
Disorder parameter for dual superconductivity in gauge theories

A. Di Giacomo* and G. Paffuti†

Dipartimento di Fisica dell’Universita` and INFN, I-56126 Pisa, Italy
~Received 27 May 1997!

A detailed discussion is given of the disorder parameter for dual superconductivity of lattice gauge theories,
introduced in a previous paper, and of its relation to other approaches. New lattice data are reported. Among
other results, we find that the dual superconductivity of compact U~1! is type II. @S0556-2821~97!02823-3#
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I. INTRODUCTION

Dual superconductivity of the vacuum is an important
phenomenon in gauge theories. It produces confinement of
electric charges via dual Meissner effect in the Abelian case.
There exist indications that it could be the mechanism of
color confinement in QCD@1,2#. It plays a key role in the
structure of supersymmetric gauge theories@3#. The simplest
case is the compact U~1! gauge theory.

With the Wilson action this theory shows a phase transi-
tion at bc.1.01, probably weak first order, from a phase at
low b where electric charge is confined, to a phase of free
photons@4#. Confinement is detected by measuring the string
tension from the vacuum expectation value~VEV! of Wilson
loops. The penetration depth of the electric field is finite for
b,bc , indicating the dual Meissner effect, and goes large at
the deconfining transitionbc @4#.

Monopoles are detected by their Dirac strings as units of
2p magnetic flux through the plaquettes. Their number den-
sity is not a disorder parameter for dual superconductivity, in
the same way as the number of electric charges is not for
ordinary superconductivity. However, empirically, the num-
ber density of monopoles is larger in the confined phase and
drops to zero abovebc @4#.

A legitimate disorder parameter should vanish for sym-
metry reasons in the deconfined phase and be different from
zero in the confining phase. Since dual superconductivity is
nothing but the spontaneous breaking of the U~1! symmetry
related to the magnetic charge conservation, the VEV of any
operator carrying a nonzero magnetic charge can be a disor-
der parameter. A nonzero VEV of such an operator would
indeed indicate that vacuum has not a definite magnetic
charge, i.e., that monopoles condense in it in the same way
as Cooper pairs do in the ground state of ordinary supercon-
ductors. The concept of the disorder parameter has been
known for a long time in the community of field theory and
statistical mechanics@5,6#. In the pionering numerical simu-
lations in lattice gauge theories, however, emphasis was
given to the density of monopoles as indicators of dual su-
perconductivity@4,7#.

A rigorous proof was given in Ref.@8# that monopoles
condense at lowb ’s in lattice U~1! theory with a Villain
action @9#. The proof makes use of the specific form of the

action and so did numerical attempts to extract a disorder
parameter@10#. However, probably because of the math-
ematical language of the forms, which is not so familiar to
physicists, nobody tried for a long time to export the con-
struction to the generic form of the action or to non-Abelian
gauge theories. Indeed, after Abelian projection@11#, mono-
pole condensation in non-Abelian gauge theories like QCD
always reduces to an effective U~1! with Dirac monopoles
@11,12#. Of course, the U~1! effective action is unknown, and
therefore a construction of the disorder parameter is needed,
which can work with any variant action.

Such a construction was given in Ref.@13# and immedi-
ately afterwards was used to demonstrate dual superconduc-
tivity of non-Abelian theories@14#.

This result prompted the exportation of the construction
of Refs.@8,10# from a Villain to a generic action.

In this paper we want to discuss in detail and improve the
construction of Refs.@13# ~Sec. II!, compare it to that of Ref.
@8# ~Sec. III!, showing that they are equivalent, and present a
number of numerical results for lattice U~1! with Wilson’s
action ~Sec. IV!. We will then compare our@13# way of
detecting superconductivity by the quantityr5(d/db)ln^m&,
^m& being the disorder parameter, to direct determination of
^m& or of its effective potential~Sec. IV!.

Besides confirming dual superconductivity of U~1! gauge
theory in the confined phase we show that it is of the second
kind.

The present discussion is also a useful basis to the treat-
ment of the analogous problem in non-Abelian theories,
which will be presented elsewhere.

II. DISORDER PARAMETER

The construction of Ref.@13# of the creation operator of a
monopole or antimonopole is inspired by Refs.@5,6# and is
based on the following simple idea.

In the Schro¨dinger representation where the fieldAW (x) is
diagonal, a monopole of charge 2pq/e sitting in yW is created
by adding the corresponding vector potential (1/e)bW (xW2yW )
to AW (x).

This is nothing but a translation ofAW (x), which is gener-
ated by the conjugate momentumpW (x)5EW (x), the electric
field operator. In the same way as

eipaux&5ux1a&, ~1!
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we have

UAW ~xW ,t !1
1

e
bW ~xW2yW !L 5muAW ~xW ,t !&, ~2!

with

m~yW ,t !5expF i
1

eE d3x EW ~xW ,t !bW ~xW2yW !G . ~3!

The magnetic charge operator being

Q5E d3x¹W „¹W `AW ~xW ,t !…, ~4!

the commutator@Q,m# can be evaluated by use of the ca-
nonical commutation relations

@Ei~xW ,t !,Aj~zW,t !#52 id i j d
3~xW2zW !, ~5!

giving

@Q~ t !,m~yW ,t !#5
1

eE d3x¹W „¹W `bW ~xW2yW !…•m~yW ,t !

5
q

2e
m~yW ,t !E d3x¹W S rW

r 3D 52p
q

e
m~yW ,t !.

~6!

In deriving Eq.~6! the Dirac string has been removed.
A choice forbW (xW2yW ) can be

bW ~xW2yW !5
q

2

rW`nW 3

r ~r 2rW•nW 3!
. ~7!

Alternative choices differ by a gauge transformation
bW→bW 1¹W F, which leaves the operator invariant if the Gauss
law ¹W •EW 50 is satisfied.

On the lattice the building block of the theory is the link
U m(n), which is an element of the gauge group. For U~1!,
U m(n)5eium(n) and the plaquettePmn , which is the parallel
transport along the elementary square in the planemn at the
site n, is

Pmn~n!5exp@ iumn~n!#, ~8!

with

umn5Dmun2Dnum .
a→0

a2eFmn . ~9!

The lattice version of the electric field is then

a2Ei.
1

e
Im P0i1O~a4!, ~10!

and a definition of the operatorm on the lattice@13# can be

m~yW ,n0!5expF2b(
n

bi~nW 2yW !ImP0i~nW ,n0!G
5expF2b(

nW
bi~nW 2yW !sin@u0i~nW ,n0!#G , ~11!

with b51/e2. Here bi(nW ) is the discretized version of the
monopole field, Eq.~7!. The factorb in front of the exponent
comes from the factor 1/e in the monopole charge times the
normalization factor in Eq.~10!. Usual Wick rotation to the
Euclidean region has been performed.

The form ~11! was successfully used in Ref.@13#.
A better definition ofm can be given, which coincides

with Eq. ~11! in practice, but automatically respects the com-
pactness of the theory, in that it shifts the exponent of the
links, and not the links themselves. In formulas,

m~yW ,m0!5expH b(
nW

$cos@u0i~nW ,m0!1bi~yW2nW !#

2cos@u0i~nW ,m0!#%J . ~12!

For smallbi the definition~12! coincides with Eq.~11!.
More generally, if(mnnS„umn(n)… is the action,m will be

defined as

m~yW ,m0!5expH b(
nW

@S„u0i~nW ,m0!1bi~nW 2yW !…

2S„u0i~nW ,m0!…#J ~13!

and will tend to the expression~11! as the lattice spacinga
goes to zero, when the action tends to the continuum action.

The prescription of excluding Dirac string on a lattice
being either to locate the monopole atyW between two neigh-
boring sites or to eliminate in the sum the arrow of sites
wherebW is singular, it is easy to verify that the definitions
~12! and ~11! give the same results from the practical point
of view.

If the action is the Wilson’s action@15#

S5 (
n,~mn!

b„cos~umn!21…, ~14!

then the vacuum expectation value ofm is given by

^m&5
1

ZE F)
m,n

dum~n!G exp~S! m ~15!

or, making use of Eq.~12!,

^m~yW ,m0!&5
1

ZE F)
m,n

dum~n!G exp~S1S8!, ~16!

whereS8 is the exponent of Eq.~12!.
Adding S8 simply amounts to modify the (0,i ) plaquettes

on the time slicen0, by addition ofbi to u0i ,
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S1S85(
n

(
~ i , j !51

3

b„cos@u i j ~n!21#…

1 (
n,n0Þm0

b„cos@u0i~n!21#…

1(
nW

$cos@u0i~nW ,m0!1bi~mW 2nW !#21%. ~17!

If a number of monopoles and antimonopoles are created at
time n0, bi should be the sum of the corresponding
vector potentials. The generic correlation function
^m(x1)•••m(xn)& is defined aŝ m& in Eq. ~16!, with the
change fromS to S1S8 extended to all the time slices where
monopoles or antimonopoles are created.

So, for example, the correlation function where a mono-
pole is created inyW50 at t50 and destroyed att5m0 is
given by

^m~yW ,0! m̄~yW ,m0!&5
1

ZE exp~S1Smm̄
8 !.

S1S8 differs from S by the replacement

u0i~nW ,0!→u0i~nW ,0!1bi~nW 2yW ! at t50,

u0i~nW ,m0!→u0i~nW ,m0!2bi~nW 2yW ! at t5m0 . ~18!

Monopole condensation can be detected from the asymptotic
value of ^m(yW ,0) m̄(yW ,m0)&. Indeed, asm0 grows large, by
the cluster property

^m~yW ,0! m̄~yW ,m0!&.C exp~2m0M !1^m&2. ~19!

Notice that^m&5^m̄& by C invariance, and the positionyW is
irrelevant by translation invariance.M is the mass of the
lowest state with monopole chargeq in units of inverse lat-
tice spacing.

To visualize thatm really creates a monopole att50
consider again the change it produces according to Eq.~18!.
Since

u0i~nW ,0!5u i~nW ,1!2u0~nW ,0!2u0~nW 1 î ,0!1u0~nW ,0!,
~20!

the change~18! of u0i can be considered as a shift:

u i~nW ,1!→u i~nW ,1!2bi~nW 2yW !. ~21!

A change of variables,

u i85u i~nW ,1!2bi~nW 2yW !, ~22!

in the Feynman integral~16!, which leaves the measure in-
variant, brings back the plaquetteu0i to its unperturbed form.
However, the change of variables~22! changes the (i , j )
plaquette atn051 as follows:

u i j ~nW ,1!→u i j ~nW ,1!1D ibj~nW 2yW !2D jbi~nW 2yW !. ~23!

This means that atn051 the magnetic field of a monopole
located atnW 5yW is added to the original configuration. The
change of variables~21! also affects the plaquetteu0i(nW ,2),
and amounts to the shift

u0i~nW ,2!→u0i~nW ,2!2bi~nW 2yW !. ~24!

Again a change of variablesu i(nW ,2)→u i(nW ,2)2bi(nW 2yW ) re-
storesu0i(nW ,2) to the initial form at the price of adding a
monopole at timet52 and of producing a shift in the form
~24! on u0i(nW ,3). This procedure can be iterated. Att5m0
this procedure ends, becausebi cancels with the shift of op-
posite sign corresponding to the creation of the antimono-
pole.

Thus the correlator̂m(yW ,0) m̄(yW ,m0)& simply consists in
having a monopole propagating in time, from 0 tom0.

The construction above simply generalizes to more com-
plicated forms of the action, where Wilson loops other than
plaquettes enter.

III. COMPARISON WITH OTHER APPROACHES

In this section we want to discuss the relation of our ap-
proach to that of Ref.@8#.

In the language of Ref.@8# um(n) is a one-form associated
with the links anddu is the two-form associated with the
plaquettes or the field strength tensor.

In this language the partition function is

Z5E D@u# Fb~du!. ~25!

For Wilson’s action,

Fb5expS b(
plaq

@cos~du!21# D . ~26!

For Villain’s action,

Fb5(
n

expH 2
b

2(
plaq

idu12pni2J . ~27!

To define a disorder operator^m& the action is modified by
adding a two-formX to du. We define

Z~X!5E D@u# Fb~du1X! ~28!

and

^m&5
Z~X!

Z~0!
. ~29!

Any change ofX of the formX→X1dL leaveŝ m& invari-
ant, in thatdL corresponds to a shift ofu to u1L which is
reabsorbed by a change of the~periodic! integration vari-
ables.

Since a genericX can be written as~Hodge decomposi-
tion!
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X5da1d
1

D
dX, ~30!

the above invariance implies that^m& only depends ondX.
dX is a three-form@dX#mna and its dual *dX is a one-

form, which is a magnetic current, sinceX is a field strength.
Explicitly

dXmna52~]aXmn1]mXna1]nXam! ~31!

and

Jr
M5

1

6
«rmna dXmna . ~32!

The magnetic current~32! is identically conserved. In the
language of forms

dJM50. ~33!

The magnetic charge density which describes the creation of
a monopole of charge 2pq in the siteyW at time y0, and its
destruction at timey80 is

J0
M~xW ,x0!52pqd3~xW2yW !@u~x02y0!2u~x02y80!#.

~34!

Since the current is conserved,

¹W JW M52D0J0
M

522pqd3~xW2yW !@d~x02y0!2d~x02y80!#.

~35!

A solution of Eq.~35! is

JW M~xW ,x0!52pq
1

4p

xW2yW

uxW2yW u3
@d~x02y0!2d~x02y80!#.

~36!

The correspondingX is then

X̄5d
1

D
JM. ~37!

The correlation function of a monopole antimonopole will
then be

^m~yW ,y0! m̄~yW ,y80!&5
Z~ X̄!

Z~0!
. ~38!

This is the construction of Ref.@8#.
Notice thatZ(X) is periodic inX ~with period 2p) since

the action is compact. In factZ only depends ondX and is
periodic also indX with the same period. This can be rigor-
ously proved by going to a Fourier transform:

Z~dX12pn!5Z~dX!. ~39!

Consider now a one-formV on the dual lattice, with support
on a line. IfdV50, the support must be a closed line. IfV
is integer valued in units of 2p, the change

dX5* JM→dX5* JM1V

leavesZ invariant.
In the notation of Ref.@8#, JW M is denoted by 2pqB and

J0
M by 22pqv and

dX̄52pq~B2v!. ~40!

Any X with the samedX will give the same correlation
function ~38!. The construction presented in Sec. II corre-
sponds to the choice

X̄0i8 5bi~xW !@d~x02y0!2d~x02y80!#,

X̄i j8 50, ~41!

or, in the dual language,

~* X̄8!0i50,

~* X̄8! i j 5« i jkbk~xW !@d~x02y0!2d~x02y80!#, ~42!

and

* dX̄m8 5d~* X̄8!m52(
r

Dr~* X!rm . ~43!

Explicitly

d~* X̄8!050, d~* X̄8! i52(
k

Dk~* X!ki ,

and, by Eqs.~41! and ~7!,

d~* X̄8! i52pq
1

4p

xj2yj

uxW2yW u3
@d~x02y0!2d~x02y08!#

22pqd~x12y1!d~x22y2!u~x32y3!@d~x02y0!

2d~x02y08!#. ~44!

Our *dX̄8 differs from *dX̄ ~40! of Ref. @8# by a one-form
integer valued in units of 2p, with support on a closed line.
Therefore our correlator coincides with that of Ref.@8#, not
only for the Villain action, but for the generic form of the
action.

This section is a cultivated way of presenting the argu-
ment already given at the end of the last section.

IV. NUMERICAL RESULTS
FOR THE DISORDER PARAMETER

As discussed in Sec. II, we measure the correlation func-
tion

D~x0!5^m~xW ,x0!,m̄~xW ,0!&.Ae2Mx0
1^m&2. ~45!

The aim is to extract̂m&2, which will signal dual supercon-
ductivity, andM , which is the lowest mass in the sector of
magnetically charged excitations.
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A direct determination ofD can be done, as we will dis-
cuss below, but is rather noisy from the numerical point of
view. The reason for this is thatD,

D5
1

ZE Du exp~S1S8!, ~46!

is the average of exp(S8), S8 being the modification of the
action on the time slicest50 and t5x0, and S8 fluctuates
roughly like the square root of the spatial volume.

A way to go around this difficulty is to measure instead of
D the quantity@12#

r~xW ,x0,xW ,0!5
d

db
lnD. ~47!

At a large distance (x0→`),

r`.2
d

db
ln^m&, ~48!

and sincer(b50)51, ^m& can be reconstructed as

^m&5expS 1

2E r~b8!db8D . ~49!

From Eq.~46!,

r`5^S&S2^S1S8&S1S8. ~50!

The definition ofr is analogous to the definition of the in-
ternal energy in terms of the partition function in statistical
mechanics.r is now a well-defined quantity and easy to
measure and, as we shall see, can give all the information
needed to detect dual superconductivity.

We have made simulations on a 63312, 83316, and
103320 lattices putting the time axis along the long edge of
the lattice. The algorithm used was the heat bath. The typical
number of configurations was 1.33105 for 63312, and
63104 for 83316 and 103320 lattices. The computer used
was APE-QUADRIX.

A typical behavior ofr versusx0 is shown in Fig. 1, for a
83316 lattice, showing that an asymptotic value is reached

by r as a function ofx0. The massM of the exponential in
Eq. ~45! can be estimated and is typically;(223)/a. We
will come back again to this point in the following.

The quantityr` as a function ofb is plotted in Fig. 2. For
all of our lattices sizesr` is negative and sharply decreases
approachingbc . This corresponds, by Eq.~49! to a behavior
of ^m& which slowly decreases from the value^m&51 at
b50, and has a sharp drop atbc .

To better analyze this behavior we compare it for the
three lattice sizes under study. Forb,bc below the negative
peak,r increases withL, showing that asL→`, ^m& reaches
a finite, nonzero value. Magnetic U~1! is therefore spontane-
ously broken, and forb,bc the system is a dual supercon-
ductor ~Fig. 3!.

For b.bc we know that the typical correlation length of
the system becomes large. There is evidence that the transi-
tion is weak first order@16#, with some controversy@17#.

The correlation lengthj becomes large asb approaches
bc in a range ofb ’s and eventually stops growing before
reaching it. This means that, in the neighborhood ofbc ,

m5mS j

L
,
a

j D.mS j

L D . ~51!

FIG. 1. Monopole antimonopole correlation in time~lattice
83316).

FIG. 2. r` as a function ofb. The negative peak signals the
phase transition~lattice 83316).

FIG. 3. r` versus 1/L for b51.009.
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If the transition were second order, a critical indexn would
exist such that

j .
b→bc

2

~bc2b!2n. ~52!

In our case some effective indexn could anyhow exist,
describing a behavior ofj of the form ~52! in the
above-mentioned range ofb ’s. Thenj/L can be traded with
L1/n(bc2b) and a finite size scaling behavior results,

m5m@L1/n~bc2b!#, ~53!

implying for r5(d/db)ln^m& a scaling behavior

r

L1/n
5 f „L1/n~bc2b!…. ~54!

Equation~54! allows a determination ofn andbc , together
with a determination of the exponentd by which ^m& tends
to zero atbc in the infinite volume limit.

The quality of the scaling is shown in Fig. 4. Points cor-
responding to different lattice sizes follow the same univer-
sal curve only for the appropriate values ofbc and n, Eq.
~55!. If bc or n are changed by one standard deviation from
the values of Eq.~55!, points from different lattices start
splitting apart from each other. A best square fit gives

bc51.011 60~5!, ~55!

n50.29~2!.

The value~55! of bc is consistent with a determination based
on completely different methods@16#. As for n it is consis-
tent within two standard deviations with the value expected
for a first order phase transition~0.25!. It is also compatible
with the determination of@17#. If m→(bc2b)d,

r

L1/n
.2

d

L1/n~bc2b!
. ~56!

An estimate ford from the behavior in Fig. 4 is

d51.160.2. ~57!

It is obtained by a best fit of Eq.~56! to the universal curve
of Fig. 4 in a range of values of 3<(bc2b)L1/n<10 where
scaling is expected to hold, andj<L.

In the regionb→` r can be computed in the weak cou-
pling approximation@13#. The result is, for latticesL332L,

r525.05L14.7711O~1/L !, ~58!

giving r→2` or ^m&50 in the infinite volume limit, in
agreement with general arguments@5#: Only asV→` does
the disorder parameter vanish in the disordered phase, if
boundary conditions are not free. The leading term of Eq.
~56! accounts for numerical data already at rather low values
of b. At b51.2 andL56 it gives r5251.06, to be com-
pared with the numerical value252.8560.43, and atb51.8
andL58 it givesr5271.26, to be compared with the nu-
merical value277.2260.80. The plot of ^m& computed
from the measuredr by use of the Eq.~49! is shown in Fig.
5. The vertical scale is logarithmic and errors are quite large.
The mass of the monopole in Eq.~45! should scale properly
in the limit b→bc but we have large errors and this behavior
is not clearly visible~Fig. 6!.

FIG. 4. Finite size scaling.rL1/n is plotted versus (bc2b)L1/n.

FIG. 5. ^m& determined from measuredr ~lattice 103320).

FIG. 6. Mass of the monopoleM ~squares! and mass of the dual
photonm ~circles! versusb.
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In order to determine if the superconductor is of the first
kind or second kind we have also measured the penetration
depth 1/mA of the electric field on the lines of Ref.@4#.1 A
constant electric field parallel to the space boundary of the
lattice is put on a face of the space lattice and its value is
determined inside the bulk as a function of the distance from
the boundary. An exponential behavior is found, with a pen-
etration depth which properly scales by approaching the
critical point, consistently with the effective critical index.

The corresponding mass is shown in Fig. 6 together with
the mass extracted from the correlation length, Eq.~45!. It
appears clearly thatM>2mA , indicating that the supercon-
ductor is of the second kind. This same problem has been
approached by looking at the Abrikosov flux tubes generated
by propagating charges. The idea is to compare the depen-
dence of the electric field inside the tube on the transverse
distancex' from the center of the tube, with what is ex-
pected from London equations. Their result is that the system
seems to be at the border between first and second kinds
@18#. The method is ingenuous. However, derivatives are ap-
proximated by finite differences, the penetration depth being
a few lattice spacings~2–3!, and this can produce systematic
errors. Our method would give a more precise determination
if we were able to determine better the massM of Eq. ~45!.
The question deserves further study.

Finally we want to comment on the possibility of deter-
mining numerically^m& directly and not through the mea-
surement ofr. As we have seen this is not strictly necessary,
sincer gives complete information about the phase transi-
tion. However, the problem has some interest by itself.

The definition of^m& is ^ebS8&, the average being per-
formed with the weightDuebS/Z. S8 is itself a random vari-
able in this ensemble which has some average value^S8&
with a width s5A^S82&2^S8&2.

A general theorem of probability theory states that if a
random variable is distributed with a probability lawp(x),
with *p(x)dx51, then its averagexn5(1/n)(kxk is distrib-
uted as a Gaussian for largen if and only if @19#

lim
X→`

X2E
uxu.X

p~x!dx

E
uxu,X

x2p~x!dx

50. ~59!

If Eq. ~59! holds, then

^xn& →
n→`

^x&5E x p~x!dx ~60!

and the width of the distribution is, in this limit,

sn5
s

An
,

with

s25^x2&2^x&2.

If we denote byy the variablebS82^bS8& and byp(y) its
probability distribution, then the variablem,

m5exp~bS8!5m̄exp~y! @m̄5exp~^bS8&!#,

will be distributed as

p~m!5pF lnS m

m̄
D G dlnS m

m̄
D . ~61!

If p decreases as exp(2y2/2sy
2) asy→`, then the probabil-

ity distribution ~61! obeys the hypothesis~59! of the theorem
of central limit. In fact a much slower decrease would be
enough.

If, for the sake of the argument, we assume thatp(y) is
Gaussian, then we easily compute, by use of Eq.~61!,

^m&5m̄expS sy
2

2 D ,

sm5m̄exp~sy
2!. ~62!

Equations~62! show why a direct determination of^m& is
affected by wild fluctuations: The width is indeed bigger
than the value of̂m& itself. The exponential dependence on
S8 strongly distorts the distribution when going fromS8 to
m.

The histogram of the values ofm is related to the con-
strained potential by the relation@10,20#

exp@2V~F!#5E @Du#exp~bS!d~m2F!.

V(F) has a minimum at̂ bS8&1sy
2/2. If instead we con-

struct the histogram ofbS8 itself, the minimum will appear
at ^bS8& which is displaced bysy

2/2 with respect to the real
minimum.

The problem is that the histogram inm is exponentially
large to fill adequately, sincem fluctuates on an exponential
scale~typical values ofm on a configuration for a reasonable
lattice size range from 10150 to 0!. A histogram of lnm, i.e.,
of bS8, is easier to compute.

However, to go back to the distribution inm, i.e., to com-
pute^m& andsm , we must know the distributionp(y) with
great precision. In the Gaussian approximation the solution is
given by Eq.~62!. A cluster expansion can be attempted, to
evaluate non-Gaussian effects, but the problem is only
shifted. Higher cumulants ofp(y) are more and more noisy
to determine numerically, and the computer time needed be-
comes comparable to the one needed for the direct determi-
nation of^m&. Finally a finite size scaling analysis would be
needed, analogous to what we did in Sec. IV.

This is to justify why we usedr to extract information on
the phase transition, instead of^m& itself or of its effective
potential. The problem is currently under further study.
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