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Global monopoles in Brans-Dicke theory of gravity
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The gravitational field of a global monopole in the context of Brans-Dicke theory of gravity is investigated.
The space-time and the scalar field generated by the monopole are obtained by solving the field equations in
the weak field approximation. A comparison is made with the corresponding results predicted by general
relativity. [ S0556-282(197)03122-9

PACS numbd(s): 04.50+h

Monopoles resulting from the breaking of global3D where 7 is the energy scale of the symmetry breaking.
symmetry lie among those strange and exotic objects such as As a result of spherical symmetry, we consider ¢(r)
cosmic strings and domain wall§], generally referred to as and the line element
topological defects of space-time, which may have existed
due to phase transitions in the early universe. Likewise for ds?=B(r)dt*~A(r)dr’—r?(d6*+sirfode?).  (4)
cosmic strings, the most studied of these structures, the o o o
gravitational field of a monopole exhibits some interesting Substituting this into Eq(1) and Eq.(2), and taking in
properties, particularly those concerning the appearance @ccount Eq(3) we obtain the following set of equations:
nontrivial space-time topologies.

The solutions corresponding to the metrics generated byB_"_ B_,(A;/ B_,> n E B_,: 8_77[ 7°B _ B'¢’'
strings[2], domain walls[2], and global monopoleg3] in 2A 4A\A B rA ¢ |r’2w+3)| 2A¢’
the context of general relativity were all first obtained using )
the weak field approximation.

In a similar approach, the gravitational fields of cosmic B” B'[A” B'\ 1A’
strings and domain walls have been obtained regarding 2B 4B\ A Bt A
Brans-Dicke theory of gravity and more general scalar-tensor 5 ' )
theories of gravity[4,5]. _ 8 A e 1 A

In this paper we consider the global monopole and inves- ¢ |r?(2w+3) ¢? [0 ¢ 2A ¢
tigate its gravitational field by working out Brans-Dicke ®)
equations using once more the weak field approximation,
e_ssentlally in the same way as in the previous works men- 1 B A 4 167 |72
tioned above. ¢'r+_¢{___+_}:_— _2)A7 (7)

Let us consider Brans-Dicke field equations in the form 27 |B A (2ot3)\r

8 9, [20+2) | w 1 _r B_’_A_’)_l_8_” o[20F2)| T’
Ruv="g7| Twr™ > | 3273)7 T2 Pubt s ! 2A< B Al A 4|7 20+3)| T As ©®
@ where a prime denotes differentiation with respect.to
8nT Now, _dividing Egs.(5) and(6) by B andA, respectively,
O¢= 5013 2) and adding we get
a (1)¢/2 d)// ¢r
where ¢ is the scalar fieldw is a dimensionless coupling i 7+ b ga, )
constant, andT denotes the trace of”— the energy-
momentum tensor of the matter fields. where we have put
The energy-momentum tensor of a static global monopole
can be approximatetbutside the coneas[3] A" B’
a=—+—. (10
772 7]2 A B
T, = dia r_2’r_2’0’0 ' 3) Then, Eqgs(7) and(8) read
Lo 2A 4} 16m 7;2)
*Electronic address: cromero@dfjp.ufpb.br AN Ly ) I yene) 3 o) (1)
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At this stage, let us consider the weak field approximation

and assume thatA(r)=1+f(r), B(r)=1+g(r), and
d(r)=dot+ €e(r), where ¢y is a constant which may be
identified with G~ when w— (G being the Newtonian
gravitational constajpt and the functiond, g, and e/ ¢
should be computed to first order im?/ ¢y, with
[f(r)]. |g(r)], and]e(r)/¢o <1.

In this approximation it is easy to see that

¢’ B E/ B e_/ ¢H_ 6” B 6”
b Pollteldgl do' b dollteldo]l bo’
B/ B g/ 3 , Al B f/ B .
B rig 9 AT
and so on.

From Eq.(9) it follows that

a € (13
r oo
And from Eq.(11) we have

vy 2¢e' 16 7? 14
T T ety (19

the solution of which is given by
B 167 er K 15
20+3 7 M, T T (19

ro and k being integration constants.
On the other hand, considering Eg€l3) and (15),
Eq(12) becomes

o f 16wy’ 1 16
T do2erayr\ C T 2 (16)
which yields the solution
87 n*(2w+1) |
_8mr2erd) 1 17
do(2w+3) r
wherel is an arbitrary constant.
Therefore,
A—1+f—1+8m72(2w+1) | 18
B B do(2w+3) (18
and
87n*(2w+1) |
p-ig ST etD 1 19
do(2w+3) r

It is currently known that solutions of Brans-Dicke field

equations do not always go over general relativity solutions

when w— o [6]. However, as the term)¢,u¢,,,/¢2 in Eq.

(1) is neglected in the weak field approximation we expect
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that in the limit w—o our solution reduces to Barriola-
Vilenkin space-time, which is given 3]

ds’=

2GM
1-87Gy’— T)dtz— ( 1-87G7y?

2GM
r

-1
) dr2—r?(d6>+sirfode?). (20

Then, we should have

lim1=2GM,

w—®

(21)

where M is the mass of the monopole core. Indeed, if we
take =0 in a region outside the monopole core, then a
simple comparison of the-dependent term in Eq18) with

the corresponding term of Brans-Dicke solution for a spheri-
cally symmetric matter distribution in the weak field ap-
proximation[7], which may be written as

ds?=|1 M 1+ ! dt>—| 1+ M
1T rgolT 20+3 "o
_ 2__ .2 2 H 2
X|1- 53 dr2—r?(d6?>+sirfode?), (22)
gives
I_2M 1
T do|T 2w+3]

The same argument concerning the scalar field leads us to
k=—2M/(2w+ 3). Thus, we have

A1t 877’ [2w+1 N 2M 1 03
- o \20+3] 1ol 2w+3)’ 23
B 16m72| r, 2M 04
¢=bo” 513" T Gerar: (24
From Eq.(10) it is straightforward to verify that
B_a L 4M . 167 5? | r )
=AY T 20+3) T do2wra) N, D

wherea is an integration constant. For convenience let us
rescale the time by puttinga=1— 1677/ ¢o(2w+3).
Then,

1 4M 16m7? T
B=—|1- + In—
A r¢o(2w+3) ¢0(2w+3) ro
|1 167 7? o6
do(20+3)|’ (26
Taking into account Eq.23) we obtain
8 n? 16772 r 2™ 1
B=1- n———|1+ _
®o ¢o(20+3) rg Iy 2w+3
(27)
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Following Barriola-Vilenkin's reasoning we drop the
mass term in Eqs23), (24), and(27) as it is negligible on
the astrophysical scale. Thus, we have finally

_ 87’ (2w+1)
A(r)—l+m, (28

B 87’ 167 7?
B(r)=1 b +¢0(2w+3)lna, (29

_ 6y’ r
¢(f)—¢o—m|na- (30)

It is not difficult to show that the line element defined by

the functionsA(r) andB(r) above is conformally related to

the Barriola-Vilenkin monopole solution. To do so, let us

consider the coordinate transformation given by the equ

tions
B(r)=h(r*)| 1— , (31)
bo
8wy’
A(r)drzzh(r*)(1+ )dr*z, (32
®o
r=hY(r*)r*, (33

whereh(r*) is to be calculated and(r*)=1+q(r*), with
la(r*)|<1.
Differentiating Eq.(33) we obtain
dr2=(1+qr* +q)dr*2, (34)

where the overdot stands for a derivative with respectto
Substituting Eq(34) into Eq. (32) one gets

* ——1 7 [ _r* 35

whence
h(r* ——1+—7]2 | _r* 36
(r") do(2w+3) nro' (36)

In order to verify the consistency of this result with Eq.
(29) let us calculateB(r) directly from Egs.(31) and(36).
Keeping only linear terms im?/ ¢, and using Eq(33), we
have, then,

6mn° r* 8y’
B(r)=|1+ 7 |nr—)(1——7’)
0

bo(20+3) bo
87’ 167 7? r

+ In—.
®o do(2w+3) g

=1- (37

Therefore, the line elemend) which represents the

BRIEF REPORTS

56
167 7? r*)( SWﬂZ)
d52=(1+—ln— 1- dt?
$o(20+3) g bo
8 2
14 22 dr*z—r*2(d92+sin29d¢2)]
0
(39

Rescaling the time and defining a new radial coordinate
r=(1+ 47 n?l ¢o)r* we end up with

167 7° r ) ( 877772)
ds?=(14+ ——————In—||dt?—dr?—| 1—
do(2w+3) g bo
Xr2(d6?+sirfode?) |. (39

In order to obtain the correct Newtonian limit from Brans-

Dicke field equations the constagt, must be given by7]

2w+4
2w+3

1

$o= G

Then, the final form of Eq(39) reads

1677°G r
7 In—){dtz—drz

d32:(1+ 2ot4) "y

r2(de?+sirf0de?) |

) 2w+
B RS P

(40)

Thus, we have shown that in the weak field approximation
equation(40) represents the space-time generated by a global
monopole in Brans-Dicke theory of gravity. Analogously to
the general relativity case this curved space-time also pre-
sents a deficit solid angle in the hypersurfacesonst. The
area of a sphere of radiusin these spaces would be given

by

2w+3
2w+4

167 7°G
+ n—|,

4’7Tr2[ 1-877n’G

rather than 4rr2.

Also, a simple comparison of E¢40) with the Barriola-
Vilenkin solution shows that for large values af both
space-times are related by a conformal transformation. In
this case the motion of light rays is the same in the two
space-times. For finite values of, null geodesics in the
space-time of Brans-Dicke global monopole are still closely
related to their counterpart in general relativity. Indeed, the
only change predicted by Brans-Dicke theory reduces, in this
case, to the replacement of the Newtonian gravitational con-
stantG by the w-dependent “effective” gravitational con-
stant

20+3

0=\ 20+4

space-time generated by the monopole may be written ifror a value ofw consistent with solar system observations,

terms of the new coordinate® as

say, w~500[8], it would mean that massless particles trav-
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IRR
nR—O,

eling in the space-time described by E40) would experi-

ence a gravitational strengty~0.999%. r=
In conclusion we see that in going from general relativity

to Brans-Dicke theory both space-time curvature and topol-

ogy are affected by the presence of the scalar field. In pal*l""[h

ticular the deficit solid angle becomes dependent. As a

consequence, following Barriola and Vilenkin’s argument

concerning light propagation in the gravitational field of a R0:[1_47'”726

global monopole one can easily show that a light signal

propagating from a sourcgto an observe® whenS,O and

the monopole are perfectly aligned produces an image witdnen, we have

the form of a ring of angular diameter given by

2w+3
2w+4

2w+3
2w+4

2

1+475°G —479’G

2w0+3
2w+4

ro.

2w+3

N 16m7°G R
2w+4

20+4 "Ry

2w+3
2w+4

| dsz=[1—8771;26 }olT2

_q .22
o0 =8ny G|+d’

2w+1
2w+4

(dx®+dy?+dZ?),

R
whered and| are the distances from the monopole to the —[1—8777726 InR—
observer and to the source, respectively. 0

Another interesting physical property in connection with (42
Brans and Dicke’s global monopole involves the appearance
of gravitational forces exerted by the monopole on the mattey;ith R=[x2+y2+ z2]Y2 Thus, Eq.(41) becomes, finally
around it. This effect is absent in the case of general relativi-
ty’'s monopole as was shown in R¢B]. To see how this .
gravitational effect comes about one has to work out the wi_ 47 7°G X_'
Newtonian potential associated with E@O0). As is well X= (w+2) R2’
known in Galilean coordinates the motion of a nonrelativistic
test particle in a weak gravitational field is given by the

(43

equation[9] which shows explicitly that particles around the monopole
are subject to an attractive force exerted by it.
. 1 dhgo Naturally, if it turns out to be that global monopoles pos-
X'=— PP (41 sess any kind of physical reality, then a number of other
IX effects such as quantum particle creatjd0], vacuum po-

larization[11], and gravitational scatterind 2], among oth-
ers, which would be in principle amenable to observation
may be investigated with the help of E@0), thereby pro-
viding alternative ways for testing the predictable power of
both general relativity and Brans-Dicke theory.

whereg,,,= 7,,+h,, and 5,,=diag(1,-1,—1,—-1) is the
Minkowski metric tensor. In order to express Ed0) in
Galilean coordinates let us consider the transformation

2w+3

t= 20+4

1-477°G
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