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We study the Giddings-Strominger wormholes in string theories. We find a nonsingular wormhole solution
and analyze the perturbation around this wormhole solution. We use the bilinear action to obtain a
Schralinger-type equation for perturbation fields assuming a linear relation between the perturbation fields.
With this analysis, we find continuous negative modes amof-&mmetric fluctuations about the nonsin-
gular wormhole backgroundS0556-282(97)04922-9

PACS numbefs): 04.20.Gz, 04.50:h, 04.62+v, 11.25.Mj

Euclidean wormholes—solutions to the euclidean Ein-tain a Schrdinger-type equation for perturbation fields as-
stein equations that connect two asymptotically flatsuming a linear relation between perturbation fields. With
regions—are considered as saddle points of the functiondhis analysis, we find continuous negative modes among
integral and are very important for semiclassical calculation§(4)-symmetric fluctuations about the nonsingular wormhole
of transition probabilities of topological change in quantumbackground. N _
gravity. There are many kinds of Euclidean wormhole solu- Our analysis is similiar to the stability analysis of black
tions. In four dimensions the following matters which sup-holes[10], which is a classical solution in curved spacetime
port the throat of the wormhole were adopted: axion fieldgVith the Minkowski signature. One easy way of understand-
[1], scalar fields[2], SU2) Yang-Mills fields[3]. Higher- iNg & _black hole is tq fmd_out how it reacts to external_per-
dimensional wormhole solutions were obtair@ds] and a turbat_lons. We can wsgallze the black hole as presenting an
higher-derivative correction to the Einstein-Hilbert action €ffective potential barriefor well) to the oncoming waves.
was considerefb]. Recently, we found th®-wormhole so- AS @ compact criterion for the black hole case, it is unstgb_le
lution in type-1IB superstring theor}7]. However, it turned if there exists a pot.en_tlal well to the oncoming waves. Th!s is
out to be a ten-dimensional singular wormhole with an infi-SO because the Schiiager-type equation with the potential
nite Euclidean action density. well always allows the bound states as well as scattering

On the other hand, we are interested in the contribution Ogtaztes. The former shows up as an imaginary frequency mode
wormhole configurations to the Euclidean functional integral(@“<0), leading to an exponentially growing mode with
for the forward “flat space— flat space” amplitude. Ruba- time. If one finds any exponentially growing perturbation,
kov and Shvedov(8] decided semiclassically whether a the black hole turns out to be unstable.
Giddings-Strominger wormhole makes real or complex con- Our starting action is the Neveu-Schwarz—Neveu-
tributions into the functional integral in four-dimensional Schwarz(NS-NS sector of ten-dimensional string theory
curved space. On the analogy of the analysis of instantons &Pl
bounces in quantum field theory, it is found that the worm-
hole con;[ribution is imaginary since there exists one negative
mode (-= —4) among fluctuations around the classical Eu-
clidearg solutiozl. This grneans that the classical solution with SlO:f d*%g1e’ ~R— (V) >+ H?], @
one negative mode is not stable against the fluctuations and
thus belongs to the bounce.

In this paper, we study the Giddings-Strominger worm-where ¢ is the dilaton andH =dB with a NS-NS two-form
holes in string theorief9]. Hereafter we wish to call these B. Here we do not consider the Ramond-Ram@ReR) sec-
stringy wormholes to distinguish them from the previoustor for simplicity [11]. The ten-dimensional theory can be
Giddings-Strominger wormhole. We have both the singulareduced to a four-dimensional one by the compactification
wormhole as well as the nonsingular one. The analysis ofn a six-dimensional Calabi-Yau manifold. This is realized
O(4)-symmetric fluctuations about the nonsingular wormhole(M°—M*x M®) by giving the following vacuum expecta-
background is carried out. We use the bilinear action to obtion values:
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mn=(1/8)a0)Bmaly), where the prime means the derivative with respecipto
¢T: B(x) From the above action, the equations of motion are
72 3 2
and the rest of fields will be taken to zero. Here RR —R-— iEZD/2+ Q—4—13exp(£D =0,
m,v, ...(mn,...) denote foufsix)-dimensional indices, N2 12N 487" R \/§
and x(y) represent fousix)-dimensional coordinates. The (10
field equations for the graviton, dilaton, and two-form field R'2 RR\’ 1 R2
are satisfied if the internal manifoldM®) is Calabi-Yau ——+2(—) —~N+=—D’?
(Ricci-flat and Kaler) and the equations of motion obtained N N 4 N
from the four-dimensional effective action 2
Q2 N 2
1 1 2 " 16 RO 5P 70 (3
s4zf d*x\g| —R+ E(VD)2+§ex —ﬁD (Va)?
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For N=1 gauge, Eqs(10) and(12) are reduced to

where 1 Q% 1 2
~ R'?2=1+ —SR°D'?~ ——— —exp —=D|, (13
A=¢+3D, g,,=€7,,. (4) 12 487* R* p(@ (13
are satisfied. amrn,  QF 2
Now let us find stringy wormhole solution by considering (R°D") N R3EX ﬁD : (14
eithera or B, as matter which supports the throat of the .
wormhole. Here we confine our main interest to the first casg gy, Eq.(14), one finds the dilaton equation
(the nonsingular wormholeThe latter case leads to the sin-
gular wormhole. The nonsingular case is realized when . Q? 2 Q? 2
=A=0. The action is given by RPD" =7 aex ﬁD T 42K ﬁDO . (19

S:f d*x\g| —R+ E(VD)zJFEeX - iD (Va)?|. where the integration constant is chosen so tadtas van-
2 2 V3 ishing derivative at the wormhole neck£0). Substituting
(5) this into Eqg.(13), one obtains
One can considea(x) as the source of the wormhole. We Rg 4 Q?

R'?2=1— (16)

thus take the Noether curredf=e~("®Pj a and require
its conservation

2
Fa R0_487T4EX%EDO .

Here R,=R(p=0) corresponds to the radius of wormhole
&M(\/a‘lﬂ)zo' 6) neck (R'=0). Equation(11) is satisfied with Eqs(15) and
I116) and thus is a redundant one. The resulting solution
(stringy wormholé to Eq. (16) has the asymptotic behavior
R(p)— £ p asp— £, corresponding to two asymptotically
flat regions and has minimum BY. Furthermore, Eq(15) is

Therefore we have to perform the functional integration ove
conserved current densities. We introduce the genef@l-O
symmetric Euclidean metric as

ds?=N?(p)dp?+R?(p)dQ3 (7)  solved to obtain
2
with two scale factors N,R). The Q4)-symmetric current _ i = Q_ i
. : ex D 7 =7, 17)
density has one nonzero compongdft(p)] and its conser- J3 487" R

vation in Eq.(6) means that/gJ° is a constant. This constant ) .
is related to the global charg® of the wormhole which will prove very useful for the computation of the per-
[Q/Vol(S®)]. Thus one finds turbed action on later. Note thBt is nonsingular for finite

and thus the integrand of the action is finite too. For an
o Q 1 explicit calculation, we wish to solve the differential equa-
J T 272 NR¥ (8) tion (16) by numerical analysis. We introduce the rescalings
(p/pg,R/IRy,D/Dg) with pg=R,. The resulting solution is
The action(5) can be rewritten as shown in Fig. 1. Far from the wormhole throgi/Ry>1),
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R 3 - . ' - ' D(p)=Dc(p)+d(p), (18
whereR.,D. represent the classical wormhole background.
=y Substituting these into E¢9) and then take only the bilinear
parts in {,n,d) of the action. This is because from this part
2t 1 one can derive the linearized equations which are essential
i for the fluctuation study. Here we choose ti{@) =0 gauge,
5| ] since the quadratic action is invariant under thd)&@eneral
coordinate transformations. The bilinear action is then given
by
1
Sbi|=12772J dp| —Rcr'2—2Rrr’
05 -
1 3412 2y e’ 12,2 Q2
ol - : - . - o + 1—2(R d’“+6R;D/rd’+3R.D.T°)+ WE?
FIG. 1. R/IR, as a function ofp/R,. The solid, dotted and re dr 2
dashed lines correspond to wormhole scale fact&/Rg), Xexr{ﬁD (GR_E_Z\EEC+ §d2) : (19)
R(p)/Ro~1.274, andR/Ry=p. The singular point g5 is deter-
mined as a solution t&(psg)/Ro=1/\/cos@2\/3)~1.274. After some calculation, Eq19) can be rewritten as
: , . 9 R RS
one can ignore the effect of gravity and the Euclidean space 5b'|:12772f dp| —R.r’2+| =—— _5) r24+ —=q'2
becomes flatR~p). Here one can find the wormhole neck ' R. R? 12
(R"=0) nearp=0. Now let us substitute the results of
R(p)/Ry in Fig. 1 into Eq.(17). Then one obtains the behav- + ERZD’rd’—Z\/gdH— ER d2 (20)
ior of the wormhole dilatofiD(p)]. As is shown in Fig. 2D 2 °7¢ 3

does not have any singular point. . .

Let us now consider @)-symmetric fluctuations about with Fhe bqundary terms wf_uc;h are nqt r(_alevant for our study.
the nonsingular wormhole solution. In general, the interpre2€aling with Eq.(20) is difficult. This is because of the
tation of the wormhole depends on whether or not there ar@résence of -d coupling terms. Actually one has to find the
negative modes around the solution. If one finds odd numbef€W canonical variables that diagonalize the acti@n).
of negative modes, the solution corresponds to a bounce arf¢gewever, thanks to the relatiofi7), one has the relation
describes the nucleation and growth of wormhole in theP€tween r and d. Linearizing Eg. (17) leads to d
Minkowski spacetime. If there are even number of negative= 2V3r/R. and inserting this into Eq(20), we obtainSy
modES, the path integra] would be real and classical So|utioﬁ0 which leads to a trivial case. In order to avoid this trivial
would resemble an instanton rather than a bounce. If there &@se, we assume the relation as
no negative mode, the solution is called an instanton and r
describes the tunneling and mixing of two states of the same d=2\/§aR— (21
energy. The small fluctuations are given by ¢

by introducinga as the parameter. This means tHas not
R(p)=R(p)+r1(p), N(p)=1+n(p), an independent variable. The above is the simplest assump-
tion which is appropriate in the spirit of linear perturbation.
DDy 7 , . . . . Otherwise, the analysis becomes very difficult. Using Eq.
(21), we find the desirable bilinear form

Ré a=19)
—t —— —|r?|.
R a+1R.

R.r'2+

Spi=127%(a”~ 1)] dp
(22

One can easily check th&;;=0 for «=1. Since the bilin-

ear from Eq.(22) is positive definite forw?>1, there are no
negative modes in this region. Thus the range of the param-
eter should be confined t@?<1. But for «®<1, the action

is unbounded from below, because of the negative sign of the
kinetic term. In this case, we need the GHP rotafib®,13

for scale factor (—ir). Taking the variation of the action
(22) with respect ta’, on gets the Schoinger-type equation

0 1 2 3 4 5 p/Ru{’ Rg a—l 9
R —(RI') +| =+ —= = |r|=o?. (23
FIG. 2. D/Dy as a function op/R,. No singular point is found. R atlRg
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Here we choose a prefactB. on the left-hand side in such implies that the wormhole contribution into the functional

a way that the above equation can be solved explicitly. integral is imaginary, which corresponds to the instability of
In order to obtain a familiar expression, let us introducethe parent universe against the emission of a baby universe.

the new variablee= [§dp/R.. Here the wormhole solution In our case (p) =R, satisfies Eq(23) over the entire region

is given byR.= Ry+\/coshZ. Then Eq.(23) can be written as  with w?>=9[(a¢—1)/(a+1)]—1. But this solution is not a

P ( 1 el small perturbation and thus we discard it. On the other hand,

2 s 9 = wlr (24) we find a continuous spectrum of negative modes dér
dz2 cosi2z “a+1 ' <1. It has been shown by Colem4h6] that the bounce

interpretation of a classical solution requires exactly one

which corresponds to the Scliiager equation for a particle negative mode. In general, the reality and imaginarity of the

moving in the potential 1/cogBz+9[(a—1/a+1)]. The path integral depends on the sign of the determinant of fluc-

spectrum of this problem is well known: tuatuons. The essential property is whether the number of
1 negative modes is odd or even. The odd case belongs to the

2_g% = 2 iti b hile th is related to the instanton. H
® _9m+k (a positive number (25) ounce, while the even case is related to the instanton. Here

we obtain the continuous spectrum of negative modes. The
&xistence of a continuous negative modes leads to diffrent
problems. Lavrelashvili, Rubakov, and TinyakRT) [17]

pointed out that an infinite number of negative modes may

The above means that there is a continuous spectrum
negative modes when?<1. The general solution to Eq.

(24) can be obtained ifil4,19 as appear around the bounce. But Tanaka and Sd4&kiar-
k1 k1 ] gued that the above LRT claim is an artifact due to their
r=Cy\coshzF 12077 Z,E;—smhzZz) inadequate choice of gaugeRT gauge, which was inevi-
tably implied by the Lagrangian formalism. For the LRT
gauge ofn(p)#0,(p)=0 in [18], one can obtain the bilin-
ear action from Eq(9). One has to use the constraint equa-
tion (10) to eliminate then(p) terms. Unfortunately, we can-
(26) not get the relation betweem(p) and d(p) by linearizing

where k2= w?—9[ (a—1)/(a+1)]. Here the coefficientes Eq. (10). Further the corresponding action turns out to be

C, andC, will be determined from the boundary condition tivial-

that asz—=(p—=) the wave function has the asymptotic !N our case, we choose the gaugengp)=0r(p)+0.
form lim,_..r (z) ~€'? Under this gauge, one has to perform the Hamiltonian analy-
zZ—® .

sis arisen from Ref[18]. At this stage, it is not clear to
conclude whether the stringy wormhole is a bounce or an
instanton.

1+
4

3
+C,\/coshZzsinh2zF 2 +i

k3
—i Z,E,—smhzZz),

X
AW

We perform the analysis of @)-symmetric fluctuations
on the stringy wormhole background with the gaugg)
=0r(p)#0. Instead of diagonalizing the quardratic action,
we choose the relatiod=23ar/R, which is inspired by This work was supported in part by the Basic Science
Eq. (17). Rubakov and Shvedd] reported that there exists Research Institute Program, Korean Ministry of Education,
only one negative modé ~)(p) =1/R3(p) with w?>=—4 for  Project Nos. BSRI-96-2413, BSRI-96-2441, and by the
the pure gravity case. The existence of one negative mod@aje Research Foundation.
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