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We compute the electric screening mass in lattice QCD with Wilson fermions at finite temperature and
chemical potential to one-loop order, and show that lattice artifacts arising from a finite lattice spacing result
in an enhancement of the screening mass as compared to the continuum. We discuss the magnitude of this
enhancement as a function of the temperature and chemical potential for lattices with a different number of
lattice sites in the temporal direction that can be implemented in lattice simulations. Most of the enhancement
is found to be due to the fermion loop contribution.@S0556-2821~97!03121-4#

PACS number~s!: 11.15.Ha, 12.38.Gc

I. INTRODUCTION

An important feature of finite temperature QCD is the
generation of electric and magnetic screening masses which
play an important role in controlling the infrared behavior of
the theory. The electric screening mass leads to a Debye-
screened static quark-antiquark potential and is given for
SU(N) with Nf quark flavors, and for vanishing chemical
potential and quark mass, in leading order perturbation
theory by mel

2 5 (g2/3 )(N1Nf /2)T2 @1#. Renormalization-
group-improved perturbation theory tells us that the effective
coupling is a function of the temperature and decreases with
increasing temperature. This suggests that at sufficiently high
temperatures, above the deconfining phase transition, the
screening mass may be computed in perturbation theory. Be-
cause of the singular infrared behavior of the perturbative
series, however, the computation of the next to leading order
contribution requires a resummation of infrared-divergent
diagrams which turns out to be sensitive to the magnetic
screening mass@2#. This mass vanishes in lowest order per-
turbation theory and is expected to be ofO(g2T). The coef-
ficient multiplyingg2T turns out, however, to be incalculable
@3#. Making use of an improved perturbation theory proposed
by Braaten and Pisarski@4#, which resums hard thermal
loops, and of a gauge-invariant definition of the electric
screening mass@5#, Rebhan has calculated theO(g3T2) cor-
rections to the non-Abelian screening mass squared and has
shown that next to leading order contributions give rise to an
enhancement@2#.

The lattice formulation of QCD allows one to determine
the electric screening mass nonperturbatively. The screening
mass is extracted from correlators of Polyakov loops@6–9#
or from the long distance behavior of the gluon propagator
@10#. For small quark-antiquark separations lattice perturba-
tion theory for the Polyakov loop correlation function is ex-
pected to describe the Monte Carlo data, since for a finite
lattice volume one is not confronted with the infrared prob-
lems encountered in thermal perturbation theory. This has
been checked in@11# for the SU~3! gauge theory by taking
careful account of finite size effects and, in particular, of the
zero momentum modes which do not allow one to take the
thermodynamical limit for fixed coupling, as one would do
in standard perturbation theory. For larger quark-antiquark
separations, beyond the ‘‘perturbative horizon,’’ the color-

averaged potential is expected to have a Debye screened
form. Monte Carlo simulations confirm this screening picture
@6–9#. In the case of pure SU~2! and SU~3! gauge theories
the electric screening mass, when determined from Polyakov
loop correlation functions, is found to be about 10% larger
@6,7# than the leading order perturbative result if the
temperature-dependent coupling constant is determined from
Polyakov loop correlators in the perturbative region. As was
pointed out by Rebhan@2#, such an enhancement could also
be expected if next to leading order corrections to the con-
tinuum screening mass are taken into account through re-
summed perturbation theory. A quantitative comparison with
the results obtained in the above simulations is, however,
very difficult and has, to our knowledge, not been carried out
so far. In contrast to the work of Refs.@6, 7#, the electric
screening mass as extracted in Ref.@10# from the gluon
propagator in the Landau gauge was found to deviate
strongly from the leading order perturbative result.

In comparing the Monte Carlo data for the electric screen-
ing mass with leading order, or resummed, perturbation
theory it is important to have an estimate of the size of lattice
artifacts to be expected from a finite lattice spacing. To ob-
tain such an estimate we compute the electric screening mass
in one-loop order on the lattice, at finite temperature and
chemical potential, and in the infinite volume limit, and com-
pare it with the continuum. For the case of QED withnaive
fermions the screening mass has been calculated by Pietig
@12#. The screening mass is calculated from the zero-
momentum limit of the 44-component of the vacuum polar-
ization tensor evaluated for vanishing Matsubara frequency.
In one-loop order this definition of the screening mass is
gauge invariant and consistent with the more general gauge-
invariant definition given in Ref.@5#, where the screening
mass is determined from the position of the pole of the gluon
propagator for vanishing Matsubara frequency.

The paper is organized as follows: In the following sec-
tion we calculate the electric screening mass for QCD in
one-loop order for the case of Wilson fermions. The Feyn-
man rules and frequency summation formulas required for
the computation are relegated to two Appendixes. As we
shall see, the resulting integral expression has a very trans-
parent form. In Sec. III we then evaluate the momentum
integrals for the screening mass numerically and compare the
results with the continuum. We show that the lattice artifacts
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due to a finite lattice spacing give rise to an enhancement of
the screening mass as compared to the continuum. We dis-
cuss the magnitude of this enhancement as a function of the
temperature and chemical potential for lattices with a differ-
ent number of lattice sites in the temporal direction which
can be implemented in numerical simulations. Most of the
enhancement is found to be due to the fermion loop contri-
bution. Section IV contains a summary of our results.

II. ELECTRIC SCREENING MASS IN ONE-LOOP ORDER

In this section we compute the electric screening mass in
lattice QCD to one-loop order from the zero momentum limit
of the 44-component of the vacuum polarization tensor
evaluated for vanishing Matsubara frequency. The Feynman
diagrams contributing in this order are shown in Fig. 1.
While diagrams~a!, ~c!, ~d!, and~e! have a continuum ana-
logue, the remaining diagrams, required by gauge invariance
on the lattice, do not possess a continuum counterpart. The
finite temperature, finite chemical potential lattice Feynman
rules are obtained from theT5m50 rules by replacing the
fourth component of the fermion and boson momenta by
v̂ l

21 i m̂ and v̂ l
1 , respectively, where v̂ l

15(2p/
b̂) l @v̂ l

25 (2l 11)p/b̂#, with l PZ, are the Matsubara fre-
quencies for bosons~fermions!, and b̂ is the inverse tem-
perature. Quantities with a ‘‘caret’’ are always understood to
be measured in lattice units. Furthermore, integrals over the
fourth component of momenta at zero temperature are re-
placed at finite temperature by sums over Matsubara frequen-
cies in the interval@2 b̂/2 ,b̂/221#, where we have takenb̂
to be even. The Feynman rules are collected in Appendix A.
The relevant formulas for carrying out the sums over Mat-
subara frequencies are derived in Appendix B.

The contributions of diagrams~a!–~g! of Fig. 1 to the
vacuum polarization tensor are diagonal in color space,

P̂mn
~b,m!AB~v̂ l

1 ,k̂W !5dABP̂mn
~b,m!~v̂ l

1 ,k̂W !. ~2.1!

The electric screening mass~in lattice units! is then defined
by

m̂el
2 5 lim

k̂
W→0

P̂44
~b,m!~0,k̂W !. ~2.2!

In the following we first consider the contributions to

P̂44
(b,m)(0,k̂W) coming from the fermion loops, i.e., diagrams

~a! and ~b!.

A. Contribution of diagram „a…

A straightforward application of the finite temperature,
finite chemical potential lattice Feynman rules yields

P̂44
~b,m!~0,k̂W !~a!

52
Nf

2
g2

1

b̂
(

l 52 b̂ /2

b̂ /2 21 E
2p

p d3p̂

~2p!3

3 f ~a!
„ei ~v̂ l

2
1 i m̂ !; p̂W ,k̂W…, ~2.3a!

where

f ~a!~z; p̂W ,k̂W !5
2~z411!22h~z31z!14jGz2

P i 51
4 ~z2zi !

~2.3b!

with

h5
1

@11M̂ ~ p̂W !#
1

1

@11M̂ ~ p̂W1 k̂W !#

, ~2.3c!

j5
1

@11M̂ ~ p̂W !#@11M̂ ~ p̂W1 k̂W !#

, ~2.3d!

G511(
j

sin p̂ j sin~ p̂1 k̂! j , ~2.3e!

M̂ ~ p̂W !5m̂12(
j

sin2
p̂ j

2
, ~2.3f!

and Nf is the number of quark flavors. The position of the

poles of f (a)(z; p̂W ,k̂W) are given by

z15ef, z25e2f,

z35ec, z45e2c, ~2.4a!

with

f5 Ẽ~ p̂W !,

c5 Ẽ~ p̂W1 k̂W !, ~2.4b!

where

Ẽ~ q̂W !5 ln@K~ q̂W !1AK2~ q̂W !21#5arcoshK~ q̂W ! ~2.4c!

and

K~ q̂W !511
Ē2~ q̂W !

2@11M̂ ~ q̂W !#
, Ē~ q̂W !5A(

j
sin2 q̂ j1M̂2~ q̂W !.

~2.4d!

FIG. 1. Feynman diagrams contributing to the vacuum polariza-
tion in one-loop order on the lattice.
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Note that

f ↔
p̂W→2 p̂W2 k̂

W

c, ~2.5!

while h, j, and G are invariant under the transformation
pW→2pW 2kW . This will be important further below. The fre-
quency sum can be performed making use of Eq.~B4! de-
rived in Appendix B. One finds that

1

b̂
(

l 52 b̂ /2

b̂ /221

f ~a!
„ei ~v̂ l

2
1 i m̂ !; p̂W ,k̂W…

521h~f,c,h,j,G!F 1

eb̂~f1m̂ !11
2

1

e2b̂~f2m̂ !11
G

1h~c,f,h,j,G!F 1

eb̂~c1m̂ !11
2

1

e2b̂~c2m̂ !11
G ,

~2.6a!

where

h~f,c,h,j,G!5
cosh 2f2h coshf1jG
sinh f~coshf2coshc!

. ~2.6b!

To obtainP̂44
(b,m)(0;k̂W)(a) , we must integrate this expression

over p̂W , with p̂ jP@2p,p#. Noting thath, j, andG are in-

variant under the transformationp̂W→2 p̂W2 k̂W , and making
use of Eq.~2.5!, as well as of the fact that the integrand in
Eq. ~2.3a! is a periodic function inp̂ j and k̂ j , we can com-
bine the last two contributions on the right-hand side~RHS!
of Eq. ~2.6a! and obtain

P̂44
~b,m!~0,k̂W !~a!5Nfg

2E
2p

p d3p̂

~2p!3 @h~f,c,h,j,G!21#

2Nfg
2E

2p

p d3p̂

~2p!3 h~f,c,h,j,G!@ĥFD~f!

1 ĥ̄FD~f!#, ~2.7a!

where

ĥFD~f!5
1

eb̂~f2m̂ !11
, ĥ̄FD~f!5

1

eb̂~f1m̂ !11
~2.7b!

are the lattice Fermi-Dirac distribution functions for particles
and antiparticles.

B. Contribution of diagram „b…

We next compute the contribution toP̂44
(b,m)(0,k̂W) of the

Feynman diagram~b! depicted in Fig. 1. This diagram has no
analogue in the continuum and is given by

P̂44
~b,m!~0,k̂W !~b!52Nfg

2
1

b̂
(

l 5 b̂ /2

b̂ /221 E
2p

p d3p̂

~2p!3

3 f ~b!~ei ~v̂ l
2

1 i m̂ !,p̂W !, ~2.8a!

where

f ~b!~z; p̂W !52
z222rz11

~z2z1!~z2z2!
, ~2.8b!

r5
1

11M̂ ~ p̂W !
, ~2.8c!

and wherez1 andz2 have been defined in Eqs.~2.4!. Making
again use of the frequency summation formula~B4!, one
verifies that

P̂44
~b,m!~0,k̂W !~b!52Nfg

2E
2p

p d3p̂

~2p!3 S coth f2
r

sinh f
21D

1Nfg
2E

2p

p d3p̂

~2p!3 S coth f2
r

sinh f D
3@ĥFD~f!1 h̄̂FD~f!#. ~2.9!

Combining this expression with Eq.~2.7a! one finds that

P̂44
~b,m!~0,k̂W !5P̂44

~vac!~0,k̂W !

1Nfg
2E

2p

p d3p̂

~2p!3 H~f,c,r,h,j,G!@ĥFD~f!

1 ĥ̄FD~f!#, ~2.10a!

where

H~f,c,r,h,j,G!5coth f2
r

sinh f
2h~f,c,h,j,G!

~2.10b!

and

P̂44
~vac!~0,k̂W !52Nfg

2E
2p

p d3p̂

~2p!3 H~f,c,r,h,j,G!

~2.10c!

is the T5m50 contribution. As we now show,P̂44
(vac)(0,k̂W)

vanishes in the limitk̂W→0, and hence does not contribute to
the screening mass.

Consider the functionh(f,c,h,j,G) defined in Eq.

~2.6b!. It is singular fork̂W→0, since in this limitc→f. The
singularity is, however, integrable.1 This can be seen as fol-
lows. Since according to Eq.~2.5!, and the statement follow-
ing it,

1We follow here and in the following a technique used in Ref.
@12#, where the author has calculated the screening mass for naive
fermions in lattice QED to one-loop order.
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h~f,c,h,j,G! ——→
p̂W→2 p̂W2 k̂

W

h~c,f,h,j,G!, ~2.11!

we can also write Eq.~2.10c! in the form

P̂44
~vac!~0,k̂W !52Nfg

2E
2p

p d3p̂

~2p!3 S coth f2
r

sinh f D
1

1

2
Nfg

2E
2p

p d3p̂

~2p!3 h̃~f,c,h,j,G!,

~2.12a!

where

h̃~f,c,h,j,G!5h~f,c,h,j,G!1h~c,f,h,j,G!.
~2.12b!

Although each term on the RHS of Eq.~2.12b! is singular for

k̂W→0 (c→f), the sum possesses a finite limit. Thus setting

c5f1e and taking the limitk̂W→0 (e→0), one verifies that

lim
k̂
W→0

h̃~f,c,h,j,G!52~ coth f2 r
sinh f! . ~2.13!

From Eq.~2.12a! we therefore conclude that

lim
k̂
W→0

P̂44
~vac!~0,k̂W !50.

This result is not unexpected, since for vanishing tempera-
ture and chemical potential it is well known in the continuum
formulation that Lorentz and gauge invariance protects the
gluon from acquiring a mass. The screening mass is therefore
determined by the finite temperature~FT!, finite chemical
potential contribution, given by the integral in Eq.~2.10a!.
By making again use of the fact thatf↔c, when

p̂W→2 p̂W2 k̂W , while h, j, andG remain invariant under this
change of variables, we can write this contribution in the
form

P̂44
~b,m!~0,k̂W !FT

5Nfg
2E

2p

p d3p̂

~2p!3 S coth f2
r

sinh f D @ĥFD~f!

1 ĥ̄FD~f!#2
1

2
Nfg

2E
2p

p d3p̂

~2p!3 $h~f,c,h,j,G!

3@ĥFD~f!1 h̄̂FD~f!#1h~c,f,h,j,G!@ĥFD~c!

1 ĥ̄FD~c!#%. ~2.14!

Consider the second integral. It can be rewritten as follows:

E
2p

p d3p̂

~2p!3 $h̃~f,c,h,j,G!@ĥFD~c!1 h̄̂FD~c!#

1h~f,c,h,j,G!DĥFD~f,c!%,

whereh̃ has been defined in Eq.~2.12b!, and

DĥFD~f,c!5@ĥFD~f!2ĥFD~c!#1@ĥ̄FD~f!2ĥ̄FD~c!#.

According to Eq.~2.13!, h̃ approaches a finite limit fork̂W→0.

Upon making the change of variablesp̂W→2 p̂W2 k̂W the contri-
bution proportional toh̃ is seen to be canceled by the first
integral in Eq.~2.14!. We therefore conclude that

lim
k̂
W→0

P̂44
~b,m!~0,k̂W !52 1

2
Nfg

2lim
k̂
W→0

E
2p

p
d3p̂

~2p!3

3h~f,c,h,j,G!DĥFD~f,c!.

~2.15!

We have now dropped the subscript ‘‘FT,’’ since in this limit
only Eq. ~2.14! contributes to the screening mass. To calcu-
late this limit we proceed as before and setc5f1e. One

then verifies that fore→0 ~or k̂W→0! the fermionic contribu-
tion to the screening mass squared is given by

@m̂el
2 ~ b̂,m̂,m̂!# ferm5Nfg

2b̂E
2p

p d3p̂

~2p!3 H eb̂~f1m̂ !

@eb̂~f1m̂ !11#2

1
eb̂~f2m̂ !

@eb̂~f2m̂ !11#2J . ~2.16!

In the continuum limit the electric screening mass is given
by

mel
2 5 lim

a→0

1

a2 m̂el
2 S b

a
,ma,maD . ~2.17!

For Wilson fermions, only momentap̂W in the immediate

neighborhood ofp̂W50 contribute to the integral~2.16! for
b̂→`, b̂m̂5bm, b̂m̂5bm fixed. But in this limit

b̂f( p̂W )→bApW 21m2. Introducing in Eq.~2.16! the dimen-

sioned momentapW 5 p̂W /a as new integration variables, witha
the lattice spacing, one then verifies, after performing the
angular integration, and a partial integration that

@mel
2 # ferm5Nf

g2

2p2 E
0

`

dp
2p21m2

Ap21m2
@hFD~E,m!

1h̄FD~E,m!#, ~2.18!

whereE5ApW 21m2, and

hFD~E,m!5
1

eb~E2m!11
, h̄FD~E,m!5

1

eb~E1m!11
~2.19!

are the Fermi-Dirac distribution functions for particles and
antiparticles.

We next consider the contribution to the electric screening
mass arising from diagrams~c!–~g! in Fig. 1. They only
involve sums over Matsubara frequencies of the bosonic
type. Since in the continuum limit the only dimensioned
scale is the temperature, their contribution to the screening
mass will be of the form const3gT. For finite lattice spacing,
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however, the temperature dependence will be modified by
lattice artifacts. In the following we first consider diagrams
~c!–~e! which have an analogue in the continuum.

C. Contribution of diagram „c…

Using the lattice Feynman rules given in Appendix A one
finds after some algebra that this diagram contributes as fol-

lows to P̂44
(b,m)(0,k̂W), defined in Eq.~2.1!,

P̂44
~b,m!~0,k̂W !~c!5

3

2
g2

1

b̂
(

l 52 b̂ /2

b̂ /2 21 E
2p

p d3q̂

~2p!3
f ~c!~ei v̂ l

1

;q̂W ,k̂W !,

~2.20a!

where

f ~c!~z;q̂W ,k̂W !5
a~ k̂W !~z221!22b~ q̂W ,k̂W !z~z11!2

P i 51
4 @z2 z̄i #

~2.20b!

and

a~ k̂W !5(
j

cos2
k̂ j

2
, ~2.20c!

b~ q̂W ,k̂W !5
1

4 F(
j

~ q̂2 k̃̂! j
21(

j
~ q̂12k̃̂! j

2G . ~2.20d!

Here p̃̂ is generically defined byp̃̂m52 sin(p̂m/2). The zeros
of the denominator in Eq.~2.20b! are located at

z̄15ef̃, z̄25e2f̃,

z̄35ec̃, z̄45e2c̃, ~2.21a!

where

f̃5arcoshH~ q̂W !,

c̃5arcoshH~ q̂W1 k̂W !,

H~ p̂W !5112(
j

sin2
p̂ j

2
. ~2.21b!

The frequency sum can be calculated by making use of Eq.
~B1!. After some straightforward algebra one finds that

P̂44
~b,m!~0,k̂W !~c!56g2E

2p

p d3q̂

~2p!3 h~f̃,c̃,a,b!ĥBE~f̃ !

1
3

2
g2H a~ k̂W !1E

2p

p d3q̂

~2p!3 @h~f̃,c̃,a,b!

1h~ c̃,f̃,a,b!#J , ~2.22a!

where

h~f̃,c̃,a,b!5
2asinh2 f̃1 1

2 b@coshf̃11#

sinh f̃@coshf̃2coshc̃#
~2.22b!

and

ĥBE~f̃ !5
1

eb̂f̃21
~2.22c!

is the lattice version of the Bose-Einstein distribution func-
tion.

In obtaining this result we have made use of the fact that

f̃ ←→
q̂W→2q̂W2 k̂

W

c̃, ~2.23!

while a( k̂W) andb(q̂W ,k̂W) are invariant under the transformation

q̂W→2q̂W2 k̂W . Note that the function~2.22b! is singular for

k̂W→0, since in this limitf̃→c̃. The singularity is, however,
integrable as can be seen by making use of Eq.~2.23! to
write Eq. ~2.22a! in the form

P̂44
~b,m!~0,k̂W !~c!53g2E

2p

p d3q̂

~2p!3 h~f̃,c̃,a,b!DĥBE~f̃,c̃ !

1
3

2
g2H a~ k̂W !1E

2p

p d3q̂

~2p!3 @h~f̃,c̃,a,b!

1h~ c̃,f̃,a,b!#@112ĥBE~f̃ !#J , ~2.24a!

where

DĥBE~f̃,c̃ !5ĥBE~f̃ !2ĥBE~ c̃ !. ~2.24b!

The limit k̂W→0 can now be easily taken and one obtains the
following contribution to the electric screening mass:

~m̂el
2 !~c!5

3

2
g2H 32E

2p

p d3q̂

~2p!3 F3 coth f̃1
1

2 sinh f̃
G

3@112ĥBE~f̃ !#J 1
15

2
g2b̂

3E
2p

p d3q̂

~2p!3

eb̂f̃

@eb̂f̃21#2
. ~2.25!

D. Contribution of diagram „d…

This diagram involves the 4-gluon vertex, which consists
of types of terms differing in the color structure: terms in-
volving the structure constantsf ABC and terms involving the
completely symmetric color couplingsdABC . We denote the
corresponding contributions toP̂44

(b,m)( k̂) by @P̂44
(b,m)( k̂)# [ f ]

and @P̂44
(b,m)( k̂)# [d] , respectively. Consider first

@P̂44
(b,m)(0,k̂W)(d)# [ f ] . After some algebra one finds that
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@P̂44
~b,m!~0,k̂W !~d!# [ f ]5

3

4
g2

1

b̂
(

l 52 b̂ /2

b̂ /2 21 E
2p

p d3q̂

~2p!3

3@ f ~d!~ei v̂ l
1

;q̂,k̂!# [ f ] , ~2.26a!

where

@ f ~d!~z;q̂W ,k̂W !# [ f ]5
2c~ k̂W !~z211!1d~ k̂W !~z21!21P~ q̂W ,k̂W !z

@z2 z̄1#@z2 z̄2#
~2.26b!

and

c~ k̂W !5112(
j

cos k̂ j ,

d~ k̂W !512
1

3 (
j

k̃̂ j
2 ,

P~ q̂W ,k̂W !521
1

6 (
j

@~ q̂1 k̃̂! j
21~ q̂2 k̃̂! j

2#. ~2.26c!

Performing the frequency sum in Eq.~2.26a! one obtains

@P̂44
~b,m!~0,k̂W !~d!# [ f ]5

3

4
g2H 2c~ k̂W !1d~ k̂W !1E

2p

p d3q̂

~2p!3

3F ~c2d!coth f̃1S d2
1

2
PD

3
1

sinh f̃
G @112ĥBE~f̃ !#J . ~2.27!

Taking the limitk̂W→0 one finds the following contribution to
the screening mass:

~m̂el
2 ! [ f ]

~d!5
1

2
g2H 291

1

2
E

2p

p d3q̂

~2p!3 F17 cothf̃1
1

sinh f̃
G

3@112ĥBE~f̃ !#J . ~2.28!

Next consider the contribution@P̂44
(b,m)(0,k̂W)(d)# [d] . It is given

by

@P̂44
~b,m!~0,k̂W !~d!# [d]52

1

2
g2

1

b̂
(

l 52b̂ /2

b̂ /2 21 E
2p

p d3q̂

~2p!3

3@ f ~d!~ei v̂ l
1

;q̂W ,k̂W !# [d] , ~2.29a!

where

@ f ~d!~z;q̂W ,k̂W !# [d]5
5

6

K~ k̂W !~z21!22L~ q̂W ,k̂W !z

@z2 z̄1#@z2 z̄2#
,

~2.29b!

K~ k̂W !5(
j

k̃̂ j
2 , ~2.29c!

L~ q̂W ,k̂W !5(
j

q̃̂ j
2k̃̂ j

2 . ~2.29d!

Performing the frequency sum one finds

@P̂44
~b,m!~0,k̂W !~d!# [d]5

5

12
g2H 2K1E

2p

p d3q̂

~2p!3 FK coth f̃

2
K1 1

2 L

sinh f̃
G @112ĥBE~f̃ !#J .

SinceK( k̂W) andL(q̂W ,k̂W) vanish fork̂W→0, it does not contrib-
ute to the screening mass, i.e.,

@~m̂el!~d!# [d]50. ~2.30!

E. Contribution of diagram „e…

The only other diagram possessing a continuum analogue
is the ghost loop shown in Fig. 1~e!. Its contribution is given
by

P̂44
~b,m!~0,k̂W !~e!5

3

2
g2

1

b̂
(

l 52b̂ /2

b̂ /2 21 E
2p

p d3q̂

~2p!3
f ~e!~ei v̂ l

1

;q̂W ,k̂W !,

~2.31a!

where

f ~e!~z;q̂W ,k̂W !52
1

2

~z221!2

P i 51
4 @z2 z̄i #

. ~2.31b!

Performing the frequency sum one finds that

P̂44
~b,m!~0,k̂W !~e!5

3

4
g2H 211E

2p

p d3q̂

~2p!3 @g~f̃,c̃ !1g~ c̃,f̃ !#

14E
2p

p d3q̂

~2p!3 g~f̃,c̃ !ĥBE~f̃ !J , ~2.32a!

where

g~f̃,c̃ !5
sinh f̃

coshf̃2coshc̃
. ~2.32b!
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This function is again singular fork̂W→0. To compute the
limit we proceed as discussed earlier and write Eq.~2.32a! in
the form

P̂44
~b,m!~0,k̂W !~e!5

3

4
g2H 211E

2p

p d3q̂

~2p!3 @g~f̃,c̃ !1g~ c̃,f̃ !#

3@112ĥBE~f̃ !#

12E
2p

p d3q̂

~2p!3 g~f̃,c̃ !DĥBE~f̃,c̃ !J ,

whereDĥBE(f̃,c̃) has been defined in Eq.~2.24b!. Taking

the limit k̂W→0 one obtains

~m̂el
2 !~e!5

3

4
g2H 211E

2p

p d3q̂

~2p!3 @112ĥBE~f̃ !#coth f̃

22b̂E
2p

p d3q̂

~2p!3

eb̂f̃

@eb̂f̃21#2 J . ~2.33!

Combining the results~2.25!, ~2.28!, ~2.30!, and ~2.33!, we
therefore find that those diagrams possessing a continuum
analogue yield the following contribution to the electric
screening mass in the gluonic sector:

~m̂el
2 !~c!1~d!1~e!5g2H 2

3

4
1

1

2
E

2p

p d3q̂

~2p!3 S coth f̃

2
1

sinh f̃
D @112ĥBE~f̃ !#J

16g2b̂E
2p

p d3q̂

~2p!3

eb̂f̃

@eb̂f̃21#2
.

~2.34!

The computation of the remaining contributions arising
from diagrams~f! and ~g!, which are a consequence of the
lattice regularization, is straightforward. One finds that they
cancel the first term in Eq.~2.34!. Hence the gluonic sector
(G) contributes as follows to the screening mass:

@m̂el
2 ~ b̂,m̂,m̂!#G56g2b̂E

2p

p d3q̂

~2p!3

eb̂f̃

@eb̂f̃21#2
.

~2.35!

In the continuum limit~2.17! the corresponding expression
for the ~dimensioned! screening mass squared is given by

~mel
2 !G5 lim

a→0
6g2bE

2 p/a

p/a d3q

~2p!3

ebf̃~aqW !/a

@ebf̃~aqW !/a21#2

5
3

p2 g2bE
0

`

dqq2
ebq

@ebq21#2 ,

where q5uqW u. After a partial integration this expression
takes the form

~mel
2 !G5

6

p2 g2T2E
0

`

dx
x

ex21
.

Making use of

E
0

`

dx
xa21

ex21
5G~a!z~a!, a.1,

whereG~a! is the Euler gamma function andz~a! the Rie-
mann zeta function, we recover the well-known result
(mel

2 )G5g2T2.

III. LATTICE ARTIFACTS IN THE SCREENING MASS

In this section we compare the one-loop result for the
electric screening mass on the lattice with the continuum.
This will provide us with an estimate of the magnitude of the
lattice artifacts to be expected in numerical simulations. The
numerical data we present are for two mass-degenerate
quarks.

On a lattice the temperature can be varied by either keep-
ing the lattice spacing fixed and varying the numberNt of
temporal lattice sites or by varying the lattice spacing~or
equivalently the coupling!, keepingNt fixed. For fixed lat-
tice spacing the dependence of the screening mass on the
temperature, fermion mass, and chemical potential is given
by @see Eq.~2.17!#

@mel~T,m,m,a!# latt5
1

a
m̂elS 1

Ta
,ma,maD . ~3.1!

If the lattice expression is to approximate the continuum,
then the lattice spacing must be small compared to all physi-
cal length scales in the problem. Hence we must have that
a! 1/T, a! 1/m, anda! 1/m. We therefore expect that for
temperaturesT! 1/a the continuum is well approximated for
ma!1 andma!1. This is shown in Figs. 2 and 3 where we
have plotted@mel# latt /@mel#cont as a function ofT/m at m50
andm/m51.5 for various lattice spacings measured in units
of m21. Form50 andma[ãP@0,0.3#, the deviation of this
ratio from unity is seen to be at most 1.75% for
T/m< 1/16ã. The RHS of this inequality is the temperature
associated with a lattice with 16 sites in the temporal direc-

FIG. 2. Dependence of@mel# latt /@mel#cont on T/m for m50 and
different lattice spacings measured in units ofm21. Open squares
~solid stars! correspond to lattices withNt58 (Nt516).
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tion. ForT/m' 1/8ã the deviation is already 7.5%. The end
point of the curves forã50.05, 0.1, and 0.3 corresponds to
the minimal number of temporal lattice sites, i.e.,Nt52, and
the open squares~solid stars! to Nt58 (Nt516).

For m/m51.5 we must also ensure thatma!1. We there-
fore expect that the allowed range of lattice spacings for
achieving an accuracy of 2% forT< 1/16a is now restricted
to a smaller interval. Figure 3 shows that the continuum
screening mass is well approximated forã,0.1 in this tem-
perature range.

In lattice simulations one is interested in determining the
electric screening mass above the deconfining phase transi-
tion. It is extracted from correlators of Polyakov loops@6–9#
or from the long distance behavior of the gluon propagator
@10#. In these simulations the number of lattice sites,Nt[b̂,
is fixed. The electric screening mass in physical units, di-
vided by the temperature, is then given by

@mel# latt /T5Ntm̂el„Nt ,~m/T!Nt
21 ,~m/T!Nt

21
…, ~3.2!

while in the continuum limit (Nt→`) this ratio is just a
function ofm/T andm/T. The above conditions for approxi-
mating the continuuum now read~a! Nt@1, ~b!
ma5(m/T) (1/Nt)!1, and ~c! ma5(m/T) (1/Nt)!1. We
therefore expect that for fixedNt the continuum is best ap-
proximated for high temperatures. Form/m51.5 this is
shown in Fig. 3, where the temperature dependence of
@mel# latt /@mel#cont for Nt58 and Nt516 is given by the
dash-dotted and dashed curves, respectively. The strong de-
viation of this ratio at low temperatures is due to the fermion
loop contribution. This is evident from Fig. 4, where we have
plotted@mel# latt /@mel#cont for the pure SU~3! gauge theory for
various values ofNt . This ratio only depends on the number
of lattice sites,Nt . The solid line interpolates between dif-
ferent numbers of temporal lattice sites. The deviation from
the continuum is seen to be small already forNt58. For
Nt58, andNt516, it is about 2%, and 0.4%, respectively.

Finally, in Fig. 5 we have plotted the ratio
@mel# latt /@mel#cont as a function of m/T and m/T for
Nt58,16. In the parameter range considered the above in-
equalities are well satisfied and the deviation of this ratio

from unity is seen to be at most 1.7% forNt516 and 10%
for Nt58. The range of valuesm/T andm/T for which the
continuum is well approximated will of course increase with
increasingNt .

IV. CONCLUSIONS

In this paper we have have computed the electric screen-
ing mass for Wilson fermions in the infinite volume limit for
lattice QCD at finite temperature and chemical potential in
one-loop order. The expression we obtained had a very trans-
parent structure in which the artifacts arising from a finite
lattice spacing were concentrated in two functions which in
the naive continuum limit reduced to the on-shell energies of
a free quark and gluon. We then studied the dependence of
the lattice screening mass on the temperature and chemical
potential for fixed values of the lattice spacing. It was found
that lattice artifacts give rise to an enhancement of the
screening mass. Form50 and lattice spacingsa,0.3m21

the deviation of@mel# latt /@mel#cont from the continuum was
found to be less than 1.75% forT/m< 1/16ã, whereã5ma.
For m/m51.5 a substantially smaller lattice spacing was re-
quired to approximate the continuum. Most of the deviation
was found to be due to the fermion loop contribution.

Since in numerical simulations the temperature depen-
dence of the screening mass is extracted from a given lattice
by varying the coupling~lattice spacing!, we have also stud-
ied the dependence of the lattice screening mass on the tem-
perature and chemical potential for fixedNt . It was found
that for Nt516 and temperatures larger than the fermion
mass and chemical potential, the continuum screening mass
was approximated to within 1.75%. The corresponding de-
viation for Nt58 was found to be at most 10% and to be due
to the fermion loop contribution. In the pure SU~3! gauge
theory the continuum was already approximated to 2% for
only eight lattice sites in the temporal direction.

Our analysis was carried out for infinite lattice volume.
For finite spatial volume the momentum spectrum becomes
discrete and zero momentum modes must be treated sepa-
rately in a perturbative expansion. In comparing the data for
the electric screening mass obtained in Monte Carlo simula-
tions with continuum perturbation theory, finite volume ef-
fects need to be included, while finite lattice spacing effects

FIG. 3. Dependence of@mel# latt /@mel#cont on T/m for m/m51.5
and different lattice spacings measured in units ofm21. Open
squares~solid stars! correspond to lattices withNt58 (Nt516).
The dash-dotted~dashed! lines show the temperature dependence
for a fixed number of temporal lattice sites,Nt58 (Nt516).

FIG. 4. Dependence of the pure gluonic contribution to
@mel# latt /@mel#cont on the number of lattice sites,Nt . The solid line
interpolates between different numbers of lattice sites,Nt .
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may, as our analysis suggests, be negligible for those cou-
plings and lattice sizes at which the simulations have been
performed.
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APPENDIX A: FEYNMAN RULES

For vanishing temperature and chemical potential the lat-
tice Feynman rules have been given in@13#. The expression
for the four-gluon vertex stated in that reference is, however,
not quite correct. For completeness sake we collect in this
appendix the Feynman rules for lattice QCD with Wilson
fermions at finite temperature and chemical potential. In this
case the fourth components of boson and fermion momenta
are replaced by k45v l

152pl /b and p45v l
21 im

5(2l 11)p/b1 im, respectively. As usual the gluon fields

are defined at the middle of the links. Following standard
conventions, we did not include the combinatorial factor
arising from the symmetrization of the vertices. The dimen-
sionless version of these rules, used in Sec. II, is obtained by
settinga51.

~i! Fermion, gauge field and ghost propagators:

where

m~p!5m1
2r

a (
m

sin2S a

2
pmD

is the momentum-dependent Wilson mass andr the Wilson
parameter which we have set to 1 in the calculation.

~ii ! The vertices:

FIG. 5. Dependence of@mel# latt /@mel#cont on m/T andm/T for ~a! Nt58 and~b! Nt516.
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where

G̃mnlr
~4!ABCD~k,q,r ,s!5

1

12
g2FX(

E
f ABEf CDEH 2dmldnrF12 cosS 1

2
a~k2r !nD cosS 1

2
a~q2s!mD2a4k̃nq̃m r̃ ns̃mG

1dmrdnlF12 cosS 1

2
a~k2s!nD cosS 1

2
a~q2r !mD2a4k̃nq̃m r̃ ms̃nG2dnldnr2a2~s2 r̃ !m k̃n cosS 1

2
aqmD

1dmldmr2a2~s2 r̃ !nq̃m cosS 1

2
aknD2dmndmr2a2~q2 k̃!l r̃ r cosS 1

2
aslD

1dmndml2a2(q2 k̃)rs̃l cosS 1

2
arrD2dmndmldmra2(

s
(q2 k̃)s(s2 r̃ )sJ

1 the cyclic permutations:S ~B,q,n! ~C,r ,l! ~D,s,r!

~C,r ,l! ~D,s,r! ~B,q,n!
D and S ~B,q,n! ~C,r ,l! ~D,s,r!

~D,s,r! ~B,q,n! ~C,r ,l!
D C

1a4H 2

3
~dABdCD1dACdDB1dADdBC!1(

E
~dABEdCDE1dACEdDBE1dADEdBCE!J

3H dmndmldmr(
s

k̃sq̃s r̃ ss̃s1dmndlrk̃lq̃l r̃ ms̃m1dmldnrk̃nq̃m r̃ ns̃m1dmrdnlk̃nq̃m r̃ ms̃n

2dnldnrk̃nq̃m r̃ ms̃m2dmldmrk̃nq̃m r̃ ns̃n2dmndmrk̃lq̃l r̃ ms̃l2dmndmlk̃rq̃r r̃ rs̃mJ G .
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APPENDIX B: FREQUENCY SUMMATION FORMULAS

In this appendix we derive summation formulas over Mat-
subara frequencies useful for performing calculations on a
lattice, where the frequencies are restricted to the Brillouin
zone. We will first consider the bosonic case and afterwards
turn to the fermionic one.

1. Bosonic frequency sums

We will prove the following summation formula:
Let g(z) be a meromorphic function of a complex vari-

ablez that is bounded foruzu→` and has no singularities on
the circleuzu51. Then

1

b̂
(

n52b̂ /2

b̂ /221

g~ei v̂n
1

!52(
i

Resz̄ i
„~1/z! g~z!…

z̄i
b̂21

, ~B1!

where b̂ is a positive even number,v̂n
152pn/b̂ and

Resz̄ i
„(1/z) g(z)… denotes the residue of (1/z) g(z) at the

pole z̄i .
Consider the function

h~v̂ !5
i b̂

exp~ i b̂v̂ !21
,

which has simple poles atv̂5v̂n
1 , nPZ, with residue 1.

Because of the above conditions ong(z), there exists an
e.0 such that g(ei v̂) has no singularities for Im(v̂)
P@2e,e#. Hence

1

b̂
(

n52b̂ /2

b̂ /221

g~ei v̂n
1

!5
1

2p
R

C
dv̂g~ei v̂!

1

exp~ i b̂v̂ !21
,

~B2!

whereC is the integration contour depicted in Fig. 6. Intro-
ducing the variablez5exp(iv̂) we obtain

1

b̂
(

n52b̂ /2

b̂ /221

g~ei v̂n
1

!5
1

2p i
(
j 51

2 R
Cj

dz
g~z!

z

1

zb̂21
,

~B3!

whereC1 andC2 are the contours shown in Fig. 7 with the
integration carried out in the indicated sense.

Since limuzu→`z2b̂g(z)50, we can distort the outer inte-
gration contour to infinity taking into account the singulari-
ties ofg(z) for uzu.1. In the case whereg(z) is a meromor-
phic function, Eq.~B1! follows immediately.

2. Fermionic frequency sums

In the fermionic case we will proceed in an analogous
way to prove the following summation formula@12#.

Let g(z) be a meromorphic function of a complex vari-
ablez that is bounded foruzu→` and has no singularities on
the circleuzu5exp(2m̂). Then

1

b̂
(

m52b̂ /2

b̂ /221

g~ei ~v̂m
2

1 i m̂ !!5(
i

Resz̄ i
„~1/z! g~z!…

eb̂m̂z̄i
b̂11

,

~B4!

wherev̂m
25(2m11)p/b̂.

Consider the function

h̃~v̂ !5
2 i b̂

exp@ i b̂~ v̂2 i m̂ !#11
,

which has simple poles atv̂5v̂m
21 i m̂, mPZ, with residue

1. Because of the conditions ong(z), there exists ane.0
such that g(ei v̂) has no singularities for Im(v̂)
P@m̂2e,m̂1e#. Hence

1

b̂
(

m52b̂/2

b̂ /221

g~ei ~v̂m
2

1 i m̂ !!52
1

2p
R

C
dv̂g~ei v̂!

3
1

exp@ i b̂~ v̂2 i m̂ !#11
,

~B5!

where the integration contourC is depicted in Fig. 8. Intro-
ducing again the variablez5exp(iv̂) we obtain

FIG. 6. Integration contourC in Eq. ~B2!.

FIG. 7. Integration contoursC1 andC2 in Eq. ~B3!.

FIG. 8. Integration contourC in Eq. ~B5!.
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1

b̂
(

m52b̂ /2

b̂ /221

g~ei ~v̂m
2

1 i m̂ !!52
1

2p i
(
j 51

2 R
Cj

dz
g~z!

z

3
1

eb̂m̂zb̂11
,

where the integration contoursC1 andC2 are as depicted in
Fig. 7 except that the radii are changed toe2m̂2e ande2m̂1e,
respectively. Hence, for the same reason as in the bosonic
case, we can distort the contourC2 to infinity and are led, for
a meromorphic functiong(z), to the summation formula
~B4!.
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