms. However, théally linearized values are smaller and less stable than either
Wilson results are stable over four different lattice spacingsnot-linearized or fully linearized values. This is due to
which implies that the lattice artifact terms alone cannot acO(«?) terms which may or may not cancel to varying de-
count for the difference between the clover results and thgrees. The partially linearized treatment only linearizes part
Wilson numbers. of the ratio which causes its value to be misleadingly low.
Table X shows that the not-linearizédnd fully linear-  The not-linearized and fully linearized treatments are better
ized) static clover results foBg are larger than the partially because they do not do this. The fully linearized treatment is
linearized results, as is discussed in the original papers. Thereferred because it trea®{ «?) terms uniformly by remov-
clover-static results that use the not-linearized matching arang them(as one does in an expansjon
in better agreement, though still low, with the results from
simulations which use relativistic heavy quarks to simulate VIl. CONCLUSION
theb quark(see Table VII}. All the published dat§2,49] on ) _ )
calculatingBg using relativistic heavy quarks favor a nega-  OUr primary resuilt from this tadpole;mprovqﬂz 6.0
tive value ofBL in Eq.(6.1). For consistency, the static value Wilson-static calculation iBg(m})=0.98"3" 15, where the
of Bg should be higher than the value Bf extrapolated to  rrors are statlst|cz(bqotstrap> gnd systematic, respectively.
the b quark mass. This is true for our result and favors theThe overall systematic error is obtained in quadrature from
higher clover-static results. the following: =3 from the choice of fit range; } from the
The various choices made in the calculation have nonparameter dependence of the perturbative-calculated mixing
negligible effects. One can choose which action to (Ws@- coefficients, and” 28 due to the the choice of linearization of
son vs clovey, whether or not to tadpole improve, and which the coefficients, as was discussed in Sec. V. The unusual
linearization method to use. The choice between our tadpolésymmetry of the latter systematic error reflects our prefer-
improved Wilson-static action and the non-tadpole-improvedence for a particular choice of linearizatighfull” ). Our
clover-static action has a 15% effect in both the fully andsecond favorite choic€'not-linearized”) results in a central
not-linearized E-ay) cases. This is a 20% effect for the value of 0.96. We quote a very conservative systematic error
partially linearized case. In addition, tadpole-improvementto encompass our least favorite choice (0.80 from “partial
stabilizes the Wilson-static results to the extent that one calinearization”) even though we have argued against this
make a better comparison of different linearizations betweeghoice. Systematic errors from finite lattice spacing and from
tadpole-Wilson static and clover static than between nonguenching are not estimated.
tadpole-Wilson static and clover static. Finally, there is a Tables VIl and IX show that values f@g obtained from
20% effect due to choice of linearization for either action.Wilson action simulations are basically consistent; the small
This linearization effect is at least as large as the effect dudifferences can be explained by small lattice-spacing and
to choice of action. For reasons given in Sec. V, our favoritdinite-volume effects. The simulations all favor a negative
choice of linearization is the fully linearized treatment. value ofB%3 in Eqg. (6.2) [2]. For consistency, this implies that
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the static value oBg should be higher than the value Bf mass. To constrain the systematic errors, the results of simu-
extrapolated to theé quark mass. Our number is on the high lations with different lattice spacings and volumes should be
end of the comparison in Table VIII and is consistent withcombined to take the continuum limit. This kind of study
that of Bernard and Sofi2] who use extrapolated static Wil- Will also help to control the perturbative-matching errors, as
son fermions. the effects of the higher-order perturbative terms are reduced
the four-fermion operator renormalization and the axial-the effects of different renormalization prescriptions on light-
current renormalization were combined to form the matchingluark decay constants has been given by the GF11 group
coefficient for theBg parameter. We presented argument 55].) _
that suggested that our preferred way of organizing the Once mixing in theB J-BY system has been measured
continuum-to-lattice matchingfull linearization was supe- experimentally, the results can be combined with data from
rior to any other method we considered. We also showed thd °-B® mixing experiments to calculate thgg/V,q ratio of
making a different choice could lower the result by as muchCKM matrix elements. The advantage of calculating this ra-
as 20%. Besides the linearizations, Table X shows a 15%o is that various uncertain standard-model factors cancel.
difference due to choice of action between our tadpoleHowever, a value oBBSfESIBBfEs is required. As there are a
improved 3=6.0 Wilson-static and the non-tadpole- |3rge number of lattice results on the calculationfgf/fg
improvedB=6.0 and 6.2 clover-static results in the fully and [10], here we concentrate on the rafig /B s
not-linearized case$The Wilson results are at the high end . ) R B UB-
of the world data and the clover results are at the low)end. Ysing a fit model Vi’h'Ch is linear in the quark mass, we
Partial linearization leaves a 20% effect due to choice oPbtain Bg /Bg=0.99"1(1). [The first error is statistical
action. The effect due to choice of linearization is at least agbootstrap and the second is the standard deviation of the
large as the effect due to choice of action. fitted value for “reasonable choices” of fit rangeEven
Although all organizations of perturbation theory at one-though the ratidBg_/Bg is determined quite precisely, it is

loop are theoretically equal, some are more equal than otht resolved whetheBg_is greater than or less tha@y since

ers. Fully linearizing gives a result which has no ordér- the Bg parameter is found to depend weakly on the quark

terms and V‘;h'cg Its msensnwi to tt_he |ncIu5|:?n tc_)f taldpE’jlelmass. Other groupf21,50,58 have reported similar find-
improvement and to the wave-iunction normafization mo eings. Most lattice simulations have found tHgt is between

gﬂlr?c\gvr??ng);?flc't cancelationgwhich reduces the statisti ten and twenty percent Ia_lrger tzhdg [%O]._ Bernardet al.

In our perturbative-matching procedure we included next[56] have extracted the ratio &fj /Bgfj directly by doing
to-leading order log terms and organized the perturbativéndividual fits to the three-point function in relativistic quark
matching in a way that we believe reduces higher-order corsimulations. This is a promising approach for relativistic
rections. Also we used the automatic scale-setting procedutgeavy quarks. We did not try it because of concerns about
of Lepage and Mackenzie to find the “best” scale to use inthe signal-to-noise ratio and about the size of the perturbative
the lattice-to-continuum matching. The agreement of our reeoefficients in the static theory.
sults with relativistic heavy quark results supports our pro- Our result also contains an unknown systematic error due
cedure. Our conclusion is that for the Wilson-static case, thé¢o quenching. Quenched chiral perturbation theory predicts
use of tadpole improvement and of a fully linearized treat-the effects of quenching to be small f&8g [57,58; this
ment of the mixing coefficients is preferred. Of course, thisconclusion was confirmed by Bernard and Sdjiwho cal-
may become less important numerically with increased coueulatedBg in both quenched and dynamical simulations. In
pling and/or improved actions; however, we still recommendSoni’s review[2] of the lattice calculation of weak matrix
the procedure. elements at thé&attice '95 conference, he quotes a value of

Although sensible things can be done to reduce the effectBg(2 GeV)=1.0+0.15 (90% confidenceas his best esti-
of higher-order perturbative corrections in the lattice-to-mate of the Bg parameter. Our result,Bg(2 GeV)
continuum matching, this will remain the dominant uncer-=1.05"3"3;, is consistent with this value and with the
tainty in the calculation oBg in the static theory. In prin-  vacuum-saturation-approximation value 1.
ciple, “all” that is required is a calculation of the two-loop

anc_;malous dimengion of th_@L gnd A, operators on the ACKNOWLEDGMENTS
lattice. Although this calculation is very difficult, new devel-
opments in lattice perturbation theory for Wilson quark3] This work was supported in part by the U.S. Department

and a new stochastic way of doing lattice perturbation theorypf Energy under Grant Nos. DE-FG05-84ER40154 and DE-

[54] may make these calculations more tractable in the fuFC02-91ER75661, and by the University of Kentucky Cen-

ture. A more immediate solution would be to use the numeriter for Computational Sciences. The computations were car-

cal renormalization technique, developed by the Romefied out at NERSC.

Southampton group46], which has already been used to

determine the lattice perturbative coefficients for stdtic APPENDIX: LINEARIZATION STRATEGY FOR BgF32

[48], for the kaonBy parametef47], and for other important _

quantities. In the analysis oB °-B° mixing experiments the value of
The relative consistency of the WilsdBg results moti- Bgf3 is required. Here we discuss the linearization options

vates a large study using both relativistic and static quarks ifior combiningBg and fg from a variety of linearizations of

the same simulations to constrain the interpolation toBhe these quantities. If a not-linearizé®k is multiplied with a
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not-linearized {g)?, then the only ordee? effects which (1+a®A+a'C+2a°D+2a'E)B?Y(f2%)2.  (A3)
remain are due specifically to not linearizing the numerator
of Bg. We estimate this effect to be on the order of 10%. If Since
one multiplies a partially linearizeBg with a linearizedfg,
Lin(Z,)?, then there should be no ordef-effects due to the
product. However, if one mixes a linearized with a not- (1+aA)
linearizedBg and fg, then there can be terms of almost
20%. Although the difference betweefy and Lin(Zs) is  this is straightforward to accomplish. The producBgfwith
smaller than 5%, the difference between R{?> and  the linearized square of
Lin(Zf\) is just over 15%. The practical drawback of using a
Bg which is not linearized or is partially linearized is that
there are ordee? terms present which may or may not can- fin= ( 1+a®
cel when theBg is combined with arfg .

The practical drawback to using the fully linearizBg is . _ o
linearizing the producBgf2. This is easily remedied. The gives Eq.(A3) with no ordera? terms due to coefficient

1+«

1+aA>=(l+aA+aB), (A4)

SN )ffaw (A5)
(Bq /B (Ba/B™)

fully linearizedBg, By, essentially has the form multiplication. OurB[®" value can be read from the first row
of Table I.
By=(1+aA+a'C)B™", (A1) While the product of the partially linearizeBl; with the

) o linearizedfy also does not have any ordef-terms due to
where theBg, By, andBs can be included by adjusting the qefficient multiplication, the partially linearizel, by itself
values ofA andC appropriately. When this is combined with poo ordera? terms which are on the order of 18¥5ee

the square of the linearizeld Tables VI and VI). The advantage of our method is that all
. * 2
fir=(1+a®D+ o'E)fa" (A2) three qzuantltlesBB(mb), fB(mg), and BBfB_(mQ) have no
orderw“ terms due to coefficient multiplication, and that
it would be convenient to get a linearized result with noBg(m;) is stable against the inclusion of tadpole improve-
order«? terms: ment and the choice of wave-function normalization.
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