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The gravitational field of a global monopole in the context of Brans-Dicke theory of gravity is investigated.
The space-time and the scalar field generated by the monopole are obtained by solving the field equations in
the weak field approximation. A comparison is made with the corresponding results predicted by general
relativity. @S0556-2821~97!03122-6#
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Monopoles resulting from the breaking of global O~3!
symmetry lie among those strange and exotic objects such as
cosmic strings and domain walls@1#, generally referred to as
topological defects of space-time, which may have existed
due to phase transitions in the early universe. Likewise for
cosmic strings, the most studied of these structures, the
gravitational field of a monopole exhibits some interesting
properties, particularly those concerning the appearance of
nontrivial space-time topologies.

The solutions corresponding to the metrics generated by
strings @2#, domain walls@2#, and global monopoles@3# in
the context of general relativity were all first obtained using
the weak field approximation.

In a similar approach, the gravitational fields of cosmic
strings and domain walls have been obtained regarding
Brans-Dicke theory of gravity and more general scalar-tensor
theories of gravity@4,5#.

In this paper we consider the global monopole and inves-
tigate its gravitational field by working out Brans-Dicke
equations using once more the weak field approximation,
essentially in the same way as in the previous works men-
tioned above.

Let us consider Brans-Dicke field equations in the form
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wheref is the scalar field,v is a dimensionless coupling
constant, andT denotes the trace ofTn

m— the energy-
momentum tensor of the matter fields.

The energy-momentum tensor of a static global monopole
can be approximated~outside the core! as @3#
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whereh is the energy scale of the symmetry breaking.
As a result of spherical symmetry, we considerf5f(r )

and the line element

ds25B~r !dt22A~r !dr22r 2~du21sin2udw2!. ~4!

Substituting this into Eq.~1! and Eq.~2!, and taking in
account Eq.~3! we obtain the following set of equations:
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where a prime denotes differentiation with respect tor .
Now, dividing Eqs.~5! and~6! by B andA, respectively,

and adding we get
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where we have put
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Then, Eqs.~7! and ~8! read
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At this stage, let us consider the weak field approximation
and assume thatA(r )511 f (r ), B(r )511g(r ), and
f(r )5f01e(r ), where f0 is a constant which may be
identified with G21 when v→` (G being the Newtonian
gravitational constant!, and the functionsf , g, and e/f0
should be computed to first order inh2/f0 , with
u f (r )u, ug(r )u, andue(r )/f0u!1.

In this approximation it is easy to see that
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and so on.
From Eq.~9! it follows that
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And from Eq.~11! we have
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the solution of which is given by
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r 0 andk being integration constants.
On the other hand, considering Eqs.~13! and ~15!,

Eq.~12! becomes
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which yields the solution
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wherel is an arbitrary constant.
Therefore,
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It is currently known that solutions of Brans-Dicke field
equations do not always go over general relativity solutions
whenv→` @6#. However, as the termvf ,mf ,n /f2 in Eq.
~1! is neglected in the weak field approximation we expect

that in the limit v→` our solution reduces to Barriola-
Vilenkin space-time, which is given by@3#
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where M is the mass of the monopole core. Indeed, if we
take h50 in a region outside the monopole core, then a
simple comparison of ther -dependent term in Eq.~18! with
the corresponding term of Brans-Dicke solution for a spheri-
cally symmetric matter distribution in the weak field ap-
proximation@7#, which may be written as
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The same argument concerning the scalar field leads us to
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From Eq.~10! it is straightforward to verify that
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where a is an integration constant. For convenience let us
rescale the time by puttinga51216ph2/f0(2v13).
Then,
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Taking into account Eq.~23! we obtain
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Following Barriola-Vilenkin’s reasoning we drop the
mass term in Eqs.~23!, ~24!, and ~27! as it is negligible on
the astrophysical scale. Thus, we have finally
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It is not difficult to show that the line element defined by
the functionsA(r ) andB(r ) above is conformally related to
the Barriola-Vilenkin monopole solution. To do so, let us
consider the coordinate transformation given by the equa-
tions
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whereh(r * ) is to be calculated andh(r * )511q(r * ), with
uq(r * )u!1.

Differentiating Eq.~33! we obtain
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where the overdot stands for a derivative with respect tor * .
Substituting Eq.~34! into Eq. ~32! one gets
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In order to verify the consistency of this result with Eq.
~29! let us calculateB(r ) directly from Eqs.~31! and ~36!.
Keeping only linear terms inh2/f0 and using Eq.~33!, we
have, then,
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Therefore, the line element~4! which represents the
space-time generated by the monopole may be written in
terms of the new coordinater * as
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Rescaling the time and defining a new radial coordinate
r 5(11 4ph2/f0)r * we end up with
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In order to obtain the correct Newtonian limit from Brans-
Dicke field equations the constantf0 must be given by@7#
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Then, the final form of Eq.~39! reads
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Thus, we have shown that in the weak field approximation
equation~40! represents the space-time generated by a global
monopole in Brans-Dicke theory of gravity. Analogously to
the general relativity case this curved space-time also pre-
sents a deficit solid angle in the hypersurfacest5const. The
area of a sphere of radiusr in these spaces would be given
by

4pr 2F128ph2GS 2v13

2v14D1
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rather than 4pr 2.
Also, a simple comparison of Eq.~40! with the Barriola-

Vilenkin solution shows that for large values ofv both
space-times are related by a conformal transformation. In
this case the motion of light rays is the same in the two
space-times. For finite values ofv, null geodesics in the
space-time of Brans-Dicke global monopole are still closely
related to their counterpart in general relativity. Indeed, the
only change predicted by Brans-Dicke theory reduces, in this
case, to the replacement of the Newtonian gravitational con-
stantG by the v-dependent ‘‘effective’’ gravitational con-
stant

G05 S 2v13

2v14 DG.

For a value ofv consistent with solar system observations,
say,v;500 @8#, it would mean that massless particles trav-
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eling in the space-time described by Eq.~40! would experi-
ence a gravitational strengthG0;0.999G.

In conclusion we see that in going from general relativity
to Brans-Dicke theory both space-time curvature and topol-
ogy are affected by the presence of the scalar field. In par-
ticular the deficit solid angle becomesv dependent. As a
consequence, following Barriola and Vilenkin’s argument
concerning light propagation in the gravitational field of a
global monopole one can easily show that a light signal
propagating from a sourceS to an observerO whenS,O and
the monopole are perfectly aligned produces an image with
the form of a ring of angular diameter given by

dV58p2h2S 2v13

2v14DG
l

l 1d
,

whered and l are the distances from the monopole to the
observer and to the source, respectively.

Another interesting physical property in connection with
Brans and Dicke’s global monopole involves the appearance
of gravitational forces exerted by the monopole on the matter
around it. This effect is absent in the case of general relativi-
ty’s monopole as was shown in Ref.@3#. To see how this
gravitational effect comes about one has to work out the
Newtonian potential associated with Eq.~40!. As is well
known in Galilean coordinates the motion of a nonrelativistic
test particle in a weak gravitational field is given by the
equation@9#

ẍi52
1

2

]h00

]xi
, ~41!

wheregmn5hmn1hmn andhmn5diag(1,21,21,21) is the
Minkowski metric tensor. In order to express Eq.~40! in
Galilean coordinates let us consider the transformation
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with R5@x21y21z2#1/2. Thus, Eq.~41! becomes, finally
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which shows explicitly that particles around the monopole
are subject to an attractive force exerted by it.

Naturally, if it turns out to be that global monopoles pos-
sess any kind of physical reality, then a number of other
effects such as quantum particle creation@10#, vacuum po-
larization @11#, and gravitational scattering@12#, among oth-
ers, which would be in principle amenable to observation
may be investigated with the help of Eq.~40!, thereby pro-
viding alternative ways for testing the predictable power of
both general relativity and Brans-Dicke theory.
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