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We present precision corrections to dispersion relation bounds on form factors in bottom hadron semilep-
tonic decays and analyze their effects on parametrizations derived from these bounds. We incorporate QCD
two-loop and nonperturbative corrections to the two-point correlator, consider form factors whose contribution
to decay rates is suppressed by lepton mass, and implement more realistic estimates of truncation errors
associated with the parametrizations. We include higher resonances in the hadronic sum that, together with
heavy quark symmetry relations near zero recoil, further tighten the sum rule bounds. Utilizing all these

improvements, we show that each of the six form factors inB̄→Dl n̄ andB̄→D* l n̄ can be described with
3% or smaller precision using only the overall normalization and one unknown parameter. A similar one-

coefficient parametrization of one of theLb→Lcl n̄ form factors, together with heavy quark symmetry
relations valid to order 1/m2, describes the differential baryon decay rate in terms of one unknown parameter

and the phenomenologically interesting quantityL̄L'MLb
2mb . We discuss the validity of slope-curvature

relations derived by Caprini and Neubert, and present weaker, corrected relations. Finally, we present sample

fits of current experimentalB̄→D* l n̄ and B̄→Dl n̄ data to the improved one-parameter expansion.
@S0556-2821~97!01823-7#

PACS number~s!: 11.55.Fv, 12.39.Hg, 13.20. He,13.30.Ce

I. INTRODUCTION

The decays of bottom hadrons provide fertile ground for
explorations of both weak and strong interactions. The em-
pirical smallness of the Cabibbo-Kobayashi-Maskawa
~CKM! elementsuVcbu and uVubu implies thatb-hadron de-
cays are relatively long lived, and thus more easily analyzed,
while the heaviness of theb quark means that the heavy
quark effective theory~HQET! @1,2# provides a reliable ex-
pansion for describing the approximate decoupling of theb
quark from the rest of the hadron, leading to a substantial
simplification of the strong-interaction dynamics.

Semileptonic decays ofb hadrons are particularly trac-
table from the theoretical point of view, since the leptonic
current may be trivially separated from the hadronic current.
Furthermore, focusing upon exclusive decays permits one to
avoid questions regarding the validity of quark-hadron dual-
ity near kinematic end point regions. On the other hand,
exclusive processes must be described in terms of a number
of nonperturbative form factors that encapsulate the physics
of the hadronization process.

HQET has provided a substantial leap forward in the ex-
clusive analysis, demonstrating that heavy-to-heavy quark
transitions at zero recoil are accompanied by a complete
overlap of initial- and final-state hadron wave functions
@1,3#. Consequently, each form factor possesses a well-
defined normalization at this kinematic point. For the case of

B̄(* )→D (* ) transitions, for example, each of the 20 form
factors either vanishes or is proportional to a single universal
form factorj, which represents this wave function overlap as
a function of momentum transfer. Sum rule constraints re-
strict the slope and magnitude of these form factors@4–6#,
but otherwise shapes of the form factors area priori unde-
termined functions of momentum transfer.

However, some recent work@7–18# has demonstrated that
one may obtain rather nontrivial and model-independent con-
straints on the shape of such form factors in the context of
dispersion relations. Using basic field theoretic properties
such as causality and crossing symmetry, one finds that the
shape of a given form factor is determined to high accuracy
over its entire kinematic range by its value at only a small
number of points @7–10#. Indeed, for the case of

B̄→D (* )l n̄ , the HQET normalization plus only one addi-
tional point determines most of the form factors to 3–7 %
accuracy@7#. Similar analyses provide interesting and useful

constraints onB̄→pl n̄ @7,10–13#, B̄→rl n̄ @14#, and

Lb→Lcl n̄ @7#.
At the core of this analysis lies a dispersion relation in

momentum space that relates the integral of an inclusive pro-
duction rate to a two-point function evaluated far from physi-
cal resonances, where perturbative QCD is quantitatively re-
liable. The production rate is a sum of positive-definite
exclusive rates; it follows that all contributions to the had-
ronic side serve to saturate more and more closely the bound
from the perturbative side. Clearly, two improvements to this
procedure include a better calculation of the QCD side
~which includes both multiloop effects and nonperturbative
vacuum condensates!, and the inclusion of more states on the
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hadronic side. The former may be extracted from existing
literature, while the latter may be achieved using heavy
quark symmetry relations. The inclusion of higher states has
previously been investigated for elasticB→B scattering
@17# and forB̄→pl n̄ decays@11#, but not forb→c transi-
tions. For mesonic and baryonicb→c transitions, the inclu-
sion of higher states improves considerably the precision of
the dispersion-relation constraints, and represents the pri-
mary contribution of this work. In addition, we include in
this analysis nonzero lepton masses, anticipating future mea-
surements of processes such asB̄→D (* )t n̄ t or B̄→pt n̄ t .

This paper is organized as follows. In Sec. II we define
the form factors for the physically-observed semileptonic de-
cays and present expressions for differential decay widths
including lepton masses. Section III presents a brief review
of the dispersive method for obtaining bounds on the form
factors. Ingredients of the form factor parametrizations, in-
cluding explicit formulas for the QCD results at one and two
loops as well as leading nonperturbative effects, appear in
Sec. IV, followed by a tabulation of the form factor weight-
ing functions, which are central to the dispersive method. In
Sec. V we discuss the inclusion of additional, previously
ignored hadronic states into the dispersion relations, and
show how heavy quark effective theory may be used to in-
clude their effects and thereby tighten form factor con-
straints. Section VI defines and presents the truncation errors
that measure the quality of our form factor parametrizations.
In Sec. VII we discuss slope-curvature relations derived by
Caprini and Neubert@16#, point out an invalidating assump-
tion, and examine the form of the corrected relations. In Sec.
VIII we present the results of the current analysis in fits to
the latest experimental data, and in Sec. IX we conclude.

II. FORM FACTORS

We begin by defining form factors for the semileptonic
decays of interest in terms of hadronic transition matrix ele-
ments. From the field theory point of view, it is most conve-
nient to define form factors as coefficients of independent
Lorentz structures appearing in the matrix element. How-
ever, the combinations of form factors most easily obtained
from data are those appearing in a sum of squares in the
differential rates, namely, the helicity amplitudes. As seen
below, the helicity amplitudes are particular linear combina-
tions of the original form factors, and thus simply form a
different basis for the description of the matrix elements. It is
these helicity amplitudes we wish to constrain.

The notation used throughout the paper is as follows. The
genericb→c semileptonic decay is denoted byHb→Hcl n̄ ,
where the hadronHb has massM and momentump, the
daughter hadronHc has massm and momentump8, and the
charged leptonl has massml . The momentum transfer
t5(p2p8)2 is the invariant mass squared of the lepton pair
~or virtual W). The polar vector and axial vector flavor-
changing currents are denoted byVm5 c̄gmb and
Am5 c̄gmg5b. Finally, it is convenient to define the kine-
matic invariants

t65~M6m!2,

k5MAp2

t
[A~ t12t !~ t22t !

4t
, ~2.1!

wherep is the three-momentum ofHc in the rest frame of
Hb . Note that the identity of the decaying quark does not
enter into the expressions below except through hadron
masses, so the same expressions apply to such decays as
B̄→pl n̄ , D→K̄ * l n, and so on; only the spins of the had-
rons are relevant.

The inclusion of charged lepton masses brings into the
differential widths a new set of helicity amplitudes, and thus
a new laboratory for studying the strong interaction. The
contributions of such terms is suppressed by a factor ofml

2 ,
and arises through a virtualW with the quantum numbers of
a scalar, i.e., a timelike polarization. Angular momentum
conservation forbids the decay of such a state to a right-
handed antineutrino and a left-handedmasslesscharged lep-
ton, so such decays are necessarily accompanied by a
helicity-suppression factorml

2 . Although the detection of
lepton mass-dependent effects is presently beyond the means
of current experiments, the gradual accumulation of statistics
may eventually make such effects discernible in decays such
as B̄→D (* )t n̄ or B̄→pt n̄ .

Finally, it should be noted that the differential widths
dG/dt presented below have already been integrated in lep-
ton energy, or equivalently over angles of final-state par-
ticles. This reflects only the current thrust of experiment and
does not indicate a limitation of the dispersive method de-
scribed below. Indeed, were the statistics available, it would
be interesting to consider the double differential decay dis-
tribution d2G/dEl dt, for then one could probe the parity-
violating interference terms between vector and axial vector
weak currents. In terms of the QCD side of the dispersion
relations described below, one would also need to compute
V2A correlators, in addition toV2V andA2A.

A. B̄˜Dl n̄

The hadronic matrix element governing the rate of
B̄→Dl n̄ may be described by form factors

^D~p8!uVmuB̄~p!&5 f 1~p1p8!m1 f 2~p2p8!m ,
~2.2!

that enter the differential rate as

dG

dt
5

GF
2 uVcbu2

192p3M3

k

t5/2
~ t2ml

2 !2@4k2t~2t1ml
2 !u f 1u2

13ml
2 u f 0u2#, ~2.3!

where

f 0~ t ![~M22m2! f 1~ t !1t f 2~ t !. ~2.4!

B. B̄˜D* l n̄

The matrix elements forB̄→D* l n̄ depend on four form
factors,
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^D* ~p8,e!uVmuB̄~p!&5 igemabgea* pb8pg ,

^D* ~p8,e!uAmuB̄~p!&5 f e* m1~e* •p!@a1~p1p8!m

1a2~p2p8!m#, ~2.5!

that enter the differential rate in the combinations

dG

dt
5

GF
2 uVcbu2

192p3M3

k

t5/2
~ t2ml

2 !2

3$~2t1ml
2 !@2tu f u21uF1u212k2t2ugu2#

13ml
2 k2tuF2u2%, ~2.6!

where

F1~ t ![
1

mF2k2ta1~ t !2
1

2
~ t2M21m2! f ~ t !G ,

F2~ t ![
1

m
@ f ~ t !1~M22m2!a1~ t !1ta2~ t !#. ~2.7!

C. Lb˜Lcl n̄

This decay can be described by six form factors, defined
by

^Lc~p8!uVmuLb~p!&

5 ū c~p8!@F1gm1F2vm1F3v8m#ub~p!,

^Lc~p8!uAmuLb~p!&

5 ū c~p8!@G1gm1G2vm1G3v8m#g5ub~p!,

~2.8!

with v5p/MLb
andv85p8/MLc

. This gives

dG

dt
5

GF
2 uVcbu2

192p3M3

k

t5/2
~ t2ml

2 !2

3$~ t22t !~2t1ml
2 !@2tuF1u21uHVu2#

13ml
2 ~ t12t !uF0u21~ t12t !~2t1ml

2 !@2tuG1u2

1uHAu2#13ml
2 ~ t22t !uG0u2%, ~2.9!

where

HV~ t !5~M1m!F11
1

2
~ t12t !S F2

M
1

F3

m D ,

HA~ t !5~M2m!G12
1

2
~ t22t !S G2

M
1

G3

m D ,

F0~ t !5~M2m!F11
1

2M
~ t1M22m2!F2

2
1

2m
~ t2M21m2!F3 ,

G0~ t !5~M1m!G12
1

2M
~ t1M22m2!G2

1
1

2m
~ t2M21m2!G3 . ~2.10!

III. REVIEW OF THE DISPERSIVE APPROACH

Constraints on a genericHb→Hcl n̄ form factorF(t) are
obtained by noting that the amplitude for production of
HbH̄c from a virtualW boson is determined by the analytic
continuation of F(t) from the semileptonic region of
momentum-transferml

2 <t<t2 to the pair-production region
t1<t. The idea of the dispersion relation is to constrainF(t)
in the pair-production region using perturbative QCD, then
use analyticity to translate that constraint into one valid in
the semileptonic region@19#. A detailed derivation can be
found in @7,8,11#; here we merely outline the essential ele-
ments.

In QCD, the two-point function1 of a flavor-changing cur-
rent J5V,A, or V2A,

PJ
mn~q!5

1

q2
~qmqn2q2gmn!PJ

T~q2!1
qmqn

q2
PJ

L~q2!

[ i E d4x eiqx^0uTJm~x!J†n~0!u0&, ~3.1!

is rendered finite by making one or two subtractions, leading
to the dispersion relations

xJ
L~q2![

]PJ
L

]q2
5

1

pE0

`

dt
Im PJ

L~ t !

~ t2q2!2
,

xJ
T~q2![

1

2

]2PJ
T

]~q2!2
5

1

pE0

`

dt
Im PJ

T~ t !

~ t2q2!3
. ~3.2!

The functionsx(q2) may be computed reliably in perturba-
tive QCD for values ofq2 far from the kinematic region
where the currentJ can create resonances: specifically,
(mb1mc)LQCD!(mb1mc)

22q2. For b→c or b→u,
q250 satisfies this condition.

Inserting a complete set of statesX into the two-point
function relates thePJ to the production rate of hadrons
from a virtualW,

Im PJ
T,L5

1

2(X ~2p!4d4~q2pX!u^0uJuX&u2 , ~3.3!

where the sum is over all hadronic statesX with the same
quantum numbers as the currentJ, weighted by phase space.
Then, from the dispersion relations~3.2!, the perturbatively
evaluatedx(q2) is equal to the integrated production rate of

1This definition differs slightly from that used in@7–11#, and
serves to separatePmn into manifestly spin-0 and spin-1 pieces.
Then the functionsxT, xL defined in Eq.~3.2! coincide withx, xL

defined in the previous works.
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W*→X, weighted with a smooth function of momentum
transfer squaredt. Since the sum is semipositive definite, one
may restrict attention to a subset of hadronic states to obtain
a strict inequality. In the case of interest, we focus onX

being two-particle states of the formHbH̄c . This places an
upper bound on the form factorF(t) in the pair-production
region that takes the form

1

pxT~q2!
E

t1

`

dt
W~ t ! uF~ t !u2

~ t2q2!3 <1, ~3.4!

from the ImPT dispersion relations in Eq.~3.2!. HereW(t)
is a computable function oft that depends on the particular
form factor under consideration. A similar result holds for
PL.

Using analyticity to turn Eq.~3.4! into a constraint in the
semileptonic region requires that the integrand is analytic
below the pair-production thresholdt,t1 . To do this, we
introduce a function

z~ t;ts!5
ts2t

~At12t1At12ts!
2

~3.5!

that is real forts,t1 , zero att5ts , and a pure phase for
t>t1 . All the poles in the integrand of Eq.~3.4! can be
removed by multiplying by various powers ofz(t;ts), pro-
vided the positionsts of the subthreshold poles inF(t) are
known. Each pole has a distinct value ofts , and the product
z(t;ts1)z(t;ts2)••• serves to remove all of them. Such poles
arise as the contribution ofBc resonances to the form factor
F(t), as well as singularities in the kinematic part of the
integrand. After determining these positions phenomenologi-
cally, the upper bound onF(t) becomes

1

pEt1

`

dtUdz~ t;t0!

dt Uuf~ t;t0!P~ t !F~ t !u2<1 , ~3.6!

where the weight functionf(t;t0) ~known as anouter func-
tion in complex analysis! is given by

f~ t;t0!5 P̃~ t !F W~ t !

udz~ t;t0!/dtu xT~q2!~ t2q2!3G1/2

.

~3.7!

The factorP̃(t) is a product ofz(t;ts)’s andAz(t;ts)’s, with
ts chosen to remove the subthreshold singularities and cuts in
the kinematic part of the integrand, while theBlaschke factor
P(t) is a product ofz(t;tp)’s with tp chosen to be the posi-
tions of subthreshold poles inF(t). The functionsf(t;t0)
and P̃(t) also depend onq2, which we leave implicit for
notational simplicity, whilet0 is a free parameter to be dis-
cussed in Sec. IV.

The quantityf(t;t0)P(t)F(t) may be expanded in a set
of orthonormal functions that are proportional to powers of
z(t;t0) @see Eq.~4.21! below#. The functionz(t;t0) has a
physical interpretation as a natural scale for the variation of
F(t) in the semileptonic region@11#, and will play an impor-
tant role throughout this paper. We exhibit all relevant ex-
pressions in terms of both variablesz and t in Sec. IV. The

result of the expansion inz(t;t0) is an expression forF(t)
valid even in the semileptonic region,

F~ t !5
1

P~ t !f~ t;t0! (n50

`

an z~ t;t0!n, ~3.8!

where, as a result of Eq.~3.6!, the coefficientsan are un-
known constants obeying

(
n50

`

an
2<1 . ~3.9!

For the b→c processes that are the main subject of this
paper,z(t;t0) is no larger than 0.07 for any physical momen-
tum transferml

2 <t<t2 , and can be made substantially
smaller by a judicious choice oft0, so the expansion can be
truncated after the first two or three terms.

IV. PARAMETRIZATION INGREDIENTS

Generating a parametrization such as Eq.~3.8! for a par-
ticular form factor requires three ingredients: One needs the
perturbative evaluation ofx derived from the two-point
function for a currentJ, including the Wilson coefficients of
phenomenologically determined condensates. In addition, the
functional form of the weighting functionf must be com-
puted. Finally, the masses of subthreshold resonances with
the same quantum numbers asJ must be extracted from ex-
periment or potential models. The functionf depends on the
form factor under consideration, whilex andP depend only
on the currentJ.

A. QCD evaluation of x

In the previous section we observed that it suffices to take
q250 in the computation ofxJ

T,L for currents containing a
heavy quark. This is convenient since then the perturbative
expressions become particularly simple. Corrections to the
perturbative result may be included by expressing the two-
point function as an operator product expansion~OPE! and
including the leading nonperturbative vacuum condensates
such aŝ G2& and^ q̄q&; the totalx is the sum of the pertur-
bative and condensate terms:

x5xpert1xcond. ~4.1!

The full perturbative expressions to two loops may be
obtained through a lengthy but straightforward2 manipulation
of results existing in the literature@20,22#. At q250, xpert is
only a function of the ratio of quark pole massesu5mc /mb ,
and for a vector currentJ5V is given by

2We have corrected a number of typographical errors in the per-
turbative results of Ref.@20# and the Wilson Coefficient results of
@21# to ensure compliance with various consistency conditions. We
also made several comparisons between references to verify their
agreement, once these corrections are made.
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mb
2xpert

T ~u!5
1

32p2~12u2!5
@~12u2!~314u221u2140u3221u414u513u6!112u3~223u12u2!ln~u2!#

1
as

576p3~12u2!6
@~12u2!2~751360u21031u211776u321031u41360u5175u6!14u~12u2!~18299u

1732u221010u31732u4299u5118u6!ln~u2!14u3~1082324u1648u22456u31132u4159u5212u6

29u7!ln2~u2!18~12u2!3~9112u232u2112u319u4!Li2~12u2!#, ~4.2!

xpert
L ~u!5

1

8p2~12u2!3
@~12u2!~11u1u2!~124u1u2!26u3ln~u2!#1

as

48p3~12u2!4
@~12u2!2~1236u222u2236u3

1u4!22u~12u2!~914u166u214u319u4!ln~u2!24u3~9118u222u323u41u5!ln2~u2!18~12u2!3

3~123u1u2!Li2~12u2!#, ~4.3!

where the dilogarithm is defined by

Li2~z![2E
0

z

dz8
ln~12z8!

z8
. ~4.4!

Expressions for an axial currentJ5A are obtained from Eqs.~4.2!, ~4.3! by replacingu→2u.
It has been pointed out@23# that nonanalytic quark mass dependence, such as in the perturbative results presented above,

indicates the inclusion of some infrared effects into the Wilson coefficients~WC’s!, in conflict with the usual interpretation of
the operator product expansion~OPE! as a separation into short- and long-distance effects. A formal analysis reshuffles the
WC’s in front of each nonperturbative condensate. However, since our analysis requires only the numerical sum of such
effects, the total result should be the same in either form.

The leading nonperturbative corrections are supplied by the condensates of dimension less than five, namely the gluon and
quark condensates. For a heavyb quark decaying into a quarkq of arbitrary mass through a vector current, the contributions
from the condensates, derived using Refs.@21,24# and evaluated atq250, read

xcond
T ~u!52^ q̄q&

~223u12u2!

2mb
5~12u2!5

1 K as

p
G2L H 21

24mb
6~12u2!7

@~12u2!~22104u1148u2

2270u31145u42104u515u622u7!212uln~u2!~325u117u2215u3117u425u513u6!#J , ~4.5!

xcond
L ~u!51^ q̄q&

1

mb
3~12u2!3

1 K as

p
G2L H 1

12mb
4~12u2!5

@~12u2!~1221u110u2220u3

1u42u5!23uln~u2!~322u18u222u313u4!#J . ~4.6!

These expressions superficially appear to diverge in the limitu→1. However, in this limit thê mqq̄q& condensate obeys
the relation@25#

^mqq̄q&52
1

12K as

p
G2L 1OS 1

mq
2

,asD , ~4.7!

and Eqs.~4.5!, ~4.6! simplify to

xcond
T ~u!5 K as

p
G2L 1

24~12u2!7mb
6u

$~12u2!~225u1104u22145u31268u42145u5

1104u625u712u8!112u2ln~u2!~325u117u2215u3117u425u513u6!%, ~4.8!
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xcond
L ~u!52 K as

p
G2L 1

12~12u2!5mb
4u

$~12u2!~12u120u2210u3120u42u51u6!13u2ln~u2!

3~322u18u222u313u4!%, ~4.9!

The expressions~4.8!, ~4.9! are applicable tob→c de-
cays, while Eqs.~4.5!, ~4.6! are best suited tob→u or c→s
transitions. Expressions for an axial current are obtained by
replacingu→2u. The limiting values foru→0 are

mb
2 xT~0!5

3

32p2
1

as

192p3
~2514p2!2

1

mb
3 ^ q̄q&

2
1

12mb
4K as

p
G2L ,

xL~0!5
1

8p2
1

as

144p3
~314p2!1

1

mb
3 ^ q̄q&

1
1

12mb
4K as

p
G2L , ~4.10!

while for u→1,

mb
2xT~11!5

1

20p2
1

41as

162p3
2

1

210mb
4K as

p
G2L ,

mb
2xT~21!5

1

40p2
1

689as

6480p3
2

1

140mb
4K as

p
G2L ,

xL~11!50,

xL~21!5
1

4p2
1

7as

12p3
1

1

60mb
4K as

p
G2L . ~4.11!

For b→c, using pole mass values such thatu50.33, we
have

mb
2xT~10.33!59.65931023F111.42as

24.831024S 4.9 GeV

mb
D 4K ~asG

2/p!

0.02 GeV4L G ,

mb
2xT~20.33!55.70931023F111.32as

26.831024S 4.9 GeV

mb
D 4K ~asG

2/p!

0.02 GeV4L G ,

xL~10.33!53.71331023F111.37as

25.331024S 4.9 GeV

mb
D 4K ~asG

2/p!

0.02 GeV4L G ,

xL~20.33!52.16231023F110.64as

12.231024S 4.9 GeV

mb
D 4K ~asG

2/p!

0.02 GeV4L G ,

~4.12!

where the central valuê(as /p)G2&50.02 GeV4 is taken
from Ref. @26#, and the pole mass valuemb54.9 GeV is
from @27#. We also useas(mb)50.22 @27#, and since the
coefficient of the gluon condensate is tiny, we ignore it in
our numerical analysis forb→c.

B. Weighting functions f

To obtain the general form of the weighting functionsf
defined in Eq.~3.6!, first observe that the quantitiesPL,PT

are, respectively, them5n50 andm5n51, 2, or 3 compo-
nents of Pmn evaluated in the center of mass frame,
qm5(At,0) . Then the generic expression for the contribu-
tion of a particular form factorF(t) to the polarization tensor
may be denoted by

Im PT>
nI

Kp
~ t2t1!a/2~ t2t2!b/2 t2cuF~ t !u2u~ t2t1!,

Im PL>
nI

Kp
~ t2t1!a/2~ t2t2!b/2 t2~c11!uF~ t !u2u~ t2t1!,

~4.13!

whereK, a, b, and c are integers determined by the form
factor F(t), and nI is an isospin Clebsch-Gordan factor,
which is 2, 3/2, and 1 forB̄→D (* ), B→p, and Lb→Lc
transitions, respectively. Also, letx5xT or xL denote the
generic QCD function appropriate to the quantum numbers
of the form factor.3 The expressions for the weighting func-
tions are readily derived from Eq.~4.13!, and are given by

3In terms of previous notation, one finds for the meson form fac-
tors considered in Refs.@7,8# K52pk21/pxM2, a5b5p,
c5s1p23, whereas in Ref.@11# one findsK53•2s, a5b5w,
andc5p. For the baryon form factors considered in@7#, the relation
is given bya52p11, b5322p, c5s11, andK52k21/pxM2

or K52k21/pxL, depending upon whether the form factor appears
with x or xL.
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f i~ t;t0!5A nI

Kpx S t12t

t12t0
D 1/4

~At12t1At12t0!

3~ t12t !a/4~At12t1At12t2!b/2

3~At12t1At1!2~c13!. ~4.14!

The values of the parametersK,a,b,c for each form factor,
as well as the relevantx, are given in Table I forB̄→D (* )

transitions, and in Table II forLb→Lc . Although Eq.~4.14!
assumesq250, it is easy to generalize to arbitrary
Q2[2q2: Simply evaluate the perturbative functionsx(Q2)
at the given value, and multiplyf by

S At12t1At1

At12t1At11Q2D d

, ~4.15!

with d53 if the form factor involvesxT and d52 if it
involvesxL.

While the momentum-transfer variablet5(p2p8)2 is
useful for heavy-to-light decays and has an obvious physical
meaning, it is often more convenient when dealing with
heavy-to-heavy transitions such asb→c to use a kinematic
variable that helps disentangle long-distance physics from
the heavy quark scale. One such variable is

w[v•v85
M21m22t

2Mm
. ~4.16!

In theb rest frame,w depends only on the energy transfer to
the light degrees of freedom, in units ofLQCD. It is due to
this property thatb→c form factors are related to each other
in the heavy quark limit at equal values ofw. In the semi-
leptonic region, the variablez(t;t0) has the same physical
property, so form factors will be related at equal values ofz

as well. We can demonstrate this by expressingz as a func-
tion of w without reference to heavy meson masses,

z~w;N!5
A11w2A2N

A11w1A2N
, ~4.17!

whereN is a free parameter related tot0 by

N5
t12t0

t12t2
, ~4.18!

so thatz(w;N) vanishes atw52N21. With t,t0 related to
w,N by Eqs.~4.16! and~4.18!, Eq. ~4.17! is simply a rewrit-
ing of Eq. ~3.5!, z(t;t0)5z(w;N). The advantage in using
z(w;N) for b→c transitions is that its definition is process
independent.

For the semileptonic decayHb→Hcl n̄ , the limiting val-
ues ofz are given byml

2 <t<t2 , or

zmin52S AN21

AN11
D ~4.19!

and

zmax5
A~11r !22d222ANr

A~11r !22d212ANr
. ~4.20!

wherer 5m/M andd5ml /M .
The dispersion relation~3.6!, written now entirely in

terms ofz, reads

1

2p i EC

dz

z
uf~z!P~z!F~z!u2<1, ~4.21!

where C is the unit circle in the complexz plane, the
Blaschke factor for a pole atzp[z(tp ;t0) ~which is real for
subthreshold resonance masses! is

z~ t;tp!5
z2zp

12zzp
, ~4.22!

for z5z(t;t0) and anyt0, with P(z) being the product of all
such factors, and the weighting functions~4.14! are given by

f~z;N!5M ~1/2!~a1b!2~c12!

3A nI

Kpx
2~1/2!~a1b!12 Na/411/2 r ~1/4!~a1b!11/2

3~11z!~1/2!~a11!~12z!c1~1/2!~32a2b!

3@~AN21!z1~AN11!#b/2

3@~11r !~12z!12ANr~11z!#2~c13!. ~4.23!

Finally, evaluation off(z;N) at nonzero values ofQ252q2

is accomplished by multiplying Eq.~4.23! by

S ~11r !~12z!12ANr~11z!

A~11r !21Q2/M2~12z!12ANr~11z!
D d

, ~4.24!

whered is defined as in Eq.~4.15!.

TABLE I. Factors entering Eq.~4.14! or Eq. ~4.23! for the me-

son form factorsFi in B̄→D (* ).

Fi K x a b c

f 1 48 xT(1u) 3 3 2
f 0 16 xL(1u) 1 1 1
f 24 xT(2u) 1 1 1
F1 48 xT(2u) 1 1 2
g 96 xT(1u) 3 3 1
F2 64 xL(2u) 3 3 1

TABLE II. Factors entering Eq.~4.14! or Eq. ~4.23! for the
baryon form factorsFi .

Fi K x a b c

F0 8 xL(1u) 3 1 1
F1 12 xT(1u) 1 3 1
HV 24 xT(1u) 1 3 2
G0 8 xL(2u) 1 3 1
G1 12 xT(2u) 3 1 1
HA 24 xT(2u) 3 1 2
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C. Subthreshold resonances andP„t…

The Blaschke factorP(t) for a form factor describing
Hb→Hcl n̄ depends on the masses ofBc resonances below
the HbH̄c pair-production threshold. The Blaschke factors
are simply products ofz(t;ts) with ts evaluated at the invari-
ant mass squaredts→tp of each such resonance with the
same spin-parity as the currentJ,

P~ t !5)
p

z~ t;tp!. ~4.25!

For b→c transition from factors, the masses of the relevant
Bc-type resonances can be accurately estimated from poten-
tial models @28,29#. We compile in Table III the masses
computed in Ref.@29#.

For heavy-to-light form factors there is no formal limit in
which the light quark becomes nonrelativistic, and potential
model calculations are less reliable. This is not a problem for
B→p, where the only subthreshold resonance, theB* , is
experimentally observed, but for decays to other light states
such asB→r, the presence and masses of additional sub-
threshold resonances must be taken from models. Once these
uncertainties are accounted for, simple parametrizations
should be reliable. For example, the model of@30# indicates
that the form factorf for B→r has only one narrow sub-
threshold pole. Indeed, this pole appears to have been ob-
served~mixed with others! by ALEPH, DELPHI, and OPAL
„see@27# for analysis and references on the ‘‘BJ* ~5732!’’ ….
Even accounting for significant uncertainties in its mass, this
leads to an accurate parametrization using the overall nor-
malization and two unknown coefficients. It is important to
estimate the uncertainties from model-dependent poles on a
case by case basis@14#.

This applies as well to subthreshold branch cuts due to
multiparticle states and anomalous thresholds. A model-
dependent analysis@7,8# suggests these are negligible for
b→c transitions. Qualitatively, this result comes about be-
cause cuts are a much less severe form of nonanalytic behav-
ior than poles. Whether cuts continue to be unimportant for
B→r transitions requires a more detailed analysis.

V. ADDITIONAL STATES

The effects of higher states in the dispersion relation de-
pend on the flavor of theb→q current under consideration.
Henceforth, we specialize tob→c transitions, for which
HQET is most useful.

A. Contributions to the dispersion relation

We have observed that contributions to the original dis-
persion relation@see Eq.~3.3!# are semipositive definite, so
each additional state coupling to the vacuum through the
currentJ serves to further saturate the bound supplied by the
QCD parton-level calculation. The inclusion of only a single
two-particle B̄D̄ or B̄D̄* state in obtaining these bounds is
relatively weak, since such exclusive states account for only
a small portion of the inclusive total. In general, the hadronic
side includes alsoBc resonances, a continuum of states such
as B̄D̄pp, and so on. While it is desirable to include as
many of these states as possible, it is not clear how to include
them in a model-independent fashion; the chief exceptions
are two-particle states related to one another via heavy quark
spin symmetry, namely, the four statesB̄(* )D̄ (* ). While
form factors for transitions such asB̄*→D (* ) are not physi-
cally accessible through semileptonic decays, their normal-
ization is nonetheless known via HQET, allowing an addi-
tional strengthening of the dispersive bounds.

The contributions~4.13! of these states to the dispersion
relations are of the form

Im P~ t !>(
i

k i~ t !uFi~ t !u2, ~5.1!

where the sum is over all helicity amplitudesFi arising from
pair production ofB̄(* )D̄ (* ). The weight functionsf are
readily obtained from the kinematic prefactorsk i(t), while
the relation between the helicity amplitudes and the original
form factors may be obtained by choosing definite polariza-
tions of theB̄* , D̄* , and the virtualW.

For B̄*→D transitions, the form factors are defined by

^D~p8!uVmuB̄* ~p,e!&5 i ĝemabgeapbpg8 ,

^D* ~p8!uAmuB̄* ~p,e!&5 f̂ em1~e•p8!@ â1~p81p!m

1â2~p82p!m#. ~5.2!

The functionsf for B̄*→D transitions are identical to those
for B̄→D* , with the simple replacementM↔m. The helic-
ity amplitudes possess factors ofM andm, and need not be
invariant under this exchange. This is true in particular for
F1 andF2; here we find that@compare Eq.~2.7!#

F̂1~ t ![
1

M F2k2tâ1~ t !2
1

2
~ t2m21M2! f̂ ~ t !G ,

F̂2~ t ![
1

M
@ f̂ ~ t !2~M22m2!â1~ t !1tâ2~ t !#. ~5.3!

The transitionB̄*→D* possesses ten independent vector
current form factors, which we define as@31#

TABLE III. CalculatedBc pole masses used in this work.

Type Masses~GeV!

Vector 6.337, 6.899, 7.012, 7.280
7.350, 7.594, 7.646, 7.872, 7.913

Axial vector 6.730, 6.736, 7.135, 7.142
7.470, 7.470, 7.757, 7.757

Scalar 6.700, 7.108, 7.470, 7.757
Pseudoscalar 6.264, 6.856, 7.244, 7.562, 7.844
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1

AMm
^D* ~eD ,v8!uVmuB̄* ~eB ,v !&

5 f 4~eB•eD* !v8m1 f 5~eB•eD* !vm1 f 6~v8•eB!

3~v•eD* !vm1 f 7~v8•eB!~v•eD* !v8m1 f 8~v•eD* !eB
m

1 f 9~v8•eB!eD*
m ,

1

AMm
^D* ~eD ,v8!uAmuB̄* ~eB ,v !&

51 i f 10e
m

abgeB
aeD*

bv8g1 i f 11e
m

abgeB
aeD*

bvg1 i f 12

3@~v8•eB!em
abgeD*

av8bvg1eabgdeB
aeD*

bv8gvdv8m#

1 i f 13@~v•eD!em
abgeB*

av8bvg

2eabgdeB
aeD*

bv8gvdvm#. ~5.4!

The combinations of these form factors appearing as helicity
amplitudes may be denoted

V115
f 9

AMm
,

V105
f 8

AMm
,

V015
1

A2Mm
~M f 41m f5!,

V005
1

4~Mm!5/2
$Mm~ t2M22m2!~M f 41m f5!

22k2t~m f61M f 7!1Mm@m~ t

1M22m2! f 81M ~ t2M21m2! f 9#%,

S005
1

~2Mm!5/2
$Mm~ t2M22m2!@M ~ t2M21m2! f 4

2m~ t1M22m2! f 5#12k2t@m~ t1M22m2! f 6

2M ~ t2M21m2! f 7#24k2tMm~m f82M f 9!%,

S015
1

A4Mm
@M ~ t2M21m2! f 42m~ t1M22m2! f 5#,

A115
1

2~Mm!3/2
$Mm@~ t2M22m2! f 1022Mm f11#

22k2t f 12%,

A015
1

2~Mm!3/2
$M2m~ t2M21m2! f 102Mm2~ t1M2

2m2! f 1112k2t~M f 122m f13!%,

A105
1

2~Mm!3/2
$Mm@2Mm f102~ t2M22m2! f 11#

12k2t f 13%,

P015
1

2~Mm!3/2
$2Mm~M f 101m f11!1@M ~ t2M21m2! f 12

1m~ t1M22m2! f 13#%. ~5.5!

The labelsV,S,A,P reflect the spin parity~vector, scalar,
axial vector, or pseudoscalar! of the virtual W, while the
subscripts denote the helicities of theW* and D* in the
decay of theB̄* .

Only amplitudes of a fixed spin-parity enter each disper-
sion relation. For example, the fourV helicity amplitudes
enter the vector current dispersion relation forPT. Above all
the appropriate pair-production thresholds, the contribution
to Im PV

T from B̄D̄, B̄* D̄, B̄D̄* , B̄* D̄* , andLbL̄c states is

Im PV
T>

k3

6pAt
@2~ u f 1u21uV01u21uV00u2!

1t~ ugu21ugû21uV11u21uV10u2!#

1
k~ t2t2!

12pt3/2
@2tuF1u21uHVu2#, ~5.6!

where we have included an isospin factornI52 for the me-
sons, andk is defined in Eq.~2.1!. Using Eq.~4.13!, it is
straightforward to compute the weighting functionsf for all
the B̄* D̄* form factors. For each suchFi , one obtains a
parametrization of the form Eq.~3.8!, with the unknown ex-
pansion coefficients denoted bybin ,

Fi~z!5
1

Pi~z!f i~z! (n50

`

binzn. ~5.7!

The f parameters@see Eqs.~4.14! or ~4.23!# a,b,c,K and
the relevantx for B̄*→D* are given in Table IV.

Substituting this expansion into the dispersion relation
~4.21! gives

TABLE IV. Factors entering Eq.~ 4.14! or Eq. ~ 4.23! for the

meson form factorsFi in B̄*→D* .

Fi K x a b c

V11 96 xT(1u) 3 3 1
V10 96 xT(1u) 3 3 1
V01 48 xT(1u) 3 3 2
V00 48 xT(1u) 3 3 2
S00 8 xL(1u) 1 1 1
S01 8 xL(1u) 1 1 1
A11 24 xT(2u) 1 1 1
A01 24 xT(2u) 1 1 2
A10 24 xT(2u) 1 1 1
P01 32 xL(2u) 3 3 1
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(
i 50

H

(
n50

`

bin
2 <1. ~5.8!

Included in the sum are all helicity amplitudesi 50, . . . ,H
for processes with the right quantum numbers to couple to
the currentJ. It is clear that the constraint on a particular
helicity amplitudeFi can be strengthened if it is possible to
relate the variousbin , i.e., if one can relate the form factors.
This is accomplished with the help of heavy quark symme-
try.

B. Form factors in the heavy quark limit

In general, form factors are not related by heavy quark
symmetry throughout the pair production region@32#, but
may be related in the semileptonic region. This fact has been
exploited to improve constraints on theB→B elastic form
factor@17# and the dominantB̄→pl n̄ form factor@11#. The
situation in the present case is conceptually analogous, al-
though algebraically more cumbersome.

In the semileptonic region, the 20 form factors of
B̄(* )→D (* ) reduce to only one in the heavy quark limit, the
universal Isgur-Wise functionj(w), with j(1)51. Like-
wise, the six baryon form factors inLb→Lc reduce to an-
other universal function@33#, which we may denotez(w),
with z(1)51. Recalling thatr 5m/M , the relation of the
helicity amplitudes toj and z in the heavy quark limit are
given by

f 15
1

2
F252

1

2
F̂252

1

A2
V015V005

1

2
P015

~11r !

2Ar
j,

f 05F15F̂152A2S005S0152A01

5M2Ar ~12r !~11w!j,

g52ĝ5V115V105
1

MAr
j,

f 52 f̂ 52A115A105MAr ~11w!j, ~5.9!

for mesons, and by

F05HA5M ~12r !z,

F15G15z,

HV5G05M ~11r !z ~5.10!

for baryons. The only helicity amplitudes in this list pro-
tected by Luke’s theorem@3,34# from 1/M corrections at
w51 are f , f̂ , andG1.

In the strict heavy quark limit, our dispersion relation con-
straints become useless because the form factors in Eqs.~5.9!
and~5.10! develop an essential singularity due to an infinite
number of poles just below threshold@35#. The description
Eq. ~3.8! then contains no information, because the Blaschke
factor P(t) goes to zero in the semileptonic region.

For finite masses our parametrizations are well behaved,
and heavy quark relations are valid up to 1/m corrections. In

this case, some of the form factors in Eqs.~5.9! or ~5.10! will
have more constraining parametrizations than others because
their Blaschke factors, which reflect the number and posi-
tions of subthreshold resonances, will be larger. If one views
the universality of the Isgur-Wise function as arising from
the dominance of the essential singularity in each of the form
factors, one might expect 1/m corrections to be larger for
form factors with fewer subthreshold poles. Of course, it is
always possible that the residues of the various poles could
conspire to keep 1/m corrections small, since Blaschke fac-
tors alone permit@36# any residues consistent with the dis-
persion relation bounds.

We use the heavy quark relations~5.9! and ~5.10! to
tighten our bounds on parametrization coefficients. When we
use these bounds to quote smaller errors on our parametriza-
tions, we allow for substantial deviations due to 1/m effects,
thereby minimizing errors induced by assuming full heavy
quark symmetry. However, when we use these bounds to test
heavy quark symmetry by constraining the slope or curvature
of the Isgur-Wise function, one should bear in mind the pos-
sibility that heavy quark violations could be larger in form
factors with very few subthreshold poles~such asf 0 ,S00, or
S01) than in those that are typically measured experimen-
tally.

C. Bounding parameterization coefficients

We now use the heavy quark relations of the higher reso-
nance helicity amplitudes to improve the constraints. For
concreteness, consider the form factorg(w). Near zero re-
coil, w51, heavy quark symmetry relates it to six other form
factors appearing in the dispersion relation,

g52ĝ5V115V105
2

M1m
f 15

2

M1m
V00

52
A2

M1m
V01 . ~5.11!

While exact heavy quark spin symmetry implies that the
functional dependence of these form factors is the same for
all values of w corresponding to semileptonic decay, for
physical masses we demand only that the normalization and
first and second derivatives of these form factors are roughly
equal atw51. This suffices to provide lower bounds, assum-
ing full heavy quark symmetry, on the contributions of the
form factors in Eq.~5.11! to the sum in Eq.~5.8!. Once
computed, it is straightforward to weaken these lower
bounds by including factors indicating the violation of heavy
quark symmetry.

Since each form factorFi in Eq. ~5.11! has a parametri-
zation of the form~5.7!, the coefficientsan in the expansion
of g can be related to the coefficientsbin in the expansion of
Fi by

(
n

anzn'
1

Ci~z!(n
binzn, ~5.12!

where' means only the normalization and first two deriva-
tives are equal atw51. The functions
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Ci5
JgPif i

J i Pgfg
~5.13!

are given by ratios of Blaschke factors, weighting functions,
and symmetry factorsJ i(z) chosen so that

j~z!5J i~z!Fi~z! ~5.14!

in the heavy quark limit. The kinematic factorsJ i(w) ap-
pear in Eqs.~5.9! and~5.10!. By choosing the same value of
N for each form factor, we ensure that the kinematic variable
z(w;N) is process independent, most of thez dependence in
fg(z)/f i(z) cancels out, and theCi(z) become quite simple.

Numerically, the values ofN that optimize our constraints
correspond toN5112e with e'0.05, and ignoring terms of
ordere2 in Eq. ~5.12! is a good approximation for parameter
valuesan that saturate their bounds. Evaluating~5.12! and its
first and second derivatives atw51 (z'2e/2), we find, for
eachi ,

b05Ca0 ,

b15C8a01Ca1 ,

b25
1

2
C9a01C8a11Ca21

3

2
e~b32b3

HQS! , ~5.15!

where C, C85dC/dz and C95d2C/dz2 are evaluated at
z50 ~not w51), andb3

HQS is the valueb3 would have if the
third derivative of Eq.~5.12! yielded a valid relation. Depar-
tures from the heavy quark symmetry limit tend to increase
as we take higher derivatives of Eq.~5.12!, so one might
expect substantial corrections tob35b3

HQS. However, cor-
rections to this relation are multiplied bye, so we may jus-
tifiably ignore the factor 3e(b32b3

HQS)/2 in b2.
Substituting Eq.~5.15! into

(
n50

`

an
21(

i 51

H

(
n50

`

bin
2 <1 ~5.16!

gives more stringent bounds on the coefficientsan . For the
form factor g, they yield 20.37<a1<0.40 and
20.49<a2<0.47, compared toua1u,ua2u<1 from Eq.~3.9!.
Bounds for the other form factor coefficients can be obtained
in a straightforward fashion by singling out a different set of
bin in Eq. ~5.12!.

The bounds ona1 are useful as tests of heavy quark sym-
metry. For example, parametrizingf 0 and constraining
20.62<a1<0.58 restricts the slope of the Isgur-Wise func-
tion, up to 1/mc effects, to20.3<r2[2(dj/dw)uw51<1.8.
Bounds ona2 are useful for decreasing truncation errors of
our one-coefficient parametrizations, as described in the next
section. In this case, however, we do not want to rely on
exact heavy quark symmetry, because we wish to be as con-
servative as possible with how much the symmetry improves
the truncation error, so we allow for explicit violations to the
infinite mass limit. Such violations are potentially largest for
the bounds ona2, because they depend on relations involv-
ing second derivatives. Allowing for the total contribution
from the higher-spin states to be as low as 60% of their
infinite-mass value gives bounds ona2 of 20.58<a2<0.57

for g, which leads to a corresponding decrease in the error
induced by truncating the expansion~3.8! by 40% @see Eq.
~6.4! below#. In summary, bounds ona1 are obtained using
full, unbroken heavy quark symmetry, and may be used to
test the accuracy of this symmetry. The bounds ona1 do not
enter the construction of our parametrizations. The deriva-
tion of the bounds ona2 allows for substantial violations of
heavy quark symmetry. These bounds enter into the trunca-
tion errors we quote on our parametrizations.

Since the baryonic and mesonic form factors are not re-
lated by heavy quark symmetry, Eq.~5.16! only applies in
the baryonic case to the pairsF1 ,HV andG1 ,HA . Of these,
only HV and HA receive substantial improvements to their
truncation errors, which are proportional toa3 @see Eq.
~6.4!#. While 1/mc corrections to relations involvinga3 and
b3 could a priori be large, they are known in terms of one
constantL̄L for the baryons@37#, and are not particularly
large. For example, the relation betweenHV andF1 is inde-
pendent ofw, to O(1/mc

2). Allowing for the contributions to
the dispersion relation fromF1 andG1 to be as small as 50%
of their heavy quark symmetry values givesua3umax50.57
for HV and ua3umax50.29 forHA .

The bounds ona1 ignoring heavy quark violation, and the
bounds ona2 allowing for deviations from the heavy quark
limit as described above, are given in Tables V and VI.

VI. TRUNCATION ERRORS

To fit data with our parametrizations, we must truncate
the series~3.8! after a finite numberQ of unknown coeffi-

TABLE V. One-coefficient parameterizations using optimized
N. Bounds ona1 ignore heavy quark violation. Bounds ona2 allow
for violation as described in Sec. V. The truncation error is relative
to the normalization ofJFF at w51.

F Noptimal Combined bounds fromB̄(* )D̄ (* ) T(JFF)

f 1 1.108 20.23<a1<0.20 20.55<a2<0.58 2.6%
f 0 1.109 20.62<a1<0.58 20.78<a2<0.85 0.7%

f 1.093 20.37<a1<0.39 20.58<a2<0.56 1.8%
F1 1.093 20.06<a1<0.06 20.11<a2<0.10 2.1%
g 1.093 20.37<a1<0.40 20.58<a2<0.57 1.2%
F2 1.093 20.41<a1<0.45 20.59<a2<0.57 0.6%

F0 1.081 21<a1<1 21<a2<1 6.3%
G0 1.080 21<a1<1 21<a2<1 9.4%

TABLE VI. Two-coefficient parametrizations using optimized
N. Bounds ona1 ignore heavy quark violation. Bounds ona2 allow
for violation as described in Sec. V. The truncation error is relative
to the normalization ofJFF at w51.

F Noptimal Combined bounds fromB̄(* )D̄ (* ) T(JFF)

F1 1.104 20.90<a1<0.90 20.97<a2<0.97 7.0%
HV 1.104 20.31<a1<0.31 20.53<a2<0.53 12%
G1 1.104 20.98<a1<0.98 20.99<a2<0.99 9.1%
HA 1.104 20.15<a1<0.15 20.26<a2<0.26 18%

F0 1.104 21<a1<1 21<a2<1 0.35%
G0 1.104 21<a1<1 21<a2<1 0.53%
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cientsan . This introduces a truncation error which can be
minimized by choosing an appropriate value ofN @7# ~or
equivalently,t0). Rather than usea0 as a free parameter as in
@8#, we solve fora0 so that the form factor is automatically
normalized atw51 to F(1). If N51, thenz(1;N)50, and
this parametrization coincides with that in@8#. For N>1, the
parametrization~3.8!, including the solution fora0, may be
reexpressed as

JF~w!F~w!5
JF~w!

P~w!f~w;N!H P~1!f~1;N!F~1!

1 (
n51

Q

an@zn~w;N!2zn~1;N!#J , ~6.1!

where the productJFF is normalized to coincide with the
Isgur-Wise functionj(w) @or z(w) for baryons# in the heavy
quark limit. The full form factor is of course given by the
Q→` sum, while approximationsFfit are obtained by trun-
cating at finiteQ; then the fit coefficientsa1 , . . . ,aQ can be
chosen so that the difference between the parametrizationFfit

and the actual form factorF is given by

JF~w!„F~w!2Ffit~w!…5
JF~w!

P~w!f~w! (
n5Q11

`

an~zn2zmin
n !

'
JF~w!

P~w!f~w!
aQ11~zQ112zmin

Q11!,

~6.2!

where we have ignored numerically unimportant higher or-
der terms. Using the Schwarz inequality, the boundedness
condition (nan

2<1, and the geometric series sum, these
higher order terms can be shown to be smaller than

U JF~w!

P~w!f~w! (
n5Q12

`

an~zn2zmin
n !U

<U JF~w!

P~w!f~w!
UA (

n5Q12

`

uanu2 (
n5Q12

`

~zn2zmin
n !2

<U JF~w!

P~w!f~w!
~zQ122zmin

Q12!U1O~zQ14!, ~6.3!

which, sinceuzu<0.04 for the cases at hand, can be justifi-
ably ignored. Thus, to good accuracy, the maximal possible
truncation errorT(JFF) for any physically allowedz is

T~JFF !5maxUJF~w!~zQ112zmin
Q11!

P~w!f~w!
UuaQ11umax,

~6.4!

whereQ is the highest power ofz used in the parametriza-
tion fit and uaQ11umax is the maximal allowed value of
uaQ11u. The inclusion of higher states leads to tighter bounds
on uaQ11umax and thus smaller truncation errors.

The truncation error vanishes atw51, where the normal-
ization is fixed. For optimal values ofN, zmin'2zmax, so for
one-coefficient parametrizations the truncation error drops
sharply for somew near wmax. This leads to significantly

smaller truncation errors than in previous works@7,8#. For
two-coefficient parameterizations, the factor (z32zmin

3 ) adds
constructively nearwmax; for a given bound onua3u, this
leads to a larger truncation error than in previous work@7#.
This is unavoidable as long as onlya1 anda2 are fit param-
eters, i.e., as long asa0 is chosen to enforce the normaliza-
tion at zero recoil, so that the truncation error vanishes at
z5zmin rather thanz50.

Our truncation errors for one- and two-coefficient param-

etrizations of the various form factors inB̄→Dl n̄ ,

B̄→D* l n̄ , andLb→Lcl n̄ are shown in Tables V and VI.
The value of the free parameterN has been optimized for
each form factor and number of fit parameters to produce the
smallest truncation errors. The bounds ona1 come from Eq.
~5.16! and the heavy quark symmetry relation Eq.~5.15!, and
may be used as tests of heavy quark symmetry. The bounds
on a2 enter our truncation errors, so allowance for heavy
quark symmetry violation has been made as described in the
previous section. The truncation error is expressed as a per-
centage ofJF(1)F(1), which equals unity in the heavy
quark limit. The truncation errors in Table V are typically
less than half those of previous parametrizations, while the
errors in Table VI are either better or worse by nearly a
factor of 2, depending on the form factor@7# ~we have cor-
rected an oversight in this reference, which used incorrect
Blaschke factors forF0 andG0).

Note the especially small size of the truncation error for
the form factorsf 0 andF2; if we consider all form factors
related by heavy quark symmetry, then the champion in this
respect isS01 , with a truncation error of only 0.56%. How-
ever, as we discuss in the next section, actually fitting data to
such form factors introduces much larger 1/m uncertainties.

For baryon form factors, the large number of sub-
threshold poles typically ensures that at least two parameters
are required. Even with two parameters and the spin-
symmetry improvements, the truncation errors are signifi-
cant. Using three parameters reduces the truncation errors to
negligible levels.

A way to circumvent the relatively large truncation errors
on most of the baryon form factors is revealed by an inter-
esting feature of Table V: TheLb→Lcl n̄ form factorF0 is
well-described~to about 6%) by a one-coefficient parametri-
zation. The contribution fromF0 to the decay rate is sup-
pressed by the lepton mass, so it is difficult to observe. How-
ever,F0 is related by heavy quark symmetry to all the other
baryon form factors@see Eq.~5.10!#. Unlike in meson de-
cays, the relation including 1/mc effects is known in terms of
one constant@37# L̄L'MLb

2mb . Thus, the differential de-

cay rate can be described in terms of two constants,a1 and
L̄L . Using the value ofuVcbu obtained fromB̄→D (* )l n̄
and known hadron masses should then allow a determination
of L̄'MB2mb . This quantity is important because it enters
both exclusive and inclusive semileptonic decay distributions
as a 1/mc correction.

In addition to errors incurred by truncating the expansion
~6.1!, there are a number of uncertainties arising from vari-
ous approximations we have made. We enumerated in@8# a
list of uncertainties which must be estimated for a reliable
determination of the quality of the dispersive bounds, and
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found that we could allow for their effects by increasing
truncation errors by 40%. Since then, we have greatly re-
duced or eliminated many of these uncertainties. In@7# we
saw that the inclusion of the additional parameterN ~or t0)
permits a dramatic reduction of the truncation error, and the
more realistic definition of the truncation error used here
reduces the uncertainties of one-parameter fits even more.
The simultaneous inclusion of allB̄(* )D̄ (* ) states on the
hadronic side of the dispersion relation serves to help satu-
rate the bound from the partonic side, and the explicit inclu-
sion of two-loop perturbative and leading nonperturbative
effects eliminates them as a source of uncertainty. The un-
certainty in Bc pole positions is most significant for poles
near threshold, and leads to larger truncation errors only if
the pole masses have been overestimated. As pointed out in
@7#, branch cuts from multiparticle states below threshold can
be ignored if they violate isospin. The only uncertainty from
@8# that has not been reduced is due to the choice of pole
quark masses in the perturbative calculation. Combining the
remaining uncertainties as in@8#, we find that their effects
may be allowed for by increasingB→D,D* truncation er-
rors by 20% ~e.g., the conservative truncation error forf
would be 2.2%) andLb→Lc truncation errors by 30%. In
nearly all cases, this small increase makes no practical dif-
ference.

VII. SLOPE AND CURVATURE RELATIONS

A set of interesting relations between the slopes and cur-
vatures ofB̄→Dl n̄ andB̄→D* l n̄ form factors has been
derived by Caprini and Neubert@16#. Here we examine these
relations in the context of the parametrization formalism,
point out and circumvent an invalidating assumption, and
discuss the utility of the new, valid, relations.

We have seen that each of the form factorsF for
B̄(* )→D (* )l n̄ can be expanded in a series:

F~z!5
1

P~z!f~z! (n50

`

an zn, ~7.1!

where, in order to compare with@16#, we have sett05t2

(N51). From Eq.~3.9!, the coefficientsan obey

a0
21a1

21a2
2<1. ~7.2!

Expressinga0 ,a1, and a2 in terms of z derivatives of
P(z)f(z)F(z) at z50, Eq. ~7.2! gives

@P~z!f~z!F~z!#2uz501F d

dz
„P~z!f~z!F~z!…G2Uz50

1
1

4F d2

dz2 ~P~z!f~z!F~z!!G2U
z50

<1. ~7.3!

For t05t2 , z50 corresponds tow51. Then Eq.~7.3! con-
strains the slope2r2 and curvaturec defined by

F~w!5F~1!2r2~w21!1c ~w21!21O@~w21!3#,
~7.4!

to lie within an ellipse.

Equation~7.3! is the starting point of reference@16#, with
one critical simplification: They consider the form factor
f̃ 0[ f 0 /@(MB2MD)AMBMD(11w)#, and argue that it
does not receive contributions from scalarBc mesons that
would generate poles inf 0. This allows them to setP(z)51,
leading to a nearly linear relation betweenr2 andc,

c'0.72r220.09. ~7.5!

Their argument is based on the assumption that the scalar
Bc mesons are broad resonances because they can decay into
two-particle intermediate states such asBc(0

2)1h. Unfor-
tunately, the very potential models they cite refute this idea.
For example, Ref.@29# has the mass of the scalar 23P0 state,
6.700 GeV, below the two-particle threshold for anh plus
the 11S0 Bc ground state, 6.2641 0.5485 6.812 GeV. The
scalar 23P0 is thus essentially stable with respect to had-
ronic transitions, since transitions involving one pion are
suppressed by isospin, two pions by parity~or phase space,
in decays to aBc* ), and three pions by phase space. All the
references@28# that calculate the relevant scalar masses and
widths agree that there are two narrow, scalarBc resonances
below the B̄D̄ threshold. It is also worth nothing that the
lowest-lying charmonium scalar statexc0 is narrow.

While subthreshold branch cuts from states containing at
least ab and ac quark may be legitimately ignored@7,8#, it
is well known that poles play an essential role in the shape of
the form factor@11,35#. For this reason, the slope-convexity
relations derived in@16# are invalid.

New relations can be derived by simply including the two
scalarBc states inP(t). We use masses from@29#, which
agree with other potential model determinations to better
than 1%. It is algebraically straightforward to input physical
masses and expand our parametrization in powers of (w21),

f̃ 0~w!5 f̃ 0~1!1@11.72a120.77f̃ 0~1!#~w21!

1@21.74a110.21a210.55f̃ 0~1!#~w21!2

1@11.41a120.27a220.38f̃ 0~1!#~w21!3

1@21.03a110.25a210.25f̃ 0~1!#~w21!41•••,

~7.6!

and solve for the coefficientc of (w21)2 in terms of the
coefficient2r2 of (w21). We find

c51.02r210.21a220.23f̃ 0~1!. ~7.7!

This is not a very interesting relation because the unknown
coefficienta2, which can be as large as61 ('60.6 if we
include the contribution of higher states and ignore heavy
quark symmetry violation!, significantly affects the slope-
convexity relationship. Had we ignored the Blaschke factor
P(t), the coefficient ofa2 would have been 0.07.

For N51, our usual truncation analysis shows thata2 can
contribute at most 4% tof̃ 0(w). This may seem surprising,
given its obvious importance in Eqs.~7.6! and~7.7!. The 4%
value arises from a cancellation of thea2 dependence among
the various (w21)n coefficients; note the alternating signs
of the an coefficients. The cancellation is not accidental, but
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reflects the naturalness of an expansion inz(w;N) rather
than (w21). This effect is highlighted by the observation
that the (w21)3 term in ~7.6! can be as large as 40% at
wmax51.6, indicating that f̃ 0 must be expanded to rather
high order in (w21) if percent-level accuracy is desired.

The expansion~7.6! can, alternatively, be used to test
heavy quark symmetry by placing a restriction on the slope
2r2. If we include the contribution from the spin-related
statesB̄(* )D̄ (* ), a1 is restricted to20.61<a1<0.59, lead-
ing to

20.26<r2<1.84. ~7.8!

The same relation can be derived using the form factorsS01

or S00. These bounds are somewhat weaker than those de-
rived from Bjorken@4# and Voloshin@5# inequalities,4 which
restrict 0.22<r2<1.15 onceO(as) corrections have been
included@38#.

VIII. EXPERIMENTAL FITS

While constraints obtained from unobserved form factors
such asf 0 may serve as tests of heavy quark symmetry, they
are not well suited for fitting to data. The reason is that once
the truncation error on a form factor is sufficiently small~a
few percent!, heavy quark symmetry violating effects of or-
der 20–30 % become the main concern. ForB̄→Dl n̄ , us-
ing the parametrization off 1 avoids any dependence on
heavy quark symmetry. ForB̄→D* l n̄ , using the form fac-
tor f minimizes the dependence on heavy quark symmetry.
This is because on the one hand, the ratio

f

MBAMBMD* ~11w!g

5
Ĉ1

5

Ĉ1

F11
L̄

2mc
~w22!G1OS 1

mb
,

1

mc
2D . ~8.1!

is given in terms of a single@3#, roughly determined constant
L̄'300–600 MeV and known@39# perturbative functions
C1

5/C1511O(as), while on the other hand the ratio
a1 /g521/2 is determined using only spin symmetry,
which is expected to hold more precisely than full flavor-spin
symmetry @40#. We usef rather thang because it is pro-
tected from 1/m corrections@3# at zero recoil.

The purpose of the following fits is not to extract the best
value of uVcbu, since only the experimental groups them-
selves can correctly account for efficiencies, resolutions,
smearing effects, etc. Rather, since we expect the approxi-
mate results from using the QCD-derived parametrization to
survive these experimental corrections, these fits may be
used to motivate a more thorough analysis.

Form factors forLb→Lcl n̄ may be extracted in the near
future at CDF @41# or LEP @42#. Current data for
B̄→D (* )l n̄ decay spectra are available from CLEO@43#,
ALEPH @44#, OPAL @45#, and DELPHI@46#; older data ex-
ists from ARGUS@47#. Some progress has been made to-
wards measuring individual form factors inB̄→D* l n̄ @48#.
When this is finally accomplished, the parametrizations for
individual form factors can be applied without recourse to
heavy quark symmetry, except for the uncertainties in the
value ofF(1).

In the meantime, one must rely on the heavy quark sym-
metry prediction that theB̄→D* l n̄ differential rate is pro-
portional to a function F(w) that is normalized to
11O(1/m2) at zero recoil and is proportional to the Isgur-
Wise functionj(x)5J f(w) f (w) up to 1/mc corrections. We
may then use the one-coefficient, QCD-derived parametriza-
tion of f obtained from Eqs.~5.9! and ~6.1! to extract from
data the values ofuVcbuF(1) anda1 /F(1):

F~w!

F~1!
5

1

~11w!Pf~w!f f~w;N!H 2Pf~1!f f~1;N!

1
a1

F~1!

@z~w;N!2z~1;N!#

AMBMD*
J , ~8.2!

whereN51.093,z(w;N) is defined in Eq.~4.17!, f f(w;N)
is given by Eq.~4.23! and Table I, andPf(w) is determined
from Eqs.~4.25!, ~4.16!, and the first four vector masses in
Table III.

The procedure is precisely as detailed in@8#, except that
we now have only one fit coefficient instead of two@7#.
Morever, the improvements described above reduce our one-
parameter truncation errors to no more than 3%. We fit to the
experiments whose differential distributions are easily avail-
able. A x2 per degree of freedom (NDF) fit using our QCD
dispersion relation bounds~QCD fit! to CLEO data
@43# gives

QCD fit 1033uVcbuF~1!536.922.1
12.0 ,

a1

F~1!
50.00020.019

10.022 , ~8.3!

Linear fit 1033uVcbuF~1!535.121.9
11.9 , ~8.4!

with xmin
2 /NDF50.67, while a fit to ALEPH data@44# gives

QCD fit 1033uVcbuF~1!531.922.4
12.4 ,

a1

F~1!
50.09620.034

10.040 , ~8.5!

Linear fit 1033uVcbuF~1!531.921.8
11.8 , ~8.6!

with xmin
2 /NDF50.74. We have also included the values

quoted by the experimental groups using a linear fit for com-
parison, and only statistical errors at one standard deviation
are listed.

For B̄→Dl n̄ , we can fit the parametrization off 1 ,

4The physics leading to these results is quite different: The
Bjorken and Voloshin inequalities use perturbative QCD to bound
exclusive form factors directly in the semileptonic region, while the
dispersion constraints use both perturbative QCD in the pair-
production region and the phenomenological mass spectrum in the
unphysical regiont2,t,t1 .
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f 1~w!

f 1~1!
5

1

Pf 1
~w!f f 1

~w;N!H Pf 1
~1!f f 1

~1;N!

1
a1

f 1~1!
@z~w;N!2z~1;N!#J , ~8.7!

directly to data, without the need to invoke heavy quark sym-
metry. HereN51.108 andPf 1

depends on the first three
vector masses in Table III.

In this case, a fit to ALEPH data@44# yields

QCD Fit 1033uVcbuFD~1!529.227.3
17.3 ,

a1

FD~1!
50.09520.066

10.110, ~8.8!

Linear fit 1033uVcbuFD~1!527.826.8
16.8 , ~8.9!

with5 xmin
2 /NDF51.94, and now FD(1)5J f 1

(1) f 1(1)

52Ar f 1(1)/(11r ).
For CLEO B̄→D* l n̄ data, which exhibits discernible

curvature, our central values ofuVcbuF(1) lie at the upper 1
s boundary of the linear-fit result, while for ALEPH data,
which is extremely flat, the central values are nearly the
same. The statistical errors are larger because the QCD pa-
rametrization allows for curvature.

The ALEPH B̄→Dl n̄ data presents an interesting area
in which to test our results: The shape of their data will have
to change as the statistical errors are reduced, if it is to be
consistent with QCD.

IX. CONCLUSIONS

Form factors can be reliably bounded in the pair-
production region of momentum space by perturbative QCD
calculations. Analyticity, crossing symmetry, and dispersion
relations may then be used to translate these bounds into
constraints in the phenomenologically interesting semilep-
tonic region.

While these constraints typically imply rather weak
bounds on the slopes of form factors@10,17,18,36#, quite
stringent bounds can be obtained if the form factor at two or
more points is known. The constraints actually imply an in-
finite number of increasingly stringent bounds, depending on
the number of points at which the form factor is known
@10,12#. All of these bounds are automatically obeyed if the
form factor is parametrized as in Eq.~3.8!, even if the pa-
rametrization is truncated after a few terms.

In this paper, we have eliminated some of the uncertainty
involved in the derivation of these parametrizations by in-
cluding two-loop perturbative corrections to the partonic side
of the dispersion relation. We have also presented parametri-
zations for form factors whose contribution to semileptonic
decay rates is suppressed by the lepton mass.

We examined a relation between the slope and curvature
of the Isgur-Wise function derived by Caprini and Neubert

@16#, and pointed out the presence of subthreshold singulari-
ties that invalidate their analysis. Once these singularities are
correctly accounted for, the slope-convexity relations be-
come rather weak. Bounds on the slope of the Isgur-Wise
function made by ignoring finite mass corrections are also
fairly weak. We point out that even with strong constraints
on the slope and curvature, higher-order terms in a (w21)
expansion of the Isgur-Wise function can be quite large. The
parametrization in Eq.~3.8! does not suffer from this limita-
tion.

For b→c transitions, we reduced thetruncation errors
that describe the accuracy of such parametrizations. This was
accomplished in part by using a parametrization that is auto-
matically normalized at zero recoil to a quantityF(1), which
must be supplied by some other method such as heavy quark
symmetry. More importantly, we included the contributions
of higher states in the hadronic side of the dispersion rela-
tion. These states, theB̄* D̄ and B̄* D̄* pairs, are related to
B̄→Dl n̄ and B̄→D* l n̄ form factors in the semileptonic
region by heavy quark symmetry. Even in the presence of
substantial heavy quark symmetry violation, these relations
place lower bounds on the contribution from the higher states
to the dispersion relation that lead to tighter upper bounds on
the magnitudes of the unknown parametrization coefficients.
This in turn reduces the truncation errors on the parametri-
zations of the various form factors.

For most of theB̄→D,D* form factors, the inclusion of
higher states reduces truncation errors by roughly 40%. In
one case,F1, the truncation error is reduced by as much as a
factor of 10. This hefty improvement arises becauseF1 con-
tributes very little to the dispersion relation, so it is far from
saturating the perturbative bound until its spin-symmetry
partners are included as well. After including allB̄(* )D̄ (* )

states, we find that each of the six form factors governing
B̄→Dl n̄ and B̄→D* l n̄ is described to better than 3%
accuracy using only one unknown parameter. This should be
a considerable aid in experimentally disentangling the vari-
ous form factors in differential decay distributions.

For Lb→Lcl n̄ decays, there are no spin-symmetry part-
ners to help saturate the dispersion relation bound. However,
the presence of more than one helicity amplitude in the same
bound achieves the same effect. This is most dramatic in the
case ofHA , whose truncation error is reduced by a factor of
4. Of greater interest is the observation that the form factor
F0 can be described at the 6% level using only one unknown
coefficient. Because the 1/mc corrections to heavy quark
symmetry relations among the baryonic form factors are
given in terms of one additional parameterL̄L the entire
decay distribution can be described using only two unknown
constants. This should allow a relatively clean extraction of
the phenomenologically interesting quantityL̄L .

Finally, we used a parametrization of the form factorf
and heavy quark relations to extractuVcbu from
B̄→D* l n̄ data. This choice of form factor minimizes the
dependence on heavy quark symmetry. We expect the quali-
tative features of this extraction to persist even after the ef-
fects of experimental resolution, smearing, etc., are properly
incorporated. Our analysis suggests that the implicit error
associated with the choice of parametrization is comparable

5The largerx2/NDF is due to their binned data point atw51.55,
which suggests a peculiar upturn of the form factor nearwmax.
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to the statistical errors normally quoted. Similar statements
apply to B̄→Dl n̄ , except that in this case no reliance on
heavy quark symmetry is necessary, since we can param-
etrize the form factorf 1 directly.

Further improvements may be possible by including addi-
tional higher states in the dispersion bound, or perhaps by
weighing the dispersion integral differently. One could also
readily incorporate approximate SU~3! symmetry by using
an effectivenI52.5 isospin factor@16# in B̄→D,D* decays,
which would decrease truncation errors by an additional
10%. While such improvements would be welcome for the
baryonic form factors, their utility forB̄→D,D* form fac-
tors is not clear. This is because, once truncation errors are at
the few-percent level, the overwhelming source of uncer-
tainly comes from heavy quark symmetry violations, which
are expected to be of order 30%. Such uncertainties highlight
the importance of extracting individual form factors, which
can be parametrized using one coefficient without recourse
to heavy quark symmetry.

Note added.The essential role of the scalarBc poles in
the slope-convexity relations of Caprini and Neubert has
been pointed out independently by L. Lellouch~private com-
munication!. A corrected slope-convexity relation and other
topics related to those in this work are in preparation by
these authors@49#. Additional criticism of the neglect of the
scalar poles appears in Ref.@50#.
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