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Pion production from baked-Alaska disoriented chiral condensate
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We study the various stages of the evolution of chiral condensates disoriented via the “baked-Alaska”
mechanism, in which the condensates are described as the products of external sources localized on the light
cone. Our analysis is based on the classical equations of motion of either the linear or the neoniimael.

We use the associated framework of coherent states and, especially, their source functions to make the
connection to the distribution functions for the produced particles. We also compare our classical approach
with a mean-field calculation which includes a certain class of quantum corredi89%66-282197)07123-3

PACS numbes): 12.38.Aw, 12.39.Fe, 12.98b, 13.60.Le

[. INTRODUCTION well inside the light cone the quark condensate might be
chirally rotated from its usual orientation. At late times this
Recently, in order to interpret events with a deficit or disoriented vacuum would relax back to ordinary vacuum,
excess of neutral pions observed in cosmic ray experimentyja radiation of its collective modes, the pions. The proper-
there has been increased interest in the conjecture that ties of the radiated pions should be strongly affected by the
might be possible to produce in high-energy collisialis-  semiclassical, coherent nature of the process. In particular,
oriented chiral condensate®CCS, i.e., correlated regions one may expect anomalously large event-by-event fluctua-
of space-time wherein the quark condensdfy, qg/0) is  tions in the ratio of the number of charged pions to neutral
chirally rotated from its usual orientation in isospin space. pions produced. Assuming that the event-by-event deviation
On the theoretical side there has been great int¢sest, of the quark condensate from its usual orientation be ran-
e.g., Refs[1-14]) both in the development of technical tools dom, one find§1-4,16,17 that the distributiorP(f) of the
suitable for the description of this possible phenomenon, andeutral fraction
in the exploration of the possibilities opened by DCCs as
probes of the structure of quantum chromodynamics, most f N 7o _ M 1)
notably in relation to the chiral phase transition. N,o+N_++N_- Ny’
The idea that such DCCs might be produced in high-
energy collisions at existing or planned hadron or heavy-iortS given by
accelerators has generated some experimental interest. In
particular, one of us is cospokesman for a Fermilab experi- ap_ 1
ment[15] looking for DCCs in hadron-hadron collisions. In df N
high-energyp—p collisions which lead to a sizable multi-
plicity of produced particles, but not necessarily with high-at large N,,;. Most notably, this implies that for “DCC
pr jets in the final state, the time evolution is quasimacro-pions” the probability of finding extreme values bfis very
scopic, because the hadronization time can be rather largdifferent from ordinary pion productio(which is given by a
up to 3-5 fm. At timest before hadronization, the initial binomial distribution, in which the fluctuations are expected
state partons, produced in a volume much smaller than & be peaked at=3 and fall exponentially away from the
cubic fermi, may stream outward at essentially the speed gfeak.
light in all directions, occupying the surface of a sphere of Experimental DCC searchegd5] are thus far largely
radiust (in units such that the speed of light i$. Most of  based on the structure of E@). However, it is probable that
the outgoing energy-momentum is expected to be concerthis robust property will not be sufficient on its own for the
trated near the light cone, i.e., on the surface of the expandeentification of phenomena involving DCCs. In particular, it
ing “fireball.” appears that an understanding of the geometry of the phe-
However, the interior of the fireball is also an interestingnomena would be very useful for experimental searches.
place. If its energy density is low enough, the interior should In this paper we develop a description of “baked-Alaska”
look very similar to the vacuum, with an associated nonva{hot fireball surface with cooler and disoriented ingide
nishing quark condensate. Since the energy density from thBCCs which is well suited for the study of realistic geom-
intrinsic chiral symmetry breaking is sm#8,16€], and since etries. Our analysis is based on the classical equations of
the fireball surface isolates the interior from the exterior ofmotion of either the linear or the nonlinearmodel and we
the light cone, it is reasonable to consider the possibility thatise the associated framework of coherent states to make the
connection to the distribution functions for the produced par-

@

ticles.
*Permanent address: Stanford Linear Accelerator Center, Stanford In the next section we review the coherent-state formal-
University, Stanford, California 94309. ism with emphasis on the associated particle flux, which is
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light cone. Section Il is devoted to the model description S=ex

seen as directly related to classical sources localized on the . 1 _—
> | dKor
of “baked-Alaska DCCs,” defined via the above-mentioned

exr{—i | d“yJ(y)&;(y)}

mechanism involving a hot fireball shell and its coaland M ~
sometimes disorientedinterior. In Sec. IV we derive a Xex;{ﬂf d?yJ(y) ¢5 (y)
simple solution of the classical nonlinearmodel, and fol-

low the evolution of the associated coherent state from be- 1 ==
ginning to end, including a derivation of the flux of pions. In —ex 2 f dk|J(Kk)]|

Sec. V we discuss how our analysis can be generalized to the

linear o model, and establish connections with a somewhat | T3 at _.j T LA
similar model studied by Lampert, Dawson, and Cooper Xex;{ IJ dki(kja’(k) exp{ ] dkd(kak) .
[18]. Section VI is devoted to closing remarks. ©)
Il. PARTICLE PRODUCTION In particular, this implies that the “out” stat§~*|0) corre-
FROM CLASSICAL SOURCES sponding to a scattering process having the vacl@mas
A. Coherent state formalism the “in” state, is given by the coherent state of E¢).

) ] ] ] o The most appropriate tool for the description of the par-
In the following sections we will be investigating a prob- ticje production associated with the “out” state is the gen-

lem ‘;‘.’hiCh in the classical limit is described by the field grating functional, which in the present case takes the form
equation

, (10

(O+m?) g(x)=3(X), ) G[zﬂzex;{f dk[I(k)| [ z4(k)— 1]

for appropriate boundary conditions. The properties of the . , ) , )
quanta associated with a field, suchéin Eq. (3), that are from \_/vhlch one can obtam all the mpluswg and exclusive
produced by a classical current soudcean be studied using factorial moments. In particular, the inclusive spectrum of

the coherent statelefined by particles as a function of momentum is given by

1 ~ —_— dN 0G[z ~

|J>Eexr{—— f dk|JI(k)|? exp“ ko(k)aT(k)hO), 20 —2 =20 2] = [J(k)|2. (11
2 d®k 8z | _. (2m)®
(4) Z¢71
whereJ (k) is the Fourier transform of the sourdéx), a' is Note that all higher correlation functions vanish for a co-
the usual creation operator, and the integral measure is giveierent state, as is easily shown by taking further derivatives
by of the generating functional. Thus, we see that the main ob-
™ ject of interest in this description is the functid(ﬂZ).
dk= —— 2w (k32— m2) (KO). (5) 5
(2m) B. Extracting J from the field

Note that, because of the integration measure, the actual con- Since one’s intuition is that the flux of particles depends
tribution of J(k) to the integrals in Eq(4) comes from the directly on the field, it is instructive to see how the value of
mass-shell wittk®>0, and sometimes it proves convenient J(k) can be derived from théclassical field at late times.
to introduce the notation Assuming that the in state has vanishing classical fii¢lis

the classical “vacuum” stabe ¢;,(x) =0, we can write

I =I(K) ko=, (6)
where ¢0ut(x):f d*yD"(x=y)d(y), (12)
w = VK2 +m?=0. (7)  Where D(7)=D,—D,q, is the difference between the re-

tarded and advanced Green functions. Taking the Fourier
We remind the reader that the relation between the cohetransform(and using the convolution theoremve get
ent statdJ) and the sourcé can be derived from the famil-

iar (text-book analysis of theS matrix associated with. Do K)=D T (K)I(k) =27 8(k>*—m?) e(k®)id(K),
Provided that] is sufficiently well localized in space and (13
time (so that the idea of a scattering process is well defined -

this S matrix is given by where we have substituted for the explicit formof (k)

in the last line. It is then useful to consider the three-

2 ~ dimensional Fourier transform ab,(x). We use the fol-
— . 4 .
S—.ex;{j d yd)f(y)J(y))., ® lowing conventions: .

where <Az>f(y) is the free scalar field operator. Taking into

Ty = 4y, Ak
account the normal ordering, one can rewftas f(k)_f d*xe™(x), (14)
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To k) = j dixe K5 (1,%), (15

which imply

0
TO(t,k)= J ( Zkﬂ) e K% (k). (16)

From Eqgs.(13) and(16) it follows that the three dimensional

Fourier transform ok, (X) is given by
SRt |2)=J 4 e K2 5(k2— m?) e(k)id (K)
out\ ~1 (277.)

=i{[ii(l?)]e—iwkwr[iF(IZ)]*eiwkt}, (17)
Wy

where we have used the fact thHi) is real:

JK*=I(—K). (18)

Upon observing that Eq17) also implies

S3(1,K)= 31, K) = —i{[1T(K)Je TR —[T(K)]* elowt),
(19

(3) and its time deriva-

we can solve fod(k) in terms Ofgout

tive:

(k)= —ie' M w0, pS LK) +i dSUtK)].  (20)
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As proper time increases the fieldrolls into a minimum
with ®T®=f2 and during this “rolling phase” the pion
mass can be imaginary, leading to unstable growth of the
Goldstone mode§3,10]. Since, as mentioned in the Intro-
duction, the energy density from the intrinsic chiral symme-
try breaking is smal[6,16], and the fireball surface isolates
the interior from the exterior of the light cone, it is reason-
able to expect that the interior of the light cone ends up in a
disoriented vacuum. At late times such a region of disori-
ented vacuum with a given isospin orientation would relax
back to ordinary vacuum{®)=(o)=f_, radiating pions
with the same isospin orientation.

It is also reasonable to expect that approximations based
on the replacement of the full linear model by the simpler
nonlinear o model, with Lagrangian density givefin the
chiral limit) by

1 2 1 >\2
L£=3 (09,0024 5 (3,7)?, (23)

with

o?+ w2=12, (24)
could be reliably used at times late enough so that the chiral
field has already rolled into a minimum witth®d=¢?
+72=f2,
In modeling these stages of evolution, the chiral limit can

be safely taken as long as the proper time is small compared
tom_*, while at proper times of ordéf to 2 m_* the pion
mass can no longer be neglected. At sufficiently large proper
times, one should10] decompose the DCC field into

This relation is extremely useful for problems set up in suchphysical-pion normal modes and let them propagate out to
a way that what is known is encoded in the equations ofnfinity as free states.

motion plus the initial field configuration; in fact, E¢RO)
allows us to derive an associated current solirgeich in
turn describes the particle flux via E(L1)] from the late-
time field.

Ill. o-MODEL DESCRIPTION OF BAKED-ALASKA DCCs

Returning to the coherent state formalism reviewed in
Sec. Il A, we note that in the linear model we are dealing
with four scalar fields. As a result, the appropriate out state is
a coherent state characterized by four current densities:

~ 17 -3
IJa>=eXP[—§fdka20 13.(K)[2

The A4) o model is typically used as a model of hadron
dynamics in DCC studies. It is simple enough to be treatable,
has the correct chiral symmetry properties, and describes the
low-energy phenomenology of pions. However, it must be
kept in mind that it is, at best, a crude approximation to the ) ) )
chiral effective low-energy Lagrangian of QCD. with the corresponding generating functional

The Lagrangian density of the linearmodel is

3
Xex;{i d"lizoﬁ'a(k)ég(k) |0y, (25

3
G[zo,zl,zz,z3]=exp[ f d"ligo |'5a(k>|2[za<k>—1]]

1 A
(&Mo')2+§(o7,u7r)2—z(a'2+772—f37)2+H0'. 26

(21)

’ 1
2
When not interested in observing quanta(or working

H=0 in the chiral limit,m,=0. within the nonlinea mode) one can simply set its fugacity
A meaningfulo-model description can start at some smallvariable z, to unity. This amounts to setting to zero the

proper time, of order 0.2-0.3 fm, near the light cone, wherggrce associated with, which we choose to bd,. This
the collective coordinates and 7 become relevartl0,19.  |eaves the generating functional for the", =2, and =3

At this early proper time the distribution of the chiral field fg|gs

d=o+iF 7 (22)

3
G[zl,zz,zg]=exr“d"lii21 303z (k) - 1]|. (27

can be expected to be noisy, but witl)=0.
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The physically observed fields ate®, =%, and=~, which ~~
are associated with the creation operators Glzp,z: ,z_]=ex J' dk|I(k)| (f[Zo(k)— 1]
+
2
R 1 .. .
aT::F (al+ial). (29
2 ><{[2+(k)—1]+[2—(k)—1]}) .(39)

Introducing the corresponding source currénts
This generating functional is appropriate for the descrip-

Jo(k)=J3(k), (300  tion of events with initial conditions parametrized by a given
f. However, for DCC production one must average over ini-
- 1 ~ ~ tial conditions[20] with the appropriate weight®(f). In
J-(K)=—[J1(K) FiJ(K)], (31)  such cases one can introduce the following type of generat-
V2 ing functional:

one finds that

, G_[zo,z+,z]=foldfP(f)exr{j d~k|3(k)|2<f[zo(k)—1]
2, ik (k) =Jo(k)al(k)+3..(k)al (k) +3_(k)aL k),

1-f
(32 +( 5 )
and the generating functional for the, ", and=~ fields
is given by ><{[z+(k)—1]+[z(k)—l]}”. (39
G[zy,z. ,z]=eXp( f dk{[Jo(K)| 2 zo(k) — 1] In particular, assuming that the initia| are distributed with
B equal probability over the2® ;n?=1 sphere, we get the
+ I (K) |z (k)—1] characteristic form
1 1
+|J(|<)|2[Z(k)—1]}>- (33 P(f )=—= 40
(f) 2 f (40)

For the DCC picture advocated in the following, the classf

or the distribution off.
of sources

- - Finally, we observe that the above generating functionals
Ji(k)=[3(k)[n;, (34)  with independent description af " and 7~ production can

. be turned into generating functionals for charged particles by
where i=1,2,3 and then; are real constants such that fixing

>3 n?=1, is of particular interest. From Eq34) one

clearly has Zh=2,=7_. (42
Jo(k)=13(K)[ns, (39 For example, for the generating function@9 and the
- |3(k)| P(f ) of Eq. (40) one finds
+(k): (nliinz), (36)
_ 1 df —_
G[zo,zch]zJ’ —— ex fdk|J(k)|2
and the generating functional takes the form o 2\f

e F[2g(K)— 1]+ (1—F Y[z (k) — 1T} .
G[zo,z+,z]=exr{ dk|J<k>|2(<n3>2[zo<k>—1] izl =dr A= lzadlo =L}

2 2 42
+(n1) +(ny) (42)

2 Thus far we have averaged over chiral orientations of the
><{[z+(k)—1]+[z(k)—1]}) . (37 classical source, but not the overall shape of the sodirce
Eventually this problem must of course be faced. If the fluc-
By realizing thatf = (n2)2. with f beina the neutral fraction tuations about the mean, classidaire Gaussian, there exists
yre 9 (ng)”, 9 a well developed formalism for dealing with thdr®0]. In-

as in the Introduction, one can rewrite this generating f“”Caeed the DCC average we have performed is in fact also

tional as essentially carried out in Reff20] by Andreev, Plmer, and
- Weiner.
In the case of DCC, the fluctuations will arguably go be-
This J, should not be confused with the source termdoelimi-  yond the Gaussian approximation even when the DCC fluc-

nated in the preceding discussion. tuations are generated by a Gaussian distribution of initial
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condition parameters. This is a big problem, beyond the Wgut(x)mfwgom(x)_ (49)
scope of this paper. We will comment on it again in the
concluding section.
Based on the analysis reported in the previous section, it
IV. SIMPLE NONLINEAR o-MODEL DCCs is then easy to see that the corresponding pion production is
) ) - ] described by the generating functional
A. Setting up the problem in terms of an auxiliary field

The picture of DCC evolution given in the Secs. | and I
can be implemente@although, at least at early times, one G[z ]:eXF{f d~kf2|39(k)|2[z K)—1] (50)
does not obtain an accurate quantitative description of the i T i ’
physical systemwithin the nonlinears model in the frame-
work of the set of classical solutiong,4,16, which have the

form and in particular, the inclusive spectrum of pions is given by

d=f_Vielfmy,, 43

f f “3 dN,o fi

whereV; is a constant but otherwise arbitrary unitary matrix 20k —3 = 3
. . SR 4 d°k  (2m)

[1], which orients® along a direction in isospin correspond-

ing to neutral fractiorf and @ is such that

134(K) |2 (51)

For V;#1, a simple generalization of this argument holds,
and the(charged and neutrapion production is ultimately
described within the generating functional formalism dis-
cussed in the preceding section.

06=0. (44)

(We are for the moment specializing our analysis to the chi
ral limit m_=0.)
For V;=1 (which corresponds td=1) these solutions

describe chiral fields withr;=7,=0 and B. Pion flux for a class of sources
m0=1f_sing, (45 We are finally ready to define in more precise terms a
simple model which embodies the essence of the baked-
cr=\/f27,—(77°)2=f,7c039. (46)  Alaska scenario. We start by introducing a source of the

general form
Our analysis will exploit the simplicity of Eq44), and
will be based on the relation between source and particle flux Jo(X)=4m?f (1) Dre(X), (52
discussed in the previous section. One aspect that perhaps
deserves clarification is the relation between the pion flux

and the solutions of the evolution equation for the fi@lih where
presence of @ source:
1
D600 =J(x). “7) Dre(X)=7— O(1)3(r—1) (53

For this, it is important to observe that when the source term
Jy is well localized in space and time, as it must be for the ) )
consistency of our approach, the amplitude of the field iS the retarded Green function for a massless scalar field, and
must (because of energy conservatidrecome small every- (1) is a function oft=x° such that

where at sufficiently late times. Therefore the relation be-

tween the late-time asymptotic fields,, and 9gut, which f(t)—0
according to Eq(45) is given by '

t—o0

, (54

Tou X) = f ,SiNfou( X), (48) f(t)—1, t—0, (55)

can be well approximated by

i.e., the source i®n at early times but eventually switches
off. We are also using standard notations ffer|X| and for
Note that the asymptotic behavior of the fields and sources playthe step functior®.
a rather central role in our analysis. In particular, a class of solu- The physically interesting quantity, as discussed in Sec.
tions more general than E¢43), given by ®=f W'e'"sU with || is3 (k) and the Fourier transform of the current density
U#W, could be considered, but would require everlasting sources; 2) is given by
Such idealized sources have been considered in the analysis of R ?
[18] (where the source never turns off as a result of boost invari-
ance and Ref.[4] (where the source never turns off as a result of
the infinite size of the “pancake’and can be useful in deriving  °The normalization factor has been chosen so taatexplicitly
some intuition about DCCs, but do not reproduce the experimentadhown later opfor small enougtt the DCC is purer=f . inside
conditions of DCC searches. the light cone.
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J,(k) = f d4x ek (x)

o 4 [
=f dte'kot—f drr sinkr
K Jo

4772 ® .ko ® .
—f dtf(t)e' tf dré(r —t)sinkr
K 0 0

T
f(t) T O(t)d(r—t)

4’772 *® .ko .
TJ dtf(t)e's 'sinkt, (56)
0

where we used the notatior= |K|. It then immediately fol-
lows that

~ . Am® (= .
Jg(k):Tf dtf(t)el V< migingt. (57)
0
In particular,ja(IZ) can be approximated at largeas
~ . 27 (= ) 2mAT
Jy(k)~ fdtf(t)e'<m2/2K>t~ — (58)
0

where T=[dtf(t). We see that the large behavior is not
very sensitive to the exact form of the functié(t). How-

ever, this does assume that the sources are localized exactly

on the light cone. If we introduce a representation of éhe
function with a finite width, the resulting field distribution is

smoother and, as one might expect, the high-frequency tail

falls off much more rapidly.

C. Pion flux and field evolution for a specific source

It is interesting to consider the idealized cd$e) =0 (T

—1), where the source term switches off suddenly at some

timet=T, to be associated with the decoupling time. In this
case the source takes the form

Jp(X)=0(T— t)— (&(r—1), (59

and Eq.(56) describingj off the mass shell reduces to
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~ 4772
\]g(k):T dte"‘ tsinkt
0
2.2 eiT(k0+K)_1 eiT(kO—K)_l
=T S | T e = | €0

The value of) on thek®>0 mass shell is easily obtained by
substitutingwy= x>+ m? for k° and, in particular, in the
massless cagand the larges limit of the massive cagene

finds
e
Er
2

m )
—iz {—2Tk+i(1—€?T)}.

. 2772 12Tk

K

-1
2ik

J4(k)

(61)

For the simple choice of source considered in this subsec-
tion it is also possible to derive explicitly the corresponding
o field. We start by observing that

0(x)= f d*X' D e Xx—X")Jp(X")

| e@-=t) . .
:J d*x (477')( —»r| 5[' |_(t_t )]]
[w@(t’) ]
XO(T-t) - o(r'—t’)
1 1
fd“y@(T t)O(t)O(t— t)( = 7|)

X S |X—=X"|—(t—t")]8(r" —t")
1 1
=2 J d4y®(T—t’)®(t’)®(t—t’)(E)

Xolp—(t=t)]o(r' —t"), (62)

where in the last line we have introduced the variaple

=|X—X'|. We now go to spherical polar coordinates, choos-

ing the z axis to lie alongX so thatp= \r?+r'2=2rr"pu,

and find that

T o 1 ’
6’(X)=g JO dt’®('t—t’)fO dr’&(r’—t’)f_ld,u % Sp—(t—t')]

T (T ®
=5 fo dt’'e(t—t )fo dr'é(r’ —t

T (T *
—f dt’@(t—t’)f dr' s(r' —t’
2r Jo 0

)77 dodtp- -1

)O[(t—t")—|r—r'[1®[r+r'—(t—t")]

ar T
=5 fo dt’O(t—t")O[(t—t")—|r—t'|]0(2t' —t+r)

T T
—f dtO(t—t"){O(t—r)e2t’
2r Jo

—t+r)—0(2t' —t—r)}. (63
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Here the last line in Eq63) follows after some straightfor- ~3 A (= ' -
ward manipulation of the step functions in the integrand. In ~ fou(t, k) = s fo drr sinkr -
order to render explicit the structure of the req@s) it is

2T—t+r
r

convenient to examine separately the case®, 0<t<T, XO2T—t+r)O(t—r)
andT<t; this also allows us to see how the various stages of 5
the evolution of DCC described in the Secs. | and Il are _m f dr(2T—t+r)sinkr®(2T—t+r)
realized within this solution. From Eq63) it follows that kK Jo
0=0 whent<0, as expected sind®,,(Xx) andJ,(x) vanish %O (t—r)
for t<0. (
For O<t<T w2 [t
=— dr(2T—t+r)sinkr
K Jt-2T
T 2 sinkt  sink(2T—t)
o(tr) == 0(t-r), (64) =— | — 2T cost+ + .
K K
(67)
.., a uniform region of DCC is present inside the light conerthe three-dimensional Fourier transform @fis then given
during the interval when the sourceas. by
Finally for times later tharT,
~ d ~
03(t, k)= gt 03)(t, k)
a [ 2T—t+r
o(t,r)=— | ——|02T—t+r)0(t—r) ? _ 1
4 r = — | 2T sinxt+ — [coskt— cosc(2T—1)] |.
a [ 2T—t—r
—Z(f)(@(ZT—t—r), (65) (68)

Finally, following Eq. (20) we get(also taking into account
that this calculation is in the massless limit, and therefore
which is of the form{ f(t—r)+g(t+r)]/r and therefore sat- wy= k)
isfies the free wave equation, as expected since in this region
the current density isff. The Eq.(65) also explicitly shows . - .
that att=T, when the source isurned off the ordinary Jg(k)=—ie"[kOgy(t, k) +i 654t )]

vacuum(the o vacuun starts breaking into the interior of 2 . .

the light cone. Att=2T the ordinary vacuum reaches the — et T | _oeinty ! e ixt_ ! ex(2T-t)

small+ region, and for times later thanT2the Eq.(65) can K K K

be interpreted as describing the outward propagation, in or- 2

dinary vacuum, of a localized DCC wave. This sequence of =_j 77_2 [—2Tk+i(1—e2T%)], (69)
K

events can be seen in theand o fields plotted in Fig. 1.

Having obtained the nonlinear-model solution corre-
sponding to the sourcé9), we can use it for @onsistency in complete agreement with E¢61). In Fig. 1 we show a
checkfor the relation between source and field discussed ifew snapshots of the evolution of the fields for the solution
Sec. Il i.e., we can check that using ERO) one can indeed (63) and the corresponding source obtained using (29),
obtain the Fourier transform of the sout&®) from the late-  which agrees very well with the expressit).
time 6 field, which according to Eq(65) is given (fort

>2T) by4 D. Correlation between generic and DCC pion production

The question of correlations between generic and DCC
pion production is very important for experimental DCC
O(2T-t+r)O(t—r). (66) searches. It is quite reasonable that such correlations should
exist. In our baked-Alaska scenario, if the source strength on
the light cone is large, i.e., lasts for a long tifie then the
] . . . amount of DCC which is produced will, as we have seen,
We start by evaluating the three-dimensional Fourier transy|gg pe large. To be more quantitative is not easy. Here we
form of oy attempt to make the connection by a simple argument based
on energy densities. In the absence of the source, then there
would be a surface tension, i.e., an energy per unit area,
“Notice that the late-times-field satisfies| 6,,(t,r)|<=T/(2t), ~ associated with the boundary region between the sphere con-
and therefore the approximatian,,=f,sin f,,~f 0, holds as-  taining the DCC and the normal vacuum on the outside. It is
ymptotically, as argued at the beginning of this section based ogontributed by the kinetic-energy term of the DCC Hamil-
general energy-conservation arguments. tonian, since gradients of the pion field exist in the interface

2T—t+r
r

ar
gout(t-r): Z (
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region. It is reasonable to assume that when the energy perV. BEYOND THE CLASSICAL NONLINEAR o MODEL

unit. area of the g_eneric partons or hadr_ons in the source Up to this point we have based our description of DCCs
region exceeds this surface energy, the inner DCC will beon linear, semiclassical, coherent-state solutions of a simple

decouplied from the outer vacuum, and cqnversely when thiﬁonlinearcr model. However, there has been a considerable
energy is less than the DCC surface tension, the source tergy,qy of work on DCC production which goes substantially
will be inoperative: This will allow a connection between ¢, her Not only are the nonlinear equations of the linear
the amount of generic production and the amount of DCG,4e| (or even more complicated modd22]) considered,
produced. _ , _ but also the effects of quantum fluctuations are taken into
In the spherically symmetric case, by assumption the,.cont within the mean-fielf13,23 (or largeN [13,14)
DCC surface energy is contained in a shell of thicknéss 555 oximation. This level of calculation has become dee
with 4 a typical hadronic scale, say 0.2 4 <0.6 fm. We  ¢50¢6 “state-of-the-art.” However, in most cases the space-

can therefore write time geometry is greatly simplified, or else the approach is
E 1 T 1 £2 aggressively numerical.
DCC _2 f dramr2 = f2(Ve)2~ ==, (70 The closest calculation at this level to what we have pre-
A 4mT -A 2.7 2A sented here has been performed by Lampert, Dawson, and

Cooper(LDC) [18]. They consider a boost-invariant spheri-

where the last approximation on the right-hand side followscal expansion, such that the fields depend only upon the

from approximating the profile at decoupling of tidfield ~ Proper time which has elapsed since the expansion began.
near r=T with a linear interpolation betweerg(r=T  This is not very realistic, because the inclusive particle dis-

—A, t=T)=1 andé(r=T, t=T)=0. tribution which emerges must be the same in all reference
For the energy per unit area of the hot shell made offames, and therefore requires an infinite mean energy per
collision debrisy one easily finds particle, and an infinite formation-time for the final-state dis-
tribution.
While the LDC solutions are, as they stand, not very re-

FShe”: dEShe'L (pﬁ(dN/dQ)dQ} alistic, it is not too hard to adapt them to the baked-Alaska
A dA T°dQ generic scenario which we have described. We shall sketch in sub-
sequent subsections how this works. The main point is that if
= @d_N} 71) we assume that the dynamics is as described in LDC for

T2 dOQ generic. timest less tharT, after which time the sources on and near

the light cone are turned off, then by causality the LDC
solution will still be exact within the double-cone region, i.e.,
between the forward light congrertex att=0) and an in-
Verted light cone with vertex at=2T. If T is large enough,
one could hope that the fields inside the double-cone region
and far from the light cone be asymptotic, so that they could
dN 2 lm be matched onto the nonlinearmodel fields we use, and an
(pr) aQ __T 2A° (72) estimate of the low-momentum portion of the particle spec-
genere trum could then be obtained using EO). The quality of

) ) ) this method can be tested by varyifigand determining

The aforementioned correlation between generic anghich portion of the inclusive spectrum is insensitiveTto

If indeed att=T the DCC surface energy density equals
the energy per unit area of the hot shell of collision debris
one finds from Eqs(70) and(71) that

DCC pion production is then seen upon combining &@) For a more rigorous analysis of the spectrum, the source
with Egs.(51) and(58). Specifically, one findgin the chiral  ghy1d pe turned off at the decoupling tiffie but the fields
limit) should be evolved according to the linearmodel up to

times late enough for the evolution to be effectively free. At
A dN sufficiently late times one can then reliably extract the infor-
T [(PT) m} - (73 mation on the inclusive spectrum using the procedure de-
generic scribed in Sec. IV.
It is also instructive to consider the simplification
We therefore see that it is possible for DCC production andichieved by neglecting the mean-field quantum corrections,
generic production to be comparable in terms of the numbeih which case the LDC calculation is reduced to the solution
density of produced particles. of coupled ordinary differential equations describing the evo-
lution of the classical fields in proper time. We have made
such calculations for initial conditions chosen by LDC, and
5t may also be argue®1] that the source of the pion field should find remarkably close agreement of the time dependence of
be a scalar density built from the constituent quarks composing thEh€ 7 ando fields with what is obtained from the full mean-
generic material on the light cone. This quantity is not the energyfield quantum calculation. This is encouragement that, when
momentum tensor, so that this is not obviously the same criterion a8N€ goes on to consider the lineamodel in more difficult,
we are using. On the other hand, when the fields are rapidly varyind£SS Symmetric geometries, a classical calculation may well
(as they are in the source regjoiit is not clear what the correct suffice to provide at least a semiquantitative picture of the
choice of source of pion degrees of freedom is, and a simple arguidynamics which the mean-field calculation would provide.
ment based on energetics seems not unreasonable to try. After all, only a semiquantitative description need be ob-

dN
P d0dp

DCC
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FIG. 1. Evolution of therr (continuous ling and o (broken ling fields according to the classical nonlineamodel, starting from pure
DCC w=f inside the light cone at=1 fm. The fields are shown in the snapshots on the left, whereas the snapshots on the right show the
modulus squared of the pion source functjtime J of Eq. (20)]. The horizontal scales for the left-side and right-side plots are in fermi and
(fermi) ™%, respectively.

tained from the linear model, because it is just a rough and we numerically compare the mean-field and classical
approximation to the complete low-energy effective chiralLDC-type solutions. In Sec. V C we match the classical ver-
Lagrangian ofreal QCD. sions of the LDC solutions at timEe onto the free asymptotic

In the following subsections we sketch more details offields of the nonlineas- model, thereby defining an effective
this line of argument. In Sec. V A we discuss the connectiorsource functiord, from which the pion distributions are cal-
between the pion flux as calculated from the nonlinear culated. Finally, in Sec. V D we match the LDC solutions at
model with what one would obtain from a classical solutiontime T onto fields of the lineas- model, evolve according to
of the linears model. In Sec. V B we describe in more detail the lineare model up to some tim&’ say (late enough for
the LDC analysis, especially in the classical approximationthe evolution to be effectively that of a free figlthen the
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calculated effective source function will represent the actuaknapshots chosen to illustrate the main features of the evolu-

pion flux. tion. The pictures on the left describe the evolution of the
pion ando fields, while the pictures on the right describe the
A. Deriving the pion flux in more general frameworks corresponding “evolution” of the Fourier-space effective

) ) o source function. The emergence of a stationary Fourier-space
We start by applying our formalism to the derivation of gtfective sourcwhich encodes the information on particle
the pion flux for the full linearo- model or related models, ,roqyction reflects the fact that at late times the evolution of
rather than for the nonlinear model considered in the pre- he - and o degrees of freedom reaches an asymptotic re-
vious sections. Provided one is dealing with a weII—defineqairne ruled by the nonlinear model. However, it should be
scattering problem, with the sources localized in space anfgied that the low-momentum part of the spectrum is only
time, the evolution of ther and o degrees of freedom will complete after a time scale between 4 and 8 fermi, and is

eventually reach an asymptotic regime governed by free fieldjgificantly larger(a factor of 2 than what was obtained for
behavior. An estimate of the associated inclusive pion SP€Ghe nonlinears model for identical initial conditions.

trum can indeed be obtained by applying the formulas dis-
cussed in the previous sections.

While technically this procedure is rather straightforward,
it is important to realize that the associated “sources” are
somewhat different from the ones we have been discussing. Our description of DCCs uses the classical equations of
In this more general case one is actually dealing with “ef-motion to obtain an out field from a given in field. This out
fective sources,” useful as computational tools in the analy{ield is then mapped into a corresponding coherent state from
sis of pion production, but not to be interpreted as physicaivhich particle productioria quantum effegtcan be derived.
external sources in the problem. From the point of view ofSome elegant recent studigk3,14,18 have been based on
the original model, say the linear model, these effective more general formalisms for the description of quantum ef-
sources are given by the sum of a physical external sourciects and have taken into accolsbme of the nonperturba-
and a term from the self-interactions of the fields. tive quantum effects contributing to the structure of the full

These ideas are of rather general applicability; for expropagator. One is then confronted with the solution of a
ample, in the investigation of an interacting system describedenuinely nonclassical evolution problem, in which “gap

B. Classical version of LDC approach and reliability
of coherent-state descriptions

by the Lagrangian density equations” describing the full propagators are combined
1 m2 with (modified evolution equations for the fields. Seen as
L=5(9,P)(0"P) = — P?— V(D) (74)  solutions of a variational problem, these equations result

from finding an extremum of théguantum effective action

for compositeq25], just like the classical evolution equa-

tions are obtained from finding an extremum of the classical
(O+m?)d=—-V'(D)+J, (75 action for(local or noncomposijefields.

In Ref.[18], LDC investigated the chiral phase transition
where J is a physical “external” (®-independentsource by modeling the relevant hadron dynamics with a linear
andJz=—V'(d)+J is an effective source. model, and adopting evolution equations that take into ac-

The simulation reported in Fig. 2 corresponds to the lineacount part of the nonperturbative quantum effects contribut-
o-model classical evolution from an initial configuration ing to the structure of the full propagator via the familiar
given by pure DCCa=f_, inside the light cone and true largeN formalism. They concentrated on boost-invariant
vacuum outsid¢i.e., a snapshot of the soluti@fi4) at some  spherical expansions, such that the mean-field expectation
chosen tim¢and vanishing initial field velocitieéexcept on  values depend only upon the proper time \t?—r?. We
the light cong¢. We simulate the classical field equations, asrefer the interested reader to REL8] for the complete de-
obtained from the Lagrangian densi1), for a spherically  scription of the LDC approach. For the purposes of the
symmetric field configuration. Rather than simulating dhe analysis presented in the remainder of this section, it is suf-
field directly, our program evolvesb(t,r) which simplifies  ficient for us to consider explicitly the evolution equations
the form of the d’Alambertian. The boundary conditions atcorresponding to the classical version of the LDC equations,
the origin are set up to ensure thl(t,r) is an even function i.e., obtained from the LDC equations by dropping all con-
of r at all times. The relevant classical field configuration istributions coming from the dressing of the propagator:
then evolved in time, using a simple staggered leapfrog al-

one is naturally led to the study of the evolution equation

gorithm (see, for examplg24]). The~F9urier transforms in- ia 9 22N (o2 + 72— 12) lo=f.m2, (76)
volved in finding the source curred(k) as defined in ex- ™dr\  JT
pression(20) are done using a straightforwar@xtended
trapezoid method® Figure 2 shows a selection of output 19 3 s 5 .2
Bal\T g, +N(o“+ 7 1) |7m=0. (77)

SNote that by setting.=H=0 in Eq.(21) we obtain the free wave As a preliminary test of the reliability of our description
equation. This enables us to use an almost identical program tef DCCs based on the classical evolution equations, we have
evolve thed field in the nonlineaw model to obtain the graphs in compared the results for the mean-field evolution of the
Fig. 1. The major change in the code between the two cases is iand o fields obtained in Refl18], to the corresponding re-
fact the use of the identityr=f_sing in the J-extracting routine. sults from the classical equatiofig6) and(77). In Fig. 3 the
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FIG. 2. Evolution of therr (continuous ling and o (broken ling fields, and the pion source function according to the lineanodel,
starting from pure DCCr=f , inside the light cone at=1 fm.

results of this comparative analysis are reported for the initiaht =1 fm. Since the focus of this exercise is only on the

conditions singled out in Ref18] as the most “DCC favor-

ing” within the special family of initial conditions consid-
ered there; specifically, we integrate the fields from the ini-invariany source structure adopted in Réf8]. Figure 3

tial conditions

=0 fm™ !, o=-1 fm 2

7=0.3 fm %, 7=0 fm 2 (79

field evolution, rather than particle production, for simplicity
we kept the exact(spherically symmetric and boost-

suggest that even at a quantitative level the description might
be satisfactorily accurate. This is especially so because one is
in any case using rough models of the relevant hadron dy-
namics(i.e., it appears to be likely that the inaccuracies in-
troduced by using classical evolution equations might be less
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to reconstruct the fields everywhere on theT surface in-

side the light coneJ(IZ) is then extracted from this field
configuration using Eq(20) as before. Ther and = field
configurations and the effective source function described for
various choices of the above-mentioned tiein Fig. 4
clearly reflect the shortcomings of the approach discussed in
this subsection.

0
\/ D. LDC approach with truncated sources

The deficiencies of the method discussed in the previous
section can be easily remedied. Evidently, after the external
source is turned off at the decoupling tinfe the fields
should be evolved according to the linearmodel up to
times late enough for the evolution to be effectively ruled by
free field behavior. At such late times one can reliably ex-
tract the information on the inclusive spectrum using the
procedure described in Sec. IV.

In Fig. 5 we report the results of such a simulation, again
as snapshots describing the evolution of the fields and the
effective source function corresponding to the initial con-
figuration singled out as “DCC favoring” in Ref18]. For
illustrative purposes we chose in this simulation a large de-
coupling time(5 fm). In this case the effective source does
reach a stationary regime; however, by comparison with Fig.
5 : 10 T 20 75 2 we see that this asymptotic behavior only emerges at rather

T late times (-20—30 fm). The comparison of Figs. 4 and 5
shows that the approach discussed in the preceding subsec-

FIG. 3. Evolution of the pion and fields as functions of proper tion, in which the LDC sources were never turned off, can

time in the LDC setup. The continuous line corresponds to th rgely overestimate(e by more than a factor 10 if
purely classical analysis, whereas the dotted line corresponds to tilé gely ov : g _y '
<5fm, as assumed in Fig.) ®even the low-momentum

guantum analysis reported in REL8]. At proper timer=1 fm the -
fields and their derivatives are fixed to be=0.3fm™% o portion of the spectrum.
=0fm %, #=0fm™2 o=—-1fm 2

NN PO NN W

VI. CONCLUSIONS

important than the ones resulting from modeling the relevant |n this paper we have investigated the various stages of
hadron dynamics with, say, the linearmode). the evolution of disoriented chiral condensates via the
“baked-Alaska” mechanism. Most of our analysis has been
elaborated using classical equations of motion based on ei-
ther the linear or nonlineasr model. The associated frame-
work of coherent states was then used to make the connec-

As explained at the beginning of this section, the spherication with the distribution functions for the particle
expansion investigated in R¢fl8], which is fueled by ever- production. Important in this step is the identification of the
lasting sources, and involves fields depending upon only theource-function of the produced particles, namely the right-
proper time, is not very realistic. Still, as mentioned abovehand side of the usual wave equatisee Eq.(75)]. The
one could attempt to extract the low-momentum portion ofsquare of the on-shell fourier transform of this source func-
the inclusive pion spectrum associated with a baked-Alaskation, as determined from the solutions of the equations, then
type modification of the LDC approach, by mapping theprovides directly the inclusive distribution of particles.
LDC solutions at timeT onto free asymptotic fields of the In general the source term consists of two parts. One is
nonlinearo model, thereby defining an effective source func-concentrated near the light cone, and is a genuine external
tion J, from which the pion distributions are calculated. Ide- source, not a function of the chiral fields, to be associated
ally, one might find that for large enoughthe fields inside with the generic collision debris of partons, constituent
the double cone region be almost everywhere asymptotiquarks, etc. The other part consists of the nonlinear terms,
and that only the high-momentum tail of the particle spec-built from the chiral fields themselves, which appear in the
trum could not be captured by such an approach. In practicelassical wave equation. We found evidence, within the non-
however, we find that not even the portion of the inclusivelinear o~-model approach, that the number of produced DCC
pion spectrum with very low momentum is well determined pions is likely correlated with the number of generic hadrons
at times as late as 50 fm. produced, with this correlation local iflego phase space.

In Fig. 4 we report the results of one such analysis, inThe number of DCC pions could be comparable with the
which we integrate the fields from the initial conditio(%8) number of generic hadrons according to this crude estimate,
at7=1fm, to some later tim& and use the boost symmetry but the uncertainties are very large.

C. Low-momentum portion of the inclusive spectrum
in the LDC approach
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We also compared our very simple classical approacture), we have assumed spherical symmetry of the solutions.
with a mean-field calculation which includes one class ofRegrettably, this geometry is too simple for many realistic
guantum corrections, and at least in the case we studied, tlaplications. The intrinsic sources are reasonably uniform in
guantum effects appear not to be of great importance. This iego variables, not spherical coordinates, and this geometry
encouragement that, when attempts to go beyond the spherieeds more detailed study. In addition, fluctuations about the
cal symmetry assumed in this work, the simpler classicamean behavior are very important. A piece of DCC with
approach may suffice to reveal most of the important physrelatively large transverse velocity will look in the laboratory
ics. similar to a coreless minijet, with contents containing small

In all of the work in this papetand in most of the litera- relative momenta. So the source distributions most relevant
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to DCC searches in high-energy hadron collisions should nodrientations and probability of occurrence of snowballs
only be described in lego variables, but also contain minijetvhich are neighboring in momentum space are correlated.
clusterings. Very little work on this exists.

However, in defense of what we do, each piece of DCCin In addition, one should average over sources more
momentum space is a cluster of pions of near identicabroadly. This includes not only the properties of the intrinsic
momenta—a “snowball”—which has a local rest frame sources discussed above, but also the initial conditions im-
[2,10]. In a snowball rest frame, the calculations we makeposed on the chiral fields at early proper time, i.e., at the
should be a reasonable description of the dynamics of thainset of the chiral symmetry breaking. A good starting point
particular snowball. But one needs to know how the chiralwill be to do this for the classical version of the interesting
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