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We present precision corrections to dispersion relation bounds on form factors in bottom hadron semilep-
tonic decays and analyze their effects on parametrizations derived from these bounds. We incorporate QCD
two-loop and nonperturbative corrections to the two-point correlator, consider form factors whose contribution
to decay rates is suppressed by lepton mass, and implement more realistic estimates of truncation errors
associated with the parametrizations. We include higher resonances in the hadronic sum that, together with
heavy quark symmetry relations near zero recoil, further tighten the sum rule bounds. Utilizing all these
improvements, we show that each of the six form factorBinD/ v andB—D*/ v can be described with
3% or smaller precision using only the overall normalization and one unknown parameter. A similar one-
coefficient parametrization of one of the,— A,/ v form factors, together with heavy quark symmetry
relations valid to order 142, describes the differential baryon decay rate in terms of one unknown parameter
and the phenomenologically interesting quanEXwMAb—mb. We discuss the validity of slope-curvature
relations derived by Caprini and Neubert, and present weaker, corrected relations. Finally, we present sample
fits of current experimentaB_—>D*/’v_and B—D/v data to the improved one-parameter expansion.
[S0556-282(97)01823-1
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. INTRODUCTION B™) . D™) transitions, for example, each of the 20 form
factors either vanishes or is proportional to a single universal
The decays of bottom hadrons provide fertile ground forform factor&, which represents this wave function overlap as
explorations of both weak and strong interactions. The emg fynction of momentum transfer. Sum rule constraints re-
pirical smallness of the Cabibbo-Kobayashi-Maskawastrict the slope and magnitude of these form fac{drs6|,
(CKM) elements V| and |V,,| implies thatb-hadron de-  put otherwise shapes of the form factors areriori unde-
cays are relatively long lived, and thus more easily analyzedermined functions of momentum transfer.
while the heaviness of thb quark means that the heavy However, some recent wof—18 has demonstrated that
quark effective theoryHQET) [1,2] provides a reliable ex- one may obtain rather nontrivial and model-independent con-
pansion for describing the approximate decoupling oftthe straints on the shape of such form factors in the context of
quark from the rest of the hadron, leading to a substantiagispersion relations. Using basic field theoretic properties
simplification of the strong-interaction dynamics. such as causality and crossing symmetry, one finds that the
Semileptonic decays db hadrons are particularly trac- shape of a given form factor is determined to high accuracy
table from the theoretical point of view, since the leptonicover its entire kinematic range by its value at only a small
current may be trivially separated from the hadronic currenthumber of points [7-10. Indeed, for the case of
Furthermore, focusing upon exclusive decays permits one g, 5(*),/,, the HQET normalization plus only one addi-
avoid questions regarding the validity of quark-hadron dualy;, - point ,determines most of the form factors to 3—7 %

ity near kinematic end point regions. Qn the other handaeouraoy{?]. Similar analyses provide interesting and useful
exclusive processes must be described in terms of a number

of nonperturbative form factors that encapsulate the physicgonstraints onB—m/v [7,10-13, B—p/ v [14], and
of the hadronization process. Ap— A v [T]

HQET has provided a substantial leap forward in the ex- At the core of this analysis lies a dispersion relation in
clusive analysis, demonstrating that heavy-to-heavy quarknomentum space that relates the integral of an inclusive pro-
transitions at zero recoil are accompanied by a completeuction rate to a two-point function evaluated far from physi-
overlap of initial- and final-state hadron wave functionscal resonances, where perturbative QCD is quantitatively re-
[1,3]. Consequently, each form factor possesses a welliable. The production rate is a sum of positive-definite
defined normalization at this kinematic point. For the case otxclusive rates; it follows that all contributions to the had-

ronic side serve to saturate more and more closely the bound
from the perturbative side. Clearly, two improvements to this

*Electronic address: boyd@fermi.phys.cmu.edu procedure include a better calculation of the QCD side
"Electronic address: bgrinstein@ucsd.edu (which includes both multiloop effects and nonperturbative
*Electronic address: rlebed@ucsd.edu vacuum condensatgsnd the inclusion of more states on the
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hadronic side. The former may be extracted from existing p2 (t,—t)(t_—t)

literature, while the latter may be achieved using heavy k=M\/——=\/—F7F17— (2.1
. 4 ) : t 4t

guark symmetry relations. The inclusion of higher states has

previously been investigated for elasti®—B scattering

[17] and forB— =/ v decayg11], but not forb—c transi- wherep is the three-momentum dfl; in the rest frame of

; . ; o, i Hy. Note that the identity of the decaying quark does not
tions. For mesonic and baryontic— ¢ transitions, the inclu- nter into the expressions below except through hadron

sion qf hlgh_er states improves _conS|derany the precision o asses, so the same expressions apply to such decays as
the dispersion-relation constraints, and represents the prE— o DK/ q “onlv th .  the had
mary contribution of this work. In addition, we include in B— 7/ v, D—K%/v, and so on; only the spins of the had-

this analysis nonzero lepton masses, anticipating future me&9"s ar¢ releyant. . .
}: f P FBs D) 7 P B—g — The inclusion of charged lepton masses brings into the
surTerr]rjen S Ol processes S(;‘C i T;’T gr —I;Wﬂja. indifferential widths a new set of helicity amplitudes, and thus
IS paper IS organizeéd as Iollows. In Sec. 1l We Jelne, o, laboratory for studying the strong interaction. The

the form factors for the physically-observed semileptonic de'contributions of such terms is suppressed by a factami)f

cays and present expressions for differential decay Wldthsnd arises through a virtus¥ with the quantum numbers of

including lepton masses. Section Il presents a brief review' . S L

- . - a scalar, i.e., a timelike polarization. Angular momentum
of the dispersive method for obtaining bounds on the formconservation forbids the decav of such a state to a right-
factors. Ingredients of the form factor parametrizations, in- y 9

cluding explicit formulas for the QCD results at one and twohanded antineutrino and a Ieft—handac_isslesshargeq lep-
on, so such decays are necessarily accompanied by a

loops as well as leading nonperturbative effects, appear ih T ) 2 .

Sec. IV, followed by a tabulation of the form factor weight- elicity-suppression factom . Although the detection of

ing functions, which are central to the dispersive method. irfepton mass-dependent effects is presently be_yond the means
f of current experiments, the gradual accumulation of statistics

Sec. V we discuss the inclusion of additional, previously " " b off di ible in d h
ignored hadronic states into the dispersion relations, ang'@y €ventually make such effects discernible in decays suc

show how heavy quark effective theory may be used to in@sB—D®*)7v or B—wrv.

clude their effects and thereby tighten form factor con- Finally, it should be noted that the differential widths
straints. Section VI defines and presents the truncation erroftl /dt presented below have already been integrated in lep-
that measure the quality of our form factor parametrizationston energy, or equivalently over angles of final-state par-
In Sec. VII we discuss slope-curvature relations derived byicles. This reflects only the current thrust of experiment and
Caprini and Neuber[ﬂG], point out an inva"dating assump- does not indicate a limitation of the dispersive method de-
tion, and examine the form of the corrected relations. In Sec$Cribed below. Indeed, were the statistics available, it would
VIIl we present the results of the current analysis in fits tobe interesting to consider the double differential decay dis-

the latest experimental data, and in Sec. IX we conclude. tribution d°I'/dE,dt, for then one could probe the parity-
violating interference terms between vector and axial vector

weak currents. In terms of the QCD side of the dispersion
Il. FORM FACTORS relations described below, one would also need to compute

: - ) . V—A correlators, in addition t& —V andA—A.
We begin by defining form factors for the semileptonic

decays of interest in terms of hadronic transition matrix ele- _ _

ments. From the field theory point of view, it is most conve- A.B—-D/v

nient to define form factors as coefficients of independent The hadronic matrix element governing the rate of
Lorentz structures appearing in the matrix element. HOW_—>D/7may be described by form factors
ever, the combinations of form factors most easily obtainec]3 '

from data are those appearing in a sum of squares in the (D(p/)|VM|B—(p)>:f+(p+p,),urf_(p_p,),L ,
differential rates, namely, the helicity amplitudes. As seen (2.2)
below, the helicity amplitudes are particular linear combina-

tions of the original form factors, and thus simply form a inat enter the differential rate as

different basis for the description of the matrix elements. It is
these helicity amplitudes we wish to constrain.

The notation used throughout the paper is as follows. The _ o
genericb— c semileptonic decay is denoted bly,—H ./ v, dt  19273M3 {572
where the hadrorH, has massM and momentunp, the 215 (2
daughter hadroil . has massn and momentunp’, and the +3m7{fol“l, 2.3
charged leptory” has massn,. The momentum transfer
t=(p—p’)? is the invariant mass squared of the lepton pairvhere
(or virtual W). The polar vector and axial vector flavor-

changing currents are denoted by*=cy*b and

A#=cy*vygh. Finally, it is convenient to define the kine-
matic invariants B.B>D*/ v

dl'  GE[Vesl® K
o _ SelVal. K mrancrcats m),

fo()=(M2—m?)f, (1) +tf_(t). (2.9

The matrix elements foB— D* /v depend on four form
t.=(M=m)?, factors,
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(D*(p’,e)|V¥|B(p))=ige “F7eXppp, .,
(D*(p',€)|A¥|B(p))=Tfe*#+ (e -p)[a,(p+p')*
+a_(p—p")*], (2.5

that enter the differential rate in the combinations

dr  GE[Ven® k

= _ 2
FTrsvErCTY

X {(2t+m2)[ 2t] f| 2+ | F1 |2+ 2K2t2|g| 2]
+3mok2t| Pl (26

where

1 1
Fi(t)= p~ 2k’ta, (t)— E(t— M2+m?)f(t)],

fﬂt)z%[f(t)+(M2—m2)a+(t)+ta7<t)]. (2.7)

C.Ay—ALV
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Go(t)=(M G,— ! M?2 G,
o(t)=(M+m) om (T —m?)
+i(t—M2+m2)G (2.10
2m 3. .

Ill. REVIEW OF THE DISPERSIVE APPROACH

Constraints on a geneerHHc/Tform factorF(t) are
obtained by noting that the amplitude for production of

HpH, from a virtual W boson is determined by the analytic
continuation of F(t) from the semileptonic region of
momentum-transfem?<t=<t_ to the pair-production region
t, <t. The idea of the dispersion relation is to constra(t)
in the pair-production region using perturbative QCD, then
use analyticity to translate that constraint into one valid in
the semileptonic regiof19]. A detailed derivation can be
found in[7,8,11]; here we merely outline the essential ele-
ments.

In QCD, the two-point functiohof a flavor-changing cur-
rentJ=V,A, orV—A,

This decay can be described by six form factors, defined

by
(Ae(P)IVH Ap(P))
=u(p")[Fyy*+Fau*+Fau *luy(p),
(Ac(p")A¥ Ap(p))

=Uc(p )Gy ¥+ G + G *]ysUp(p),
(2.9

with v=p/M,_andv'=p’'/M, . This gives
dr GF|VCb|2 2.2
= tmm)
dt 19273Mm3 t5/2
X{(t-—t)(2t+mZ)[2t|F 1>+ [Hy|*]
+3m2(t, —t)[Fo|?+ (t, —t)(2t+m2)[ 2t| G, |?

+|Hal 2+ 3m2(t_ —1)|Gol?}, (2.9
where

o (M4 E. 4 & F, Fs

v()=(M+m) 1+§(t+_t) V+H ,

Ha(t)=(M—m)G ! G2, Cs

A =(M=m)G;— S (t_—t)| T+ ).

1
Fo()=(M—m)F;+ o (t4+ M?—m?)F,

1
— ﬁ(t— M2+ mZ)F3,

ya% _ 1 mAV 2 mv T/~2 q'uqv L/ ~2
1K (q)—g(q q"—q°g“"1l;(g%) + —-15(a%)
Eif d*x €9%(0|TJI*(x)JI™(0)|0), (3.2

is rendered finite by making one or two subtractions, leading
to the dispersion relations

L

Im ITY J(1)
2 __J:_
X5(9%) j (t—q 2)2 ,
1 620 1 (= ImII}(t)
Tg2 = — = — —J 2
x3(99)=35 7D J dt g 3.2

The functionsy(q?) may be computed reliably in perturba-
tive QCD for values ofg? far from the kinematic region
where the current] can create resonances: specifically,
(mb+ Me) Agep<(Mp+mg)?—g? For b—c or b—u,
q°=0 satisfies this condition.

Inserting a complete set of statésinto the two-point
function relates thdl; to the production rate of hadrons
from a virtual W,

1
Im I3 =52 (2m)*6*(a=px)[(OX)[? (33

where the sum is over all hadronic stabéswith the same
guantum numbers as the currdntweighted by phase space.
Then, from the dispersion relatioii8.2), the perturbatively
evaluatedy(qg?) is equal to the integrated production rate of

IThis definition differs slightly from that used ifi7—11], and
serves to separatd#” into manifestly spin-O and spin-1 pieces.
Then the functiong", x* defined in Eq(3.2) coincide withy, x*
defined in the previous works.
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W* — X, weighted with a smooth function of momentum result of the expansion ia(t;ty) is an expression foF(t)
transfer squaret Since the sum is semipositive definite, onevalid even in the semileptonic region,

may restrict attention to a subset of hadronic states to obtain

a strict inequality. In the case of interest, we focus X%n

being two-particle states of the forkd,H.. This places an F(t)=

upper bound on the form factdét(t) in the pair-production
region that takes the form

WZ apn Z(t tO , (38)

where, as a result of Ed3.6), the coefficientsa, are un-

1 = W(t) |F(1)|? known constants obeying
mx (9 Jt (t—a%)
from the ImII" dispersion relations in Eq3.2). HereW(t) nzo ar=<1 . (3.9

is a computable function df that depends on the particular

form factor under consideration. A similar result holds for

IIt. For the b—c processes that are the main subject of this
Using analyticity to turn Eq(3.4) into a constraint in the paperz(t;to) is no larger than 0.07 for any physical momen-

semileptonic region requires that the integrand is analytidum transferm?<t<t_, and can be made substantially

below the pair-production threshotd<t, . To do this, we smaller by a judicious choice df, so the expansion can be

introduce a function truncated after the first two or three terms.
Z(t'ts)I ts—t (35) IV. PARAMETRIZATION INGREDIENTS
(Vi —t+t, —t9)?

Generating a parametrization such as &8 for a par-
ticular form factor requires three ingredients: One needs the
perturbative evaluation ofy derived from the two-point
function for a current, including the Wilson coefficients of
phenomenologically determined condensates. In addition, the
functional form of the weighting functio® must be com-
puted. Finally, the masses of subthreshold resonances with
the same quantum numbers.amust be extracted from ex-
periment or potential models. The functigndepends on the
form factor under consideration, whijeand P depend only
on the current).

that is real forts<t, , zero att=tg, and a pure phase for
t=t, . All the poles in the integrand of Eq3.4) can be
removed by multiplying by various powers aft;ts), pro-
vided the positiond of the subthreshold poles iR(t) are
known. Each pole has a distinct valuetgf and the product
z(t;ts1) z(t;ts,) - - - serves to remove all of them. Such poles
arise as the contribution &, resonances to the form factor
F(t), as well as singularities in the kinematic part of the
integrand. After determining these positions phenomenologi-

cally, the upper bound oR(t) becomes
f ‘ In the previous section we observed that it suffices to take
_ _ g°=0 in the computation oﬁ(}L for currents containing a
where the weight functior(t;to) (known as arouter func-  heavy quark. This is convenient since then the perturbative

(Lt POF(D[2<1 , (3.6 A. QCD evaluation of x

tion in complex analysisis given by expressions become particularly simple. Corrections to the
1o perturbative result may be included by expressing the two-
B(t:te) =P(t) W(t) point function as an operator product expansi@®E and
yL0) —

[dz(t;to)/dt] xT(g®)(t—g?)3] including the leading nonperturbative vacuum condensates

(3.7 such agG?) and(qq); the totaly is the sum of the pertur-
_ bative and condensate terms:
The factorP(t) is a product ofz(t;ts)’s and yz(t;t)’s, with

ts chosen to remove the subthreshold singularities and cuts in X = Xpertt Xcond: (4.1
the kinematic part of the integrand, while tB&aschke factor
P(t) is a product ofz(t;t,)’s with t, chosen to be the posi-  The full perturbative expressions to two loops may be

tions of subthreshold poles iR(t). The functionsé(t;to)  obtained through a lengthy but straightforwamdanipulation
and P(t) also depend om?, which we leave implicit for  of results existing in the literatuf@0,27. At g°=0, Xpert IS
notational simplicity, whilet, is a free parameter to be dis- only a function of the ratio of quark pole massesm./m,,
cussed in Sec. IV. and for a vector current=V is given by

The quantitye(t;tg) P(t)F(t) may be expanded in a set
of orthonormal functions that are proportional to powers of —
z(t;tp) [see EQ.(4.21) below]. The functionz(t;ty) has a 2We have corrected a number of typographical errors in the per-
physical interpretation as a natural scale for the variation ofurbative results of Ref20] and the Wilson Coefficient results of
F(t) in the semileptonic regiofiL1], and will play an impor-  [21] to ensure compliance with various consistency conditions. We
tant role throughout this paper. We exhibit all relevant ex-also made several comparisons between references to verify their
pressions in terms of both variablesandt in Sec. IV. The  agreement, once these corrections are made.
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mgxgen(u)zm[(l—u2)(3+4u—21u2+4m3—21u4+4u5+3u6)+12u3(2—3u+2u2)|n(u2)]
S 2\2 2 3 4 5 6 2
+ ——————[(1—u?)?(75+360u— 10312+ 1776u°— 1031*+ 360u°+ 75u8) + 4u(1—u?) (18— 9%
576m3(1—u?)®
+7320%— 10103+ 732 — 99u®+ 18u®)In(u?) + 4u®(108— 324u+ 648u%— 456u° + 132u%+ 59u° — 12u°
—9u”)In?(u?)+8(1—u?)3(9+12u—32u%+ 12us+9ut) Li,(1—u?)], 4.2
L _ 2 2 2 3y 12 Us 2,2 2 3
UW=——[(1—-u)(14+u+u9)(1—4u+u‘)—6u°ln(us) |+ ————J(1—u 1—-36u—22u<—36u
XperU) 8772(1_“2)3[( ) )( ) (u)] 487T3(1—u2)4[( )<(

+u*)—2u(1—u?)(9+4u+66u’+4u+9u?)In(u?) — 4ud(9+ 18u%—2ud—3u*+u®)In?(u?) +8(1—u?)®

X (1—3u+u?)Li(1-u?], 4.3

where the dilogarithm is defined by
) B z In(1-2")
Li,(2)=— | dZ/ ———. (4.9
0 z'

Expressions for an axial curredt=A are obtained from Eqs4.2), (4.3 by replacingu— —u.

It has been pointed oi23] that nonanalytic quark mass dependence, such as in the perturbative results presented above,
indicates the inclusion of some infrared effects into the Wilson coeffici@d's), in conflict with the usual interpretation of
the operator product expansig@PE as a separation into short- and long-distance effects. A formal analysis reshuffles the
WC'’s in front of each nonperturbative condensate. However, since our analysis requires only the numerical sum of such
effects, the total result should be the same in either form.

The leading nonperturbative corrections are supplied by the condensates of dimension less than five, namely the gluon and
guark condensates. For a hedvyuark decaying into a quar of arbitrary mass through a vector current, the contributions
from the condensates, derived using RE24.,24 and evaluated a12=0, read

T <—>(2—3u+2u2)+<a562> -1 (1 ?)(2— 1041+ 1482
u)=-— ———t({— ———— X [(1—u —
Xcon aq 2mg(1_u2)5 T 24mg(1_u2)7
— 270+ 145u%—104u®+ 5u®—2u’) — 12uIn(u?)(3—5u+ 17u?>— 15u+ 17u*—5u°+3u®) ]}, (4.5

as

e 2}y ——————[(1—u?)(1—21u+ 10u?—20u®
my(1—u?)? <7T >{12m§(1—u2)5[( H "

XIEono(u) =+ (ﬁ)
+u4—u5)—3u|n(u2)(3—2u+8u2—2u3+3u4)]]. (4.6)

These expressions superficially appear to diverge in the limitL. However, in this limit the(mqaw condensate obeys
the relation[25]

—._ llas_, 1
(Mgaa)=— 5| —G%)+0 %,as : (4.7)
and Eqgs.(4.5), (4.6) simplify to

o
Xeond U) = <—SG {(1—u?)(2—5u+104u>— 14543+ 268u%— 1450°

2
™ >24(1—u2)7m§u
+104u®—5u”+2u8) + 12u%In(u?)(3— 5u+ 17u?— 1503+ 17u*— 5u°+ 3u®)}, (4.9
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o[
eon 7 [ 12(1—u?)5miu

X (3—2u+8u?—2u+3u?)},

The expression$4.8), (4.9 are applicable td—c de-
cays, while Egs(4.5), (4.6) are best suited tb—u orc—s

transitions. Expressions for an axial current are obtained by

replacingu— —u. The limiting values fou—0 are

m2 x7(0)= b2 (25+4w2)—i<aq>
° 3272 192r° m?
_ 1 a_SGZ
2mg\ ™ ]
HO) =+~ (34 4m%) +— (q)
- 72) +—
X 872  144m° mg a4
1 /ag
+ —G? :
ol 5 a0
while foru—1,
1 41w 1 /a >
2. T _ S S~2
m +1)= + - —G*),
T AT 210m4\ ™

mexT(—1)=

L 68w 1 /a562>
40w 64807% 140mi\ T |’

x-(+1)=0,

L{(-1)= Ly
X 472

fas 1 <ast> (4.1
127 eomi\ 7™ | '

For b—c, using pole mass values such that0.33, we
have

maxT(+0.33=9.659< 10 °

. 10_4(4.9 Gev)4< (aSGZ/ﬂ')>

1+1.420

My 0.02 GeVt

méx"(—0.33 =5.709< 10" 3

5.6 104< 4.9 Gev)“ (aG? )
' mp 0.02 GeV

1+1.320
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{(1—u?)(1—u+20u%—10u+20u*— u®+u) + 3uln(u?)

4.9

x-(+0.33=3.713x 10 3

5 3 10_4(4.9 Ge\))4 (G2l )
' my, 0.02 GeVt

1+1.37a;

x-(—0.33=2.162<10 3| 1+ 0.64a,

\ 2o 104( 4.9 Ge\)) 4< (G ) >

my, 0.02 GeV}

(4.12

where the central valu§(as/m)G?)=0.02 GeV* is taken
from Ref.[26], and the pole mass valum,=4.9 GeV is
from [27]. We also usexag(m,)=0.22[27], and since the
coefficient of the gluon condensate is tiny, we ignore it in
our numerical analysis fdo—c.

B. Weighting functions ¢

To obtain the general form of the weighting functiot#hs
defined in Eq.(3.6), first observe that the quantitiés-, IT"
are, respectively, the=v=0 andu=v=1, 2, or 3 compo-
nents of I1#” evaluated in the center of mass frame,
g*“=(\,0) . Then the generic expression for the contribu-
tion of a particular form factoF (t) to the polarization tensor
may be denoted by

n
Im 7= (=)=t )2 R ()] 2act—t,),

n
Im I (=)=t )2 DIRD)]2act-t,),
(4.13

whereK, a, b, andc are integers determined by the form
factor F(t), and n, is an isospin Clebsch-Gordan factor,
which is 2, 3/2, and 1 foB—D®™), B, and Ap— A,
transitions, respectively. Also, leg=x" or x- denote the
generic QCD function appropriate to the quantum numbers
of the form factor The expressions for the weighting func-
tions are readily derived from E@4.13, and are given by

3In terms of previous notation, one finds for the meson form fac-
tors considered in Refs[7,8] K=2Pk Y myM? a=b=p,
c=s+p—3, whereas in Ref[11] one findsK=3-25 a=b=w,
andc= p. For the baryon form factors considered #j, the relation
is given bya=2p+1, b=3—2p, c=s+1, andK=2«" Y 7yM?
or K=2«k"1/my", depending upon whether the form factor appears
with x or x*.
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TABLE . Factors entering Eq4.14) or Eq.(4.23 for the me-  as well. We can demonstrate this by expressiras a func-

son form factors; in B—D®), tion of w without reference to heavy meson masses,
F; K X a b c (WiN) Vv1+w—+/2N 4.17)
Z(W;N)= ——— .
fy 48 x"(+u) 3 3 2 V1+w+ 2N
fo 16 x-(+u) 1 1 1 )
f 24 (=) 1 1 1 whereN is a free parameter related tg by
Fi 48 x"(—u) 1 1 2 t,—tg
g 96 X (+u) 3 3 1 N= T (4.18
5> 64 xt(—u) 3 3 1 o
so thatz(w;N) vanishes atv=2N—1. With t,t, related to
s w,N by Eqgs.(4.16) and(4.18), Eq.(4.17) is simply a rewrit-
N n [ttt —, ing of Eq. (3.5), z(t;ty) =z(w;N). The advantage in using
¢i(tito) = Ky (t+—t0) (Vi =t 1) z(w;N) for b—c transitions is that its definition is process
independent.
_ a4 1 — 1 \b2 _
Xt —OT (Wt~ — ) For the semileptonic decay,—H./ v, the limiting val-
XV, —t+ )"+, (4.14  ues ofz are given bym’<t<t_, or
The values of the parametefsa,b,c for each form factor, P \/N_ 1) 4.19
L min —_— .
as well as the relevarny, are given in Table | foB—D®*) ' JN+1
transitions, and in Table Il foh,— A . Although Eq.(4.14)
assumesq2=0, it is easy to generalize to arbitrary and
Q?=—q?: Simply evaluate the perturbative functiopQ?) ——
at the given value, and multiply by _N(+1)"— 67— 2yNr (4.20

Zmax— .
" T o 2N

(4.15  wherer=m/M and§=m, /M.
The dispersion relation3.6), written now entirely in
terms ofz, reads

( Vo —t+t, )d
t,—t+t, +Q?)

with d=3 if the form factor involvesy' and d=2 if it
involves y“. dz )
While the momentum-transfer variable=(p—p’)? is o C7|¢(Z)P(Z)F(Z)| <1, (4.29)
useful for heavy-to-light decays and has an obvious physical
meaning, it is often more convenient when dealing withwhere C is the unit circle in the complex plane, the

heavy-to-heavy transitions such las-c to use a kinematic Blaschke factor for a pole at,=z(t,;to) (which is real for
variable that helps disentangle long-distance physics fromubthreshold resonance magsss

the heavy quark scale. One such variable is

z—z
M2+ m2—t z2(t;t,) = 1_Zzpp, (4.22
W= S o (4.19 | .

for z=2z(t;ty) and anyt,, with P(z) being the product of all
In the b rest framew depends only on the energy transfer to SUch factors, and the weighting functiof#s14 are given by
the light degrees of freedom, in units afycp. It is due to H(z:N) =M (U2(a+b)~(c+2)
this property thab— c form factors are related to each other '
in the heavy quark limit at equal values wf In the semi- n,
leptonic region, the variable(t;t,) has the same physical N 2(12(@rb)+2 Na/a+ /2 p (14 (a+h)+1/2
property, so form factors will be related at equal valueg of X

X(1+ Z)(1/2)(a+ 1)(1_ Z)c+(1/2)(3—a— b)
TABLE Il. Factors entering Eq(4.14 or Eq. (4.23 for the

baryon form factors~; . X[(WN=1)z+(YN+1)]°?

F, K N a b . X[(1+1)(1—2)+2Nr(1+2)]"¢*3. (4.23
Fo 8 X (+u) 3 1 1 Finally, evaluation of(z;N) at nonzero values @?= —g?
Fy 12 X (+u) 1 3 1 is accomplished by multiplying Ed4.23 by

Hy 24 X (+u) 1 3 2 d

G, 12 x'(—u) 3 1 1 VA+0)2+QM¥(1-2)+2YNr(1+2)) ~
Ha 24 X' (—u) 3 1 2

whered is defined as in Eq4.15.
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TABLE lll. CalculatedB, pole masses used in this work. A. Contributions to the dispersion relation

We have observed that contributions to the original dis-

Type MassesGeV) persion relatior{see Eq.(3.3)] are semipositive definite, so
Vector 6.337, 6.899, 7.012, 7.280 each additional state coupling to the vacuum through the
7.350, 7.594, 7.646, 7.872, 7.913 currentJ serves to further saturate the bound supplied by the
Axial vector 6.730, 6.736, 7.135, 7.142 QCD parton-level calculation. The inclusion of only a single
7.470, 7.470, 7.757, 7.757 two-particleBD or BD* state in obtaining these bounds is
Scalar 6.700, 7.108, 7.470, 7.757 relatively weak, since such exclusive states account for only
Pseudoscalar 6.264, 6.856, 7.244, 7.562, 7.844 a small portion of the inclusive total. In general, the hadronic

side includes als® resonances, a continuum of states such

as BD#r, and so on. While it is desirable to include as
C. Subthreshold resonances and(t) many of these states as possible, it is not clear how to include
them in a model-independent fashion; the chief exceptions
are two-particle states related to one another via heavy quark

spin symmetry, namely, the four stat&*)D™). While

form factors for transitions such & — D) are not physi-
cally accessible through semileptonic decays, their normal-
ization is nonetheless known via HQET, allowing an addi-
tional strengthening of the dispersive bounds.

The contributiong4.13 of these states to the dispersion
P(t)ZI;[ zZ(t;tp). (4.29  relations are of the form

The Blaschke factoP(t) for a form factor describing
Hy,— Hc_/v depends on the massesRyf resonances below

the HyH. pair-production threshold. The Blaschke factors
are simply products df(t;ts) with tg evaluated at the invari-
ant mass squaretf—t, of each such resonance with the
same spin-parity as the curreht

Im IL() =2, &;(1)|Fi(t)[?, (5.)
For b— c transition from factors, the masses of the relevant !
B.-type resonances can be accurately estimated from poten-

tial models[28,29. We compile in Table Ill the masses \here the sum is over all helicity amplitudEs arising from

computed in Ref[29]. . . O . .
For heavy-to-light form factors there is no formal limit in palrdiFrodt;Jtc?:l)n d (;:Bm ta kinTr;r? \t/ivelgrhtf fUPCt'?n&évrﬁlr €
which the light quark becomes nonrelativistic, and potentiafea y obtained 1ro € Kinematic pretac orgt), €
he relation between the helicity amplitudes and the original

model calculations are less reliable. This is not a problem fo%Orm factors mav be obtained by choosing definite polariza-
B— mr, where the only subthreshold resonance, Bte is y y 9 P

experimentally observed, but for decays to other light statelions of theB*, D*, and the virtuaW.

such asB— p, the presence and masses of additional sub- For B*—D transitions, the form factors are defined by
threshold resonances must be taken from models. Once these

uncertainties are accounted for, simple parametrizations — a

should be reliable. For example, the mode[3®] indicates (D(p")|V¥|B*(p,€))=ige"*F7e,pgp,,

that the form factorf for B—p has only one narrow sub-

threshold pole. Indeed, this pole appears to have been ob-

served(mixed with othersby ALEPH, DELPHI, and OPAL (D*(p")|A¥|B*(p,e))=Te*+ (e p')a.(p' +p)*
(see[27] for analysis and references on th&3(5732"). - , u
Even accounting for significant uncertainties in its mass, this +a-(p'=p)”“l. (5.2)

leads to an accurate parametrization using the overall nor-

ma_l|zat|on and two u_nk_nown coefficients. It is important to The functionsg for B* —D transitions are identical to those

estimate the uncertainties from model-dependent poles on a — . ) .

case by case basig4]. for B— D™, with the simple replacemei < m. The helic-
This applies as well to subthreshold branch cuts due tdY @mplitudes possess factors ldf andm, and need not be

multiparticle states and anomalous thresholds. A modellnvariant under this exchange. This is true in particular for

dependent analysif7,8] suggests these are negligible for /1 and F,; here we find thafcompare Eq(2.7)]

b— c transitions. Qualitatively, this result comes about be-

cause cuts are a much less severe form of nonanalytic behav- 1 1

ior than poles. Whether cuts continue to be unimportant for Fit)= M 2k’ta. (t)— E(t_m2+ M2)f(t)],

B— p transitions requires a more detailed analysis.

V. ADDITIONAL STATES Fo(t)= %ﬁ(t) —(M2—m?a, (t)+ta_(t)]. (5.3

The effects of higher states in the dispersion relation de-
pend on the flavor of thb—q current under consideration. s
Henceforth, we specialize tb—c transitions, for which The transitionB* —D* possesses ten independent vector
HQET is most useful. current form factors, which we define 1]
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v')|VHB*(eg,v))

1
m(D (ep,

:f4(EB' GE)U,'u"_fs(fB' EB)U”’"’ fs(U’ . EB)

X(v-ef)v*+fi(v'-eg)(v-ep)v'#+fg(v-€p) el

+fo(v' - €g)ep,

1 J—
m(D*(GD ,U,)|A'U'|B*(€Biv)>

= Fif et x5

a ’ H a _*xf H
apy€p€p V' T tif 1€ 5 egepfv 7 +if 5

* B

’ *a_ f a ’ 8.1
X[(v'-€g)€”op,€p "V Pyu7+ €q.5y5€p€D V' VU H]

+if 1 (v- ep) € op €50 Pv”

- eaﬁyﬁege’gﬁv"/v . (5.9

The combinations of these form factors appearing as helicity

amplitudes may be denoted

fq
Ver= vm’

f
Vio=

1
Vo+ === (Mfs+mfs),

V2Mm

Voo {Mm(t—M2—m?)(Mf,+mfs)

~ 4(Mm)>2
—2k2t(mfg+Mf;)+Mm[m(t
+M2—m?)fg+M(t—M2+m?)fg]},

Soo {IMmM(t—M2—m?)[M(t—M2+m?)f,

:(ZMm)S/Z
—m(t+M2—m?)fg]+ 2kt [ m(t+M2—m?)f,
—M(t—M2+m?)f,]—4k2tMm(mfg—Mfg)},

[M(t—M2+m?)f,—m(t+ M2—m?)fg],

1
S0+ = JAMm

A =———IMM[(t—M2—m?)f,g— 2Mmf
++ 2(Mm)3/2{ [( ) 10 1]]
—2k%tf ),
Ay, =——{M?m(t—M?+m?)f,;— Mm2(t+M?2
0+ 2(Mm)3/2{ ( ) 10 (

—m?)fq+ 2k2(Mf,—mifi)},

TABLE IV. Factors entering Eq( 4.14) or Eq. ( 4.23 for the
meson form factor§; in B* —D*.

F; K X a b c
V., 96 x'(+u) 3 3 1
V.o 96 x'(+u) 3 3 1
Vo 48 x'(+u) 3 3 2
Voo 48 x'(+u) 3 3 2
Soo 8 X-(+u) 1 1 1
So+ 8 )(L(+ u) 1 1 1
A, 24 x'(—u) 1 1 1
Ao 24 X'(—u) 1 1 2
Ao 24 X'(—u) 1 1 1
Pos 32 x-(—u) 3 3 1
- @ @@ _(t_— 2_m2
A+0—2(Mm)3/Z{Mm[2Mmf10 (t—M*—m?)fq4]
+2k%tf g},

P0+: {ZMm(Mf10+mf11)+[M(t_M2+m2)f12

2( M m)3/2
+m(t+M2—m?)f 5]} (5.5

The labelsV,S,A,P reflect the spin parityvector, scalar,
axial vector, or pseudoscajaof the virtual W, while the
subscripts denote the helicities of thNg* and D* in the
decay of theB*.

Only amplitudes of a fixed spin-parity enter each disper-
sion relation. For example, the folf helicity amplitudes
enter the vector current dispersion relation bt. Above all
the appropriate pair-production thresholds, the contribution

to Im I}, from BD, B*D, BD*, B*D*, andA A states is
3

mt

(|92 +]g1%+ [V [2+[V40/D)]

k(t—t_)
127372

Im HT>6 [2(/f ]2+ |Voi [2+[Vod?)

[2t|Fq|2+[Hy|?], (5.6

where we have included an isospin factpr=2 for the me-
sons, andk is defined in Eq.(2.1). Using Eq.(4.13, it is
straightforward to compute the weighting functiopidor all
the B*D* form factors. For each such;, one obtains a
parametrization of the form E@3.8), with the unknown ex-
pansion coefficients denoted by, ,

Fi(2) - % bj2" (5.7
(D)= inZ". .

' Pi(2)¢i(2)a=o "

The ¢ parametergsee Eqgs(4.14 or (4.23] a,b,c,K and
the relevanty for B* —D* are given in Table IV.

Substituting this expansion into the dispersion relation
(4.21) gives
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H = this case, some of the form factors in E¢g9) or (5.10 will

E E bizngl. (5.8 have more constraining parametrizations than others because
1=0n=0 their Blaschke factors, which reflect the number and posi-
tions of subthreshold resonances, will be larger. If one views
the universality of the Isgur-Wise function as arising from
%he dominance of the essential singularity in each of the form
factors, one might expect i/ corrections to be larger for

Included in the sum are all helicity amplitudesO, ... H
for processes with the right quantum numbers to couple t
the currentJ. It is clear that the constraint on a particular

helicity amplitudeF; can be strengthened if it is possible to form factors with fewer subthreshold poles. Of course, it is

;_er:‘?steisthai(\:/grrrl]oﬁjigg‘é dl.\?vli’tr:f t?]r:aehcjln :)e]cl?ltg;\t]e fz;r?kfchgﬁé_always possible that the residues of the various poles could
try P P ya Y conspire to keep i corrections small, since Blaschke fac-

' tors alone permi{36] any residues consistent with the dis-
persion relation bounds.

We use the heavy quark relatiorts.9 and (5.10 to

In general, form factors are not related by heavy quarkighten our bounds on parametrization coefficients. When we
symmetry throughout the pair production regif82], but  use these bounds to quote smaller errors on our parametriza-
may be related in the semileptonic region. This fact has beetions, we allow for substantial deviations due tanlgffects,
exploited to improve constraints on tifee—B elastic form  thereby minimizing errors induced by assuming full heavy
factor[17] and the dominanB— 7/ v form factor[11]. The quark symmetry. However, when we use these bounds to test
situation in the present case is conceptually analogous, alieavy quark symmetry by constraining the slope or curvature
though algebraically more cumbersome. of the Isgur-Wise function, one should bear in mind the pos-

In the semileptonic region, the 20 form factors of sibility that heavy quark violations could be larger in form
B™)—D®) reduce to only one in the heavy quark limit, the factors with very few subthreshold polesiich asfq, Spo, or
universal Isgur-Wise functioré(w), with £(1)=1. Like- Sp+) than in those that are typically measured experimen-

B. Form factors in the heavy quark limit

wise, the six baryon form factors in,— A reduce to an- tally.

other universal functiofi33], which we may denote(w),

with £(1)=1. Recalling thatr=m/M, the relation of the C. Bounding parameterization coefficients

h.elicityb amplitudes taf and ¢ in the heavy quark limit are  \we now use the heavy quark relations of the higher reso-
given by

nance helicity amplitudes to improve the constraints. For
concreteness, consider the form factifwv). Near zero re-

f. :1}-2: — 1}-2: _ ivm =Voo=£ 04 :@ coil, w=1, heavy quark symmetry relates it to six other form
2 2 V2 2 2gr 7 factors appearing in the dispersion relation,
fo=F1=F1=—\2S0=Sp1 =—A A 2 2
om/1mal 0 + 0+ g:_g:V++:V+0:M+mf+:M_l_mVOO
=M2r(1-r)(1+w)§, B
2
=~ 7 Vor - (5.11

A 1
g g V++ V+O M \/FE!
While exact heavy quark spin symmetry implies that the
f=—F=—A, . =A,o=Mr(1+W)¢, (5.9 functional dependence of these form fgctors i_s the same for
all values ofw corresponding to semileptonic decay, for
for mesons, and by physical masses we demand only that the normalization and
first and second derivatives of these form factors are roughly
Fo=Ha=M(1-r)¢, equal atwv= 1. This suffices to provide lower bounds, assum-
ing full heavy quark symmetry, on the contributions of the
Fi=G1=¢, form factors in Eq.(5.11) to the sum in Eq.5.8). Once
computed, it is straightforward to weaken these lower
Hy=Gog=M(1+r)¢ (5.10 bounds by including factors indicating the violation of heavy
quark symmetry.
for baryons. The only helicity amplitudes in this list pro-  Since each form factof; in Eq. (5.11) has a parametri-
tected by Luke’s theoremi3,34] from 1M corrections at  zation of the form(5.7), the coefficients, in the expansion
w=1 aref, {, andG;. of g can be related to the coefficiertig, in the expansion of
In the strict heavy quark limit, our dispersion relation con-F; by
straints become useless because the form factors in'E§s.

and(5.10 develop an essential singularity due to an infinite 1
number of poles just below threshdl@5]. The description 2 apz'~ mz binz", (5.12
Eg. (3.8 then contains no information, because the Blaschke n nesn

factor P(t) goes to zero in the semileptonic region.
For finite masses our parametrizations are well behavedyhere~ means only the normalization and first two deriva-
and heavy quark relations are valid up tonl¢orrections. In  tives are equal av=1. The functions
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Z,Pidi TABLE V. One-coefficient parameterizations using optimized
C; =# (5.13 N. Bounds org, ignore heavy quark violation. Bounds ag allow
EiPgdg for violation as described in Sec. V. The truncation error is relative

are given by ratios of Blaschke factors, weighting functions,to the normalization of=F atw=1.

and symmetry factor&;(z) chosen so that

F Nopima  Combined bounds froB®)D®)  T(EgF)

£2)=Ei(2)Fi(2) (514 ¢ 1108 —023<a,<020 —055<a,<058 2.6%

in the heavy quark limit. The kinematic factoB;(w) ap- o 1109 —062<a,<0.58 -0.78<a,<085  0.7%
pear in Eqs(5.9 and(5.10. By choosing the same value of ¢ 1.093 —0.37<a;<0.39 —0.58<a,<0.56  1.8%
N for each form factor, we ensure that the kinematic variabler, 1093 -0.06<a,;<0.06 -0.11<a,<0.10  2.1%
z(w;N) is process independent, most of thdependence in 1.093 -0.37<a;<0.40 —0.58<a,<0.57 1.2%
¢g(Z)/¢i(Z) cancels out, and tl’Gl(Z) become quite Slmple. F, 1.093 -0.41<a;<0.45 -0.59<a,<0.57 0.6%
Numerically, the values dfl that optimize our constraints
correspond toN= 1+ 2¢€ with e~0.05, and ignoring terms of Fo  1.081 —lsa=1 —lsa,=<1 6.3%
ordere? in Eq. (5.12 is a good approximation for parameter Go ~ 1.080 —lsa=1 —lsap,=1 9.4%
valuesa, that saturate their bounds. Evaluatiftgl2? and its

first and second derivatives at=1 (z~ —€/2), we find, for ¢, g which leads to a corresponding decrease in the error
eachi, induced by truncating the expansi@d.8) by 40% [see Eq.
(6.4) below]. In summary, bounds oa; are obtained using
full, unbroken heavy quark symmetry, and may be used to
test the accuracy of this symmetry. The boundsgmlo not
enter the construction of our parametrizations. The deriva-
tion of the bounds om, allows for substantial violations of

b :ECHaOJFC,aﬁCaZ §e(b3— ngs) . (5.15 heavy guark symmetry. These bounds enter into the trunca-

tion errors we quote on our parametrizations.

Since the baryonic and mesonic form factors are not re-
where C, C’'=dC/dz and C"=d?C/dZ? are evaluated at lated by heavy quark symmetry, E(5.16) only applies in
z=0 (not w=1), andb§?%is the valueb; would have if the  the baryonic case to the paifs ,H, andG; ,H,. Of these,
third derivative of Eq(5 12 yielded a valid relation. Depar- only H,, and H, receive substantial improvements to their
tures from the heavy quark symmetry limit tend to increasdruncation errors, which are proportional t; [see Eq.
as we take higher derivatives of E(p.12, so one might (6.4)]. While 1/m, corrections to relations involving; and
expect substantial corrections m=b§QS. However, cor- bs coulda priori be large, they are known in terms of one

rections to this relation are multiplied by so we may jus-  constantA , for the baryong37], and are not particularly

bozcao,

b]_:C,ao"' Cal,

tifiably ignore the factor 3(b;—b5%9/2 in b,. large. For example, the relation betwddn andF is inde-
Substituting Eq(5.19 into pendent ofw, to O(1/m2). Allowing for the contributions to
- H o ow the dispersion relation fromi; andG; to be as small as 50%
2, of their heavy quark symmetry values givis|ma=0.57
nz‘o a Z Z‘ (5.16 for Hy and|as|ma=0.29 forH,.

The bounds om; ignoring heavy quark violation, and the
gives more stringent bounds on the coefficieas For the  bounds ona, allowing for deviations from the heavy quark
form factor g, they vyield —0.37<a;<0.40 and limit as described above, are given in Tables V and VI.
—0.49<a,=<0.47, compared t¢a,|,|a,|<1 from Eq.(3.9).

Bounds for the other form factor coefficients can be obtained VI. TRUNCATION ERRORS
in a straightforward fashion by singling out a different set of
b;, in Eq. (5.12.

The bounds om, are useful as tests of heavy quark sym-
metry. For example, parametrizinf, and constraining TABLE VI. Two-coefficient parametrizations using optimized
—0.62<a,=<0.58 restricts the slope of the Isgur-Wise func- N. Bounds org; ignore heavy quark violation. Bounds aa allow
tion, up to 1, effects, to—0.3< p2 —(déldw)|y—1=<1.8. for violation as described in Sec. V. The truncation error is relative
Bounds ona, are useful for decreasing truncation errors ofto the normalization ofZ¢F atw=1.
our one-coefficient parametrizations, as described in the next —— —
section. In this case, however, we do not want to rely orf ~ Nopima  Combined bounds frorB®*)D®)  T(ZeF)
Servaive 2 possible with how mach the symmety improver: 1104 ~090<a=080 ~097=a=097  7.0%

. SYTE v 1104 -0.31<a;<0.31 -0.53<a,<0.53 12%
the truncation error, so we allow for explicit violations to the G 1104 —0.98<a, <098 —0.99<a, <099  0.1%
infinite mass limit. Such violations are potentially largest for ! : = 2= 7
the bounds ora,, because they depend on relations involv-" "4 1104 —0.15<2,<0.15 —0.26<2,<0.26 18%
ing second derivatives. Allowing for the total contribution 1.104 —1<a,;<1 —1<a,<1 0.35%
from the higher-spin states to be as low as 60% of theig, 1.104 —1<a,;<1 —1<a,<1 0.53%
infinite-mass value gives bounds ap of —0.58<a,<0.57

To fit data with our parametrizations, we must truncate
the serieq3.8) after a finite numbeRQ of unknown coeffi-
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cientsa,. This introduces a truncation error which can besmaller truncation errors than in previous wofks8]. For
minimized by choosing an appropriate value Mf[7] (or  two-coefficient parameterizations, the factaf ¢ z3;,) adds
equivalentlyty). Rather than usa, as a free parameter as in constructively neamw,,,,; for a given bound orlag|, this

[8], we solve fora, so that the form factor is automatically |eads to a larger truncation error than in previous watk
normalized aw=1 to F(1). If N=1, thenz(1;N)=0, and  This is unavoidable as long as ordy anda, are fit param-
this parametrization coincides with that[B]. ForN=1, the  gters ie., as long a, is chosen to enforce the normaliza-
parametrizatior(3.8), including the solution foro, may be  tjon at zero recoil, so that the truncation error vanishes at
reexpressed as 7=z, rather tharz=0.

Our truncation errors for one- and two-coefficient param-

Er(w — i
Ee(W)F(w)= W(VJN)[ P(1)¢(1;N)F(1) etrizations of the various form factors iB—D/ v,
' B—D*/ v, andA,— A /v are shown in Tables V and VI.
Q

The value of the free parametdr has been optimized for
+ Zl an[2"(W;N)—=2"(1;N)]1, (6.1)  each form factor and number of fit parameters to produce the
" smallest truncation errors. The boundsayncome from Eg.

where the producE (F is normalized to coincide with the (5-16 and the heavy quark symmetry relation E15), and
Isgur-Wise functioré(w) [or Z(w) for baryong in the heavy ~ May be used as tests of heavy quark symmetry. The bounds
quark limit. The full form factor is of course given by the ON @, enter our truncation errors, so allowance for heavy
Q- sum, while approximations™ are obtained by trun- duark symmetry violation has been made as described in the

cating at finiteQ; then the fit coefficients, . . . ,aq can be previous section. The truncation error is expressed as a per-
chosen so that the difference between the parametrizefion centage of=g(1)F(1), which equals unity in the heavy
and the actual form factd¥ is given by quark limit. The truncation errors in Table V are typically
less than half those of previous parametrizations, while the
= (W) * errors in Table VI are either better or worse by nearly a

Ee(w)(F(w)—Ft(w))= i) > a0 factor of 2, depending on the form factpf] (we have cor-
(W) $(W)ng+1 rected an oversight in this reference, which used incorrect
Ee(w) Blaschke factors foFy and Gy).

~—————ag, (22T -2, Note the especially small size of the truncation error for

the form factorsf, and F,; if we consider all form factors

(6.2  related by heavy quark symmetry, then the champion in this

) ) ) ) respect isSy, , with a truncation error of only 0.56%. How-

where we have ignored numerically unimportant higher or-gyer, as we discuss in the next section, actually fitting data to

der terms. Uszing the Schwarz inequality, the boundednesgch form factors introduces much largemlincertainties.

condition 2 a;=<1, and the geometric series sum, these Fq baryon form factors, the large number of sub-
higher order terms can be shown to be smaller than threshold poles typically ensures that at least two parameters
are required. Even with two parameters and the spin-
symmetry improvements, the truncation errors are signifi-
cant. Using three parameters reduces the truncation errors to
negligible levels.

an( z"- anin)

Er(w) -
‘ P Wi o

Er(w) - ) - N oon 2 A way to circumvent the relatively large truncation errors
= P(W) (W) n:%” |l n:E+2 (2= Zmin) on most of the baryon form factors is revealed by an inter-
_ esting feature of Table V: Th&,— A ./ v form factorF is
< Er(w) (2272— 22+2)| L O(£R+4) 6.3 we[l—describedto gboyt 6%) by a one-coefficient payametri—
P(w)p(w) min ' ' zation. The contribution fronk, to the decay rate is sup-

pressed by the lepton mass, so it is difficult to observe. How-
which, since|z|=<0.04 for the cases at hand, can be justifi-ever,F is related by heavy quark symmetry to all the other
ably ignored. Thus, to good accuracy, the maximal possibl®aryon form factor{see Eq.(5.10]. Unlike in meson de-
truncation errofT(E¢F) for any physically allowed is cays, the relation including f, effects is known in terms of

one constant37] A_A~MAb—mb. Thus, the differential de-
cay rate can be described in terms of two constamtsand

6.4y A Using the value ofV,, obtained fromB—D®)/ v
' and known hadron masses should then allow a determination
whereQ is the highest power of used in the parametriza- of A~Mg—m,. This quantity is important because it enters
tion fit and |ag+1/max is the maximal allowed value of both exclusive and inclusive semileptonic decay distributions
|ag~1|. The inclusion of higher states leads to tighter boundsas a 1. correction.
on |ag+ 1|/max @and thus smaller truncation errors. In addition to errors incurred by truncating the expansion
The truncation error vanishesat= 1, where the normal- (6.1), there are a number of uncertainties arising from vari-
ization is fixed. For optimal values ®f, i, — Znax, SO fOor  ous approximations we have made. We enumeratéfl]ira
one-coefficient parametrizations the truncation error dropést of uncertainties which must be estimated for a reliable
sharply for somew nearw,,,. This leads to significantly determination of the quality of the dispersive bounds, and

Ee(w) (@ -230h)|
Pwg(w) | 2e+tlmas

T(EFF):ma%
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found that we could allow for their effects by increasing Equation(7.3) is the starting point of referen¢é&6], with
truncation errors by 40%. Since then, we have greatly reene critical simplification: They consider the form factor

duced or eliminated many of these uncertainties| Thwe To=fo/[(Mg—Mp)YyMgMp(1l+w)], and argue that it
saw that the inclusion of the additional parameXefor to)  does not receive contributions from scaB¢ mesons that

permits a dramatic reduction of the truncation error, and th§yould generate poles ify. This allows them to se®(z) =1,
more realistic definition of the truncation error used hereleading to a nearly linear relation betwephandc,

reduces the uncertainties of one-parameter fits even more.

The simultaneous inclusion of aB®)D®) states on the

(7.9
hadronic side of the dispersion relation serves to help satu- hei is based h ion that th |
rate the bound from the partonic side, and the explicit inclu-_ 1 Neil argument is based on the assumption that the scalar

sion of two-loop perturbative and leading nonperturbativeSc Mesons are broad resonances because they can decay into
effects eliminates them as a source of uncertainty. The urfWo-particle intermediate states such&g0 )+ ». Unfor-
certainty inB, pole positions is most significant for poles tunately, the very potential models they cite refute this idea.
near threshold, and leads to larger truncation errors only if O €xample, Re{29] has the mass of the scalafR, state,

the pole masses have been overestimated. As pointed out %7001 GeV, below the two-particle threshold for gnplus

[7], branch cuts from multiparticle states below threshold carf1® 1"Sp B ground state, 6.264 0.548= 6.812 GeV. The

be ignored if they violate isospin. The only uncertainty from Scalar 23P0_ is thus essentially stable with respect to had-
[8] that has not been reduced is due to the choice of polEPNiC transitions, since transitions involving one pion are
quark masses in the perturbative calculation. Combining thgUPPressed by isospin, two pions by paiity phase space,
remaining uncertainties as i8], we find that their effects in decays to @7), and three pions by phase space. All the

c~0.72»°—0.09.

may be allowed for by increasing— D,D* truncation er-

rors by 20% (e.g., the conservative truncation error for

reference$28] that calculate the relevant scalar masses and
widths agree that there are two narrow, sc@aresonances

would be 2.2%) and\,— A truncation errors by 30%. In below theBD threshold. It is also worth nothing that the
nearly all cases, this small increase makes no practical diffowest-lying charmonium scalar statg, is narrow.

ference.

VIl. SLOPE AND CURVATURE RELATIONS

While subthreshold branch cuts from states containing at
least ab and ac quark may be legitimately ignordd,8], it
is well known that poles play an essential role in the shape of
the form factor{11,35. For this reason, the slope-convexity

A set of interesting relations between the slopes and Cufrelations derived if16] are invalid.

vatures o8 -D/ v andB—D*/ v form factors has been

New relations can be derived by simply including the two

derived by Caprini and Neubdri6]. Here we examine these scalarB, states inP(t). We use masses frof29], which
relations in the context of the parametrization formalism,agree with other potential model determinations to better
point out and circumvent an invalidating assumption, andhan 1%. It is algebraically straightforward to input physical

discuss the utility of the new, valid, relations.
We have seen that each of the form factd¥s for

B™)—D®) /1 can be expanded in a series:

E
P(Z)d’(z)ngo &n 25

where, in order to compare witfl6], we have sety=t_
(N=1). From Eq.(3.9), the coefficientsa, obey

F(2)= (7.0

aj+a’+as<1. (7.2)

Expressingag,a;, and a, in terms of z derivatives of
P(2) #(2)F(2) atz=0, Eq.(7.2) gives

2

d
d—Z(P(Z)¢(Z)F(Z))

[P(2)p(2)F(2)]?| =0+

z=0

2
<1. (7.3
z=0

1] d?
+ d—zz(P(Z)¢(Z)F(Z))

Forty=t_, z=0 corresponds tww=1. Then Eq(7.3 con-
strains the slope- p? and curvature defined by

F(w)=F(1)—p*(w—1)+c (w—1)*+O[(w—1)?],
(7.4

to lie within an ellipse.

masses and expand our parametrization in powera/efl),

Tow)=To(1)+[+1.722,—0.77F o(1) J(Ww—1)
+[—1.74a,+0.21a,+0.55f o(1) J(w—1)?
+[+1.41a;—0.27a,— 0.38f o(1)J(w—1)°

+[—1.03,+0.25,+0.25f o(1)J(w—1)*+ - - -,
(7.6

and solve for the coefficiert of (w—1)? in terms of the
coefficient— p? of (w—1). We find

c=1.0202+0.21a,—0.23f o(1). (7.7
This is not a very interesting relation because the unknown
coefficienta,, which can be as large as1 (=~ *0.6 if we
include the contribution of higher states and ignore heavy
guark symmetry violation significantly affects the slope-
convexity relationship. Had we ignored the Blaschke factor
P(t), the coefficient ofa, would have been 0.07.

ForN=1, our usual truncation analysis shows thacan
contribute at most 4% td o(w). This may seem surprising,
given its obvious importance in Eq¥..6) and(7.7). The 4%
value arises from a cancellation of the dependence among
the various w—1)" coefficients; note the alternating signs
of the a,, coefficients. The cancellation is not accidental, but
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reflects the naturalness of an expansionz{w;N) rather Form factors forA,— A ./ v may be extracted in the near
than (w—1). This effect is highlighted by the observation fyture at CDF [41] or LEP [42]. Current data for
that the w—1)3 term in (1.6) can be as large as 40% at B_—>D(*)/v_decay spectra are available from CLE@g],
Wmax= 1.6, indicating thatf, must be expanded to rather ALEPH [44], OPAL [45], and DELPHI[46]; older data ex-
high order in (v—1) if percent-level accuracy is desired.  ists from ARGUS[47]. Some progress has been made to-
The expansion7.6) can, alternatively, be used to test \»14q measuring individual form factors Br—D* / » [48].
heazvy quark symmetry by placing a restriction on the slop§uynen this is finally accomplished, the parametrizations for
—p”. If we include the contribution from the spin-related jnjyiqual form factors can be applied without recourse to
statesB*)D™), a, is restricted to-0.61<a;=<0.59, lead- heavy quark symmetry, except for the uncertainties in the
ing to value of F(1).
2 In the meantime, one must rely on the heavy quark sym-
0.26=p"<1.84. 7.8 metry prediction that th& —D* /v differential rate is pro-

The same relation can be derived using the form facggrs ~ Portional to a function /(w) that is normalized to

or Spo- These bounds are somewhat weaker than those dé-+O(1/m®) at zero recoil and is proportional to the Isgur-
rived from Bjorken[4] and Voloshin[5] inequalities’ which ~ Wise function£(x) == ¢(w)f(w) up to 1in, corrections. We
restrict 0.22<p2?<1.15 onceO(ay) corrections have been May then use the one-coefficient, QCD-derived parametriza-

included|[38]. tion of f obtained from Eqgs(5.9) and(6.1) to extract from
data the values diV¢,| F(1) anda;/F(1):
VIIl. EXPERIMENTAL FITS
| ints obta AL/ - PRy
While constraints obtained from unobserved form factors A1) (1+W)Pf(w)¢f(w;N)l f L3
such adfy may serve as tests of heavy quark symmetry, they
are not WeI_I suited for fitting to data. The reason is that once a; [z(w;N)—2z(1;N)]
the truncation error on a form factor is sufficiently smll + 1 , (8.2
few perceny, heavy quark symmetry violatin_g effects of or- A1) VMgMpx

der 20-30 % become the main concern. Bon D/ v, US- \poran—1.093,2(w;N) is defined in Eq(4.17), ¢;(w;N)
ing the parametrization of , avoids any dependence on is given by Eq.(4.23 and Table I, and®;(w) is determined

heavy quark symmetry. F&8—D*/ v, using the form fac-  from Egs.(4.25), (4.16, and the first four vector masses in
tor f minimizes the dependence on heavy quark symmetryraple |11.

This is because on the one hand, the ratio The procedure is precisely as detailed &), except that
we now have only one fit coefficient instead of tWd).
f Morever, the improvements described above reduce our one-
MgVMgMp«(1+w)g parameter truncation errors to no more than 3%. We fit to the

experiments whose differential distributions are easily avail-
1 1 able. A x? per degree of freedomNpg) fit using our QCD
i (8.1 dispersion relation boundgQCD fit) to CLEO data
My m .
c [43] gives

G

1

1+ —(w—2)|+0

2m,

is given in terms of a singlE3], roughly determined constant
A=~300-600 MeV and knowh39] perturbative functions
C?/C1=1+ O(as), while on the other hand the ratio a,

QCD fit 10X |V F(1)=36.9729

a,/g=—1/2 is determined using only spin symmetry, 1) =0.000"3922 , (8.3

which is expected to hold more precisely than full flavor-spin

symmetry[40]. We usef rather thang because it is pro- Linear fit 16°X|Voo|F(1)=35 1”'3 (8.4)
c A .

tected from I correctiong 3] at zero recoil.

The purpose of the following fits is not to extract the best
value of [V, since only the experimental groups them-
selves can correctly account for efficiencies, resolutions, QCD fit 10X |V F(1)=31.9"24
smearing effects, etc. Rather, since we expect the approxi- cb sz
mate results from using the QCD-derived parametrization to

with x2./Npe=0.67, while a fit to ALEPH dat®44] gives

survive these experimental corrections, these fits may be i:o_og 50040, (8.5
used to motivate a more thorough analysis. A1) '
Linear fit 1GX|V|A(1)=31.915, (8.6

“The physics leading to these results is quite different: The . 2 ]
Bjorken and Voloshin inequalities use perturbative QCD to boundVith X/ Nor= 0-74.- We have also .InC|UQed th_e values
exclusive form factors directly in the semileptonic region, while the quo_ted by the eXpe”m_er}tm groups using a linear fit for com-
dispersion constraints use both perturbative QCD in the pairParison, and only statistical errors at one standard deviation
production region and the phenomenological mass spectrum in trare listed. o
unphysical regiort_ <t<t, . For B—D/ v, we can fit the parametrization éf, ,
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fo(w) f [16], and pointed out the presence of subthreshold singulari-
) P (W (wN)| Pt (1) ¢s (1;N) ties that invalidate their analysis. Once these singularities are
* + correctly accounted for, the slope-convexity relations be-
a, come rather weak. Bounds on the slope of the Isgur-Wise
+ m[Z(W;N)—Z(l;N)] : (8.7 function made by ignoring finite mass corrections are also

fairly weak. We point out that even with strong constraints

directly to data, without the need to invoke heavy quark symon the slope and curvature, higher-order terms imwa-()
metry. HereN=1.108 andP;_ depends on the first three expansion of the Isgur-Wise function can be quite large. The

vector masses in Table Ill.
In this case, a fit to ALEPH datja4] yields

QCD Fit  1CX|V¢y|Fp(1)=29.2"73 |
a 0.110
Linear fit 16X |V Fp(1)=27.858 , (8.9

with® xZ/Npr=1.94, and now Fp(1)=E; (1)f,(1)
=2rf (1)/(1+7).

For CLEO B—>D*/7data, which exhibits discernible

curvature, our central values pf.,| (1) lie at the upper 1

o boundary of the linear-fit result, while for ALEPH data,
which is extremely flat, the central values are nearly th
same. The statistical errors are larger because the QCD pa-

rametrization allows for curvature.

The ALEPHB—D/ v data presents an interesting area
in which to test our results: The shape of their data will have
to change as the statistical errors are reduced, if itisto b

consistent with QCD.

IX. CONCLUSIONS

parametrization in Eq3.8) does not suffer from this limita-
tion.

For b—c transitions, we reduced thtieuncation errors
that describe the accuracy of such parametrizations. This was
accomplished in part by using a parametrization that is auto-
matically normalized at zero recoil to a quantify1), which
must be supplied by some other method such as heavy quark
symmetry. More importantly, we included the contributions
of higher states in the hadronic side of the dispersion rela-

tion. These states, tH8*D andB*D* pairs, are related to

B—D/v andB—D*/v form factors in the semileptonic

region by heavy quark symmetry. Even in the presence of
substantial heavy quark symmetry violation, these relations
place lower bounds on the contribution from the higher states
to the dispersion relation that lead to tighter upper bounds on
the magnitudes of the unknown parametrization coefficients.

SThis in turn reduces the truncation errors on the parametri-

Zations of the various form factors.

For most of theB—D,D* form factors, the inclusion of
higher states reduces truncation errors by roughly 40%. In
ne casef;, the truncation error is reduced by as much as a
actor of 10. This hefty improvement arises becafseon-
tributes very little to the dispersion relation, so it is far from
saturating the perturbative bound until its spin-symmetry

partners are included as well. After including &f*)D®)

Form factors can be reliably bounded in the pair-states, we find that each of the six form factors governing

production region of momentum space by perturbative QCCB— D/ » and B—D*/ v is described to better than 3%
calculations. Analyticity, crossing symmetry, and dispersionaccuracy using only one unknown parameter. This should be
relations may then be used to translate these bounds intp considerable aid in experimentally disentangling the vari-
constraints in the phenomenologically interesting semilepous form factors in differential decay distributions.

tonic region.

While these constraints typically imply rather weak

bounds on the slopes of form factof$0,17,18,3% quite

ForAb—>AC/’v_decays, there are no spin-symmetry part-
ners to help saturate the dispersion relation bound. However,
the presence of more than one helicity amplitude in the same

stringent bounds can be obtained if the form factor at two ok, ;nq achieves the same effect. This is most dramatic in the
more points is known. The constraints actually imply an in-c,qe o4, | whose truncation error is reduced by a factor of
finite number of increasingly stringent bounds, depending o, ' ¢ greater interest is the observation that the form factor
the number of points at which the form factor is known g 'c40'he described at the 6% level using only one unknown
[10.12. Al of these bounds are automatically obeyed if the ¢ efficient. Because the b corrections to heavy quark
form factor is parametrized as in E8.8), even if the pa- symmetry relations among the baryonic form factors are

rametrization is truncated after a few terms. . in t f dditi | & th i
In this paper, we have eliminated some of the uncertaint)Q'Ven In terms of oné additional parametsi, the entre

involved in the derivation of these parametrizations by in_decay distribu.tion can be described _using only two unknown
cluding two-loop perturbative corrections to the partonic sigeconstants. This should allow a relatively iean extraction of
of the dispersion relation. We have also presented parametfite phenomenologically interesting quantity, .
zations for form factors whose contribution to semileptonic  Finally, we used a parametrization of the form factor
decay rates is suppressed by the lepton mass. and heavy quark relations to extracfVey| from

We examined a relation between the slope and curvaturB—D* /v data. This choice of form factor minimizes the
of the Isgur-Wise function derived by Caprini and Neubertdependence on heavy quark symmetry. We expect the quali-
tative features of this extraction to persist even after the ef-
fects of experimental resolution, smearing, etc., are properly
incorporated. Our analysis suggests that the implicit error
associated with the choice of parametrization is comparable

5The largery?/Np is due to their binned data point at=1.55,
which suggests a peculiar upturn of the form factor negg,.
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to the statistical errors normally quoted. Similar statements Note addedThe essential role of the scalBg poles in

apply toB—D/v, except that in this case no reliance onthe slope-convexity relations of Caprini and Neubert has
heavy quark symmetry is necessary, since we can parankeen pointed out independently by L. Lellougtivate com-
etrize the form factof , directly. munication. A corrected slope-convexity relation and other
Further improvements may be possible by including additopics related to those in this work are in preparation by
tional higher states in the dispersion bound, or perhaps bthese authorf49]. Additional criticism of the neglect of the
weighing the dispersion integral differently. One could alsoscalar poles appears in RERO0].
readily incorporate approximate $8 symmetry by using
an effectiven, = 2.5 isospin factof16] in B—D,D* decays,
which would decrease truncation errors by an additional
10%. While such improvements would be welcome for the

baryonic form factors, their utility foB—D,D* form fac- We would like to thank Andréloang, Bernd Kniehl, Karl
tors is not clear. This is because, once truncation errors are &chilcher, and Sotos Generalis for discussions concerning
the few-percent level, the overwhelming source of uncerhigher-order QCD results, Aneesh Manohar for discussions
tainly comes from heavy quark symmetry violations, whichabout the partial wave decomposition, and Martin Savage
are expected to be of order 30%. Such uncertainties highlightnd Lawrence Gibbons for comments on statistical errors.
the importance of extracting individual form factors, which This work was supported by the U.S. Department of Energy
can be parametrized using one coefficient without recoursender Contract Nos. DOE-FG03-97ER40506 and DOE/ER/
to heavy quark symmetry. 40682-132.
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