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Improving the signal-to-noise ratio in lattice gauge theories
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Renormalization of composite fields is employed to suppress the statistical noise in lattice gauge calcula-
tions. We propose a new action which differs from the standard Wilson action by “irrelevant” operators, but
suppresses the fluctuations of the plaquettes. We numerically study the Creutz ratios and find a scaling
window. The SW2) mass gap is estimated. We prove that the contributions of the “irrelevant” operators to the
screening mass decrease towards the continuum limit. The results obtained from the action with noise sup-
pression are compared with those of the standard Wilson a¢&®%56-282(97)01723-2

PACS numbses): 11.10.Gh, 11.15.Ha, 12.38.Gc

I. INTRODUCTION In the recent past, two concepts have been established to
be important in order to improve the signal-to-noise ratio.
The present lattice calculations provide the only rigorousFirst, the choice of a nonlocal operatdr(x) in Eq. (1)
approach to low-energy Yang-Mills theories. After the scal-(which nevertheless carries the quantum numbers of the state
ing window had been discovered by Creutz in his pioneeringinder investigation might result in a composite operator
work [1], lattice simulations provided the first information on ®2(x) which is free of ultraviolet divergence@mearing
the ratio of the low-lying glueball masses and string tensior{8]). Secondly, information from the links of a former update
for the SU2) [2] and SU3) [3,4] gauge groups. step is used to enhance the sigtfakzing[9]). Hybrid algo-
Unfortunately, the limited capacity of computers put se-rithms, which combine “smearing” and “fuzzing,” as well
vere constraints on the accuracy of “lattice measurements.’as an estimate of their impact on the signal-to-noise ratio can
First, the finite number of lattice links correspond to a finitebe found in[7].
physical volume. Nowadays, a physical volumeb® frm)* In this paper, we propose a new method to improve the
is available for reasonable values of the lattice spa¢ieg, signal-to-noise ratio. The method is inspired from the renor-
e.g.,[4]). Secondly, the finite number of independent con-malization procedure for composite operators in continuum
figurations which are employed to calculate the expectatiomguantum field theory. The basic idea is to add to the Wilson
value of the desired operator implies that the “lattice mea-action an additional term which vanishes faster than the Wil-
surement” is contaminated with statistical noise. son action in the continuum limit, i.e., we add an “irrelevant
Weisz and Symanzik have shown that the situation correeperator,” but which suppresses the statistical noise. We
sponding to the finite size problem can be significantly im-study the efficiency of our method by calculating the(8U
proved by using an improved actigs]. In the numerical mass gap employing the “old” idea of plaquette-plaquette
simulation, an effective action is used which already containsorrelations.
corrections from perturbative radiation. In recent years, The paper is organized as follows. In the next section, we
much work has been devoted to the development of suchriefly review the renormalization of composite operators in
improved lattice actions, which are often referred to as “per-continuum quantum field theory. We then discuss the modi-
fect” lattice actions[6]. fications of the Wilson action by “irrelevant” composite
In this paper, we will focus on the noise problem. In orderfields which yield the suppression of the noise. In the third
to outline the conceptual nature of the noise problem, wesection, we present our numerical results. Conclusions are
briefly review the arguments presented [ifil. Glue-ball left to the final section.
(screening massesn, are extracted from correlation func-

tions: i.e., Il. RENORMALIZATION OF COMPOSITE OPERATORS
C(t):=(d(t)®(0))~constxe M, 1) A. In continuum quantum field theory

where the brackets indicate an average over independent lat- FOr illustration purposes, we here consider the continuum
tice configurations. The statistical error of the desired quanduantum field theory of a fieleb(x) which is described by

tity is measured by the standard deviat[ah the Euclidean partition function

(POPO)PMP(0)-CHO~(PX0). 2 gz ,g)- f D¢<x>exp{—5[¢]<g>+ f d4Xn<x>¢<x>],

From perturbation theory, one knows that composite opera- (3)
tors acquire new divergences implying that the statistical er-

ror of the correlation functioC(t), i.e., (®2(0)), diverges  where a regularization is understood in order to make(8q.

in the continuum limita— 0. The disastrous and fundamen- well defined. For simplicity, we assume that the Euclidean
tal problem therefore is that the signal-to-noise ratio vanishesction S contains only one parameter (e.g., the coupling

in the continuum limit. strength. The external source linearly couples to the field
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¢(x) implying that functional derivatives of[ »](g) with 1 ; ‘
respect toy yield connected Green'’s functions P(¥) = St{U 00U, (X+ m)U ,(x+ 1)U, ()} (9)
(Th(Xq)- - - p(Xn))- 4

The functional integral7) is defined on a lattice with lattice
These Green’s functions are generically divergent in fourspacinga, which serves as the ultraviolet regulator. In the
space-time dimensions, if the regulator is removed. Renoreontinuum limit (@— 0), the plaquette is
malized Green'’s functions are obtained from the generating

functional ¢

a
P (x)=1~ ZFinzerO(ae), (10
Zrl 7rI(9R): = Z[ 2, 7r1(Z9R) ©)
by performing the functional derivative with respectsq. W_hereFZV is the usual field strength tensor. In this paper, we
Z, andZ, are the so-called renormalization constants, andVill confine ourselves to the plaquette-plaquette correlation
nr is the renormalized source which accounts for field renorfunction(P,,,(x)P,(0)) in order to extract the mass gap of
malization, andy is the renormalized parameter. In order to the SU2) lattice theory. From Eq(2), it is clear that this
guarantee that Eq5) yields finite Green’s functions, we Correlation function is plagued by a statistical noise which
have tacitly assumed that the field the¢Byis multiplicative  diverges in the continuum limit. From the discussions in the
renormalizabld10], i.e., all divergences can be absorbed inlast section, it Is now evident that one must add a term
the renormalization constangs,q . Z gl ()P, (X) with a suitable choice of(x) to the ac-
The crucial observation is that, if we allow for composite tion (8) in order to avoid this divergence. We here propose to
field insertions, i.e., if we are interested in the limit—x,  Perform the numerical simulation using the action
in the renormalized Green’s function, new divergences arise

in the partition functiorZg[ 7g](gr). In order to renormalize s=> BI1-P,,(x)]+ > J[P,,(x)— A%, (12)

these insertions, we generalize {x}uv {xtuv
Zrl 7r1(9R)— ZRL 7RI RI(OR) wherej and A are constants. In fact, we will chooseto be
the average value of the plaquet®,,, which will be a

=J’ Dd;(x)exp[ -9 ¢1(Z,9) function of 8 andj.
Let us study the naive continuum limit of the acti&
(11). Using Eg.(10), a direct calculation yieldgup to a
+f d*x[Z,,7r(X) $(X) constant
a4

+ijR(x)¢>2(x)]]. (6) S=[8-2j(1- A)JF},F,+0(a°). (12)

The additional divergences due to the composite fid(x)  This implies that the actio§ cannot be distinguished in the
can be absorbed in the renormalization consEgnt naive continuum limit from Wilson’s actiof8) with an ef-

The dependence of the renormalization constants on thiective parametef = 8—2j(1—.4). In the quantum con-
regulator is of course not knowanpriori. Perturbation theory tinuum limit (8—=), the average plaquette and effective
l[JSLﬁa”y provides a systematic way to extract this dependendgaverse temperaturB.; are approximately given bji]

10].

In the context of numerical lattice gauge calculations, the 3j
guestion arises of how one should choose the bare source A=1- @ Bei=B— ﬁ (13
j(x) as function of the lattice spacing in order to renormalize
the composite field insertions and therefore to reduce théf | increases less than linearly wiih, the results of the
statistical noise in the continuum limit. In the next subsec-quantum theory using should agree with those which are
tion, we will suggest a choice for the source term. obtained by employing the Wilson action.

On the other hand, the term in E@.1) proportional toj
further constrains the plaquette to its average valuand

The partition function of S(®) lattice Yang-Mills theory therefore suppresses statistical fluctuations around the aver-
is defined as a functional integral over the link variablesage value of the plaguette. The key point is that the acion
U,(x):ie., (12) differs from the Wilson action by “irrelevant” opera-
tors which are chosen to suppress the statistical noise of the
plaguette. The price one has to pay is that the average
plaguette value must already be known at the beginning of
the numerical simulation.

From the last subsection, it is clear that the signal-to-noise
ratio stays finite in the continuum limit, if is appropriately
Sy= 2 B[1=P,,(X)]. (8) chosen. Let us outline, how this choice must be done in

Xpur practice.
P, is the plaquette, which is built from four link variables: ~ For this purpose, we briefly recall the renormalization of
ie., lattice Yang-Mills theory. In the case of the standard Wilson

B. In lattice gauge calculations

sz DU ,exp{— S}, (7)

where the standard Wilson action is given by
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FIG. 1. The Creutz ratios employing the standard Wilson adfieft) and using the actio® (11) with j=0.5(right). The dashed line in
the right-hand picture indicates the perturbative scaling behavior of thej eaBe

action, the task is to determine the scale dependence of theeat bath algorithm by Creuf]. Our purpose is to demon-
coupling constant, which is equivalent to extract fhede-  strate the mechanism of noise suppression proposed in the
pendence of the lattice spacing, i.a(8). This is usually  previous sections, rather than to provide new precision mea-
done be calculatinga® (« is the string tensionas a func-  syrements. In the latter case, one should resort to “im-
tion of B. Choosing a renormalization poirt=440 MeV,  yoved” actions[5] as well as a larger number of lattice
one c_)btams the “running” of the coupling strength from the points.

functiona(p). The first task is to calculate the average plaqudttself-

In the case of the actiofiL1) with the noise suppression . ) .
term, a second renormalization constant, ije.enters the consistently for given values fg8 andj. We apply the fol-

considerations, which must be fixed by an additional renor/OWing procedure(we leave it to the reader to develop his
malization condition. A natural choice is that the signal-to-OWn method: before the lattice has reached its thermody-
noise ratio remains nonvanishing, when the continuum limitxamical equilibrium, we use the lattice average from the pre-
is approached. Choosing a value for the string tension and é@ous heat bath step fod. When equilibrium is reached, we
value for the latter ratio determines the regulafioe., the calculate the average plaquette taking into account all heat
lattice spacing dependence of the parametg@sandj. The  bath steps. In a particular step, we assign the actual value of
procedure is possible, since we are dealing with a renormathjs average plaquette té. We then perform a large number
izable theory. _ o _ of heat bath steps to obtain an accurate valuelpfvhich
Numerical simulations deal with finite lattices off the con- g,,sequently enters the numerical calculations of correlation

tinuum limit implying that the signal-to-noise ratio is non- . i
zero even without noise renormalization. For current staniuctions, where a smaller number of heat bath steps is suf-

dard lattice sizes (10...,20 lattice point3 and for a  lcient _ o .
SU(2) gauge group, a scaling windo@=2, . .. ,3 is of in- The crumgl' question is whether the scalmg' limit is
terest. Forg values smaller than 2, the cutoff, i.er/a,  reached for finite values gf. In order to answer this ques-
becomes too small, whereas {8r-3 finite size effects spoil tion, we calculate the Creutz rati¢$] as a function ofg.

the lattice measurements. The best that one can do is to suphe left picture of Fig. 1 shows the cape 0. These are the
press the noise fo8 values within the scaling window. The Creutz ratios which one obtains using the standard Wilson
generic procedure is to choose the tuplej{ consistent action. These results are compared with thosg £00.5 (in
with the string tension, and take the valuas large as pos- the right picture of Fig. 1 The lines indicate the scaling
sible. Note that the “irrelevant” terms in the action make a behavior which has been calculated with the help of the per-
significant contribution to the observablesj ifs chosen too turbative renormalization groug function. The crucial ob-
large. We will find thatj €[0,1] is a reasonable choice for servation is that the model with nonvanishing soujaaso

the SU2) gauge group and fo8 in the scaling window. We  approaches the scaling behavishown by the lines in Fig.

will show that forj =1 a reduction of the noise by a factor of 1) which is predicted by the perturbative renormalization
10 is possible. group.

IIl. NUMERICAL RESULTS . .
B. Noise suppression

A. Creutz ratios Let us study the efficiency with which the action in Eq.

We perform our numerical simulations of the quantum(11) suppresses the statistical error of the average value of
theory employing the actiofill) on a 1¢ lattice using the the plaquette. For this purpose we consider the probability
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200 ‘ — ‘ independent runs were performed to estimate the relative er-
. " ror € of the plaquette value, i.eg:= 6A/ A. One observes
!=0 3 that e decreases with increasimg This is simply due to the
150 | I !=0-3 improved statistics. In addition, a reduction of the noise by a
------ j=0.5 . 1h factor of 10 is feasible gt=1 compared with the case with-
_ i ',".l:*.",'l-:',"“‘ \ out noise suppression €0).
3 NiLR
S 00 | :"""“}\ L f
2 «:‘\j'"’ H'“ ",\\ I" \“ C. The SU?2) mass gap
| j‘v" MH' g \y\l“ ‘;‘n' ) In this subsection, we will numerically estimate the(3J
50 | .&;’va}\,“f'v'y ""\ ",‘v\ | mass gap from the plaquette-plaqqette correla_tion fun_ction in
Y g ot order to demonstrate how the acti@il) works in practice.
,Afr v y ""‘(’,"\ The purpose of this subsection is twofold. First, we want to
_,;,»’J AU show that the mass gap obtained here is in agreement with
o bl ‘ ‘ ‘ the high precision measuremef® which employ high sta-

-5.0 -3.0 -1.0 1,0 3.0 5.0 tistics and an improvement of the signal-to-noise ratio using
(P-4) 10 the fuzzing technique. Secondly, we will compare the results
at several values @8 in order to estimate the contribution of
FIG. 2. The distribution of the plaquette around its averagethe “irrelevant” operators off the continuum limit. We are
value A for several values of the noise suppression fagtor aware of the problem that the overlap of the plaquette with
glue-ball wave function is small11]. For high precision
measurements, one should therefore employ nonlocal opera-
distribution of finding a particular value of the plaqueg,  tors. Performing the noise suppression for the case of these
on a 1d lattice in the interval operators, however, might be numerically costly. For these
5 5 first investigations, we therefore confine ourselves to the
[A=5X10"%,A+5x10"]. (14 study of correlations of the plaquette.
Furthermore, we use the source methdd] to calculate

From the numerical point of view, we proceed as follows. ) ) ;
b P the correlation function of the plaquettes. For this purpose,

We divide the above interval in bins of width 1 and . o
calculate the lattice average of the plaquette in a particula\f"e estimate the average plaquette at the origin from
heat bath step. We then count the number of average values _

which correspond to a certain bin. We evaluated 1140 heat W[ ]= IDU,2 Pl O)exp — S+ Z{X}“Mxp”y(x)},
bath steps. The numerical result is shown in Fig. 2 for JPU X = S+ 2,0 1P u(X)} 15
B=2.1 andj=0.5. One clearly observes that the data points (15
are strongly grouped around the corresponding average value
A for large values of the noise suppression fagtdn addi-  \\hereSis the action(11). Let P(x) denoteS P, (X). Itis

. _ . uvt opv

tion, one observes a sharp peakRjt,=A. Whether this  giraightforward to verify that the functional derivative of

peak is an artifact due to corrections to the action of oefer W[ 7] with respect to the source(x) yields the desired
or whether the peak is necessary to reproduce the standaggrejation function: i.e.

Yang-Mills action(12) in the scaling limit3— «, is not clear
to us.

In order to quantify the suppression of the noise of the SW[ 7]
plaquette, using a“lattice in the numerical calculation is C(t)=
convenient, since fluctuations are large d inite si - onx) |,

, ge due to finite size ef 7=0

fects and since the numerical simulation is fast. We used
B=2.2. The results are summarized in Table I.

n is the number of heat bath steps which were employe
to calculate the average plaquette. For each value difre

=(P()P(0))=(P())(P(0)).
(16)

(Fn practice, we are interested in the correlation of the
plaguette in time direction implying that one chooses
n(x)=n(t). In fact, one simulates two statistical ensembles.
One ensemble is generated with the inverse temperature, the
other is obtained by setting the inverse temperature of the

TABLE |. The relative errore of the plaquette value for several
values of the noise suppresion facfor

n i € [10°9 n i e [10°9] time slicet=0 to 8+ » leaving the remaining values un- _
changed[12]. In both ensembles, the average plaquette is

100 0 5.9 300 0 3.9 obtained as a function of time. The correlation functi@)

100 0.5 1.5 300 0.5 0.81 is obtained by approximating the functional derivative in Eq.

100 1 0.84 300 1 0.21 (16) by the difference of the expectation values of the
plaguette of the two ensembles.

200 0 45 400 0 2.0 We use 1140 heat bath steps to extract the average

200 0.5 0.71 400 05 0.46 plaguette in both ensembles. A typical result for the correla-

200 1 0.59 400 1 0.23 tion function as a function of time is shown in Fig. 3, where

the noise suppression factor is setjte 0.5. The inverse
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0.015 ‘ ‘ . TABLE Il. The screening mass of the plaquette-plagquette cor-
relation for several values @, j).

B j ka? L ma m/\x

0.010 |
21 0 0.577 3.5fm 1.460.14 1.85-0.2

1.9 0.5 0.577 3.5fm 1.560.23 2.06:0.3
2.3 0 0.21 2.1fm 1.360.03 2.97-0.06
2.1 0.5 0.21 2.1 fm 1.460.06 3.25:0.13
2.4 0 0.126 1.6 fm 1.430.08 4.04-0.3
2.2 0.5 0.115 1.5fm 1.440.07 4.14-0.2

0.005 |

0.000 |

functions of plaquettes. The actigfhl) with noise suppres-

~0.005 ‘ ‘ . sion differs from the standard Wilson action up to a shift in
1 2 3 4 5 B only by “irrelevant operators”; i.e., both actions coincide

t in the naive continuum limit.
Adopting a conceptual point of view, we have outlined

FIG. 3. The correlation functiofil6) as a function of time in L . . .
units of lattice spacings fof=1.9 andj =0.5. two renormalization conditions which yield the scale depen-

dence of the parametefsandj. Since Yang-Mills theories
are renormalizable, the adjustment of the parameters guaran-

temperature i8=2.1 guaranteeing that the systems are intees a nonzero signal-to-noise ratio in the continuum limit.

the scaling regior(see left picture of Fig. L One clearly .In practice, nu.meric.al simulation; use finitellattice.s gnd
observes an exponential decay of the correlation, where thiéghite values ofg implying that the signal-to-noise ratio is
slope of IrC(t) provides the S(2) mass gap in units of the finite, too. In this case, the conceptual results can be used to
lattice spacing. suppress the noise for the finite range @fvalues under

It is interesting to compare the value of the mass gapg¢onsiderations. We have numerically studied the new action
obtained with and without noise suppression, Bwalues (11) on coarse grained lattices consisting fahd 1¢ lat-
corresponding to the middle and the onset of the scalingice points. The Creutz ratios from the numerical data with
window, respectively. In the latter case, the contribution ofand without noise suppression show a scaling window in
“irrelevant operators” to the mass gap should be more prooth cases. It turns out that choosing a constant valug for
nounced compared with the former case. The numerical repy B lying in the scaling window g e[ 2,3] for our present
sults are summarized in Table II. _ ~ case is reasonable and suppresses the noise up to a factor of

The error bars indicate the uncertainty due to stat|st!cah0. Other choices of thg dependence of are possible and
quctqaﬂons. They are extr.acted from the fit of the Corrfalat'onperhaps more convenient depending on the type of correla-
function C(t) to the function constexp{—mt. The string tion function which is under consideration.

tensionk sets the scale. We use=440 MeV.L is the ex- The SU2) mass gap has been estimated from the
tgnsmn of our lattice in each direction. O_ne ObSGfV?S that thﬁlaquette—plaquette correlation function. We have found that
discrepancy between the values \x with and without

. . it th | the contributions from the “irrelevant” operators to the
noise suppression decreases, if the ensemble twms towargdseening mass decrease with increasing valueg. ofhe
the continuum limit, i.e.xa“ decreases. This shows that the goal of the noise suppression in this case has mainly been the

influence of the “irrelevant” operators, which distinguishes yoq,ction of the statistical fluctuations of the “background,”
our action(16) from the standard Wilson action diminishes. on top of which the signal exists.

Note, however, that at physical lattice sizes where the influ- £ high precision measurements of glue-ball masses, one
ence of the “irrelevant” operators is small, finite size effects g4 yse correlation functions of operators which have a
might play a role. This would imply that a large number of |3rqer overlap with the glue-ball wave function than the
lattice points(here we use T0lattice point$ is necessary for plaguettes. In addition, “perfect” actions will help to ex-
high precision measurements of the (BUmass gap. The {aojate to the continuum limit. A generalization of the

numerical result for the mass gap in the scaling region is ingise suppression introduced in the present paper to either

agreement with the results 2] case seems feasible. In the case of the “perfect” actions, one
has to ensure that the noise suppression term does not spoil
the correct ultraviolet behavior exploited by the “perfect”

IV. CONCLUSIONS action techique.

We have shown that constraining the plaquette to its av-
erage value can be understood as composite field renormal-
ization. The parametejr, which enters the action, acts as a
renormalization constant absorbing the divergences arising
from the composite nature of fields. These divergences are This work was supported in part by DFG under contract
responsible for the small signal-to-noise ratio in correlationRe 856/1-3.
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