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We propose a formulation of chiral fermions on a lattice, on the basis of a lattice extension of the covariant
regularization scheme in continuum field theory. The species doublers do not emerge. The real part of the
effective action is just one-half of that of Dirac-Wilson fermion and is always gauge invariant even with a finite
lattice spacing. The gauge invariance of the imaginary part, on the other hand, sets a severe constraint that is
a lattice analog of the gauge anomaly-free condition. For real gauge representations, the imaginary part
identically vanishes and the gauge invariance becomes exact.@S0556-2821~97!04723-1#

PACS number~s!: 11.15.Ha, 11.30.Rd

Inspired by the covariant regularization scheme@1–3# in
the continuum field theory, one of us recently proposed a
manifestly gauge covariant treatment of chiral fermions on a
lattice @4#. However, the proposal heavily relied on the no-
tion in perturbation theory and its validity was demonstrated
only in the continuum limit. Many important issues, such as
the integrability~see below!, were also not clarified there. In
this article, we remedy these points and try to set up a truly
nonperturbative framework with the same strategy.

The basic idea of@4# is the following: At present, it seems
impossible to construct a lattice action of chiral fermions that
explicitly distinguishes gauge anomaly-free representations
from anomalous ones. This implies that we cannot expect a
sensible manifestly gauge invariant lattice formulation be-
cause it will not reproduce in the continuum limit the gauge
anomaly for the anomalous cases. If one nevertheless forces
the manifest gauge invariance, the species doublers@5,6#,
which cancel the gauge anomaly, will emerge; thus we have
to break the gauge symmetry at a certain stage. With these
observations, a formulation that preserves the gauge symme-
try as much as possible inboth the anomalous and nona-
nomalous cases seems desirable.

The covariant regularization@2,3# is such a regularization
scheme in the continuum theory. The scheme does not spoil
all the gauge invariance even in anomalous cases; instead it
sacrifices Bose symmetry among gauge vertices in a fermion
one-loop diagram. In this scheme, one starts with a regular-
ized gauge current operator~the covariant gauge current!

^Jmb~x!&5^c̄~x!TbgmPRc~x!&

52 lim
y→x

trTbgmPRG~x,y!

[2 lim
y→x

trTbgmPRf ~D” 2/L2!
21

iD”
d~x2y!, ~1!

wherePR[(11g5)/2 is the chirality projection operator and
D” [gm(]m1 iAm

b Tb) is the covariant derivative; note that
Dirac propagator is used. In Eq.~1!, L is the cutoff param-

eter and the regulating factorf (t) satisfies f (0)51 and
f (`)5 f 8(`)5 f 9(`)5•••50. The definition immediately
follows the gaugecovariance of the current operator,
namely, under the gauge transformation on the background
gauge field Am(x)→2 iV(x)]mV†(x)1V(x)Am(x)V†(x),
the gauge current transforms gauge covariantly:

^Jmb~x!&→2 lim
y→x

tr@V†~x!TbV~x!#gmPRf ~D” 2/L2!
21

iD”

3d~x2y!. ~2!

In other words, the gauge invariance at external gauge verti-
ces of a fermion one-loop diagramexceptthat of Jmb(x) is
preserved in the scheme. Because of this Bose asymmetric
treatment of gauge vertices, the gauge invariance can be
‘‘maximally’’ preserved even in anomalous cases. As a con-
sequence, the gauge anomaly has the covariant form.

Once the gauge current operator is defined in this way, the
effective actionG@A# might be obtained from the relation

^Jmb~x!&52
dG@A#

dAm
b ~x!

. ~3!

However, such a functionalG@A# exists only if the covariant
gauge anomaly vanishes. The simplest way to see this is to
note the covariant anomaly does not satisfy the Wess-
Zumino consistency condition@7#, which is a consequence of
the integrability~3!. The integrability or the Bose symmetry,
however, is restored when we can further impose the gauge
invariance on theJmb(x) vertex, i.e., anomaly-free cases. In
fact, for anomaly-free cases, one can write down a formula
of G@A# @3#,

G@A#52E
0

1

dgE d4x Am
b ~x!^Jmb~x!&g , ~4!

where the gauge current on the right-hand side is the cova-
riant current~1! and the subscriptg means it is evaluated by
a covariant derivative with a coupling constantg, D” g

[gm(]m1 igAm
b Tb). When the gauge anomaly is absent, one

can prove@3# that the integrable current~3! coincides with
the covariant one~1! ~in the infinite cutoff limit L→`!. In
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this scheme, therefore, anomalous cases are distinguished by
the nonintegrability without explicitly spoiling all the gauge
invariance.

The covariant current~1! is not in general integrable, i.e.,
not a functional derivative of something. This means that in
particular it cannot be written as a functional derivative of
the functional integral of a certain action@8#. However, one
may directly work with the fermion propagator and the
gauge current operator as in Eq.~1!. This is also true in the
lattice theory; the crucial point of our approach is to ‘‘for-
get’’ about the action@4#.

Let us now translate the above strategy of covariant regu-
larization into the lattice language as much as possible. Of
course, there is a wide freedom to do so, partially corre-
sponding to the freedom of regulating factorf (t). However,
the details of the extension should not be important and we
first require the following:~i! The expression reduces to the
continuum analog in the naive~or classical! continuum limit,
~ii ! the lattice propagator has no doubler’s pole; and~iii ! the
lattice fermion propagator transforms gauge covariantly,
namely, under the gauge transformation on the link variable
Um(x)→V(x)Um(x)V†(x1am), the propagator transforms
asG(x,y)→V(x)G(x,y)V†(y).

For definiteness and simplicity, we will use the Wilson
propagator@9# in this article:

G~x,y![
21

iD” ~x!1R~x!
d~x,y!5d~x,y!

1

iD”Q ~y!1RQ ~y!
,

~5!

where the delta function on the lattice is defined byd(x,y)
[dx,y /a4; D” (x) is the lattice covariant derivative andR(x)
is the Wilson term:

D” ~x![(
m

gm
1

2a
@Um~x!ea]m2e2a]mUm

† ~x!#,

~6!

R~x![
r

2a (
m

@Um~x!ea]m1e2a]mUm
† ~x!22#

and

D”Q ~x![2(
m

gm
1

2a
@Um~x!e2a]Qm2ea]QmUm

† ~x!#,

~7!

RQ ~x![2
r

2a (
m

@Um~x!e2a]Qm1ea]QmUm
† ~x!22#.

In the above expressions,a is the lattice spacing and
exp(6a]m) is the translation operator in them direction by a
unit lattice spacing. The equality of the two expressions~5!
follows from two equivalent forms of the Wilson action:

S@c,c̄,U#5a4(
x

c̄~x!@ iD” ~x!1R~x!#c~x!

52a4(
x

c̄~x!@ iD”Q ~x!1R”Q ~x!#c~x!. ~8!

In contrast with the continuum Dirac propagator in Eq.~1!,
the Wilson term mixes the right-handed and left-handed
chiralities.1 However, we do not think that this is so prob-
lematical because the physical particle picture emerges only
in the continuum limit and in the continuum limit we expect
this chirality mixing due to the Wilson term to vanish. Note
that the Wilson propagator nevertheless has the required
gauge covariance property.

As the lattice analog of the covariant gauge current, there-
fore, we shall study

D@U,dU#[2a4(
x

tr@ idD” ~x!PR1 1
2 dR~x!#G~x,y!uy5x

5a4(
x

trG~y,x!@ idD”Q ~x!PR1 1
2 dRQ ~x!#uy5x ,

~9!

where dU represents an infinitesimal variation of the link
variable and its conjugate is defined bydUm

† (x)
52Um

† (x)dUm(x)Um
† (x). The second expression follows

from the definitions~6! and ~7! and the fact that we can
freely shift the ‘‘integration variable’’x. As the analog of
Eq. ~3!, we identify it with the variation of the effective
action

D@U,dU#5dG@U#. ~10!

The defining relations~9! and ~10! are suggested by thena-
ive relation expG@U#5*Dc Dc̄ exp@a4(xc̄(x)iD” (x)PRc(x)#.
@The variation of the Wilson termdR(x) in Eq. ~9! will be
necessary for the integrability.# The integrability~10! is of
course not a trivial statement and will be investigated below.

We first note the manifest gauge covariance ofD@U,dU#:

D@V~x!Um~x!V†~x1am!,dUm~x!#

5D@Um~x!,V†~x!dUm~x!V~x1am!#. ~11!

That is, D@U,dU# behaves gauge covariantly under the
gauge transformation on the backgroundU. This is an analo-
gous relation to Eq.~2!.

Next, we separate the ‘‘would-be variation’’D@U,dU#
into the real and imaginary parts. We note that the following
relations hold for an arbitrary matrixm(x):

D” ~x!* m~x!52@m~x!TD”Q ~x!#T,

R~x!* m~x!52@m~x!TRQ ~x!#T, ~12!

whereTb* 5TbT, gm* 52gmT, andg5* 5g5
T have been used.

Using these relations, we find

G~x,y!* 5g5
TG~y,x!Tg5

T . ~13!

From Eqs. ~12! and ~13!, the complex conjugate of
D@U,dU# is given by

1One may even avoid this chiral symmetry breaking by making
use of more ingenious propagator in@10#. See@4#.
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D@U,dU#* 5a4(
x

trG~y,x!@ idD”Q ~x!PL1 1
2 dRQ ~x!#uy5x

52a4(
x

tr@ idD” ~x!PL1 1
2 dR~x!#G~x,y!uy5x .

~14!

Then a comparison with Eq.~9! shows that the real and
imaginary parts are respectively given by

ReD@U,dU#52 1
2 a4(

x
tr@ idD” ~x!1dR~x!#G~x,y!uy5x

~15!

and

i ImD@U,dU#52 1
2 a4(

x
tridD” ~x!g5G~x,y!uy5x

5 1
2 a4(

x
trG~y,x!idD”Q ~x!g5uy5x . ~16!

Now, for thereal part ofD@U,dU# @Eq. ~15!#, we imme-
diately see the integrability and the gaugeinvariance. By the
gauge invariance, we mean that the would-be variation of the
effective actionD@U,dU# vanishes along the direction of the
gauge degrees of freedom. That is,

ReD@U,dlU#50 for

dlUm~x![2 il~x!Um~x!1 iU m~x!l~x1am!, ~17!

wherel(x)5lb(x)Tb. One can easily verify this relation by
using above definitions. This gauge invariance property of
the real part is almost trivial in our construction because
ReD@U,dlU# is simply one-half of that of the Dirac-Wilson
fermion:

ReD@U,dU#5dG1@U#,

G1@U#[ 1
2 ln det@ iD” ~x!1R~x!#. ~18!

Note that the last expression is well defined and not a formal
one with the lattice regularization. Therefore, for the real
part, we arrived at a quite simple picture: The real part of
D@U,dU# can always be regarded as a variation of the ef-
fective actionG1@U#, which is just one-half of the effective
action of the Dirac-Wilson fermion. In other words, the chi-
ral determinant obtained by ‘‘integrating’’ ReD@U,dU# gives
rise to the square root of the Dirac-Wilson determinant. Al-
though the gauge invariance of the real part of the effective
action is almost trivial in this way, this is very interesting
because the gauge invariance of the real part is one of main
achievements of recent research@11–14#. In our approach,
the origin of this property of the real part may be traced to
the basic idea of covariant regularization, i.e., maximal
gauge invariance. We note that our treatment of the real part
turned out to be almost identical to that of@14#.

The gauge invariance of the imaginary part, on the other
hand, is difficult. A short calculation shows that

i ImD@U,dlU#5a4(
x

lb~x!Ab~x!, ~19!

whereAb(x) is given by

Ab~x![2 1
2 tr@G~y,x!D”Q ~x!g5Tb2Tbg5D” ~x!G~x,y!#uy5x .

~20!

In fact, this is a lattice analog of the gauge anomaly: By
considering theaxial rotations c(x)→exp@iub(x)Tbg5#c(x)
and c̄(x)→c̄(x) exp@iub(x)Tbg5# in the Wilson action~8!,
we can computeAb(x) in the continuum limit@5,15# and
find the covariant gauge anomaly

lim
a→0
Ab~x!5

i

32p2 «mnrs tr TbFmnFrs . ~21!

Therefore, if the gauge representation is anomaly-free, the
imaginary part ofD@U,dU# vanishes along the gauge varia-
tion in the continuum limitand the effective action becomes
gauge invariant; this is the expected property. However, this
is not sufficient for the gauge invariance with afinite lattice
spacing. It is clear thatAb(x)50 with a finite lattice spacing
is a much stronger condition than the anomaly-free condition
in the continuum theory. We can furthermore show that the
integrability of the imaginary part also requiresAb(x)50
~see the Appendix!, thus the integrability does not hold un-
lessAb(x)50.

Therefore, we again face the usual difficulty of lattice
chiral gauge theory that the gauge mode decouples only in
the continuum limit, even in anomaly-free cases. Although
the natural lattice extension of the covariant regularization
provides a simple picture for a treatment of the real part of
the effective action, it does not solve the main difficulty of
anomaly-freecomplex representations in the lattice chiral
gauge theory. For the general discussion on the imaginary
part of the effective action of lattice chiral fermion, see@16#.
Equation ~21! suggests that the difficulty of our approach
might be avoided only by invoking the double-limit proce-
dure in @14#.

However, at least forreal gauge representations, we can
show that the above problems of the gauge invariance and
the integrability do not occur at all. This is because the
imaginary part ofD@U,dU# @Eq. ~16!# identically vanishes
for real representations. The demonstration is straightfor-
ward: For a real representationTb, there exists a unitary
matrix u that mapsTb into the conjugate representation
uTbu†52Tb* 52TbT. We then insertu†C21Cu51 into
the first line of Eq.~16!. ~C is the charge conjugation matrix
CgmC2152gmT and thusCg5C215g5

T .! Then, by noting

CudD” ~x!u†C21m~x!52@m~x!TdD”Q ~x!#T,
~22!

CuG~x,y!u†C215G~y,x!T,

we find

i Im D@U,dU#52 1
2 a4(

x
trG~y,x!idD”Q ~x!g5uy5x .

~23!
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A comparison with Eq.~16! shows that the imaginary part of
D@U,dU# identically vanishes;D@U,dU# is purely real.

Therefore, the treatment of real representations is simple:
The variation of the effective action is given by Eq.~15!,
which is nothing but one-half of that of the Dirac-Wilson
fermion. We note that, although this seems almost trivial, the
square root of the Dirac determinant in general cannot be
expressed as a functional integral of a local action. In par-
ticular, it seems impossible to construct a gauge invariant
Wilson action for an odd number of chiral fermions in a
pseudoreal representation. The expression of the variation of
effective action~15! furthermore seems congenial to the Me-
tropolis algorithm, in which thedifferenceof the effective
action between two gauge field configurations is the basic
building block. Thus we propose the use of Eq.~15!. We
have also established the reality of the variation that is re-
quired in the Metropolis algorithm. Of course, since Eq.~15!
represents only an infinitesimal change of the effective ac-
tion, presumably one has to divide a finite variation associ-
ated with the update of a link variable into sufficiently many
pieces.

Concerning the actual numerical application, we have to
investigate also the necessity of the fine-tuning. Although
usually the Wilson fermion requires the fine-tuning to restore
the chiral symmetry@5#, we do not see the necessity in our
formula ~15!: The configuration of the link variable is kept
fixed when computing the variationD@U,dU# and the origi-
nal Wilson propagator~5! as it stands is used. Therefore, for

us, it seems that the ‘‘back reaction’’ of the gauge field dy-
namics does not modify the above properties.

The overlap formulation@11,12# also possesses desired
properties such that the real part of the effective action is
gauge invariant and there is no need for the fine-tuning.
However, the overlap has the remarkable property@11# that a
relation of nontrivial topological gauge field configurations
and the fermionic zero mode is explicit. In our approach, an
investigation on such a ‘‘global property’’ has to be post-
poned to a future work.

Finally, we comment on the relation to the continuum
theory. By parametrizing the link variable asUm(x)
5exp@iaAm

b(x)Tb#, the gauge current is defined by

^Jmb~x!&[2
D@U,dU#

a4dAm
b ~x!

52trE
0

1

db eb iaAm~x!Tbe2b iaAm~x!

3
1

2 F S gmPR2
ir

2 DUm~x!G~x1am,x!

1S gmPR1
ir

2 DG~x,x1am!Um
† ~x!G . ~24!

The fermion one-loop vertex functions are defined accord-
ingly:

^Jmb~x!&[ (
n51

`
1

n! )
j 51

n Fa4 (
xj ,m j ,bj

Am j

bj ~xj !E
2p/a

p/a d4pj

~2p!4 eip j ~x2xj !e2 iapj m j
/2GGmm1 •••mnbb1 •••bn~p1 ,p2 ,...,pn!. ~25!

When a new lattice formulation is proposed, it is important
to examine the continuum limit in the perturbative treatment.
However, in our formulation, the real part of the gauge cur-
rent ~24! is just one-half of that of the conventional Wilson
fermion. Therefore, for the real part, Ward identities associ-
ated with the gauge symmetry@5#, which are linear relations
among vertex functions, trivially hold. Also all the perturba-
tive calculations for the vertex functions of the Wilson fer-
mion can be used by simply dividing by 2. For example, we
may use the result of@17# for the vacuum polarization tensor
~because ofg5 , the imaginary part does not contribute to this
function! to yield

lim
a→0

Gmnbc~p!52
1

24p2 trTbTc~pmpn2gmnp2!

3F ln
4p

2a2p22g1
5

3
212p2L~r !G ,

~26!

where the functionL(l) is given by Eq.~3.25! of @17#.
For the imaginary part of the gauge current~24!, our con-

struction~16! is quite faithful to the idea of covariant regu-

larization. For example, using the gauge covariance~11!, we
can derive Ward identities associated with the gauge invari-
ance at external vertices@4#:

pn lim
a→0

Gmnbc~p!50,

pn lim
a→0

Gmnrbcd~p,q!1 i f bcelim
a→0

Gmred~q!

2 i f cdelim
a→0

Gmrbe~p1q!50, ~27!

and so on. Equation~21!, on the other hand, shows that we
have the covariant gauge anomaly, which completely van-
ishes for anomaly-free cases without any gauge noninvariant
counterterms. Therefore, assuming that the Lorentz covari-
ance is restored, we can expect that the continuum limit of
our formulation reproduces all the results of the covariant
regularization in the continuum theory.

We thank K. Haga for collaboration in the early stage. We
are grateful to Professor K. Fujikawa for discussions and to
Professor H. Banerjee and Professor P. Mitra for answering
our question on@3#. We are also grateful to Professor S. V.
Zenkin for helpful information. The work of H.S. was sup-

6832 56KIYOSHI OKUYAMA AND HIROSHI SUZUKI



ported in part by the Ministry of Education Grant-in-Aid for
Scientific Researh, Grant Nos. 09740187, 09226203, and
08640348.

APPENDIX

In this appendix we present a relation between the inte-
grability of the imaginary part ofD@U,dU# and the
‘‘anomaly-free condition’’Ab(x)50. First we define a quan-
tity

Km~x! i j [
i ImD@U,dU#

a4dUm~x! j i
. ~A1!

We perform the infinitesimal gauge transformationdlU in
Eq. ~17! on the both sides of this equation. On the left-hand
side, the gauge transformation may be generated by a differ-
ential operator:

Gb~y![(
n

H 2 i @TbUn~y!# lk

d

dUn~y! lk

1 i @Un~y2an!Tb# lk

d

dUn~y2an! lk
J . ~A2!

It is easy to see that(xl
b(x)Gb(x) generates the infinitesi-

mal gauge transformation. Then we can cast the gauge varia-
tion on the left-hand side into the form

Gb~y!Km~x! i j 5
d

dUm~x! j i
Ab~y!

1 i @Km~x!Tb# i j dx,y

2 i @TbKm~x!# i j dx1am,y

1(
n

$2 i @TbUn~y!# lkRi j ,kl
mn ~x,y!

1 i @Un~y2an!Tb# lkRi j ,kl
mn ~x,y2an!%.

~A3!

In deriving this identity, we first interchanged the places of
i j andkl. This produced a ‘‘functional rotation’’ ofK:

Ri j ,kl
mn ~x,y![

dKm~x! i j

dUn~y! lk
2

dKn~y!kl

dUm~x! j i
. ~A4!

We then changed the order of the derivative andU. This
produced the commutator term in the second line of Eq.
~A3!.

Now the right-hand side of Eq.~A1! transforms gauge
covariantly under the infinitesimal gauge transformation.
This can be written as

Gb~y!
i ImD@U,dU#

a4dUm~x! j i
5 i @Km~x!Tb# i j dx,y

2 i @TbKm~x!# i j dx1am,y . ~A5!

Therefore, from Eqs.~A3! and ~A5! we find

d

dUm~x! j i
Ab~y!5(

n
$ i @TbUn~y!# lkRi j ,kl

mn ~x,y!

2 i @Un~y2an!Tb# lkRi j ,kl
mn ~x,y2an!%.

~A6!

The right-hand side of this equation can be regarded as the
covariant divergence of the functional rotationR. We can
interpret this identity from two different viewpoints. First, if
the lattice gauge anomalyAb(x) vanishes, then the covariant
divergence of the functional rotationR vanishes. A relation
similar to Eq.~A6! exists in the continuum theory and when
the gauge anomaly is absent, it can be used to show the
functional rotation of the covariant gauge current vanishes.
This fact was used to show the integrability of the covariant
current in anomaly-free cases@3#. In our present lattice case,
unfortunately, we could not prove that the corresponding
statement that the covariant conservation,~A6! equals 0, im-
plies the vanishing ofR. If the functional rotation~A4! itself
is zero, then Poincare´’s lemma may be used to show the
~local! integrability of the imaginary part:

i ImD@U,dU#5dG2@U#. ~A7!

On the contrary, if we assume the integrability~A7!, we
haveR50 and Eq.~A6! showsAb(x) is independent ofU.
However, we can directly computeAb(x) for U51 with a
finite lattice spacing and findAb(x)50 for U51. Conse-
quently, the integrability requires the lattice anomaly-free
conditionAb(x)50.
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