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Manifestly gauge covariant treatment of lattice chiral fermions. Il

Kiyoshi Okuyama and Hiroshi SuzuKi
Department of Physics, Ibaraki University, Mito 310, Japan
(Received 22 July 1997

We propose a formulation of chiral fermions on a lattice, on the basis of a lattice extension of the covariant
regularization scheme in continuum field theory. The species doublers do not emerge. The real part of the
effective action is just one-half of that of Dirac-Wilson fermion and is always gauge invariant even with a finite
lattice spacing. The gauge invariance of the imaginary part, on the other hand, sets a severe constraint that is
a lattice analog of the gauge anomaly-free condition. For real gauge representations, the imaginary part
identically vanishes and the gauge invariance becomes ¢80i856-282(97)04723-1

PACS numbsds): 11.15.Ha, 11.30.Rd

Inspired by the covariant regularization schefie 3] in  eter and the regulating factdi(t) satisfiesf(0)=1 and
the continuum field theory, one of us recently proposed &(«)=f'(®)=f"(»)=---=0. The definition immediately
manifestly gauge covariant treatment of chiral fermions on dollows the gaugecovariance of the current operator,
lattice [4]. However, the proposal heavily relied on the no- namely, under the gauge transformation on the background
tion in perturbation theory and its validity was demonstratedgauge field AM(x)—>—iV(x)aMVT(x)+V(x)AM(x)V*(x),
only in the continuum limit. Many important issues, such asthe gauge current transforms gauge covariantly:
the integrability(see below, were also not clarified there. In
this article, we remedy these points and try to set up a truly

nonperturbative framework with the same strategy. (32(x))— = lim VIO TPV (x)]y*Pgf(D?/A?) D
The basic idea df4] is the following: At present, it seems y=x
impossible to construct a lattice action of chiral fermions that X 8(X—Y). )

explicitly distinguishes gauge anomaly-free representations

from anomalous ones. This implies that we cannot expect g other words, the gauge invariance at external gauge verti-
sensible manifestly gauge invariant lattice formulation be-es of a fermion one-loop diagraexceptthat of J“2(x) is
cause it will not reproduce in the continuum limit the gaugepreserved in the scheme. Because of this Bose asymmetric
anomaly for the anomalous cases. If one nevertheless forcggatment of gauge vertices, the gauge invariance can be
the manifest gauge invariance, the species doulie,  “maximally” preserved even in anomalous cases. As a con-
which cancel the gauge anomaly, will emerge; thus we havgequence, the gauge anomaly has the covariant form.

to break the gauge symmetry at a certain stage. With these Once the gauge current operator is defined in this way, the

observations, a formulation that preserves the gauge symmeffective actionl’[A] might be obtained from the relation
try as much as possible iboth the anomalous and nona-

nomalous cases seems desirable. ST[A]
The covariant regularizatiof®,3] is such a regularization <J“b(x))= AP ) 3)
scheme in the continuum theory. The scheme does not spoil u(X)

all the gauge invariance even in anomalous cases; instead it ) . ) )
sacrifices Bose symmetry among gauge vertices in a fermiofi®WeVer, such a functiondl[A] exists only if the covariant
one-loop diagram. In this scheme, one starts with a regulad@Uge anomaly vanishes. The simplest way to see this is to

ized gauge current operatéthe covariant gauge current ~ Note the covariant anomaly does not satisfy the Wess-
Zumino consistency conditidi7], which is a consequence of

the integrability(3). The integrability or the Bose symmetry,

b — ()T
(3200) = (P ) T 7*Prif(x)) however, is restored when we can further impose the gauge
=—1lim tTPy“PrG(X,y) invariance on the“®(x) vertex, i.e., anom_aly-free cases. In
y—X fact, for anomaly-free cases, one can write down a formula
of I'TA] [3],

=—lim trTPy*Prf(D?/A?) % s(x—y), (1) L
g F[A]=—f0d9f d*x AL(X)(I*°(X))g, (4)

wherePr=(1+ v5)/2 is the chirality projection operator and
DE’y“(aM-i—iAin) is the covariant derivative; note that where the gauge current on the right-hand side is the cova-
Dirac propagator is used. In Eql), A is the cutoff param- riant current(1) and the subscripy means it is evaluated by
a covariant derivative with a coupling constagt D
=y*(d,+ igAZTb). When the gauge anomaly is absent, one
*Electronic address: okuyama@mito.ipc.ibaraki.ac.jp can prove[3] that the integrable curreri8) coincides with
TElectronic address: hsuzuki@mito.ipc.ibaraki.ac.jp the covariant onél) (in the infinite cutoff limit A—c). In
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this scheme, therefore, anomalous cases are distinguished by contrast with the continuum Dirac propagator in Et),
the nonintegrability without explicitly spoiling all the gauge the Wilson term mixes the right-handed and left-handed
invariance. chiralities! However, we do not think that this is so prob-

The covariant currentl) is not in general integrable, i.e., lematical because the physical particle picture emerges only
not a functional derivative of something. This means that inin the continuum limit and in the continuum limit we expect
particular it cannot be written as a functional derivative ofthis chirality mixing due to the Wilson term to vanish. Note
the functional integral of a certain acti¢8]. However, one that the Wilson propagator nevertheless has the required
may directly work with the fermion propagator and the gauge covariance property.
gauge current operator as in E@). This is also true in the As the lattice analog of the covariant gauge current, there-
lattice theory; the crucial point of our approach is to “for- fore, we shall study
get” about the actiorj4].

Let us now translate the above strategy of covariant regu-
larization into the lattice language as much as possible. Of
course, there is a wide freedom to do so, partially corre-
sponding to the freedom of regulating facfdgt). However,
the details of the extension should not be important and we
first require the followingii) The expression reduces to the
continuum analog in the naiver classical continuum limit, ©

(ii)_the Iattic_e propagator has no doubler’s pole; éih'dth_e where 5U represents an infinitesimal variation of the link
lattice fermion propagator transforms gauge Cova”antly\/ariable and its conjugate is defined byuUT(x)
namely, under the gauge transformation on the link variable — Ut () 8U Ut Th q . /]: I
U#(X)—>V(X)U#(X)VT(X+a“), the propagator transforms f_ tlﬁ(X)d f'ﬂ('t)'() NESX)' d e7 secgnth e:fpr;ast?otn ollows
asG(x,y)— V() GOV (y). rom the definitions(6) and (7) an e fact that we can

freely shift the “integration variable”x. As the analog of
Eqg. (3), we identify it with the variation of the effective
action

A[U,8U]=—a*> tfidD(x)Pr+30R(X)1IG(X,Y)|y=x

=a*d) trG(y,x)[i B (X)Pr+ 2RO ]ly=x.

For definiteness and simplicity, we will use the Wilson
propagatof9] in this article:

— 1 1 A[U,éU]—&F[U]. (10)
G(x,y)=——— 8(X,y)=8(X,y) —————,
(X y) |D(X) R(X) (X y) (X y) ilj(y) R(y)

®) The defining relation$9) and (10) are suggested by thea-

ive relation expl[U]=[Dy Dy exda*S,AX)id (X)PryAX)].

where the delta function on the lattice is defined&fy,y)  LThe variation of the Wilson terdR(x) in Eq. (9) will be
=4, /a% D(x) is the lattice covariant derivative am{x) necessary for the integrabiliyThe integrability (10) is of
is thg Wilson term: course not a trivial statement and will be investigated below.

We first note the manifest gauge covarianc&ptl, sU]:

1
D(x)=2, y* 22 [U#(x)e%—e*%u;(x)], A[V(X)UM(X)VT(X-F at),oU ,(x)]
o
(6) =A[U,(x),VT(x) U ,(x)V(x+a*)]. (11
R(X)ELE [Uﬂ(x)ea"’que*a"uUL(x)—Z] That is, A[U,8U] behaves gauge covariantly under the
2a % gauge transformation on the backgroundThis is an analo-

gous relation to Eq(2).
and Next, we separate the “would-be variatiorA[U,5U]
into the real and imaginary parts. We note that the following
- 1 —a 5ot relations hold for an arbitrary matrim(x):
D(x)==2 y* 5 [U,(x)e *x—esU](x)],
“

(7) D(x)*m(x)=—[m(x)"B(x)]",

R(X)=— Zr_a §M) [U,(x)e ¥u+e2uUl (x)—2]. R(X)*m(x)=—[m(x)TR(x)], (12)

whereT?* =TPT, y#* = — T "andy{ = yi have been used.
In the above expressionsg is the lattice spacing and ysing these relations, we find
exp(+ad,) is the translation operator in the direction by a
unit lattice spacing. The equality of the two expressiths G(X,y)* =yiG(y,x)Tyi . (13
follows from two equivalent forms of the Wilson action:

From Egs. (120 and (13), the complex conjugate of

— AN T A[U,8U] is given by
Sy Ul=a" 2 yOOLliD (0 +R0019()

= —a42 HX)[ij(x)jL ROX)T(x). (8 'one may even avoid this chiral symmetry breaking by making
X use of more ingenious propagator[it0]. See[4].
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A[U,8UT* =a*>, trG(y,x)[i B (X)P+ 38RO ly— i IMA[U,5,U]=a%>, \P(x).A°(x), (19)
X X

b . .
= —a®> t[ioD(x)P_+ 20R(IG(X,Y)|y_y.  WNErEA(X) is given by
X

g AO==3UIGY0BX) ¥sT = TPysD ()G ly—s.
(20

Then a comparison with Eq9) shows that the real and

. . . . In fact, this is a lattice analog of the gauge anomaly: By
imaginary parts are respectively given by

considering_theaxial rotations y(x)— expli °(}) T°ys]¢(X)

and ¢(x)— (x) exfdiP) T ys] in the Wilson action(8),

R%[U,&U]z—%a"’E tr[i 6D (x) + SR(X) 1G(X,Y)|y-x we can compute4®(x) in the continuum limit[5,15] and
x find the covariant gauge anomaly

(15)
and H b — nvpo b
M A(X) = 257 407 1 T . (21)
. _ 1 4 .
i ImA[U,6U]=—za Ex: tri 5D (x) y5G(X,Y) |y=x Therefore, if the gauge representation is anomaly-free, the

imaginary part ofA[U, U] vanishes along the gauge varia-
_18S s tion in the continuum limiand the effective action becomes
B trG(y,x)i 8D (X) ysly-x. (16) gauge invariant; this is the expected property. However, this
is not sufficient for the gauge invariance witHiaite lattice
Now, for thereal part of A[U, U] [Eq. (15)], we imme- _spacing. Itis clear thatlb(>_<) =0 with a finite lattice spacin_g_
diately see the integrability and the gaugeariance By the 1S 2 much stronger condition than the anomaly-free condition
gauge invariance, we mean that the would-be variation of th# the continuum theory. We can furthermore show that the
effective actiorA[ U, 5U] vanishes along the direction of the integrability of the imaginary part also require$’(x) =0

gauge degrees of freedom. That is, (see the Appendix thus the integrability does not hold un-
less.AP(x)=0.
ReA[U,8,U]=0 for Therefore, we again face the usual difficulty of lattice
chiral gauge theory that the gauge mode decouples only in
85U ()= —IN()U () +iU (0N (x+a"), (17) the continuum limit, even in anomaly-free cases. Although

the natural lattice extension of the covariant regularization

where) (x) =\"(x) T°. One can easily verify this relation by Provides a simple picture for a treatment of the real part of
(x) () y y y Fhe effective action, it does not solve the main difficulty of

using above definitions. This gauge invariance property o ) X . d

the real part is almost trivial in our construction becauSeanomaly—freecomplexrepresentat!ons n the 'a“'c‘? chyral

ReA[U,s,U] is simply one-half of that of the Dirac-Wilson 9249€ theory. F_or the.general Q|scus_S|on on.the imaginary
[U.5U] Py part of the effective action of lattice chiral fermion, 4dé).

fermion: . e
ermion Equation (21) suggests that the difficulty of our approach
ReA[U,sUT=6oT,[U], might be avoided only by invoking the double-limit proce-
[ ] 1[U] dure in[14].
T [UT=1 In defid (x)+ R(X)]. (19) However, at least foreal gauge representations, we can

show that the above problems of the gauge invariance and

Note that the last expression is well defined and not a formaflg]ea '?g;?rab;r':yogo[ l? Oétuo]cfér a(ltlgil'i d-(rar:wltsi,cétsll bsgﬁfssheesthe
one with the lattice regularization. Therefore, for the real ginary p ' 9. y

part, we arrived at a quite simple picture: The real part Offor real representations. The demonstration is straightfor-

A[U,5U] can always be regarded as a variation of the ef_vvard: For a real representatioff, there exists a unitary

. b . . .
fective actionl’;[ U], which is just one-half of the effective malrix u that mapsT™ into the conjugate representation

b, t_ _ Tbx _ _ TbT ; tTe—1ry—1 i
action of the Dirac-Wilson fermion. In other words, the chi- ;Jh-(l; :‘Jirst Iin-I(-a of E -(rlGj E/geist?hegC'R;frgjcgn.ucgtioln rlrrll;(:rix
ral determinant obtained by “integrating” RE§U,dU] gives a429). 9 Iug

-1_ _ puT -1_ T ;
rise to the square root of the Dirac-Wilson determinant. Al-CY"C =~ 7" and thusCysC™ "= ys.) Then, by noting
though the gauge invariance of the real part of the effective

action is almost trivial in this way, this is very interesting CusD(x)u'™C™*m(x)=—[m(x) 6B (x)]", 22)
because the gauge invariance of the real part is one of main a1 .
achievements of recent reseafdi—14. In our approach, CuG(x,y)u'C *=G(y,x) ",

the origin of this property of the real part may be traced to _
the basic idea of covariant regularization, i.e., maximawe find
gauge invariance. We note that our treatment of the real part
turned out to be almost identical to that [df4]. i Im ATU. sUT=—14 trGov x)i B (x
The gauge invariance of the imaginary part, on the other [U.oU]==2 Ex: (¥ X)1 8D (X) Ysly=x-
hand, is difficult. A short calculation shows that (23
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A comparison with Eq(16) shows that the imaginary part of us, it seems that the “back reaction” of the gauge field dy-
A[U,8U] identically vanishesA[U, U] is purely real. namics does not modify the above properties.

Therefore, the treatment of real representations is simple: The overlap formulatior{11,17 also possesses desired
The variation of the effective action is given by Ed@5), properties such that the real part of the effective action is
which is nothing but one-half of that of the Dirac-Wilson gauge invariant and there is no need for the fine-tuning.
fermion. We note that, although this seems almost trivial, theHowever, the overlap has the remarkable propgrty that a
square root of the Dirac determinant in general cannot beelation of nontrivial topological gauge field configurations
expressed as a functional integral of a local action. In parand the fermionic zero mode is explicit. In our approach, an
ticular, it seems impossible to construct a gauge invarianinvestigation on such a “global property” has to be post-
Wilson action for an odd number of chiral fermions in a poned to a future work.
pseudoreal representation. The expression of the variation of Finally, we comment on the relation to the continuum
effective action(15) furthermore seems congenial to the Me- theory. By parametrizing the link variable a¥ ,(x)
tropolis algorithm, in which thelifferenceof the effective —exmaAb(x)Tb] the gauge current is defined by
action between two gauge field configurations is the basic

building block. Thus we propose the use of Ef§5). We ub AU, U]

have also established the reality of the variation that is re- ()=~ a46A5(x)

quired in the Metropolis algorithm. Of course, since Elp) K’

represents only an infinitesimal change of the effective ac- _ 1 BiaA ()Tba— BiaA,(x)
tion, presumably one has to divide a finite variation associ- =—tr] dpe”* T e "

ated with the update of a link variable into sufficiently many

pieces. ir
Concerning the actual numerical application, we have to X5 || ¥*Pr~ E) UL (x)G(x+a*,x)
investigate also the necessity of the fine-tuning. Although
usually the Wilson fermion requires the fine-tuning to restore
the chiral symmetry5], we do not see the necessity in our #PRJF G(x, X+a“)U )] (29

formula (15): The configuration of the link variable is kept
fixed when computing the variatioh[ U, U] and the origi- The fermion one-loop vertex functions are defined accord-
nal Wilson propagatof5) as it stands is used. Therefore, for ingly:

1 n
ST

=1

(3°00)= 2,

|pJ(x Xj) Ve iaijv/Z
n=1 !

Drrar kb Oa(py py,.pp). (25)

2 J)f (277)

When a new lattice formulation is proposed, it is importantlarization. For example, using the gauge covariaiidg, we

to examine the continuum limit in the perturbative treatmentcan derive Ward identities associated with the gauge invari-
However, in our formulation, the real part of the gauge cur-ance at external verticgd]:

rent (24) is just one-half of that of the conventional Wilson

fermion. Therefore, for the real part, Ward identities associ- p, limI#**%(p)=0,

ated with the gauge symmetf§], which are linear relations a=0

among vertex functions, trivially hold. Also all the perturba-

. . X X H pvpbed iebcep; uped
tive calculations for the vertex functions of the Wilson fer- p,lim I (p,q) +if>**lim ['#*X(q)

. . R, a—0 a—0
mion can be used by simply dividing by 2. For example, we
may use the result ¢fL7] for the vacuum polarization tensor —ifcdelimI#r*¢(p+q)=0, (27
(because ofys, the imaginary part does not contribute to this a—0

function) to yield _
and so on. Equatiof21), on the other hand, shows that we

have the covariant gauge anomaly, which completely van-

lim [ #"%(p) = — 5 trTPTS(pkp”— g#*p?) ishes for anomaly-free cases without any gauge noninvariant

a—0 24 counterterms. Therefore, assuming that the Lorentz covari-
ance is restored, we can expect that the continuum limit of

<N Am i §_ 12721 (r) our formulation reproduces all the results of the covariant

—a%p? V'3 ’ regularization in the continuum theory.

(26) We thank K. Haga for collaboration in the early stage. We

are grateful to Professor K. Fujikawa for discussions and to

where the functiorL(\) is given by Eq.(3.29 of [17]. Professor H. Banerjee and Professor P. Mitra for answering

For the imaginary part of the gauge currépd), our con-  our question of3]. We are also grateful to Professor S. V.
struction(16) is quite faithful to the idea of covariant regu- Zenkin for helpful information. The work of H.S. was sup-
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APPENDIX

(A3).
Now the right-hand side of EqA1l) transforms gauge
covariantly under the infinitesimal gauge transformation.

In this appendix we present a relation between the inteJhis can be written as

grability of the imaginar%/ part ofA[U,5U] and the
(x)=0. First we define a quan-

“anomaly-free condition” A
tity
i ImA[U,é8U]

a*su ,(x);; (A1)

K#(x)jj=

We perform the infinitesimal gauge transformatiggJ in

i IMA[U,8U]

b
V) "a80, ()5

=i[ KM(X)Tb]ij 5x,y
[ TOKA00 T Sy any- (AS)

Therefore, from Eqs(A3) and (A5) we find

Eqg. (17) on the both sides of this equation. On the left-hand S

side, the gauge transformation may be generated by a differ- 55— 0, AP(y)= 2 {i(T°u,
ji

ential operator:

o
G (y)=2 | STV 55

+i[U,(y—a’)T?]y 5U (A2)

Ay—a¥) i

VIR a(XY)

—i[U,(y— aV)Tb]IkRu kI(va_av)}-
(A6)
The right-hand side of this equation can be regarded as the

covariant divergence of the functional rotati®h We can
interpret this identity from two different viewpoints. First, if

It is easy to see thaf, \°(x)GP(x) generates the infinitesi- the lattice gauge anomalt®(x) vanishes, then the covariant
mal gauge transformation. Then we can cast the gauge varigivergence of the functional rotatioR vanishes. A relation

tion on the left-hand side into the form

b n = 4 b
GYIKA(0y =5 A(Y)

(X
FI[KA(X)TP]; 8y y
—i [TbKM(X)]ij 5x+a#,y

+2 {=i[T°U, (M) TKRE(X.Y)

+Hi[U (y—a") TPl Rf (. y —a”)}.
(A3)

similar to Eq.(A6) exists in the continuum theory and when
the gauge anomaly is absent, it can be used to show the
functional rotation of the covariant gauge current vanishes.
This fact was used to show the integrability of the covariant
current in anomaly-free casg3]. In our present lattice case,
unfortunately, we could not prove that the corresponding
statement that the covariant conservati@®g) equals 0, im-
plies the vanishing oR. If the functional rotatioriA4) itself

is zero, then Poincai® lemma may be used to show the
(local) integrability of the imaginary part:

i IMA[U,8U]=6T,[U]. (A7)

On the contrary, if we assume the integrabiliy7), we

In deriving this identity, we first interchanged the places ofhaveR=0 and Eq.(A6) shows.A"(x) is independent ob.

ij andkl. This produced a “functional rotation” oK:

_ OK#(X); SKM(Y)k
Rijia(x.y)= SU, (V)i U, ()i

(Ad)

However, we can directly computd®(x) for U=1 with a
finite lattice spacing and find{?(x)=0 for U=1. Conse-
quently, the integrability requires the lattice anomaly-free
condition A°(x) =0.
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