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Disorder parameter for dual superconductivity in gauge theories
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A detailed discussion is given of the disorder parameter for dual superconductivity of lattice gauge theories,
introduced in a previous paper, and of its relation to other approaches. New lattice data are reported. Among
other results, we find that the dual superconductivity of compdt} I3 type II. [S0556-282(97)02823-3
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[. INTRODUCTION action and so did numerical attempts to extract a disorder
parameter{10]. However, probably because of the math-

Dual superconductivity of the vacuum is an importantematical language of the forms, which is not so familiar to
phenomenon in gauge theories. It produces confinement ghysicists, nobody tried for a long time to export the con-
electric charges via dual Meissner effect in the Abelian casestruction to the generic form of the action or to non-Abelian
There exist indications that it could be the mechanism ofgauge theories. Indeed, after Abelian projecfibf|, mono-
color confinement in QCD1,2]. It plays a key role in the pole condensation in non-Abelian gauge theories like QCD
structure of supersymmetric gauge theofigls The simplest always reduces to an effective(l) with Dirac monopoles
case is the compact(ll) gauge theory. [11,12. Of course, the (1) effective action is unknown, and

With the Wilson action this theory shows a phase transitherefore a construction of the disorder parameter is needed,
tion at 8,=1.01, probably weak first order, from a phase atwhich can work with any variant action.
low B where electric charge is confined, to a phase of free Such a construction was given in RgL3] and immedi-
photong 4]. Confinement is detected by measuring the strincately afterwards was used to demonstrate dual superconduc-
tension from the vacuum expectation valMEV) of Wilson tivity of non-Abelian theorieg14].
loops. The penetration depth of the electric field is finite for  This result prompted the exportation of the construction
B< B., indicating the dual Meissner effect, and goes large aof Refs.[8,10] from a Villain to a generic action.
the deconfining transitiog. [4]. In this paper we want to discuss in detail and improve the

Monopoles are detected by their Dirac strings as units ofonstruction of Refq.13] (Sec. I), compare it to that of Ref.
27 magnetic flux through the plaquettes. Their number denf8] (Sec. 1)), showing that they are equivalent, and present a
sity is not a disorder parameter for dual superconductivity, imumber of numerical results for lattice(l) with Wilson’s
the same way as the number of electric charges is not foaction (Sec. V). We will then compare ouf13] way of
ordinary superconductivity. However, empirically, the num-detecting superconductivity by the quantity- (d/d8)In{u),
ber density of monopoles is larger in the confined phase angu) being the disorder parameter, to direct determination of
drops to zero abovg, [4]. (u) or of its effective potentia{Sec. V).

A legitimate disorder parameter should vanish for sym- Besides confirming dual superconductivity ofll) gauge
metry reasons in the deconfined phase and be different froitiieory in the confined phase we show that it is of the second
zero in the confining phase. Since dual superconductivity i&ind.
nothing but the spontaneous breaking of th@)symmetry The present discussion is also a useful basis to the treat-
related to the magnetic charge conservation, the VEV of anynent of the analogous problem in non-Abelian theories,
operator carrying a nonzero magnetic charge can be a disowhich will be presented elsewhere.
der parameter. A nonzero VEV of such an operator would
indeed indicate that vacuum has not a definite magnetic
charge, i.e., that monopoles condense in it in the same way Il. DISORDER PARAMETER

as Cooper pairs do in the ground state of ordinary supercon- The construction of Ref13] of the creation operator of a

ductors. The concept of the disorder parameter has bee{ﬂonopole or antimonopole is inspired by Refs,6] and is
known for a long time in the community of field theory and pased on the following simple idea.

Sta.‘t'St'C".’“ mec_hanlcES,G]. In the_ pionering numerical simu- In the Schrdinger representation where the fieizﬂx) is
lations in lattice gauge theories, however, emphasis was

given to the density of monopoles as indicators of dual sudiagonal, a monopole of chargerg/e sitting iny is created

perconductivity{4,7]. by adding the corresponding vector potentiale)b{x—y )
A rigorous proof was given in Ref8] that monopoles to A(x).
condense at lows’s in lattice U(1) theory with a Villain This is nothing but a translation @(x), which is gener-

action[9]. The proof makes use of the specific form of the ated by the conjugate momentuﬁf(x)=li(x), the electric

field operator. In the same way as
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we have - . 0i/ 2
u(y:ng)=exg = B2, b'(n—y)ImII%(n,n)
N .. . ..
A(x,t) + Eb(x—y)>=,u|A(x,t)>, 2 R A
=exp[—ﬁ2 b'(n—y)sin fi(n,ng)] |, (11)
with "
1 with 8= 1/e2. Hereb'(n) is the discretized version of the
,u()7,t)=ex;{i _f d3x E()Z,t)ﬁ()?—)?)} 3) monopole field, Eq(7). Thg factorg in front of the ex_ponent
e comes from the factor &/in the monopole charge times the

normalization factor in Eq(10). Usual Wick rotation to the
Euclidean region has been performed.

The form(11) was successfully used in R¢fL3].

A Dbetter definition ofu can be given, which coincides
with Eq. (11) in practice, but automatically respects the com-
pactness of the theory, in that it shifts the exponent of the

The magnetic charge operator being

Q= f d3xV (VAA(X,1)), (4)

nonical commutation relations
[Ei(x,1),A(z,1)]=—i8;6%(x—2), (5)
giving
[Q(t),M(ﬁ.t)]I% f AV (VAB(X=Y)- (Y1)

>

N N N
= <y,t)fd3xv(r—3>=2wgmy,t>.
®)

In deriving Eq.(6) the Dirac string has been removed.
A choice forb(x—y) can be

... g rAng

b(x—y)=z ——————. 7
(x=y) 2 1=t 1) ()
Alternative choices differ

law V-E=0 is satisfied.

u(%mo>=exp{ B2 {cog 6°(n,mg)+b'(y—n)]

—cog e°‘<ﬁ,mo>]}] : (12)

For smallb’ the definition(12) coincides with Eq(11).
More generally, iz ,,,S(6,,,(n)) is the actionu will be
defined as

-

M(yamo):eXp| B2 [S(6%(n,mg)+bi(n—y))
—s<e°i<ﬁ,mo>)]} (13)

and will tend to the expressiafil) as the lattice spacing

goes to zero, when the action tends to the continuum action.

The prescription of excluding Dirac string on a lattice
being either to locate the monopoleﬁabetween two neigh-

oL ) by a gffluge_ trahsformatlon boring sites or to eliminate in the sum the arrow of sites
b—b+V®, which leaves the operator invariant if the Gauss

whereb is singular, it is easy to verify that the definitions

(12) and(11) give the same results from the practical point

On the lattice the building block of the theory is the link of view.

U ,(n), which is an element of the gauge group. Fddl)
U ,(n)=¢€"%M and the plaquettél ,,, which is the parallel
transport along the elementary square in the planeat the
siten, is

I0,,,(n) =exdig,,(n], (8)
with

0,,=A,0,—A,0, = a’eF,,. 9)

M
a—0
The lattice version of the electric field is then
1 )
aZEizElm 1%+ 0(a%), (10

and a definition of the operatqr on the latticg/13] can be

If the action is the Wilson’s actiofil5]

S= X B(cosh,,)—1), (14
n,(uv)
then the vacuum expectation value @fis given by
1
(wy=5 f IT do.(n)| exq(s) (15)
Z) |un
or, making use of Eq(12),
- 1 )
<u<y,mo>>=zf I do,(m)| exp(s+s), (19
M

whereS’ is the exponent of Eq12).
Adding S’ simply amounts to modify the (10, plaquettes
on the time sliceny, by addition ofb; to 6,
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3

S+s'=2> > Blcod;;(n)—1])

n (i,j)=1

+

n,ng#mg

B(cog Opi(n)—1])

+ 2, {cog 64i(n,mg) +b'(m—n)]-1}. (17
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This means that aty=1 the magnetic field of a monopole
located atn=y is added to the original configuration. The

change of variable§21) also affects the plaquett@;(n,2),
and amounts to the shift
60i(N,2)— 66i(N,2) —by(N—Y). (24)

Again a change of variable(n,2)— 6;(n,2)—b;(n—y) re-
storesHOi(ﬁ,Z) to the initial form at the price of adding a

If a number of monopoles and antimonopoles are created %onopole at time=2 and of producing a shift in the form

time ng, b; should be the sum of the corresponding
function

vector potentials. The generic correlation
(p(x1)- - - m(x,)) is defined ag(u) in Eq. (16), with the

change fronSto S+ S’ extended to all the time slices where

monopoles or antimonopoles are created.

So, for example, the correlation function where a mono-

pole is created ir37=0 att=0 and destroyed dt=m, is
given by

L 1 ,
(1(y.0) p(y,mo)=5 J exp(S+S, ).

S+ S’ differs from S by the replacement
001(N,0— 0;i(N,0) +bj(n—y) att=0,

B0i(N,Mg)— 6oi(N, M) —b(N—y) att=my. (18)

(24) on 90i(ﬁ,3). This procedure can be iterated. ¥t mg

this procedure ends, becaugecancels with the shift of op-
posite sign corresponding to the creation of the antimono-
pole.

Thus the correlatotu(y,0) w(y,mp)) simply consists in
having a monopole propagating in time, from Onbg.

The construction above simply generalizes to more com-
plicated forms of the action, where Wilson loops other than
plaguettes enter.

Ill. COMPARISON WITH OTHER APPROACHES

In this section we want to discuss the relation of our ap-
proach to that of Ref8].

In the language of Ref8] 6,,(n) is a one-form associated
with the links anddé is the two-form associated with the
plaquettes or the field strength tensor.

In this language the partition function is

Monopole condensation can be detected from the asymptotic

value of (u(y,0) u(y,m)). Indeed, asn, grows large, by
the cluster property
(1(Y,0) u(y,Mg))=C exp(—moM)+(u)*  (19)

Notice that()=(u) by C invariance, and the positionis
irrelevant by translation invariancé/ is the mass of the
lowest state with monopole chargein units of inverse lat-
tice spacing.

To visualize thatu really creates a monopole a0

consider again the change it produces according ta ).
Since

60i(n,0)= 6;,(N,1)— 6(n,0) — Bp(N+1,0) + 6,(N,0),

(20)
the chang€18) of 6, can be considered as a shift:
6i(N,D—6,(n,H—bi(n—y). (2D
A change of variables,
6/ =6,(n,)—Db(n—y), (22

in the Feynman integrgll6), which leaves the measure in-
variant, brings back the plaquetfg, to its unperturbed form.
However, the change of variablg®2) changes thei(j)
plaguette ahy=1 as follows:

6;(n,1)— 6;(n,1)+Abj(n—y)—Ajbi(n—y). (23

Z=J’ D[ O] Dp(da). (25

For Wilson’s action,
cbﬁzexp(ﬁIZ [cos(d&)—l]). (26)

plag
For Villain's action,
_ B 2
CDB—Z ex _52 [do+27n|| ] (27
n plaq

To define a disorder operatr) the action is modified by
adding a two-formX to d9. We define

Z(X)=f D[ 0] P p(do+X) (28
and
Z(X)
(m)= Z0)" (29

Any change ofX of the formX—X+dA leaves(u) invari-
ant, in thatd A corresponds to a shift of to 6+ A which is
reabsorbed by a change of tligeriodig integration vari-
ables.

Since a generiX can be written agHodge decomposi-
tion)



1
X=da+ 5de, (30)

the above invariance implies thgt) only depends ol X.
dXis a three-form{ dX],,, and its dual dX is a one-
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dX=*IM—dX=*I"+Q

leavesZ invariant.

In the notation of Ref[8], I is denoted by 2qB and
J) by —27qw and

form, which is a magnetic current, sin¥eis a field strength.

Explicitly dX=27q(B—w). (40)
dXupa= = (0aXpt 3. X0t ,X0u) (8D Any X with the samedX will give the same correlation

d function (38). The construction presented in Sec. Il corre-

an sponds to the choice
1 — -
3 =5 € pura Wluva- (32 Xgi=bi(x)[ 8(x°—y®) = 8(x°=y"9)],
The magnetic currenf32) is identically conserved. In the X_{J:O, (41)
language of forms
or, in the dual language,
sIM=0. (33 _
. . . . . (*X’)OiZO,
The magnetic charge density which describes the creation of
a monopole of charge2q in the site37 at timey®, and its XY =g bu()[ S(x0—vO0) — S(x0— v’ O 42
destruction at timQ/'O is ( )Ij €ijk k(X[ &( y°) ( y'9)1, (42
M(x,x° —V 0_0 0_ 0 and
Jo (x,x%)=2mq8%(x—y)[8(x°—y®) — O(x°—y'?)].
(34 I

_ _ *AX = 8(*X") == 2 A (*X),p - (43)

Since the current is conserved, P
VIM=—Agd¥ Explicitly
— v\ 0__,,0y_ 0_,70 I _
27Tqb€(x YIL(X"—y")—a(x"—y'")]. S5(* X')0=0, 5(*x/)i:_2k A(* X)ii s
(35

A solution of Eq.(35) is and, by Egs(41) and(7),

oy > 1 )Z—)7 — 1 Xi—vy;
IM(X,X0) = 27q — ———=—[ 5(X°—y°) — 5(x°—y'9)]. S(* X' )i =2mq— ——==[ 8(Xo—Yo) — 8(Xo— ¥
(X,x%) LR g |x—y|3[ (X"=y )= 6(x"=y")] (*X")i S ype |x—y|3[ (Xo—Yo) ~ 8(Xo~ Yo) ]
(36)
—27q (X1~ Y1) 8(X2—Y2) 0(X3—Y3)[ 6(Xo—Yo)
The corresponding is then
Pondin ~ (%00 (44

— 1
X= 5K‘JM- (37) Our *d X' differs from *d X (40) of Ref.[8] by a one-form

integer valued in units of 2, with support on a closed line.
The correlation function of a monopole antimonopole will Therefore our correlator coincides with that of Rg], not
then be only for the Villain action, but for the generic form of the
action.
This section is a cultivated way of presenting the argu-
ment already given at the end of the last section.

_ZX)

200)" (39

((y,Yo) m(y,y'®)

IV. NUMERICAL RESULTS
FOR THE DISORDER PARAMETER

This is the construction of Ref8].

Notice thatZ(X) is periodic inX (with period 27) since
the action is compact. In fa@ only depends o X and is
periodic also ind X with the same period. This can be rigor-
ously proved by going to a Fourier transform:

As discussed in Sec. Il, we measure the correlation func-
tion
> — - _ MO
Z(dX+27n)=2Z(dX). (39 D(x0) = (u(X,x%), u(x,00)=Ae" M +(u)?.  (45)
Consider now a one-forf on the dual lattice, with support The aim is to extractu )2, which will signal dual supercon-
on a line. If 5Q0=0, the support must be a closed line(}f  ductivity, andM, which is the lowest mass in the sector of

is integer valued in units of 2, the change magnetically charged excitations.
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FIG. 1. Monopole antimonopole correlation in timéattice
83X 16).

A direct determination of> can be done, as we will dis-

cuss below, but is rather noisy from the numerical point of

view. The reason for this is tha®,

1
D= Zf DO exp(S+9'), (46)
is the average of exf{), S’ being the modification of the

action on the time slices=0 andt=x° and$S’ fluctuates
roughly like the square root of the spatial volume.
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FIG. 2. p.. as a function of3. The negative peak signals the
phase transitiorlattice 8 16).

by p as a function o&°. The massVl of the exponential in
Eq. (45 can be estimated and is typicalty(2—3)/a. We
will come back again to this point in the following.

The quantityp., as a function of3 is plotted in Fig. 2. For
all of our lattices sizeg.. is negative and sharply decreases
approachings. . This corresponds, by E¢49) to a behavior
of (u) which slowly decreases from the valyg)=1 at
B=0, and has a sharp drop &t .

To better analyze this behavior we compare it for the

A way to go around this difficulty is to measure instead ofthree lattice sizes under study. F®+ 3. below the negative

D the quantity[12]

- - d
0 _
p(X, X", x,0)= dﬂInD' (47)
At a large distancex®— ),
2—d I 48
Po= dﬂ n(lu’>1 ( )

and sincep(B=0)=1, (u) can be reconstructed as

1
<M>=6XD(§ J p(ﬁ')dﬁ'). (49)
From Eq.(46),

p==(S)s=(S+S)s+ - (50

The definition ofp is analogous to the definition of the in-
ternal energy in terms of the partition function in statistical
mechanics.p is now a well-defined quantity and easy to
measure and, as we shall see, can give all the informatio =

needed to detect dual superconductivity.
We have made simulations on &%12, 8x16, and

10°X 20 lattices putting the time axis along the long edge of
the lattice. The algorithm used was the heat bath. The typic:

number of configurations was 30 for 63x12, and

6x 10* for 83x 16 and 18x 20 lattices. The computer used

was APE-QUADRIX.
A typical behavior ofp versusx® is shown in Fig. 1, for a

83X 16 lattice, showing that an asymptotic value is reached

peak,p increases with., showing that a& —, {u) reaches
a finite, nonzero value. Magnetic(U is therefore spontane-
ously broken, and fop< 8. the system is a dual supercon-
ductor (Fig. 3).

For B=B. we know that the typical correlation length of
the system becomes large. There is evidence that the transi-
tion is weak first ordef16], with some controversjy17].

The correlation lengtl¥ becomes large a8 approaches
Bc in a range of’s and eventually stops growing before
reaching it. This means that, in the neighborhoogBgf

§ a 3
rEr g ) (51
20.0 : .
100 | -
00 | 3 . ;
-10.0 n :
0.05 0.10 0.15 0.20

1L

FIG. 3. p,., versus 1 for B=1.009.
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FIG. 4. Finite size scalingpL" is plotted versus §.— B)L".

If the transition were second order, a critical indexvould
exist such that

§ = (Be—B) " (52
B—B.

In our case some effective index could anyhow exist,
describing a behavior of¢ of the form (52) in the
above-mentioned range @fs. Thené/L can be traded with
LY(B.— B) and a finite size scaling behavior results,

pw=pu[L*(B.~B)], (53
implying for p=(d/dB)In{u) a scaling behavior

L= HL(B— B)) (54

Ll/V ¢ ’

Equation(54) allows a determination of and 3., together
with a determination of the exponedtby which (u) tends
to zero atB. in the infinite volume limit.
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FIG. 5. (u) determined from measurgd (lattice 16x 20).

It is obtained by a best fit of Eq56) to the universal curve
of Fig. 4 in a range of values of2(B,— B)LY*<10 where
scaling is expected to hold, argL.

In the regionB—o p can be computed in the weak cou-
pling approximatior{13]. The result is, for lattices3x 2L,

p=—5.08+4.771+0O(1/L), (58)

giving p— —o or (u)=0 in the infinite volume limit, in
agreement with general argumepf: Only asV—« does

the disorder parameter vanish in the disordered phase, if
boundary conditions are not free. The leading term of Eq.
(56) accounts for numerical data already at rather low values
of B. At B=1.2 andL=6 it givesp=—51.06, to be com-
pared with the numerical value52.85+0.43, and a3=1.8
andL=8 it givesp=—71.26, to be compared with the nu-
merical value —77.22+0.80. The plot of(x) computed

The quality of the scaling is shown in Fig. 4. Points cor- from the measureg by use of the Eq(49) is shown in Fig.
responding to different lattice sizes follow the same univer-5- The vertical scale is logarithmic and errors are quite large.

sal curve only for the appropriate values gf and v, Eq.

The mass of the monopole in E@5) should scale properly

(55). If B, or v are changed by one standard deviation fromin the Iimit,8—>ﬁ9 but we have large errors and this behavior
the values of Eq(55), points from different lattices start 1S not clearly visible(Fig. 6).

splitting apart from each other. A best square fit gives
B.=1.011 6Q5), (55

»=0.292).

The valug(55) of 8. is consistent with a determination based

on completely different method4.6]. As for v it is consis-

tent within two standard deviations with the value expectec

for a first order phase transitid0.25. It is also compatible
with the determination of17]. If u—(B.— B)?,

4 ° (56)
Ll/V Ll/V(ﬁc_ﬁ) '
An estimate fors from the behavior in Fig. 4 is
6=1.1+0.2. (57

2.0 T

15 | -

= L
= 1.0

0.0
0.980

0.990 1.000 1.010

FIG. 6. Mass of the monopolM (squaresand mass of the dual
photonm (circles versusg.
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In order to determine if the superconductor is of the firstif we denote byy the variableBS’ —(8S’) and by (y) its
kind or second kind we have also measured the penetratigorobability distribution, then the variable,
depth 1m, of the electric field on the lines of Refi4].r A
constant electric field parallel to the space boundary of the

In din

p(u)=1m

star _ ( _ u=expBS)=uexpy) [m=exp((BS'))],
lattice is put on a face of the space lattice and its value is
determined inside the bulk as a function of the distance fronwill be distributed as
the boundary. An exponential behavior is found, with a pen-
etration depth which properly scales by approaching the o o
critical point, consistently with the effective critical index. = = (61)
The corresponding mass is shown in Fig. 6 together with K K
the mass extracted from the correlation length, @&). It If « decreases as exp§?/202) asy—s =, then the probabil-
appears clearly thaMBZm_A, |nd|qat|ng that the supercon- ity distribution (61) obeys thg hypothesi®9) of the theorem
ductor is of the second kind. This same problem has beenf central limit. In fact a much slower decrease would be
approached by looking at the Abrikosov flux tubes generate& '
b ting charges. The idea is to compare the de er?—noth'
y propagating g p p
dence of the electric field inside the tube on the transvers&
distancex, from the center of the tube, with what is ex-
pected from London equations. Their result is that the system
seems to be at the border between first and second kinds
[18]. The method is ingenuous. However, derivatives are ap-
proximated by finite differences, the penetration depth being
a few lattice spacing-3), and this can produce systematic
errors. Our method would give a more precise determination
if we were able to determine better the maswf Eq. (45). Equations(62) show why a direct determination dfu) is
The question deserves further study. affected by wild fluctuations: The width is indeed bigger
Finally we want to comment on the possibility of deter- than the value of ») itself. The exponential dependence on
mining numerically{x) directly and not through the mea- S’ strongly distorts the distribution when going fro&i to
surement op. As we have seen this is not strictly necessary,u.
sincep gives complete information about the phase transi- The histogram of the values of is related to the con-
tion. However, the problem has some interest by itself. strained potential by the relatidd0,20
The definition of(u) is (e#S'), the average being per-
formed with the weightD9e?S/Z. S’ is itself a random vari-

If, for the sake of the argument, we assume théy) is
aussian, then we easily compute, by use of (&d),

0_2
<M>=M_exp( 7”)

7, = pexp o). (62)

able in this ensemble which has some average végig

with a width o= \(S'?) —(S')2.

exq—V(cb)]=f [Do]exp( BS)6(u—®).

A general theorem of probability theory states that if aV(®) has a minimum a{BS')+o5/2. If instead we con-

random variable is distributed with a probability lgu(x),
with [p(x)dx=1, then its average,= (1/n) =Xy is distrib-
uted as a Gaussian for largeif and only if [19]

Xzf p(x)dx
. |x|>X
lim ———=0. (59

Xﬂxf x2p(x)dx
[x|<X

If Eq. (59) holds, then
o) — 0= | % poax (60
n—ox
and the width of the distribution is, in this limit,
g
O'n:ﬁ,

with

a?=(x?)—(x)2.

YIn Ref.[4] the field was called magnetic.

struct the histogram o8BS’ itself, the minimum will appear
at(BS') which is displaced byrf,/Z with respect to the real
minimum.

The problem is that the histogram pa is exponentially
large to fill adequately, sincg fluctuates on an exponential
scale(typical values ofu on a configuration for a reasonable
lattice size range from 26 to 0). A histogram of I, i.e.,
of BS', is easier to compute.

However, to go back to the distribution jn, i.e., to com-
pute(u) ando,, we must know the distributiom(y) with
great precision. In the Gaussian approximation the solution is
given by Eq.(62). A cluster expansion can be attempted, to
evaluate non-Gaussian effects, but the problem is only
shifted. Higher cumulants of(y) are more and more noisy
to determine numerically, and the computer time needed be-
comes comparable to the one needed for the direct determi-
nation of (). Finally a finite size scaling analysis would be
needed, analogous to what we did in Sec. IV.

This is to justify why we use@ to extract information on
the phase transition, instead Q&) itself or of its effective
potential. The problem is currently under further study.
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