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We study the various stages of the evolution of chiral condensates disoriented via the ‘‘baked-Alaska’’
mechanism, in which the condensates are described as the products of external sources localized on the light
cone. Our analysis is based on the classical equations of motion of either the linear or the nonlinears model.
We use the associated framework of coherent states and, especially, their source functions to make the
connection to the distribution functions for the produced particles. We also compare our classical approach
with a mean-field calculation which includes a certain class of quantum corrections.@S0556-2821~97!07123-3#

PACS number~s!: 12.38.Aw, 12.39.Fe, 12.90.1b, 13.60.Le

I. INTRODUCTION

Recently, in order to interpret events with a deficit or
excess of neutral pions observed in cosmic ray experiments,
there has been increased interest in the conjecture that it
might be possible to produce in high-energy collisionsdis-
oriented chiral condensates~DCCs!, i.e., correlated regions
of space-time wherein the quark condensate^0uqLq̄Ru0& is
chirally rotated from its usual orientation in isospin space.

On the theoretical side there has been great interest~see,
e.g., Refs.@1–14#! both in the development of technical tools
suitable for the description of this possible phenomenon, and
in the exploration of the possibilities opened by DCCs as
probes of the structure of quantum chromodynamics, most
notably in relation to the chiral phase transition.

The idea that such DCCs might be produced in high-
energy collisions at existing or planned hadron or heavy-ion
accelerators has generated some experimental interest. In
particular, one of us is cospokesman for a Fermilab experi-
ment @15# looking for DCCs in hadron-hadron collisions. In
high-energyp2 p̄ collisions which lead to a sizable multi-
plicity of produced particles, but not necessarily with high-
pT jets in the final state, the time evolution is quasimacro-
scopic, because the hadronization time can be rather large,
up to 3–5 fm. At timest before hadronization, the initial
state partons, produced in a volume much smaller than a
cubic fermi, may stream outward at essentially the speed of
light in all directions, occupying the surface of a sphere of
radiust ~in units such that the speed of light is 1!. Most of
the outgoing energy-momentum is expected to be concen-
trated near the light cone, i.e., on the surface of the expand-
ing ‘‘fireball.’’

However, the interior of the fireball is also an interesting
place. If its energy density is low enough, the interior should
look very similar to the vacuum, with an associated nonva-
nishing quark condensate. Since the energy density from the
intrinsic chiral symmetry breaking is small@6,16#, and since
the fireball surface isolates the interior from the exterior of
the light cone, it is reasonable to consider the possibility that

well inside the light cone the quark condensate might be
chirally rotated from its usual orientation. At late times this
disoriented vacuum would relax back to ordinary vacuum,
via radiation of its collective modes, the pions. The proper-
ties of the radiated pions should be strongly affected by the
semiclassical, coherent nature of the process. In particular,
one may expect anomalously large event-by-event fluctua-
tions in the ratio of the number of charged pions to neutral
pions produced. Assuming that the event-by-event deviation
of the quark condensate from its usual orientation be ran-
dom, one finds@1–4,16,17# that the distributionP( f ) of the
neutral fraction

f [
Np0

Np01Np11Np2
[

Np0

Ntot
, ~1!

is given by

dP

d f
5

1

2Af
, ~2!

at large Ntot . Most notably, this implies that for ‘‘DCC
pions’’ the probability of finding extreme values off is very
different from ordinary pion production~which is given by a
binomial distribution!, in which the fluctuations are expected
to be peaked atf 5 1

3 and fall exponentially away from the
peak.

Experimental DCC searches@15# are thus far largely
based on the structure of Eq.~2!. However, it is probable that
this robust property will not be sufficient on its own for the
identification of phenomena involving DCCs. In particular, it
appears that an understanding of the geometry of the phe-
nomena would be very useful for experimental searches.

In this paper we develop a description of ‘‘baked-Alaska’’
~hot fireball surface with cooler and disoriented inside!
DCCs which is well suited for the study of realistic geom-
etries. Our analysis is based on the classical equations of
motion of either the linear or the nonlinears model and we
use the associated framework of coherent states to make the
connection to the distribution functions for the produced par-
ticles.

In the next section we review the coherent-state formal-
ism with emphasis on the associated particle flux, which is
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seen as directly related to classical sources localized on the
light cone. Section III is devoted to thes model description
of ‘‘baked-Alaska DCCs,’’ defined via the above-mentioned
mechanism involving a hot fireball shell and its cooler~and
sometimes disoriented! interior. In Sec. IV we derive a
simple solution of the classical nonlinears model, and fol-
low the evolution of the associated coherent state from be-
ginning to end, including a derivation of the flux of pions. In
Sec. V we discuss how our analysis can be generalized to the
linear s model, and establish connections with a somewhat
similar model studied by Lampert, Dawson, and Cooper
@18#. Section VI is devoted to closing remarks.

II. PARTICLE PRODUCTION
FROM CLASSICAL SOURCES

A. Coherent state formalism

In the following sections we will be investigating a prob-
lem which in the classical limit is described by the field
equation

~h1m2!f~x!5J~x!, ~3!

for appropriate boundary conditions. The properties of the
quanta associated with a field, such asf in Eq. ~3!, that are
produced by a classical current sourceJ can be studied using
the coherent statedefined by

uJ&[expF2
1

2 E dk̃uJ̃~k!u2GexpF E dk̃J̃~k!â†~k!G u0&,

~4!

whereJ̃(k) is the Fourier transform of the sourceJ(x), â† is
the usual creation operator, and the integral measure is given
by

dk̃[
d4k

~2p!4 2pd~k22m2!u~k0!. ~5!

Note that, because of the integration measure, the actual con-
tribution of J̃(k) to the integrals in Eq.~4! comes from the
mass-shell withk0.0, and sometimes it proves convenient
to introduce the notation

J̃~kW ![ J̃~k!uk05vk
, ~6!

where

vk[AkW21m2>0. ~7!

We remind the reader that the relation between the coher-
ent stateuJ& and the sourceJ can be derived from the famil-
iar ~text-book! analysis of theS matrix associated withJ.
Provided thatJ is sufficiently well localized in space and
time ~so that the idea of a scattering process is well defined!,
this S matrix is given by

Ŝ5:expS E d4yf̂ f~y!J~y! D :, ~8!

where f̂ f(y) is the free scalar field operator. Taking into
account the normal ordering, one can rewriteŜ as

Ŝ5expF1

2 E dk̃uJ̃~k!u2GexpF2 i E d4yJ~y!f̂ f
2~y!G

3expF2 i E d4yJ~y!f̂ f
1~y!G

5expF1

2 E dk̃uJ̃~k!u2G
3expF2 i E dk̃J̃~k!â†~k!GexpF2 i E dk̃J̃~k!â~k!G .

~9!

In particular, this implies that the ‘‘out’’ stateŜ21u0& corre-
sponding to a scattering process having the vacuumu0& as
the ‘‘in’’ state, is given by the coherent state of Eq.~4!.

The most appropriate tool for the description of the par-
ticle production associated with the ‘‘out’’ state is the gen-
erating functional, which in the present case takes the form

G@zf#5expF E dk̃uJ̃~k!u2@zf~k!21#G , ~10!

from which one can obtain all the inclusive and exclusive
factorial moments. In particular, the inclusive spectrum of
particles as a function of momentum is given by

2vk

dNf

d3kW
52vkFdG@zf#

dzf
G

zf51

5
1

~2p!3
uJ̃~kW !u2. ~11!

Note that all higher correlation functions vanish for a co-
herent state, as is easily shown by taking further derivatives
of the generating functional. Thus, we see that the main ob-

ject of interest in this description is the functionJ̃(kW ).

B. Extracting J̃ from the field

Since one’s intuition is that the flux of particles depends
directly on the field, it is instructive to see how the value of

J̃(kW ) can be derived from the~classical! field at late times.
Assuming that the in state has vanishing classical field~it is
the classical ‘‘vacuum’’ state!, f in(x)50, we can write

fout~x!5E d4yD~2 !~x2y!J~y!, ~12!

where D (2)[D ret2Dadv is the difference between the re-
tarded and advanced Green functions. Taking the Fourier
transform~and using the convolution theorem! we get

f̃out~k!5D̃ ~2 !~k!J̃~k!52pd~k22m2!e~k0!i J̃~k!,
~13!

where we have substituted for the explicit form ofD̃ (2)(k)
in the last line. It is then useful to consider the three-
dimensional Fourier transform offout(x). We use the fol-
lowing conventions:

f̃ ~k!5E d4xeikxf ~x!, ~14!
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f̃ ~3!~ t,kW !5E d3xe2 ikW•xW f ~ t,xW !, ~15!

which imply

f̃ ~3!~ t,kW !5E k0

~2p!
e2 ik0t f̃ ~k!. ~16!

From Eqs.~13! and~16! it follows that the three dimensional
Fourier transform offout(x) is given by

f̃out
~3!~ t,kW !5E dk0

~2p!
e2 ik0t2pd~k22m2!e~k0!i J̃~k!

5
1

vk
$@ i J̃~kW !#e2 ivkt1@ i J̃~kW !#* eivkt%, ~17!

where we have used the fact thatJ(x) is real:

J̃~k!* 5 J̃~2k!. ~18!

Upon observing that Eq.~17! also implies

f8 out
~3!~ t,kW !5 f̃̇out

~3!~ t,kW !52 i $@ i J̃~kW !#e2 ivkt2@ i J̃~kW !#* eivkt%,
~19!

we can solve forJ̃(kW ) in terms off̃out
(3) and its time deriva-

tive:

J̃~kW !52 ieivkt@vkf̃out
~3!~ t,kW !1 if8 out

~3!~ t,kW !#. ~20!

This relation is extremely useful for problems set up in such
a way that what is known is encoded in the equations of
motion plus the initial field configuration; in fact, Eq.~20!
allows us to derive an associated current source@which in
turn describes the particle flux via Eq.~11!# from the late-
time field.

III. s-MODEL DESCRIPTION OF BAKED-ALASKA DCCs

The O~4! s model is typically used as a model of hadron
dynamics in DCC studies. It is simple enough to be treatable,
has the correct chiral symmetry properties, and describes the
low-energy phenomenology of pions. However, it must be
kept in mind that it is, at best, a crude approximation to the
chiral effective low-energy Lagrangian of QCD.

The Lagrangian density of the linears model is

L5
1

2
~]ms!21

1

2
~]mpW !22

l

4
~s21pW 22 f p

2 !21Hs.

~21!

H50 in the chiral limit,mp50.
A meaningfuls-model description can start at some small

proper time, of order 0.2–0.3 fm, near the light cone, when
the collective coordinatess andp become relevant@10,19#.
At this early proper time the distribution of the chiral field

F[s1 ipW •tW , ~22!

can be expected to be noisy, but with^F&50.

As proper time increases the fieldF rolls into a minimum
with F†F5 f p

2 , and during this ‘‘rolling phase’’ the pion
mass can be imaginary, leading to unstable growth of the
Goldstone modes@3,10#. Since, as mentioned in the Intro-
duction, the energy density from the intrinsic chiral symme-
try breaking is small@6,16#, and the fireball surface isolates
the interior from the exterior of the light cone, it is reason-
able to expect that the interior of the light cone ends up in a
disoriented vacuum. At late times such a region of disori-
ented vacuum with a given isospin orientation would relax
back to ordinary vacuum̂F&5^s&5 f p , radiating pions
with the same isospin orientation.

It is also reasonable to expect that approximations based
on the replacement of the full linears model by the simpler
nonlinears model, with Lagrangian density given~in the
chiral limit! by

L5
1

2
~]ms!21

1

2
~]mpW !2, ~23!

with

s21pW 25 f p
2 , ~24!

could be reliably used at times late enough so that the chiral
field has already rolled into a minimum withF†F[s2

1pW 25 f p
2 .

In modeling these stages of evolution, the chiral limit can
be safely taken as long as the proper time is small compared
to mp

21, while at proper times of order~1 to 2! mp
21 the pion

mass can no longer be neglected. At sufficiently large proper
times, one should@10# decompose the DCC field into
physical-pion normal modes and let them propagate out to
infinity as free states.

Returning to the coherent state formalism reviewed in
Sec. II A, we note that in the linears model we are dealing
with four scalar fields. As a result, the appropriate out state is
a coherent state characterized by four current densities:

uJ̃a&5expF2
1

2 E dk̃(
a50

3

uJ̃a~k!u2G
3expF i E dk̃(

a50

3

J̃a~k!âa
†~k!G u0&, ~25!

with the corresponding generating functional

G@z0 ,z1 ,z2 ,z3#5expF E dk̃(
a50

3

uJ̃a~k!u2@za~k!21#G .

~26!

When not interested in observings quanta~or working
within the nonlinears model! one can simply set its fugacity
variable z0 to unity. This amounts to setting to zero the
source associated withs, which we choose to beJ̃0 . This
leaves the generating functional for thep1, p2, and p3

fields

G@z1 ,z2 ,z3#5expF E dk̃(
i 51

3

uJ̃i~k!u2@zi~k!21#G . ~27!
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The physically observed fields arep0, p1, andp2, which
are associated with the creation operators

â0
†5â3

† , ~28!

â6
† 5

1

&
~ â1

†6 i â2
†!. ~29!

Introducing the corresponding source currents1

J̃0~k!5 J̃3~k!, ~30!

J̃6~k!5
1

&
@ J̃1~k!7 i J̃2~k!#, ~31!

one finds that

(
i 51

3

J̃i~k!âi
†~k!5 J̃0~k!â0

†~k!1 J̃1~k!â1
† ~k!1 J̃2~k!â2

† ~k!,

~32!

and the generating functional for thep0, p1, andp2 fields
is given by

G@z0 ,z1 ,z2#5expS E dk̃$uJ̃0~k!u2@z0~k!21#

1uJ̃1~k!u2@z1~k!21#

1uJ̃2~k!u2@z2~k!21#% D . ~33!

For the DCC picture advocated in the following, the class
of sources

J̃i~k!5uJ̃~k!uni , ~34!

where i 51,2,3 and theni are real constants such that
( i 51

3 ni
251, is of particular interest. From Eq.~34! one

clearly has

J̃0~k!5uJ̃~k!un3 , ~35!

J̃6~k!5
uJ̃~k!u

&
~n17 in2!, ~36!

and the generating functional takes the form

G@z0 ,z1 ,z2#5expF E dk̃uJ̃~k!u2S ~n3!2@z0~k!21#

1
~n1!21~n2!2

2

3$@z1~k!21#1@z2~k!21#% D G . ~37!

By realizing thatf 5(n3)2, with f being the neutral fraction
as in the Introduction, one can rewrite this generating func-
tional as

G@z0 ,z1 ,z2#5expF E dk̃uJ̃~k!u2S f @z0~k!21#

1
~12 f !

2

3$@z1~k!21#1@z2~k!21#% D G . ~38!

This generating functional is appropriate for the descrip-
tion of events with initial conditions parametrized by a given
f . However, for DCC production one must average over ini-
tial conditions @20# with the appropriate weightsP( f ). In
such cases one can introduce the following type of generat-
ing functional:

Ḡ@z0 ,z1 ,z2#5E
0

1

d f P~ f !expF E dk̃uJ̃~k!u2S f @z0~k!21#

1
~12 f !

2

3$@z1~k!21#1@z2~k!21#% D G . ~39!

In particular, assuming that the initialni are distributed with
equal probability over the( i 51

3 ni
251 sphere, we get the

characteristic form

P~ f !5
1

2Af
~40!

for the distribution off .
Finally, we observe that the above generating functionals

with independent description ofp1 andp2 production can
be turned into generating functionals for charged particles by
fixing

zch[z15z2 . ~41!

For example, for the generating functional~39! and the
P( f ) of Eq. ~40! one finds

Ḡ@z0 ,zch#5E
0

1 d f

2Af
expF E dk̃uJ̃~k!u2

3$ f @z0~k!21#1~12 f !@zch~k!21#%G .
~42!

Thus far we have averaged over chiral orientations of the
classical source, but not the overall shape of the sourceJ.
Eventually this problem must of course be faced. If the fluc-
tuations about the mean, classicalJ are Gaussian, there exists
a well developed formalism for dealing with them@20#. In-
deed the DCC average we have performed is in fact also
essentially carried out in Ref.@20# by Andreev, Plu¨mer, and
Weiner.

In the case of DCC, the fluctuations will arguably go be-
yond the Gaussian approximation even when the DCC fluc-
tuations are generated by a Gaussian distribution of initial

1This J̃0 should not be confused with the source term fors, elimi-
nated in the preceding discussion.
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condition parameters. This is a big problem, beyond the
scope of this paper. We will comment on it again in the
concluding section.

IV. SIMPLE NONLINEAR s-MODEL DCCs

A. Setting up the problem in terms of an auxiliary field

The picture of DCC evolution given in the Secs. I and III
can be implemented~although, at least at early times, one
does not obtain an accurate quantitative description of the
physical system! within the nonlinears model in the frame-
work of the set of classical solutions@1,4,16#, which have the
form

F5 f pVf
†eiut3Vf , ~43!

whereVf is a constant but otherwise arbitrary unitary matrix
@1#, which orientsF along a direction in isospin correspond-
ing to neutral fractionf andu is such that

hu50. ~44!

~We are for the moment specializing our analysis to the chi-
ral limit mp50.!

For Vf51 ~which corresponds tof 51! these solutions
describe chiral fields withp15p250 and

p05 f psinu, ~45!

s5Af p
2 2~p0!25 f pcosu. ~46!

Our analysis will exploit the simplicity of Eq.~44!, and
will be based on the relation between source and particle flux
discussed in the previous section. One aspect that perhaps
deserves clarification is the relation between the pion flux
and the solutions of the evolution equation for the fieldu in
presence of au source:

hu~x!5Ju~x!. ~47!

For this, it is important to observe that when the source term
Ju is well localized in space and time, as it must be for the
consistency of our approach, the amplitude of the fieldu
must ~because of energy conservation! become small every-
where at sufficiently late times. Therefore the relation be-
tween the late-time asymptotic fieldspout and uout

0 , which
according to Eq.~45! is given by2

pout
0 ~x!5 f psinuout~x!, ~48!

can be well approximated by

pout
0 ~x!' f puout~x!. ~49!

Based on the analysis reported in the previous section, it
is then easy to see that the corresponding pion production is
described by the generating functional

G@zp#5expF E dk̃f p
2 uJ̃u~k!u2@zp~k!21#G , ~50!

and in particular, the inclusive spectrum of pions is given by

2vk

dNp0

d3kW
'

f p
2

~2p!3
uJ̃u~kW !u2. ~51!

For VfÞ1, a simple generalization of this argument holds,
and the~charged and neutral! pion production is ultimately
described within the generating functional formalism dis-
cussed in the preceding section.

B. Pion flux for a class of sources

We are finally ready to define in more precise terms a
simple model which embodies the essence of the baked-
Alaska scenario. We start by introducing a source of the
general form3

Ju~x!54p2f ~ t !D ret~x!, ~52!

where

D ret~x!5
1

4pr
Q~ t !d~r 2t ! ~53!

is the retarded Green function for a massless scalar field, and
f (t) is a function oft5x0 such that

f ~ t !→0, t→`, ~54!

f ~ t !→1, t→0, ~55!

i.e., the source ison at early times but eventually switches
off. We are also using standard notations forr[uxW u and for
the step functionQ.

The physically interesting quantity, as discussed in Sec.

II, is J̃u(kW ), and the Fourier transform of the current density
~52! is given by

2Note that the asymptotic behavior of the fields and sources plays
a rather central role in our analysis. In particular, a class of solu-
tions more general than Eq.~43!, given by F5 f pW†eiut3U with
UÞW, could be considered, but would require everlasting sources.
Such idealized sources have been considered in the analysis of Ref.
@18# ~where the source never turns off as a result of boost invari-
ance! and Ref.@4# ~where the source never turns off as a result of
the infinite size of the ‘‘pancake’’! and can be useful in deriving
some intuition about DCCs, but do not reproduce the experimental
conditions of DCC searches.

3The normalization factor has been chosen so that~as explicitly
shown later on! for small enought the DCC is purep5 f p inside
the light cone.
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J̃u~k!5E d4xeikxJu~x!

5E dteik0t
4p

k E
0

`

drr sinkr F f ~ t !
p

r
Q~ t !d~r 2t !G

5
4p2

k E
0

`

dt f~ t !eik0tE
0

`

drd~r 2t !sinkr

5
4p2

k E
0

`

dt f~ t !eik0tsinkt, ~56!

where we used the notationk[ukW u. It then immediately fol-
lows that

J̃u~kW !5
4p2

k E
0

`

dt f~ t !eiAk21m2tsinkt. ~57!

In particular,J̃u(kW ) can be approximated at largek as

J̃u~kW !'
2p2i

k E
0

`

dt f~ t !ei ~m2/2k!t;
2p2iT

k
, ~58!

whereT[*dt f(t). We see that the largek behavior is not
very sensitive to the exact form of the functionf (t). How-
ever, this does assume that the sources are localized exactly
on the light cone. If we introduce a representation of thed
function with a finite width, the resulting field distribution is
smoother and, as one might expect, the high-frequency tail
falls off much more rapidly.

C. Pion flux and field evolution for a specific source

It is interesting to consider the idealized casef (t)5Q(T
2t), where the source term switches off suddenly at some
time t5T, to be associated with the decoupling time. In this
case the source takes the form

Ju~x!5Q~T2t !
p

r
Q~ t !d~r 2t !, ~59!

and Eq.~56! describingJ̃ off the mass shell reduces to

J̃u~k!5
4p2

k E
0

T

dteik0tsinkt

52 i
2p2

k H eiT~k01k!21

i ~k01k!
2

eiT~k02k!21

i ~k02k!
J . ~60!

The value ofJ̃ on thek0.0 mass shell is easily obtained by
substitutingvk5Ak21m2 for k0 and, in particular, in the
massless case~and the large-k limit of the massive case! one
finds

J̃u~kW !52 i
2p2

k H ei2Tk21

2ik
2TJ

52 i
p2

k2 $22Tk1 i ~12ei2Tk!%. ~61!

For the simple choice of source considered in this subsec-
tion it is also possible to derive explicitly the corresponding
u field. We start by observing that

u~x!5E d4x8D ret~x2x8!Ju~x8!

5E d4x8H Q~ t2t8!

4puxW2xW8u
d@ uxW2xW8u2~ t2t8!#J

3Q~T2t8!H pQ~ t8!

r 8
d~r 82t8!J

5
1

4 E d4yQ~T2t8!Q~ t8!Q~ t2t8!S 1

r 8uxW2yW u D
3d@ uxW2xW8u2~ t2t8!#d~r 82t8!

5
1

4 E d4yQ~T2t8!Q~ t8!Q~ t2t8!S 1

r 8r D
3d@r2~ t2t8!#d~r 82t8!, ~62!

where in the last line we have introduced the variabler
5uxW2xW8u. We now go to spherical polar coordinates, choos-
ing the z axis to lie alongxW so thatr5Ar 21r 8222rr 8m,
and find that

u~x!5
p

2 E
0

T

dt8Q~ t2t8!E
0

`

dr8d~r 82t8!E
21

1

dm
r 8

r
d@r2~ t2t8!#

5
p

2r E
0

T

dt8Q~ t2t8!E
0

`

dr8d~r 82t8!E
ur 2r 8u

r 1r 8
drd@r2~ t2t8!#

5
p

2r E
0

T

dt8Q~ t2t8!E
0

`

dr8d~r 82t8!Q@~ t2t8!2ur 2r 8u#Q@r 1r 82~ t2t8!#

5
p

2r E
0

T

dt8Q~ t2t8!Q@~ t2t8!2ur 2t8u#Q~2t82t1r !

5
p

2r E
0

T

dt8Q~ t2t8!$Q~ t2r !Q~2t82t1r !2Q~2t82t2r !%. ~63!
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Here the last line in Eq.~63! follows after some straightfor-
ward manipulation of the step functions in the integrand. In
order to render explicit the structure of the result~63! it is
convenient to examine separately the casest,0, 0,t,T,
andT,t; this also allows us to see how the various stages of
the evolution of DCC described in the Secs. I and II are
realized within this solution. From Eq.~63! it follows that
u50 whent,0, as expected sinceD ret(x) andJu(x) vanish
for t,0.

For 0,t,T

u~ t,r !5
p

2
Q~ t2r !, ~64!

i.e., a uniform region of DCC is present inside the light cone
during the interval when the source ison.

Finally for times later thanT,

u~ t,r !5
p

4 S 2T2t1r

r DQ~2T2t1r !Q~ t2r !

2
p

4 S 2T2t2r

r DQ~2T2t2r !, ~65!

which is of the form@ f (t2r )1g(t1r )#/r and therefore sat-
isfies the free wave equation, as expected since in this region
the current density isoff. The Eq.~65! also explicitly shows
that at t5T, when the source isturned off, the ordinary
vacuum~the s vacuum! starts breaking into the interior of
the light cone. Att52T the ordinary vacuum reaches the
small-r region, and for times later than 2T the Eq.~65! can
be interpreted as describing the outward propagation, in or-
dinary vacuum, of a localized DCC wave. This sequence of
events can be seen in thep ands fields plotted in Fig. 1.

Having obtained the nonlinears-model solution corre-
sponding to the source~59!, we can use it for aconsistency
checkfor the relation between source and field discussed in
Sec. II, i.e., we can check that using Eq.~20! one can indeed
obtain the Fourier transform of the source~59! from the late-
time u field, which according to Eq.~65! is given (for t
.2T) by4

uout~ t,r !5
p

4 S 2T2t1r

r DQ~2T2t1r !Q~ t2r !. ~66!

We start by evaluating the three-dimensional Fourier trans-
form of uout:

ũout
~3!~ t,k!5

4p

k E
0

`

drr sinkr
p

4 S 2T2t1r

r D
3Q~2T2t1r !Q~ t2r !

5
p2

k E
0

`

dr~2T2t1r !sinkrQ~2T2t1r !

3Q~ t2r !

5
p2

k E
t22T

t

dr~2T2t1r !sinkr

5
p2

k2 F22T coskt1
sinkt

k
1

sink~2T2t !

k G .
~67!

The three-dimensional Fourier transform ofu̇ is then given
by

u̇̃ ~3!~ t,k!5
d

dt
ũ ~3!~ t,k!

5
p2

k F2T sinkt1
1

k
@coskt2cosk~2T2t !#G .

~68!

Finally, following Eq. ~20! we get~also taking into account
that this calculation is in the massless limit, and therefore
vk5k!

J̃u~kW !52 ieikt@kũout
~3!~ t,k!1 iu8 out

~3!~ t,k!#

52 ieikt
p2

k F22Te2 ikt1
i

k
e2 ikt2

i

k
ek~2T2t !G

52 i
p2

k2 @22Tk1 i ~12ei2Tk!#, ~69!

in complete agreement with Eq.~61!. In Fig. 1 we show a
few snapshots of the evolution of the fields for the solution
~63! and the corresponding source obtained using Eq.~20!,
which agrees very well with the expression~61!.

D. Correlation between generic and DCC pion production

The question of correlations between generic and DCC
pion production is very important for experimental DCC
searches. It is quite reasonable that such correlations should
exist. In our baked-Alaska scenario, if the source strength on
the light cone is large, i.e., lasts for a long timeT, then the
amount of DCC which is produced will, as we have seen,
also be large. To be more quantitative is not easy. Here we
attempt to make the connection by a simple argument based
on energy densities. In the absence of the source, then there
would be a surface tension, i.e., an energy per unit area,
associated with the boundary region between the sphere con-
taining the DCC and the normal vacuum on the outside. It is
contributed by the kinetic-energy term of the DCC Hamil-
tonian, since gradients of the pion field exist in the interface

4Notice that the late-timeu-field satisfiesuuout(t,r )u<pT/(2t),
and therefore the approximationpout[ f psinuout' f puout holds as-
ymptotically, as argued at the beginning of this section based on
general energy-conservation arguments.
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region. It is reasonable to assume that when the energy per
unit area of the generic partons or hadrons in the source
region exceeds this surface energy, the inner DCC will be
decoupled from the outer vacuum, and conversely when this
energy is less than the DCC surface tension, the source term
will be inoperative.5 This will allow a connection between
the amount of generic production and the amount of DCC
produced.

In the spherically symmetric case, by assumption the
DCC surface energy is contained in a shell of thicknessn,
with n a typical hadronic scale, say 0.2 fm,n,0.6 fm. We
can therefore write

EDCC

A
;

1

4pT2 E
T2D

T

dr4pr 2
1

2
f p

2 ~¹u!2;
f p

2

2D
, ~70!

where the last approximation on the right-hand side follows
from approximating the profile at decoupling of theu field
near r 5T with a linear interpolation betweenu(r 5T
2D, t5T)51 andu(r 5T, t5T)50.

For the energy per unit area of the hot shell made of
collision debris, one easily finds

Fshell

A
5

dEshell

dA
;F ^pT&~dN/dV!dV

T2dV G
generic

5F ^pT&
T2

dN

dV G
generic

. ~71!

If indeed att5T the DCC surface energy density equals
the energy per unit area of the hot shell of collision debris,
one finds from Eqs.~70! and ~71! that

F ^pT&
dN

dV G
generic

5T2
f p

2

2D
. ~72!

The aforementioned correlation between generic and
DCC pion production is then seen upon combining Eq.~72!
with Eqs.~51! and~58!. Specifically, one finds~in the chiral
limit !

Fp
dN

dVdpG
DCC

;
pD

2 F ^pT&
dN

dV G
generic

. ~73!

We therefore see that it is possible for DCC production and
generic production to be comparable in terms of the number
density of produced particles.

V. BEYOND THE CLASSICAL NONLINEAR s MODEL

Up to this point we have based our description of DCCs
on linear, semiclassical, coherent-state solutions of a simple
nonlinears model. However, there has been a considerable
body of work on DCC production which goes substantially
further. Not only are the nonlinear equations of the linears
model ~or even more complicated models@22#! considered,
but also the effects of quantum fluctuations are taken into
account within the mean-field@13,23# ~or large-N @13,14#!
approximation. This level of calculation has become thede
facto ‘‘state-of-the-art.’’ However, in most cases the space-
time geometry is greatly simplified, or else the approach is
aggressively numerical.

The closest calculation at this level to what we have pre-
sented here has been performed by Lampert, Dawson, and
Cooper~LDC! @18#. They consider a boost-invariant spheri-
cal expansion, such that the fields depend only upon the
proper time which has elapsed since the expansion began.
This is not very realistic, because the inclusive particle dis-
tribution which emerges must be the same in all reference
frames, and therefore requires an infinite mean energy per
particle, and an infinite formation-time for the final-state dis-
tribution.

While the LDC solutions are, as they stand, not very re-
alistic, it is not too hard to adapt them to the baked-Alaska
scenario which we have described. We shall sketch in sub-
sequent subsections how this works. The main point is that if
we assume that the dynamics is as described in LDC for
timest less thanT, after which time the sources on and near
the light cone are turned off, then by causality the LDC
solution will still be exact within the double-cone region, i.e.,
between the forward light cone~vertex att50! and an in-
verted light cone with vertex att52T. If T is large enough,
one could hope that the fields inside the double-cone region
and far from the light cone be asymptotic, so that they could
be matched onto the nonlinears-model fields we use, and an
estimate of the low-momentum portion of the particle spec-
trum could then be obtained using Eq.~20!. The quality of
this method can be tested by varyingT and determining
which portion of the inclusive spectrum is insensitive toT.

For a more rigorous analysis of the spectrum, the source
should be turned off at the decoupling timeT, but the fields
should be evolved according to the linears model up to
times late enough for the evolution to be effectively free. At
sufficiently late times one can then reliably extract the infor-
mation on the inclusive spectrum using the procedure de-
scribed in Sec. IV.

It is also instructive to consider the simplification
achieved by neglecting the mean-field quantum corrections,
in which case the LDC calculation is reduced to the solution
of coupled ordinary differential equations describing the evo-
lution of the classical fields in proper time. We have made
such calculations for initial conditions chosen by LDC, and
find remarkably close agreement of the time dependence of
thep ands fields with what is obtained from the full mean-
field quantum calculation. This is encouragement that, when
one goes on to consider the linears model in more difficult,
less symmetric geometries, a classical calculation may well
suffice to provide at least a semiquantitative picture of the
dynamics which the mean-field calculation would provide.
After all, only a semiquantitative description need be ob-

5It may also be argued@21# that the source of the pion field should
be a scalar density built from the constituent quarks composing the
generic material on the light cone. This quantity is not the energy-
momentum tensor, so that this is not obviously the same criterion as
we are using. On the other hand, when the fields are rapidly varying
~as they are in the source region!, it is not clear what the correct
choice of source of pion degrees of freedom is, and a simple argu-
ment based on energetics seems not unreasonable to try.
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tained from the linears model, because it is just a rough
approximation to the complete low-energy effective chiral
Lagrangian ofreal QCD.

In the following subsections we sketch more details of
this line of argument. In Sec. V A we discuss the connection
between the pion flux as calculated from the nonlinears
model with what one would obtain from a classical solution
of the linears model. In Sec. V B we describe in more detail
the LDC analysis, especially in the classical approximation,

and we numerically compare the mean-field and classical
LDC-type solutions. In Sec. V C we match the classical ver-
sions of the LDC solutions at timeT onto the free asymptotic
fields of the nonlinears model, thereby defining an effective
source functionJ, from which the pion distributions are cal-
culated. Finally, in Sec. V D we match the LDC solutions at
time T onto fields of the linears model, evolve according to
the linears model up to some timeT8 say ~late enough for
the evolution to be effectively that of a free field! when the

FIG. 1. Evolution of thep ~continuous line! ands ~broken line! fields according to the classical nonlinears model, starting from pure
DCC p5 f p inside the light cone att51 fm. The fields are shown in the snapshots on the left, whereas the snapshots on the right show the
modulus squared of the pion source function@the J̃ of Eq. ~20!#. The horizontal scales for the left-side and right-side plots are in fermi and
(fermi)21, respectively.
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calculated effective source function will represent the actual
pion flux.

A. Deriving the pion flux in more general frameworks

We start by applying our formalism to the derivation of
the pion flux for the full linears model or related models,
rather than for the nonlinears model considered in the pre-
vious sections. Provided one is dealing with a well-defined
scattering problem, with the sources localized in space and
time, the evolution of thep and s degrees of freedom will
eventually reach an asymptotic regime governed by free field
behavior. An estimate of the associated inclusive pion spec-
trum can indeed be obtained by applying the formulas dis-
cussed in the previous sections.

While technically this procedure is rather straightforward,
it is important to realize that the associated ‘‘sources’’ are
somewhat different from the ones we have been discussing.
In this more general case one is actually dealing with ‘‘ef-
fective sources,’’ useful as computational tools in the analy-
sis of pion production, but not to be interpreted as physical
external sources in the problem. From the point of view of
the original model, say the linears model, these effective
sources are given by the sum of a physical external source
and a term from the self-interactions of the fields.

These ideas are of rather general applicability; for ex-
ample, in the investigation of an interacting system described
by the Lagrangian density

L5
1

2
~]mF!~]mF!2

m2

2
F22V~F! ~74!

one is naturally led to the study of the evolution equation

~h1m2!F52V8~F!1J, ~75!

where J is a physical ‘‘external’’ ~F-independent! source
andJeff[2V8(F)1J is an effective source.

The simulation reported in Fig. 2 corresponds to the linear
s-model classical evolution from an initial configuration
given by pure DCC,p5 f p , inside the light cone and true
vacuum outside@i.e., a snapshot of the solution~64! at some
chosen time# and vanishing initial field velocities~except on
the light cone!. We simulate the classical field equations, as
obtained from the Lagrangian density~21!, for a spherically
symmetric field configuration. Rather than simulating theF
field directly, our program evolvesrF(t,r ) which simplifies
the form of the d’Alambertian. The boundary conditions at
the origin are set up to ensure thatF(t,r ) is an even function
of r at all times. The relevant classical field configuration is
then evolved in time, using a simple staggered leapfrog al-
gorithm ~see, for example,@24#!. The Fourier transforms in-

volved in finding the source currentJ̃(kW ) as defined in ex-
pression~20! are done using a straightforward~extended
trapezoid! method.6 Figure 2 shows a selection of output

snapshots chosen to illustrate the main features of the evolu-
tion. The pictures on the left describe the evolution of the
pion ands fields, while the pictures on the right describe the
corresponding ‘‘evolution’’ of the Fourier-space effective
source function. The emergence of a stationary Fourier-space
effective source~which encodes the information on particle
production! reflects the fact that at late times the evolution of
the p and s degrees of freedom reaches an asymptotic re-
gime ruled by the nonlinears model. However, it should be
noted that the low-momentum part of the spectrum is only
complete after a time scale between 4 and 8 fermi, and is
significantly larger~a factor of 2! than what was obtained for
the nonlinears model for identical initial conditions.

B. Classical version of LDC approach and reliability
of coherent-state descriptions

Our description of DCCs uses the classical equations of
motion to obtain an out field from a given in field. This out
field is then mapped into a corresponding coherent state from
which particle production~a quantum effect! can be derived.
Some elegant recent studies@13,14,18# have been based on
more general formalisms for the description of quantum ef-
fects and have taken into account~some of! the nonperturba-
tive quantum effects contributing to the structure of the full
propagator. One is then confronted with the solution of a
genuinely nonclassical evolution problem, in which ‘‘gap
equations’’ describing the full propagators are combined
with ~modified! evolution equations for the fields. Seen as
solutions of a variational problem, these equations result
from finding an extremum of the~quantum! effective action
for composites@25#, just like the classical evolution equa-
tions are obtained from finding an extremum of the classical
action for ~local or noncomposite! fields.

In Ref. @18#, LDC investigated the chiral phase transition
by modeling the relevant hadron dynamics with a linears
model, and adopting evolution equations that take into ac-
count part of the nonperturbative quantum effects contribut-
ing to the structure of the full propagator via the familiar
large-N formalism. They concentrated on boost-invariant
spherical expansions, such that the mean-field expectation
values depend only upon the proper timet5At22r 2. We
refer the interested reader to Ref.@18# for the complete de-
scription of the LDC approach. For the purposes of the
analysis presented in the remainder of this section, it is suf-
ficient for us to consider explicitly the evolution equations
corresponding to the classical version of the LDC equations,
i.e., obtained from the LDC equations by dropping all con-
tributions coming from the dressing of the propagator:

F 1

t3

]

]t S t3
]

]t D1l~s21p22 f p
2 !Gs5 f pmp

2 , ~76!

F 1

t3

]

]r S t3
]

]t D1l~s21p22 f p
2 !Gp50. ~77!

As a preliminary test of the reliability of our description
of DCCs based on the classical evolution equations, we have
compared the results for the mean-field evolution of thep
and s fields obtained in Ref.@18#, to the corresponding re-
sults from the classical equations~76! and~77!. In Fig. 3 the

6Note that by settingl5H50 in Eq.~21! we obtain the free wave
equation. This enables us to use an almost identical program to
evolve theu field in the nonlinears model to obtain the graphs in
Fig. 1. The major change in the code between the two cases is in
fact the use of the identityp5 f psinu in the J̃-extracting routine.
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results of this comparative analysis are reported for the initial
conditions singled out in Ref.@18# as the most ‘‘DCC favor-
ing’’ within the special family of initial conditions consid-
ered there; specifically, we integrate the fields from the ini-
tial conditions

s50 fm21, ṡ521 fm22,

p50.3 fm21, ṗ50 fm22 ~78!

at t51 fm. Since the focus of this exercise is only on the
field evolution, rather than particle production, for simplicity
we kept the exact~spherically symmetric and boost-
invariant! source structure adopted in Ref.@18#. Figure 3
suggest that even at a quantitative level the description might
be satisfactorily accurate. This is especially so because one is
in any case using rough models of the relevant hadron dy-
namics~i.e., it appears to be likely that the inaccuracies in-
troduced by using classical evolution equations might be less

FIG. 2. Evolution of thep ~continuous line! ands ~broken line! fields, and the pion source function according to the linears model,
starting from pure DCCp5 f p inside the light cone att51 fm.
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important than the ones resulting from modeling the relevant
hadron dynamics with, say, the linears model!.

C. Low-momentum portion of the inclusive spectrum
in the LDC approach

As explained at the beginning of this section, the spherical
expansion investigated in Ref.@18#, which is fueled by ever-
lasting sources, and involves fields depending upon only the
proper time, is not very realistic. Still, as mentioned above
one could attempt to extract the low-momentum portion of
the inclusive pion spectrum associated with a baked-Alaska-
type modification of the LDC approach, by mapping the
LDC solutions at timeT onto free asymptotic fields of the
nonlinears model, thereby defining an effective source func-
tion J, from which the pion distributions are calculated. Ide-
ally, one might find that for large enoughT the fields inside
the double cone region be almost everywhere asymptotic,
and that only the high-momentum tail of the particle spec-
trum could not be captured by such an approach. In practice,
however, we find that not even the portion of the inclusive
pion spectrum with very low momentum is well determined
at times as late as 50 fm.

In Fig. 4 we report the results of one such analysis, in
which we integrate the fields from the initial conditions~78!
at t51 fm, to some later timeT and use the boost symmetry

to reconstruct the fields everywhere on thet5T surface in-

side the light cone.J̃(kW ) is then extracted from this field
configuration using Eq.~20! as before. Thes and p field
configurations and the effective source function described for
various choices of the above-mentioned timeT in Fig. 4
clearly reflect the shortcomings of the approach discussed in
this subsection.

D. LDC approach with truncated sources

The deficiencies of the method discussed in the previous
section can be easily remedied. Evidently, after the external
source is turned off at the decoupling timeT, the fields
should be evolved according to the linears model up to
times late enough for the evolution to be effectively ruled by
free field behavior. At such late times one can reliably ex-
tract the information on the inclusive spectrum using the
procedure described in Sec. IV.

In Fig. 5 we report the results of such a simulation, again
as snapshots describing the evolution of the fields and the
effective source function corresponding to the initial con-
figuration singled out as ‘‘DCC favoring’’ in Ref.@18#. For
illustrative purposes we chose in this simulation a large de-
coupling time~5 fm!. In this case the effective source does
reach a stationary regime; however, by comparison with Fig.
2 we see that this asymptotic behavior only emerges at rather
late times (;20– 30 fm). The comparison of Figs. 4 and 5
shows that the approach discussed in the preceding subsec-
tion, in which the LDC sources were never turned off, can
largely overestimate~e.g., by more than a factor 10 if
T<5 fm, as assumed in Fig. 5! even the low-momentum
portion of the spectrum.

VI. CONCLUSIONS

In this paper we have investigated the various stages of
the evolution of disoriented chiral condensates via the
‘‘baked-Alaska’’ mechanism. Most of our analysis has been
elaborated using classical equations of motion based on ei-
ther the linear or nonlinears model. The associated frame-
work of coherent states was then used to make the connec-
tion with the distribution functions for the particle
production. Important in this step is the identification of the
source-function of the produced particles, namely the right-
hand side of the usual wave equation@see Eq.~75!#. The
square of the on-shell fourier transform of this source func-
tion, as determined from the solutions of the equations, then
provides directly the inclusive distribution of particles.

In general the source term consists of two parts. One is
concentrated near the light cone, and is a genuine external
source, not a function of the chiral fields, to be associated
with the generic collision debris of partons, constituent
quarks, etc. The other part consists of the nonlinear terms,
built from the chiral fields themselves, which appear in the
classical wave equation. We found evidence, within the non-
linear s-model approach, that the number of produced DCC
pions is likely correlated with the number of generic hadrons
produced, with this correlation local in~lego! phase space.
The number of DCC pions could be comparable with the
number of generic hadrons according to this crude estimate,
but the uncertainties are very large.

FIG. 3. Evolution of the pion ands fields as functions of proper
time in the LDC setup. The continuous line corresponds to the
purely classical analysis, whereas the dotted line corresponds to the
quantum analysis reported in Ref.@18#. At proper timet51 fm the
fields and their derivatives are fixed to bep50.3 fm21, s
50 fm21, ṗ50 fm22, ṡ521 fm22.
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We also compared our very simple classical approach
with a mean-field calculation which includes one class of
quantum corrections, and at least in the case we studied, the
quantum effects appear not to be of great importance. This is
encouragement that, when attempts to go beyond the spheri-
cal symmetry assumed in this work, the simpler classical
approach may suffice to reveal most of the important phys-
ics.

In all of the work in this paper~and in most of the litera-

ture!, we have assumed spherical symmetry of the solutions.
Regrettably, this geometry is too simple for many realistic
applications. The intrinsic sources are reasonably uniform in
lego variables, not spherical coordinates, and this geometry
needs more detailed study. In addition, fluctuations about the
mean behavior are very important. A piece of DCC with
relatively large transverse velocity will look in the laboratory
similar to a coreless minijet, with contents containing small
relative momenta. So the source distributions most relevant

FIG. 4. Evolution of thep ~continuous line! ands ~broken line! fields, and the pion source function according to the classical linears
model, in the presence of a boost-invariant and spherically invariant source considered in Ref.@18#. Again, the initial conditions are chosen
according to the ‘‘DCC-favoring’’ scenario considered in Ref.@18#.
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to DCC searches in high-energy hadron collisions should not
only be described in lego variables, but also contain minijet
clusterings.

However, in defense of what we do, each piece of DCC in
momentum space is a cluster of pions of near identical
momenta—a ‘‘snowball’’—which has a local rest frame
@2,10#. In a snowball rest frame, the calculations we make
should be a reasonable description of the dynamics of that
particular snowball. But one needs to know how the chiral

orientations and probability of occurrence of snowballs
which are neighboring in momentum space are correlated.
Very little work on this exists.

In addition, one should average over sources more
broadly. This includes not only the properties of the intrinsic
sources discussed above, but also the initial conditions im-
posed on the chiral fields at early proper time, i.e., at the
onset of the chiral symmetry breaking. A good starting point
will be to do this for the classical version of the interesting

FIG. 5. Evolution of thep ~continuous line! ands ~broken line! fields, and the pion source function according to the linears model, in
the presence of a truncated version~as described in the text! of the a boost-invariant and spherically invariant source considered in Ref.@18#.
The source is switched off att55 fm.
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model of Lampert, Dawson, and Cooper@18#, truncated at
large times as described in this paper.

The final product of all this should be a generating func-
tional for DCC particle production, which is an average over
sources of a Gaussian generating functional characteristic of
a coherent-state and classical solution produced by a specific
source~see, for example, Ref.@20# for the formalism!. How-
ever, even when this is attained, it still leaves open the more
difficult problem of synthesizing such a generating func-
tional with one for generic production, since there is not yet
a consensus on what represents a good choice for the latter.

The emphasis we make in this paper on DCC sources
makes the formalism look more and more similar to what is
used to describe Bose-Einstein correlations@20#. There is
certainly a close relationship@26#. What we believe special
about the baked-Alaska scenario, even accepting only the
broad outlines, is that there is assumed to be nontrivial dy-
namics occurring deep within the future light cone. Irrespec-
tive of details of our modeling, the presence of such dynam-
ics would be a new element in the description of hadron-
hadron collisions at high energies.
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