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Lattice artifacts in the non-Abelian Debye screening mass in one-loop order
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We compute the electric screening mass in lattice QCD with Wilson fermions at finite temperature and
chemical potential to one-loop order, and show that lattice artifacts arising from a finite lattice spacing result
in an enhancement of the screening mass as compared to the continuum. We discuss the magnitude of this
enhancement as a function of the temperature and chemical potential for lattices with a different number of
lattice sites in the temporal direction that can be implemented in lattice simulations. Most of the enhancement
is found to be due to the fermion loop contributi¢80556-282(97)03121-4
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[. INTRODUCTION averaged potential is expected to have a Debye screened
form. Monte Carlo simulations confirm this screening picture
An important feature of finite temperature QCD is the[6-9]. In the case of pure S@) and SU3) gauge theories
generation of electric and magnetic screening masses whiahe electric screening mass, when determined from Polyakov
play an important role in controlling the infrared behavior of loop correlation functions, is found to be about 10% larger
the theory. The electric screening mass leads to a Deby¢6,7] than the leading order perturbative result if the
screened static quark-antiquark potential and is given fotemperature-dependent coupling constant is determined from
SU(N) with N; quark flavors, and for vanishing chemical Polyakov loop correlators in the perturbative region. As was
potential and quark mass, in leading order perturbatiorpointed out by Rebhaf?], such an enhancement could also
theory by m%= (g%/3)(N+N;/2)T? [1]. Renormalization- be expected if next to leading order corrections to the con-
group-improved perturbation theory tells us that the effectivedinuum screening mass are taken into account through re-
coupling is a function of the temperature and decreases witiummed perturbation theory. A quantitative comparison with
increasing temperature. This suggests that at sufficiently higthe results obtained in the above simulations is, however,
temperatures, above the deconfining phase transition, theery difficult and has, to our knowledge, not been carried out
screening mass may be computed in perturbation theory. B&o far. In contrast to the work of Reffs, 7], the electric
cause of the singular infrared behavior of the perturbativescreening mass as extracted in Rgf0] from the gluon
series, however, the computation of the next to leading ordepropagator in the Landau gauge was found to deviate
contribution requires a resummation of infrared-divergentstrongly from the leading order perturbative result.
diagrams which turns out to be sensitive to the magnetic In comparing the Monte Carlo data for the electric screen-
screening masi2]. This mass vanishes in lowest order per-ing mass with leading order, or resummed, perturbation
turbation theory and is expected to be@fg?T). The coef- theory it is important to have an estimate of the size of lattice
ficient multiplyingg®T turns out, however, to be incalculable artifacts to be expected from a finite lattice spacing. To ob-
[3]. Making use of an improved perturbation theory proposedain such an estimate we compute the electric screening mass
by Braaten and Pisarské4], which resums hard thermal in one-loop order on the lattice, at finite temperature and
loops, and of a gauge-invariant definition of the electricchemical potential, and in the infinite volume limit, and com-
screening mas], Rebhan has calculated t€g3T?) cor-  pare it with the continuum. For the case of QED withive
rections to the non-Abelian screening mass squared and h&rmions the screening mass has been calculated by Pietig
shown that next to leading order contributions give rise to aj12]. The screening mass is calculated from the zero-
enhancemenit2]. momentum limit of the 44-component of the vacuum polar-
The lattice formulation of QCD allows one to determine ization tensor evaluated for vanishing Matsubara frequency.
the electric screening mass nonperturbatively. The screenirig one-loop order this definition of the screening mass is
mass is extracted from correlators of Polyakov lopps9]  gauge invariant and consistent with the more general gauge-
or from the long distance behavior of the gluon propagatoinvariant definition given in Ref[5], where the screening
[10]. For small quark-antiquark separations lattice perturbamass is determined from the position of the pole of the gluon
tion theory for the Polyakov loop correlation function is ex- propagator for vanishing Matsubara frequency.
pected to describe the Monte Carlo data, since for a finite The paper is organized as follows: In the following sec-
lattice volume one is not confronted with the infrared prob-tion we calculate the electric screening mass for QCD in
lems encountered in thermal perturbation theory. This hasne-loop order for the case of Wilson fermions. The Feyn-
been checked ifl11] for the SU3) gauge theory by taking man rules and frequency summation formulas required for
careful account of finite size effects and, in particular, of thethe computation are relegated to two Appendixes. As we
zero momentum modes which do not allow one to take theshall see, the resulting integral expression has a very trans-
thermodynamical limit for fixed coupling, as one would do parent form. In Sec. lll we then evaluate the momentum
in standard perturbation theory. For larger quark-antiquarkntegrals for the screening mass numerically and compare the
separations, beyond the “perturbative horizon,” the color-results with the continuum. We show that the lattice artifacts
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In the following we first consider the contributions to
/UUOW 75% "%ﬁ‘ 1) (0k) coming from the fermion loops, i.e., diagrams

(@) and(b).
(a) (b) (
/‘\\ A. Contribution of diagram (a)
N \ J . f ) -
%Y /VO’ZS“ TTE m\ _ _A stralghtforward gppllcz_mon of the finite temperature,
S— finite chemical potential lattice Feynman rules yields
(e) (f) (2)
ﬁglg’m(oy,k)(a)
FIG. 1. Feynman diagrams contributing to the vacuum polariza- -1 3n
tion in one-loop order on the lattice. _ &g 1 2 f” d*p
Bi=—pr J-= (2m)°

due to a finite lattice spacing give rise to an enhancement of ~

the screening mass as compared to the continuum. We dis- ><f<a>(ei<&»f+iﬁ>;§,k), (2.33
cuss the magnitude of this enhancement as a function of the
temperature and chemical potential for lattices with a differ-where

ent number of lattice sites in the temporal direction which

can be implemented in numerical simulations. Most of the £@(z:
enhancement is found to be due to the fermion loop contri- '
bution. Section IV contains a summary of our results.

2(* +1) 277(2 +2)+4£G72
, 2.3b
)= T =2 (2.3b

ok’

o)

with

Il. ELECTRIC SCREENING MASS IN ONE-LOOP ORDER 1 1
n= + —, (2.30

In this section we compute the electric screening mass in [1+M(P)] [1+M(p+K)]
lattice QCD to one-loop order from the zero momentum limit
of the 44-component of the vacuum polarization tensor 1
evaluated for vanishing Matsubara frequency. The Feynman &= , (2.30
diagrams contributing in this order are shown in Fig. 1. [1+|\7| 6][1+M(p+k)]
While diagramg(a), (c), (d), and(e) have a continuum ana-
logue, the remaining diagrams, required by gauge invariance . A
on the lattice, do not possess a continuum counterpart. The G=1+2 sinp; sin(p+k);, (2.3¢
finite temperature, finite chemical potential lattice Feynman !
rules are obtained from thE= w =0 rules by replacing the A B
fourth component of the fermion and boson momenta by M(p)=m+22, sit—=, (2.3f)
@ +ip and @, respectively, where & =(2n/ J 2
Alla, = (21+1)w/B], with | e Z, are the Matsubara fre-
quencies for bosonffermiong, and 8 is the inverse tem-
perature. Quantities with a “caret” are always understood t
be measured in lattice units. Furthermore, integrals over the
fourth component of momenta at zero temperature are re-
placed at finite temperature by sums over Matsubara frequen- zo—el  z—a ¥ (2.43
cies in the interva] — B/2,8/2— 1], where we have take@ R ' '
to be even. The Feynman rules are collected in Appendix Awith
The relevant formulas for carrying out the sums over Mat-
subara frequencies are derived in Appendix B. d=& 6)'

The contributions of diagram&)—(g) of Fig. 1 to the

vacuum polarization tensor are diagonal in color space, 1/;=E(§+ ﬁ), (2.45

and N; is the number of quark flavors. The position of the
JPoles off@(z:p,k) are given by

zl: e(b, 22: e7¢,

= where
H(ﬁ‘”AB( - k) 5ABHﬁ“)( k). (2.1

(@) =I[K(§)+ VK(§)—1]=arcosl(q) (2.40
The electric screening magis lattice unitg is then defined

by and

= E q - ~ ~ =
y o ~ K(q)=1+;ﬁ)?, E(q)=\/2 Sir? G;+M*(q).
M= lim TI£#)(0k). 2.2 2[1+M(@)] ’

k-0 (24d)
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Note that Bi2—1 ~

NGB - _d%
- MG (0K =—Nig?> > 3
b — Pk Bi=piz J-m(2m)
b = (2.9
. . . . % f(D(al(o +in) § _
while 7, & and G are invariant under the transformation NG P, (2.83
p— —p—K. This will be important further below. The fre- \where
guency sum can be performed making use of @4) de-
rived in Appendix B. One finds that b, 2 722—2pz+1
fP(z;p)= - ———, (2.8b
(z=21)(2—2)
BI2—1 ~
- f@ ei(a)l’ﬂ,});?,& 1
B|:—25/2 ( Pk p=—, (2.80

1+M(p)
1

QBDTi 41 e Bo-iiq

and wherez; andz, have been defined in Eq®.4). Making
again use of the frequency summation formdB«), one
verifies that

=2+h(¢,¢-7l,§.g){

1
+h(¢¢>77§g)[ - , ~ = = d3p p
B¢+ 1) —B(¢—p) (B.a) - 2 _— _ _
+1 e +1 I3 " (0.K) () N9 f_w 2m) coth ¢ sinh & 1
(2.63 -
+N wa _gd3p cothd;—L
where 9], 2n sinh ¢
cosh 26— 7 coshp+£G X[ e #)+ 7ep( )] 2.9
h(d, b 1.6.9)= G+ h h (2.6b . _ _ _ ,
sinh ¢(cosh¢—coshy) Combining this expression with ER.73 one finds that
To obtainﬁgﬁ'“)(o;ﬁ)(a), we must integrate this expression I1{*)(0, k)= H(VaC)(O,E)
over 6 with EJJ- e[ —m,m]. Noting thaty, & andg are in- P
variant under the transformatiop— —p—k, and making +Nf92ﬁw W"'(&%P,U,S,Q)MFD(@
use of Eq.(2.5), as well as of the fact that the integrand in
Eq. (2.33 is a periodic function irp; andk;, we can com- + 7e( D)1, (2.103
bine the last two contributions on the right-hand siB&1S)
of Eq. (2.63 and obtain where
P
H(d),i,b,p,n,f,g):COIhd)— . _h((i)!l;banrgag)
i 0Ra=Ne? [ 3[h<¢ b1,E9—1] sinh ¢ > 105
= d% and

—Ng? e )3h(¢ 0, 1,6.9)[ ep( @) ) o
ﬁgl\ﬁlaC)(olR):_Nfng_ WH(¢v¢-P:ﬂa§:g)

+ A77FD( d))]a (2-73 (21OO
where =
is the T=1.=0 contribution. As we now show[§29(0 k)
1 e 1 vanishes in the I|m|kH0, and hence does not contribute to
(@)= —————, 7pp(d)= — the screening mass.
eflé—m 11 efétm 41 270 Consider the functionh(é,y,7,£,G) defined in Eq.

(2.6b. It is singular fork—>0, since in this limityy— ¢. The
are the lattice Fermi-Dirac distribution functions for particles singularity is, however, integrabfeThis can be seen as fol-
and antiparticles. lows. Since according to Eq2.5), and the statement follow-
ing it,
B. Contribution of diagram (b)
We next compute the contribution ﬂﬁ&f{""(O,k) of the We follow here and in the following a technique used in Ref.
Feynman diagrartb) depicted in Fig. 1. This diagram has no [12], where the author has calculated the screening mass for naive
analogue in the continuum and is given by fermions in lattice QED to one-loop order.
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Pk ATeo( i) =[1e0( D)~ 7o)+ [ () — o]
h(¢s‘/’:77,f1g) . h('/’a¢=’7:§,g), (21])

we can also write Eq2.109 in the form According to Eq(2.13, h approaches a finite limit fdt— 0.

Upon making the change of variabl§$ - 6— E the contri-

vaC)(O k)— —Nqg f ( coth ¢p— ) bution proportional tdch is seen to be canceled by the first
f smh ¢ integral in Eq.(2.14. We therefore conclude that
1 '"' dgA ~ i ~ =
+§N@#.(2£3N¢¢wfg% ymHﬁWmM———N@%m_W—J%
i k=0
(lea X h(¢a¢:7la§vg)A7]FD(¢:¢)-
where (2.15

We have now dropped the subscript “FT,” since in this limit
only Eq.(2.14 contributes to the screening mass. To calcu-
late this limit we proceed as before and get ¢+ €. One

Although each term on the RHS of E®.12D is singular for  then verifies that foe—0 (or k— 0) the fermionic contribu-

k—0 (— &), the sum possesses a finite limit. Thus settinglioN t0 the screening mass squared is given by

h(¢, ¢, 1,6,9) =h(¢, 8, 7,6, +h(, b, 7,£,0).
(2.12b

= ¢+ € and taking the limik— 0 (e—0), one verifies that o n - [ d eif(¢+ﬁ)
[Mgi( B, 1, M) Jrerm= N¢g ﬁle (27T)3 |[eﬁ(¢+;")+l]2
lim B, 1, 7,£,G) = 2(coth¢> ). @13 T
0 eB(¢—in)
From Eg.(2.129 we therefore conclude that + MJ (218
lim ﬁgv‘la@(o,ﬁ):o. In the continuum limit the electric screening mass is given
k0 by
This result is not unexpected, since for vanishing tempera- 1 B
ture and chemical potential it is well known in the continuum =lim Py mel( spa,maj. (2.17

formulation that Lorentz and gauge invariance protects the a0 8
gluon from acquiring a mass. The screening mass is therefore

determined by the finite temperatu¢gT), finite chemical For Wilson fermions, only moment@ in the immediate
potential contribution, given by the integral in E@.104. neighborhood otf) 0 contribute to the integral2.16 for
By makirlg again use of the fact thap«— ¢, when oo, Ba=pu, BM=pm fixed. But in this limit

6—>—§—k, while 7, & and G remain invariant under this ,é¢(§)—>,8\/f)2+ m?. Introducing in Eq.(2.16) the dimen-

Change of variables, we can write this contribution in thesioned momenta": E/a as new integration Variab|esy wigh

form the lattice spacing, one then verifies, after performing the

R - angular integration, and a partial integration that

H(B’”)(O k)
44 K)ET

2p
7 d% p - [M2ferm= Nf2 2 P—7—=—= [WFD(E )
:Nfng—v (277)§<C0th ¢_ sinh ¢)[’7FD(¢) J'

_ 1 - d% +7ep(E, )], (2.18
+ 7eo(P) ] - ENfng_W (Z—ﬂ;{h(fﬁilﬁ- 769 \whereE=\pZ+ m?, and

X[ 7e0(®)+ neol 61+ N( 6, 7,6,9) 70l ) peolEut) = i 7ol E)= SarErt
_ e e
+ 7ep(9)1}- (2.14 (219

Consider the second integral. It can be rewritten as followsare the Fermi-Dirac distribution functions for particles and
antiparticles.

= dp ~ . — We next consider the contribution to the electric screening
fﬁﬂW{h(‘f’v'/””vf’g)[”FD(w)’L77FD(¢)] mass arising from diagram&)—(g) in Fig. 1. They only

involve sums over Matsubara frequencies of the bosonic

+h(e, ¥, 17,EG) A nep( b, )}, type. Since in the continuum limit the only dimensioned

_ scale is the temperature, their contribution to the screening
whereh has been defined in E¢R.12b, and mass will be of the form conxtgT. For finite lattice spacing,
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however, the temperature dependence will be modified by
lattice artifacts. In the following we first consider diagrams
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—asint? ¢+ ib[coshp+1]

(c)—(e) which have an analogue in the continuum.

C. Contribution of diagram (c)

Using the lattice Feynman rules given in Appendix A one
finds after some algebra that this diagram contributes as fol-

lows to T1£#)(0k), defined in Eq(2.1),

3 1 Bl2-1 - dga e
L (0K) (o=~ g2 = (el ;q,k),
G )©= 2% %, 223/2 fw(Zq-r)3 (e'1;q,k)
(2.203
where
oo a2 12-b@ kazt1)?
k= i [z-7]
(2.20B
and
i
a(k)= 2 co§E (2.200
= 1 —= —
b(g.k)=7 ; (q—k)f+; (§+2k)?|. (2.20d

HereE is generically defined b§M=2 sin(bﬂ/2). The zeros
of the denominator in Eq2.20b are located at

Z=e?, Z=e?,

Z=e', Z=e Y (2.213
where

Ezarcoslh—l(a),

FIZ':arCOSM(a)+,|Z),

H(p)= 1+22 sm2 (2.21h

The frequency sum can be calculated by making use of Eq.

(B1). After some straightforward algebra one finds that

1B-2)(0 Kk o I s
142 *'(0K) (=69 f_wwh(fﬁy%a,b)ﬂ%((ﬁ)

3 = = d30 ~—
yefads [T S mGaa)
+h(25,'<?>,a,b)]], (2.223

where

h
(d.4ha.0)= sinh ¢[coshé— cosh ]

(2.22h

and

Tee(b) = (2.229

efr—1
is the lattice version of the Bose-Einstein distribution func-

tion.
In obtaining this result we have made use of the fact that

(2.23

while a(ﬁ) andb(a,k) are invariant under the transformation
a—>—a— k. Note that the function(2.22h is singular for

E—>O, since in this Iimit’q‘s—@. The singularity is, however,
integrable as can be seen by making use of R3 to
write Eq.(2.223 in the form

(Bop) = o™ d3a ~ —~ R ~ —~

I 4,u (ka)(c)ZSQ le Wh((ﬁiwvavb)AnBE(d)!lp)

3elads [ 29 G 7an
+h<%7ﬁ,a,b>][1+23735<25>]], (2.243

where

(2.24b

AWBE(¢ ¢)—WBE(¢) 773E( ).

The limit k—0 can now be easily taken and one obtains the
following contribution to the electric screening mass:

= d%q
) _~q2 _ =
(MeD o) 9|3 fﬁ (2m)3 3 coth g+ 23inh¢>]
X[1+27]BE(¢ }+_9 B
T d eﬁ¢
- 2.2
XJ#(ZW)B [ef4—1]2 229

D. Contribution of diagram (d)

This diagram involves the 4-gluon vertex, which consists
of types of terms differing in the color structure: terms in-
volving the structure constantg g and terms involving the
completely symmetric color couplingkgc. We denote the
corresponding contributions th%* (k) by [T1%*)(k) ]
and [H(ﬁ M(k)]iq. respectively. Consider first

[flﬁﬁ"‘ (O,k)(d)]m . After some algebra one finds that
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5/2 1 3 Br2-1 3n
~ 1 d=q = 1 = d*q
T168:») 0,k — 42 f Hﬁ,u) 0k _ 42 f
[T (0.K) ()11 9 5 :—B/Z e 2m)? [ (0K)(alfa1= 29 IB|:—221/2 (27
A JRTI
x[f D ;q,0]5, (2268 X[FO(e;8,k) ]q » (2.293
where

where

5 K(K)(z— 1)~ L(§,k)z

. . i} [FO(Z:8,K) Jpq =
—c(k)(Z2+ 1) +d(k)(z—1)2+P(q,k)z 6 [z-zllz-2)]

(O LR d(k)(z—1 (2.29h
[Z40)m N
(2.26h K(k)=> k2, (2.299
J
and - R
c(§)=l+22 cos@j , Performing the frequency sum one finds
]

~ = 5 m d3q ~
B0k =2 —K+J K coth
[z (0K) (g1 129 o (2m) ¢

K+ 3L L~
= [1+2778E(¢)]} .

sinh ¢

P(q.k)=2+ 5 > [(q+k)j2+(6]_’|;)j2]- (2.2609 SinceK(E) and L(a,ﬁ) vanish fork—0, it does not contrib-
ute to the screening mass, i.e.,

(Me) =0. (2.30
Performing the frequency sum in E.263 one obtains (M@t

E. Contribution of diagram (e)

- = 3 = = = d3q The only other diagram possessing a continuum analogue
[Hﬁﬁ’“)(O,k)(dﬂ[f]:Zgz —C(k)+d(k)+f 2 is the ghost loop shown in Fig(d). Its contribution is given
—w (27 by
x| (c—d)coth ¢+ d—EP) < 1 PR d3q
2 H&ﬁ'm(o,k)(ef—g = 2

O g “E)
3 19,K),
Bi=-prz J-=(2m)

2

(2.319

1 .~
X——= [1+27735(d>)]]- (2.27)
sinh ¢ where
- R 1 (#2-1)°
. = . . I f9(z0,k) =5 == (2.31b
Taking the limitk— O one finds the following contribution to 2117_4[z—7]

the screening mass: ) .
Performing the frequency sum one finds that

N ~ = 3 T d3a —~ —_ —_
. 1 1 (= d% ~ 1 M4 (0K) =202 —1+ | ——3l0(d,9)+9(s,¢)]
<m§|)f?f=592[—9+5f7(277)3 17 coth¢+smh7¢1 “ o L(zw)

T dsa ~—~ —
_ 4 , , 2.32
><[1+z;73E(¢>]]. 228 + J_ng((b ¢>nBE<¢>] (2.323
where
Next consider the contributigi 1 (0 Kl . Itis gi e sinh ¢
K) (d)I1d] - given (), h)= —————=. (2.32b

by J cosh¢—coshy
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This function is again singular fok—0. To compute the
limit we proceed as discussed earlier and write 323 in
the form

d®q

14 [ 0@+ 3.5

- = 3
I (0K) =7 07

X[1+27ge($)]
d39

v2| " S @A DD,

whereA 7ge(d, ) has been defined in EqR.24D. Taking
the limit k—0 one obtains

- d3 o -
i} W[lﬂL 27ge( @) Jcoth ¢

|

Combining the result$2.25), (2.28), (2.30, and(2.33), we

R 3
(mé)(e):Zgz{ _1+f

% P
_.(2m)3 [ef?—1]2

-28 (2.33

therefore find that those diagrams possessing a continuum
analogue yield the following contribution to the electric

screening mass in the gluonic sector:
1 F d3q
2 J-=(2m)8

1 o~
3 [1+27]BE(¢)]]

. 3 ~
(M3) ©+d+@©~ 92[ "2 + ( coth ¢

sinh
~ (7 d3A eé;
+6023 CE
- (2,”)3 [eﬁ¢_1]2

(2.39
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[mel] latt
[mel]cont

FIG. 2. Dependence §img]jai/[ Metlcont ©N T/mM for =0 and
different lattice spacings measured in unitsnof®. Open squares
(solid star$ correspond to lattices withl,=8 (N,=16).

6 ® X
(mgI)G:?ngzfo dx e —1°

Making use of

Xa*l

foxdxm=l“(a)§(a), a>1,

whereI'(«) is the Euler gamma function anf{a) the Rie-
mann zeta function, we recover the well-known result
(M) e=09°T2.

lll. LATTICE ARTIFACTS IN THE SCREENING MASS

In this section we compare the one-loop result for the
electric screening mass on the lattice with the continuum.
This will provide us with an estimate of the magnitude of the
lattice artifacts to be expected in numerical simulations. The
numerical data we present are for two mass-degenerate
quarks.

On a lattice the temperature can be varied by either keep-

The computation of the remaining contributions arisinging the lattice spacing fixed and varying the numbérof
from diagrams(f) and (g), which are a consequence of the temporal lattice sites or by varying the lattice spaciiog
lattice regularization, is straightforward. One finds that theyequivalently the coupling keepingN  fixed. For fixed lat-

cancel the first term in Eq2.34). Hence the gluonic sector
(G) contributes as follows to the screening mass:

. . T dsq elzag
P P S —
[M&(B. 1. ] =64 BLT (2m)° [efd—172"

(2.39

In the continuum limit(2.17) the corresponding expression
for the (dimensioned screening mass squared is given by

a d3q eﬁ;(aq)/a

(2m)° [efadia_1]2

l
(m)e= lim 69°8
a—0 — mla

=298 , dad [PI_1]2"

where q=|q|. After a partial integration this expression
takes the form

tice spacing the dependence of the screening mass on the
temperature, fermion mass, and chemical potential is given
by [see Eq(2.17)]

1
M| =—,pa,maj. (3.

1
[mel(T7m7M!a)]la’[’[=a Ta

If the lattice expression is to approximate the continuum,
then the lattice spacing must be small compared to all physi-
cal length scales in the problem. Hence we must have that
a< 1/T, a< 1/m, anda<% 1/u. We therefore expect that for
temperature3 < 1/a the continuum is well approximated for
ma<1 andua<1. This is shown in Figs. 2 and 3 where we
have plotted Mg]jatt/[ Mellcont @S @ function off/m at =0

and u/m= 1.5 for various lattice spacings measured in units
of m~L. Foru=0 andma=2ae[0,0.3, the deviation of this
ratio from unity is seen to be at most 1.75% for
T/m= 1/16. The RHS of this inequality is the temperature
associated with a lattice with 16 sites in the temporal direc-



[metliar a=0.3 .
[mel]cont a

0 T/m

FIG. 3. Dependence ¢img]ai/[ Mellcont ON T/M for u/m=1.5
and different lattice spacings measured in unitsnof!. Open
squares(solid star$ correspond to lattices with,=8 (N,=16).

The dash-dotteddashed lines show the temperature dependence

for a fixed number of temporal lattice sited,=8 (N,=16).
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[mel] latt
[mel] cont 1.3

N—l

0.1 0.2 0.3 0.4 0.5

FIG. 4. Dependence of the pure gluonic contribution to
[Meliae/[ Merl cont ON the number of lattice sitedl, . The solid line
interpolates between different numbers of lattice sikés,

from unity is seen to be at most 1.7% fir.=16 and 10%
for N,=8. The range of valuesV/T and /T for which the

tion. For T/m~ 1/&3 the deviation is already 7.5%. The end continuum is well approximated will of course increase with
point of the curves foe=0.05, 0.1, and 0.3 corresponds to increasingN ...

the minimal number of temporal lattice sites, id,=2, and
the open squaresolid stary to N,=8 (N,.=16).
For u/m=1.5 we must also ensure thaa<<1. We there-

fore expect that the allowed range of lattice spacings for

achieving an accuracy of 2% fdr< 1/16a is now restricted

IV. CONCLUSIONS

In this paper we have have computed the electric screen-
ing mass for Wilson fermions in the infinite volume limit for

to a smaller interval. Figure 3 shows that the continuumlattice QCD at finite temperature and chemical potential in

screening mass is well approximated #«0.1 in this tem-
perature range.

one-loop order. The expression we obtained had a very trans-
parent structure in which the artifacts arising from a finite

In lattice simulations one is interested in determining thelattice spacing were concentrated in two functions which in
electric screening mass above the deconfining phase trandfe naive continuum limit reduced to the on-shell energies of

tion. It is extracted from correlators of Polyakov lodjgs-9]

a free quark and gluon. We then studied the dependence of

or from the long distance behavior of the gluon propggatorthe lattice screening mass on the temperature and chemical

[10]. In these simulations the number of lattice sifds= 3,

potential for fixed values of the lattice spacing. It was found

is fixed. The electric screening mass in physical units, gifhat lattice artifacts give rise to an enhancement of the

vided by the temperature, is then given by
[Meiae/ T=NMg(N,, (/TN (MTINSD), (3.2

while in the continuum limit N,—«) this ratio is just a
function ofm/T and w/T. The above conditions for approxi-
mating the continuuum now read@ N/>1, (b
ma=(m/T) (1/N,)<1, and(c) pa=(u/T)(1/N,)<1l. We
therefore expect that for fixed, the continuum is best ap-
proximated for high temperatures. Far/m=1.5 this is

screening mass. Fou=0 and lattice spacinga<0.3m™!
the deviation off Mg(]jait/[ Metlcont from the continuum was
found to be less than 1.75% &Ym= 1/16a, wherea=ma.

For u/m= 1.5 a substantially smaller lattice spacing was re-
quired to approximate the continuum. Most of the deviation
was found to be due to the fermion loop contribution.

Since in numerical simulations the temperature depen-
dence of the screening mass is extracted from a given lattice
by varying the couplindlattice spacing we have also stud-
ied the dependence of the lattice screening mass on the tem-

shown in Fig. 3, where the temperature dependence gferature and chemical potential for fixéd . It was found

[Meiatt/[ Mellcont fOr N,=8 and N.=16 is given by the

that for N,.=16 and temperatures larger than the fermion

dash-dotted and dashed curves, respectively. The strong derass and chemical potential, the continuum screening mass
viation of this ratio at low temperatures is due to the fermionwas approximated to within 1.75%. The corresponding de-
loop contribution. This is evident from Fig. 4, where we haveviation for N, =8 was found to be at most 10% and to be due

plotted[ Mg jait/[ Merlcont fOF the pure SW3) gauge theory for

to the fermion loop contribution. In the pure 8) gauge

various values oN,. This ratio only depends on the number theory the continuum was already approximated to 2% for
of lattice sitesN .. The solid line interpolates between dif- only eight lattice sites in the temporal direction.
ferent numbers of temporal lattice sites. The deviation from Our analysis was carried out for infinite lattice volume.

the continuum is seen to be small already kby=8. For

N,=8, andN,=186, it is about 2%, and 0.4%, respectively.

Finally, in Fig. 5 we have plotted the ratio
[Mgliatt/[ Mellcont @S @ function of M/T and w/T for

For finite spatial volume the momentum spectrum becomes
discrete and zero momentum modes must be treated sepa-
rately in a perturbative expansion. In comparing the data for
the electric screening mass obtained in Monte Carlo simula-

N,=8,16. In the parameter range considered the above irtions with continuum perturbation theory, finite volume ef-
equalities are well satisfied and the deviation of this ratiofects need to be included, while finite lattice spacing effects
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FIG. 5. Dependence ¢img]ja/[ Mellcon: ©N M/T and w/T for (@) N,=8 and(b) N,=16.

may, as our analysis suggests, be negligible for those cowre defined at the middle of the links. Following standard
plings and lattice sizes at which the simulations have beenonventions, we did not include the combinatorial factor

performed. arising from the symmetrization of the vertices. The dimen-
sionless version of these rules, used in Sec. Il, is obtained by
ACKNOWLEDGMENTS settinga=1.

(i) Fermion, gauge field and ghost propagators:
We are very grateful to T. Reisz for several discussions
and constructive comments.

[-i/e Smsintepitmis)]

ba P aa VRS

For vanishing temperature and chemical potential the latwhere
tice Feynman rules have been given 118]. The expression
for the four-gluon vertex stated in that reference is, however,
not quite correct. For completeness sake we collect in this
appendix the Feynman rules for lattice QCD with Wilson
fermions at finite temperature and chemical potential. In this
case the fourth components of boson and fermion momenta
are replaced byk,=w/=27//8 and p,=w,+iu is the momentum-dependent Wilson mass arntle Wilson
=(2/+1)w/B+iu, respectively. As usual the gluon fields parameter which we have set to 1 in the calculation.

APPENDIX A: FEYNMAN RULES

m(p)szrZTar > sir?

n

a
2 P

CTOTO> banfs 6 —(1-N%E] k= 2sin(2k,)
B,v k Anu

*--——->--- (5,“31%2

B k A

(ii) The vertices:

A7 (k)
—ﬁaO,(—wl_p+wZ]+wz’k) (2W)35?p)(—ﬁ+ 6+ k)

19(T%)ae{()as cos(§(p + 9),) = irdagsin(2(p + ¢),.)}

AL (k)

m )
000, (ca b bt vt (27 (P4 G+ E 4 7)
349%0u T8, T 0y {rdus cos(2(p + q),.)

AE‘(T) —i('yu)aﬁ Sin(%(p + q)u)}
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~FA(r)
SR v (e i
STETT ﬁéo,(—wz_+wz+wz;) (2m)300, ) (~7+ 5+ k)
. igfaBcty cos(5 s,)
"¢B(s)
() AD(q)
A - -, 7 N
. /650,(—wz_+w2; +ud +u}) (277)35(3;)4)(_7' +5+k+q)
e ﬁ azgz‘sw{tcvtD}ABfugu
«
L eBs) AL (k)

0T ETD =0t vust) (280 (F + @) 37 4*m08

A5(r) Ploicintny 2P0y (R4 347)
igfapc{éia(k ~r), cos(%q,)

Al (k) AD(s)
ﬂéov(w}i+wl+q+w,t+w (271' 5(31’ )(k + lj+ F+ 5‘)
P, ABOD(k ars)

urAp

LA AS(r)

where

ifﬁf,?CD(k q,r,s)= 129 KE fABEfCDE[ 0.\ 0up

+ 3,0

1 1
12 co% a(k— s)) 5( a(g—r), un

1
+ 6,0, 2a( )Vqﬂ co{zak

uvCup

_ 1
+6,,0,02a%(q—K) 5, c05<§ar

(B,a,») (C,r,A) (D,S,p))

+ the cyclic permutation
yele p %(c, A (D.sp) (B.g.v)

+a*

x{awamaﬂp; k,§.T .S +5W5)\pk)\q)\r 3 +5M5Vpkyqﬂrvs +8, 5mkyaﬂ?#§

- 51})\ 5VkaaM~M§M_ 5#)\5/kavau?v’§v 173% ,u,pk)\q)\r S)\ V5u)\kpap?p§,u] .

+8,(q = k), cos(27,) + Sau(r — q), cos(§ )}

1 1
12co:€§a(k—r)v) 5{ a(g—s),

—_ —~ 1
—8,08,,2a%(s— 1)k, cos(zaqﬂ

- 1
~8,,6,,28%(q—K),T, Cos(iasx

P _5,(;1/5“)\5“,)322 (at'k)u(;)g]

2
§(5AB5CD+ OacOpe™t 9apdec) T EE: (dagedcpet dacedpeet dADEdBCE)]
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FIG. 6. Integration contou€ in Eq. (B2). el ot
APPENDIX B: FREQUENCY SUMMATION FORMULAS
In this appendix we derive summation formulas over Mat- FIG. 7. Integration contour§; andC, in Eq. (B3).
subara frequencies useful for performing calculations on a
lattice, where the frequencies are restricted to the Brillouin 2. Fermionic frequency sums
zone. We will first consider the bosonic case and afterwards

turn to the fermionic one. In the fermionic case we will proceed in an analogous

way to prove the following summation formufaZ2].
1. Bosonic frequency sums Let g(z) be a meromorphic function of a complex vari-
ablez that is bounded fojz| — ¢ and has no singularities on
We will prove the following summation formula: the circle|z]=exp( ). Then
Let g(z) be a meromorphic function of a complex vari-
ablez that is bounded fofz| — and has no singularities on

1 A Res; (1/2) 9(2))
the circle|z|=1. Then - g(el@mtimy=> _
; B m=-g12 i ePrzP+1
pect Res;((1/2) g(2)) (B4)
= 2 gEn)=-2 ——=—— (B
ﬁ n=-pg12 ! Zi _1

where®,=(2m+ 1)77/,25’.

- N A Consider the function
where 8 is a positive even numberd, =27n/8 and

Res;((1/z) g(z)) denotes the residue of @/g(z) at the _ -ip
polez; .

h(o)= = ,
Consider the function exfif(o—in)]+1
i3 which has simple poles @ = &,,+iu, me Z, with residue
h(®)= ————, 1. Because of the conditions @{z), there exists ar>0
expliBw)—1

such that g(e“:’) has no singularities for Indf)
: . _ _ uw—emt+el. H
which has simple poles a= &, , neZ, with residue 1. clu—eutel. Hence
Because of the above conditions gfz), there exists an

N B2—1
io ; i A 1 . 1 .
e>£) suc: thatg(e'®) has no singularities for Inaf) - E g(ei@m*tiny= — = é dag(el®)
e[—¢€€]. Hence B m=—pr2 27w Jc
G | L 1 1
= 2 g(ehn)=— é dag(e'’) ——=—"—", X —— :
Bn=-p12 2w Jc expiBa)—1 exdiB(o—iw)]+1
(B2) (B5)
\évygaecihlz ?;iggleégiag)(()nq((::)())r\t/(éucr)t;jtzipr:cted In Fig. 6. Intro- where the integration conto@ is depicted in Fig. 8. Intro-
9 P ducing again the variable=exp(®) we obtain
Bi2—1 2
1 . 1 g(z) 1
= 2 gEeen)=—2 fﬁ dz—— ,
B n=—p102 2 =1 Cj z zf-1
®) C___
’4' \\‘ €
whereC, andC, are the contours shown in Fig. 7 with the Lo e e IR ; I
integration carried out in the indicated sense. A o
Since Iimzhxz‘ﬂg(z):O, we can distort the outer inte- } I } >
gration contour to infinity taking into account the singulari- -7 T

ties ofg(z) for |z|>1. In the case wherg(z) is a meromor-

phic function, Eq.B1) follows immediately. FIG. 8. Integration contou€ in Eq. (B5).
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L g~ L 3 5£dzg(z)
B m=-p12 27 =1 Jg z
1
K=,
efrzP+1
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where the integration contouf3; andC, are as depicted in
Fig. 7 except that the radii are changedtd* € ande™ #**,

respectively. Hence, for the same reason as in the bosonic

case, we can distort the contdDy to infinity and are led, for
a meromorphic functiorg(z), to the summation formula
(B4).
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