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Renormalization of composite fields is employed to suppress the statistical noise in lattice gauge calcula-
tions. We propose a new action which differs from the standard Wilson action by ‘‘irrelevant’’ operators, but
suppresses the fluctuations of the plaquettes. We numerically study the Creutz ratios and find a scaling
window. The SU~2! mass gap is estimated. We prove that the contributions of the ‘‘irrelevant’’ operators to the
screening mass decrease towards the continuum limit. The results obtained from the action with noise sup-
pression are compared with those of the standard Wilson action.@S0556-2821~97!01723-2#

PACS number~s!: 11.10.Gh, 11.15.Ha, 12.38.Gc

I. INTRODUCTION

The present lattice calculations provide the only rigorous
approach to low-energy Yang-Mills theories. After the scal-
ing window had been discovered by Creutz in his pioneering
work @1#, lattice simulations provided the first information on
the ratio of the low-lying glueball masses and string tension
for the SU~2! @2# and SU~3! @3,4# gauge groups.

Unfortunately, the limited capacity of computers put se-
vere constraints on the accuracy of ‘‘lattice measurements.’’
First, the finite number of lattice links correspond to a finite
physical volume. Nowadays, a physical volume of~1.6 fm! 4

is available for reasonable values of the lattice spacing~see,
e.g., @4#!. Secondly, the finite number of independent con-
figurations which are employed to calculate the expectation
value of the desired operator implies that the ‘‘lattice mea-
surement’’ is contaminated with statistical noise.

Weisz and Symanzik have shown that the situation corre-
sponding to the finite size problem can be significantly im-
proved by using an improved action@5#. In the numerical
simulation, an effective action is used which already contains
corrections from perturbative radiation. In recent years,
much work has been devoted to the development of such
improved lattice actions, which are often referred to as ‘‘per-
fect’’ lattice actions@6#.

In this paper, we will focus on the noise problem. In order
to outline the conceptual nature of the noise problem, we
briefly review the arguments presented in@7#. Glue-ball
~screening! massesmg are extracted from correlation func-
tions: i.e.,

C~ t !:5^F~ t !F~0!&'const3e2mgt, ~1!

where the brackets indicate an average over independent lat-
tice configurations. The statistical error of the desired quan-
tity is measured by the standard deviation@7#

^F~ t !F~0!F~ t !F~0!&2C2~ t !'^F2~0!&. ~2!

From perturbation theory, one knows that composite opera-
tors acquire new divergences implying that the statistical er-
ror of the correlation functionC(t), i.e.,A^F2(0)&, diverges
in the continuum limita→0. The disastrous and fundamen-
tal problem therefore is that the signal-to-noise ratio vanishes
in the continuum limit.

In the recent past, two concepts have been established to
be important in order to improve the signal-to-noise ratio.
First, the choice of a nonlocal operatorF(x) in Eq. ~1!
~which nevertheless carries the quantum numbers of the state
under investigation! might result in a composite operator
F2(x) which is free of ultraviolet divergences~smearing
@8#!. Secondly, information from the links of a former update
step is used to enhance the signal~fuzzing@9#!. Hybrid algo-
rithms, which combine ‘‘smearing’’ and ‘‘fuzzing,’’ as well
as an estimate of their impact on the signal-to-noise ratio can
be found in@7#.

In this paper, we propose a new method to improve the
signal-to-noise ratio. The method is inspired from the renor-
malization procedure for composite operators in continuum
quantum field theory. The basic idea is to add to the Wilson
action an additional term which vanishes faster than the Wil-
son action in the continuum limit, i.e., we add an ‘‘irrelevant
operator,’’ but which suppresses the statistical noise. We
study the efficiency of our method by calculating the SU~2!
mass gap employing the ‘‘old’’ idea of plaquette-plaquette
correlations.

The paper is organized as follows. In the next section, we
briefly review the renormalization of composite operators in
continuum quantum field theory. We then discuss the modi-
fications of the Wilson action by ‘‘irrelevant’’ composite
fields which yield the suppression of the noise. In the third
section, we present our numerical results. Conclusions are
left to the final section.

II. RENORMALIZATION OF COMPOSITE OPERATORS

A. In continuum quantum field theory

For illustration purposes, we here consider the continuum
quantum field theory of a fieldf(x) which is described by
the Euclidean partition function

Z@h#~g!5E Df~x!expH 2S@f#~g!1E d4xh~x!f~x!J ,

~3!

where a regularization is understood in order to make Eq.~3!
well defined. For simplicity, we assume that the Euclidean
action S contains only one parameterg ~e.g., the coupling
strength!. The external sourceh linearly couples to the field
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f(x) implying that functional derivatives ofZ@h#(g) with
respect toh yield connected Green’s functions

^Tf~x1!•••f~xN!&. ~4!

These Green’s functions are generically divergent in four
space-time dimensions, if the regulator is removed. Renor-
malized Green’s functions are obtained from the generating
functional

ZR@hR#~gR!:5Z@ZhhR#~ZggR! ~5!

by performing the functional derivative with respect tohR .
Zh and Zg are the so-called renormalization constants, and
hR is the renormalized source which accounts for field renor-
malization, andgR is the renormalized parameter. In order to
guarantee that Eq.~5! yields finite Green’s functions, we
have tacitly assumed that the field theory~3! is multiplicative
renormalizable@10#, i.e., all divergences can be absorbed in
the renormalization constantsZh/g .

The crucial observation is that, if we allow for composite
field insertions, i.e., if we are interested in the limitx1→x2
in the renormalized Green’s function, new divergences arise
in the partition functionZR@hR#(gR). In order to renormalize
these insertions, we generalize

ZR@hR#~gR!→ZR@hR , j R#~gR!

5E Df~x!expH 2S@f#~Zrg!

1E d4x@ZhhR~x!f~x!

1Zj j R~x!f2~x!#J . ~6!

The additional divergences due to the composite fieldf2(x)
can be absorbed in the renormalization constantZj .

The dependence of the renormalization constants on the
regulator is of course not knowna priori. Perturbation theory
usually provides a systematic way to extract this dependence
@10#.

In the context of numerical lattice gauge calculations, the
question arises of how one should choose the bare source
j (x) as function of the lattice spacing in order to renormalize
the composite field insertions and therefore to reduce the
statistical noise in the continuum limit. In the next subsec-
tion, we will suggest a choice for the source term.

B. In lattice gauge calculations

The partition function of SU~2! lattice Yang-Mills theory
is defined as a functional integral over the link variables
Um(x): i.e.,

Z5E DUmexp$2S%, ~7!

where the standard Wilson action is given by

SW5 (
$x%mn

b@12Pmn~x!#. ~8!

Pmn is the plaquette, which is built from four link variables:
i.e.,

Pmn~x!5
1

2
tr$Um~x!Un~x1m!Um

† ~x1n!Un
†~x!%. ~9!

The functional integral~7! is defined on a lattice with lattice
spacinga, which serves as the ultraviolet regulator. In the
continuum limit (a→0), the plaquette is

Pmn~x!512
a4

4
Fmn

a Fmn
a 1O~a6!, ~10!

whereFmn
a is the usual field strength tensor. In this paper, we

will confine ourselves to the plaquette-plaquette correlation
function^Pmn(x)Pab(0)& in order to extract the mass gap of
the SU~2! lattice theory. From Eq.~2!, it is clear that this
correlation function is plagued by a statistical noise which
diverges in the continuum limit. From the discussions in the
last section, it is now evident that one must add a term
($x%mn j (x)Pmn

2 (x) with a suitable choice ofj (x) to the ac-
tion ~8! in order to avoid this divergence. We here propose to
perform the numerical simulation using the action

S5 (
$x%mn

b@12Pmn~x!#1 (
$x%mn

j @Pmn~x!2A#2, ~11!

wherej andA are constants. In fact, we will chooseA to be
the average value of the plaquettePmn , which will be a
function of b and j .

Let us study the naive continuum limit of the actionS
~11!. Using Eq. ~10!, a direct calculation yields~up to a
constant!

S5@b22 j ~12A!#
a4

4
Fmn

a Fmn
a 1O~a6!. ~12!

This implies that the actionS cannot be distinguished in the
naive continuum limit from Wilson’s action~8! with an ef-
fective parameterbeff5b22 j (12A). In the quantum con-
tinuum limit (b→`), the average plaquette and effective
inverse temperaturebeff are approximately given by@1#

A512
3

4b
, beff5b2

3 j

2b
. ~13!

If j increases less than linearly withb, the results of the
quantum theory usingS should agree with those which are
obtained by employing the Wilson action.

On the other hand, the term in Eq.~11! proportional toj
further constrains the plaquette to its average valueA and
therefore suppresses statistical fluctuations around the aver-
age value of the plaquette. The key point is that the actionS
~11! differs from the Wilson action by ‘‘irrelevant’’ opera-
tors which are chosen to suppress the statistical noise of the
plaquette. The price one has to pay is that the average
plaquette value must already be known at the beginning of
the numerical simulation.

From the last subsection, it is clear that the signal-to-noise
ratio stays finite in the continuum limit, ifj is appropriately
chosen. Let us outline, how this choice must be done in
practice.

For this purpose, we briefly recall the renormalization of
lattice Yang-Mills theory. In the case of the standard Wilson
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action, the task is to determine the scale dependence of the
coupling constant, which is equivalent to extract theb de-
pendence of the lattice spacing, i.e.,a(b). This is usually
done be calculatingka2 (k is the string tension! as a func-
tion of b. Choosing a renormalization pointk5440 MeV,
one obtains the ‘‘running’’ of the coupling strength from the
function a(b).

In the case of the action~11! with the noise suppression
term, a second renormalization constant, i.e.,j , enters the
considerations, which must be fixed by an additional renor-
malization condition. A natural choice is that the signal-to-
noise ratio remains nonvanishing, when the continuum limit
is approached. Choosing a value for the string tension and a
value for the latter ratio determines the regulator~i.e., the
lattice spacing! dependence of the parametersb and j . The
procedure is possible, since we are dealing with a renormal-
izable theory.

Numerical simulations deal with finite lattices off the con-
tinuum limit implying that the signal-to-noise ratio is non-
zero even without noise renormalization. For current stan-
dard lattice sizes (104, . . . ,204 lattice points! and for a
SU~2! gauge group, a scaling windowb52, . . . ,3 is of in-
terest. Forb values smaller than 2, the cutoff, i.e.,p/a,
becomes too small, whereas forb.3 finite size effects spoil
the lattice measurements. The best that one can do is to sup-
press the noise forb values within the scaling window. The
generic procedure is to choose the tuple (k, j ) consistent
with the string tension, and take the valuej as large as pos-
sible. Note that the ‘‘irrelevant’’ terms in the action make a
significant contribution to the observables, ifj is chosen too
large. We will find thatj P@0,1# is a reasonable choice for
the SU~2! gauge group and forb in the scaling window. We
will show that for j 51 a reduction of the noise by a factor of
10 is possible.

III. NUMERICAL RESULTS

A. Creutz ratios

We perform our numerical simulations of the quantum
theory employing the action~11! on a 104 lattice using the

heat bath algorithm by Creutz@1#. Our purpose is to demon-
strate the mechanism of noise suppression proposed in the
previous sections, rather than to provide new precision mea-
surements. In the latter case, one should resort to ‘‘im-
proved’’ actions@5# as well as a larger number of lattice
points.

The first task is to calculate the average plaquetteA self-
consistently for given values forb and j . We apply the fol-
lowing procedure~we leave it to the reader to develop his
own method!: before the lattice has reached its thermody-
namical equilibrium, we use the lattice average from the pre-
vious heat bath step forA. When equilibrium is reached, we
calculate the average plaquette taking into account all heat
bath steps. In a particular step, we assign the actual value of
this average plaquette toA. We then perform a large number
of heat bath steps to obtain an accurate value ofA, which
subsequently enters the numerical calculations of correlation
functions, where a smaller number of heat bath steps is suf-
ficient.

The crucial question is whether the scaling limit is
reached for finite values ofj . In order to answer this ques-
tion, we calculate the Creutz ratios@1# as a function ofb.
The left picture of Fig. 1 shows the casej 50. These are the
Creutz ratios which one obtains using the standard Wilson
action. These results are compared with those forj 50.5 ~in
the right picture of Fig. 1!. The lines indicate the scaling
behavior which has been calculated with the help of the per-
turbative renormalization groupb function. The crucial ob-
servation is that the model with nonvanishing sourcej also
approaches the scaling behavior~shown by the lines in Fig.
1! which is predicted by the perturbative renormalization
group.

B. Noise suppression

Let us study the efficiency with which the action in Eq.
~11! suppresses the statistical error of the average value of
the plaquette. For this purpose we consider the probability

FIG. 1. The Creutz ratios employing the standard Wilson action~left! and using the actionS ~11! with j 50.5 ~right!. The dashed line in
the right-hand picture indicates the perturbative scaling behavior of the casej 50.
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distribution of finding a particular value of the plaquettePmn

on a 104 lattice in the interval

@A2531023,A1531023#. ~14!

From the numerical point of view, we proceed as follows.
We divide the above interval in bins of width 1024, and
calculate the lattice average of the plaquette in a particular
heat bath step. We then count the number of average values
which correspond to a certain bin. We evaluated 1140 heat
bath steps. The numerical result is shown in Fig. 2 for
b52.1 andj 50.5. One clearly observes that the data points
are strongly grouped around the corresponding average value
A for large values of the noise suppression factorj . In addi-
tion, one observes a sharp peak atPmn5A. Whether this
peak is an artifact due to corrections to the action of ordera8

or whether the peak is necessary to reproduce the standard
Yang-Mills action~12! in the scaling limitb→`, is not clear
to us.

In order to quantify the suppression of the noise of the
plaquette, using a 44 lattice in the numerical calculation is
convenient, since fluctuations are large due to finite size ef-
fects and since the numerical simulation is fast. We used
b52.2. The results are summarized in Table I.

n is the number of heat bath steps which were employed
to calculate the average plaquette. For each value ofn, five

independent runs were performed to estimate the relative er-
ror e of the plaquette value, i.e.,e:5dA/A. One observes
that e decreases with increasingn. This is simply due to the
improved statistics. In addition, a reduction of the noise by a
factor of 10 is feasible atj 51 compared with the case with-
out noise suppression (j 50).

C. The SU„2… mass gap

In this subsection, we will numerically estimate the SU~2!
mass gap from the plaquette-plaquette correlation function in
order to demonstrate how the action~11! works in practice.
The purpose of this subsection is twofold. First, we want to
show that the mass gap obtained here is in agreement with
the high precision measurements@2# which employ high sta-
tistics and an improvement of the signal-to-noise ratio using
the fuzzing technique. Secondly, we will compare the results
at several values ofb in order to estimate the contribution of
the ‘‘irrelevant’’ operators off the continuum limit. We are
aware of the problem that the overlap of the plaquette with
glue-ball wave function is small@11#. For high precision
measurements, one should therefore employ nonlocal opera-
tors. Performing the noise suppression for the case of these
operators, however, might be numerically costly. For these
first investigations, we therefore confine ourselves to the
study of correlations of the plaquette.

Furthermore, we use the source method@12# to calculate
the correlation function of the plaquettes. For this purpose,
we estimate the average plaquette at the origin from

W@h#5
*DUm(mnPmn~0!exp$2S1($x%mnhxPmn~x!%

*DUmexp$2S1($x%mnhxPmn~x!%
,

~15!

whereS is the action~11!. Let P(x) denote(mnPmn(x). It is
straightforward to verify that the functional derivative of
W@h# with respect to the sourceh(x) yields the desired
correlation function: i.e.,

C~ t !5
dW@h#

dh~x!
U

h50

5^P~x!P~0!&2^P~x!&^P~0!&.

~16!

In practice, we are interested in the correlation of the
plaquette in time direction implying that one chooses
h(x)5h(t). In fact, one simulates two statistical ensembles.
One ensemble is generated with the inverse temperature, the
other is obtained by setting the inverse temperature of the
time slicet50 to b1h leaving the remainingb values un-
changed@12#. In both ensembles, the average plaquette is
obtained as a function of time. The correlation function~16!
is obtained by approximating the functional derivative in Eq.
~16! by the difference of the expectation values of the
plaquette of the two ensembles.

We use 1140 heat bath steps to extract the average
plaquette in both ensembles. A typical result for the correla-
tion function as a function of time is shown in Fig. 3, where
the noise suppression factor is set toj 50.5. The inverse

FIG. 2. The distribution of the plaquette around its average
valueA for several values of the noise suppression factorj .

TABLE I. The relative errore of the plaquette value for several
values of the noise suppresion factorj .

n j e @1023# n j e @1023#

100 0 5.9 300 0 3.9
100 0.5 1.5 300 0.5 0.81
100 1 0.84 300 1 0.21

200 0 4.5 400 0 2.0
200 0.5 0.71 400 0.5 0.46
200 1 0.59 400 1 0.23
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temperature isb52.1 guaranteeing that the systems are in
the scaling region~see left picture of Fig. 1!. One clearly
observes an exponential decay of the correlation, where the
slope of lnC(t) provides the SU~2! mass gap in units of the
lattice spacing.

It is interesting to compare the value of the mass gap,
obtained with and without noise suppression, forb values
corresponding to the middle and the onset of the scaling
window, respectively. In the latter case, the contribution of
‘‘irrelevant operators’’ to the mass gap should be more pro-
nounced compared with the former case. The numerical re-
sults are summarized in Table II.

The error bars indicate the uncertainty due to statistical
fluctuations. They are extracted from the fit of the correlation
function C(t) to the function const3exp$2mt%. The string
tensionk sets the scale. We usek5440 MeV. L is the ex-
tension of our lattice in each direction. One observes that the
discrepancy between the valuesm/Ak with and without
noise suppression decreases, if the ensemble turns towards
the continuum limit, i.e.,ka2 decreases. This shows that the
influence of the ‘‘irrelevant’’ operators, which distinguishes
our action~16! from the standard Wilson action diminishes.
Note, however, that at physical lattice sizes where the influ-
ence of the ‘‘irrelevant’’ operators is small, finite size effects
might play a role. This would imply that a large number of
lattice points~here we use 104 lattice points! is necessary for
high precision measurements of the SU~2! mass gap. The
numerical result for the mass gap in the scaling region is in
agreement with the results of@2#.

IV. CONCLUSIONS

We have shown that constraining the plaquette to its av-
erage value can be understood as composite field renormal-
ization. The parameterj , which enters the action, acts as a
renormalization constant absorbing the divergences arising
from the composite nature of fields. These divergences are
responsible for the small signal-to-noise ratio in correlation

functions of plaquettes. The action~11! with noise suppres-
sion differs from the standard Wilson action up to a shift in
b only by ‘‘irrelevant operators’’; i.e., both actions coincide
in the naive continuum limit.

Adopting a conceptual point of view, we have outlined
two renormalization conditions which yield the scale depen-
dence of the parametersb and j . Since Yang-Mills theories
are renormalizable, the adjustment of the parameters guaran-
tees a nonzero signal-to-noise ratio in the continuum limit.

In practice, numerical simulations use finite lattices and
finite values ofb implying that the signal-to-noise ratio is
finite, too. In this case, the conceptual results can be used to
suppress the noise for the finite range ofb values under
considerations. We have numerically studied the new action
~11! on coarse grained lattices consisting of 44 and 104 lat-
tice points. The Creutz ratios from the numerical data with
and without noise suppression show a scaling window in
both cases. It turns out that choosing a constant value forj
for b lying in the scaling window (bP@2,3# for our present
case! is reasonable and suppresses the noise up to a factor of
10. Other choices of theb dependence ofj are possible and
perhaps more convenient depending on the type of correla-
tion function which is under consideration.

The SU~2! mass gap has been estimated from the
plaquette-plaquette correlation function. We have found that
the contributions from the ‘‘irrelevant’’ operators to the
screening mass decrease with increasing values ofb. The
goal of the noise suppression in this case has mainly been the
reduction of the statistical fluctuations of the ‘‘background,’’
on top of which the signal exists.

For high precision measurements of glue-ball masses, one
should use correlation functions of operators which have a
larger overlap with the glue-ball wave function than the
plaquettes. In addition, ‘‘perfect’’ actions will help to ex-
trapolate to the continuum limit. A generalization of the
noise suppression introduced in the present paper to either
case seems feasible. In the case of the ‘‘perfect’’ actions, one
has to ensure that the noise suppression term does not spoil
the correct ultraviolet behavior exploited by the ‘‘perfect’’
action techique.
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FIG. 3. The correlation function~16! as a function of timet in
units of lattice spacings forb51.9 andj 50.5.

TABLE II. The screening massm of the plaquette-plaquette cor-
relation for several values of~b, j !.

b j ka2 L ma m/Ak

2.1 0 0.577 3.5 fm 1.4060.14 1.8560.2
1.9 0.5 0.577 3.5 fm 1.5660.23 2.0660.3
2.3 0 0.21 2.1 fm 1.3660.03 2.9760.06
2.1 0.5 0.21 2.1 fm 1.4660.06 3.2560.13
2.4 0 0.126 1.6 fm 1.4360.08 4.0460.3
2.2 0.5 0.115 1.5 fm 1.4160.07 4.1460.2

6802 56KURT LANGFELD, HUGO REINHARDT, AND OLIVER TENNERT



@1# M. Creutz, Phys. Rev. Lett.45, 313 ~1980!; Phys. Rev. D21,
2308 ~1980!.

@2# B. Carpenter, C. Michael, and M. J. Teper, Phys. Lett. B198,
511 ~1987!; C. Michael and M. J. Teper, Nucl. Phys.B305,
453 ~1988!.

@3# B. A. Berg, A. H. Billoire, and C. Vohwinkel, Phys. Rev. Lett.
57, 400 ~1986!; M. Falcioni, M. L. Paciello, G. Parisi, and B.
Taglienti, Nucl. Phys.B251, 624 ~1985!; G. Schierholz, in
Lattice ’88, Proceedings of the International Symposium,
Batavia, Illinois, edited by A. S. Kronfeld and P. B. Mackenzie
@Nucl. Phys. B~Proc. Suppl.! 9, 244 ~1989!#.

@4# SESAM Collaboration, G. S. Baliet al., in Lattice ’96, Pro-
ceedings of the International Symposium, St. Louis, Missouri,
edited by C. Bernardet al., @Nucl. Phys. B~Proc. Suppl.! 53,
239 ~1997!#.

@5# P. Weisz, Nucl. Phys.B212, 1 ~1983!; K. Symanzik, ibid.
B226, 187~1983!; S. Belforte, G. Curci, P. Menotti, and G. P.
Paffuti, Phys. Lett.131B, 423 ~1983!; B. Berg, A. Billoire, S.
Meyer, and C. Panagiotakopoulos,ibid. 133B, 359 ~1983!; R.

Gupta and A. Patel, Phys. Rev. Lett.53, 531 ~1984!; S. Itoh,
Y. Iwasaki, and T. Yoshie, Nucl. Phys.B250, 312 ~1985!.

@6# P. Hasenfratz and F. Niedermayer, Nucl. Phys.B414, 785
~1994!; W. Bietenholz and U. J. Wiese,ibid. B464, 319
~1996!.

@7# F. Brandsta¨ter, A. S. Kronfeld, and G. Schierholz, Nucl. Phys.
B345, 709 ~1990!.

@8# Ape Collaboration, M. Albaneseet al., Phys. Lett. B192, 163
~1987!; 205, 535 ~1988!.

@9# M. Teper, Phys. Lett. B183, 345 ~1986!.
@10# See, e.g., Ta-Pei Cheng and Ling-Fong Li,Gauge Theory of

Elementary Particle Physics~Oxford University Press, New
York, 1984!; F. J. Yndurain, Quantum Chromodynamics
~Springer Verlag, Berlin, 1983!.

@11# P. de Forcrand, Z. Phys. C16, 87 ~1986!.
@12# M. Falcioni, E. Marinari, M. L. Paciello, G. Parisi, B. Tagli-

enti, and Z. Yi-Cheng, Nucl. Phys.B215 @FS7#, 265 ~1983!;
M. Falcioni, M. L. Paciello, G. Parisi, and B. Taglienti,ibid.
B251 @FS13#, 624 ~1985!.

56 6803IMPROVING THE SIGNAL-TO-NOISE RATIO IN . . .


