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We study the Giddings-Strominger wormholes in string theories. We find a nonsingular wormhole solution
and analyze the perturbation around this wormhole solution. We use the bilinear action to obtain a
Schrödinger-type equation for perturbation fields assuming a linear relation between the perturbation fields.
With this analysis, we find continuous negative modes among O~4!-symmetric fluctuations about the nonsin-
gular wormhole background.@S0556-2821~97!04922-9#
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Euclidean wormholes—solutions to the euclidean Ein-
stein equations that connect two asymptotically flat
regions—are considered as saddle points of the functional
integral and are very important for semiclassical calculations
of transition probabilities of topological change in quantum
gravity. There are many kinds of Euclidean wormhole solu-
tions. In four dimensions the following matters which sup-
port the throat of the wormhole were adopted: axion fields
@1#, scalar fields@2#, SU~2! Yang-Mills fields @3#. Higher-
dimensional wormhole solutions were obtained@4,5# and a
higher-derivative correction to the Einstein-Hilbert action
was considered@6#. Recently, we found theD-wormhole so-
lution in type-IIB superstring theory@7#. However, it turned
out to be a ten-dimensional singular wormhole with an infi-
nite Euclidean action density.

On the other hand, we are interested in the contribution of
wormhole configurations to the Euclidean functional integral
for the forward ‘‘flat space→ flat space’’ amplitude. Ruba-
kov and Shvedov@8# decided semiclassically whether a
Giddings-Strominger wormhole makes real or complex con-
tributions into the functional integral in four-dimensional
curved space. On the analogy of the analysis of instantons or
bounces in quantum field theory, it is found that the worm-
hole contribution is imaginary since there exists one negative
mode (v2524) among fluctuations around the classical Eu-
clidean solution. This means that the classical solution with
one negative mode is not stable against the fluctuations and
thus belongs to the bounce.

In this paper, we study the Giddings-Strominger worm-
holes in string theories@9#. Hereafter we wish to call these
stringy wormholes to distinguish them from the previous
Giddings-Strominger wormhole. We have both the singular
wormhole as well as the nonsingular one. The analysis of
O~4!-symmetric fluctuations about the nonsingular wormhole
background is carried out. We use the bilinear action to ob-

tain a Schro¨dinger-type equation for perturbation fields as-
suming a linear relation between perturbation fields. With
this analysis, we find continuous negative modes among
O~4!-symmetric fluctuations about the nonsingular wormhole
background.

Our analysis is similiar to the stability analysis of black
holes@10#, which is a classical solution in curved spacetime
with the Minkowski signature. One easy way of understand-
ing a black hole is to find out how it reacts to external per-
turbations. We can visualize the black hole as presenting an
effective potential barrier~or well! to the oncoming waves.
As a compact criterion for the black hole case, it is unstable
if there exists a potential well to the oncoming waves. This is
so because the Schro¨dinger-type equation with the potential
well always allows the bound states as well as scattering
states. The former shows up as an imaginary frequency mode
(v2,0), leading to an exponentially growing mode with
time. If one finds any exponentially growing perturbation,
the black hole turns out to be unstable.

Our starting action is the Neveu-Schwarz–Neveu-
Schwarz ~NS-NS! sector of ten-dimensional string theory
@9#:

S105E d10xAg10e
f@2R2~¹f!21H2#, ~1!

wheref is the dilaton andH5dB with a NS-NS two-form
B. Here we do not consider the Ramond-Ramond~R-R! sec-
tor for simplicity @11#. The ten-dimensional theory can be
reduced to a four-dimensional one by the compactification
on a six-dimensional Calabi-Yau manifold. This is realized
(M10→M43M6) by giving the following vacuum expecta-
tion values:
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ḡMN5S g̃mn~x! 0

0 eD~x!/A3gmn~y!
D ,

B̄mn5Bmn~x!,
~2!

B̄mn5~1/6!a~x!bmn~y!,

f̄5f~x!,

and the rest of fields will be taken to zero. Here
m,n, . . . (m,n, . . . ) denote four~six!-dimensional indices,
and x(y) represent four~six!-dimensional coordinates. The
field equations for the graviton, dilaton, and two-form field
are satisfied if the internal manifold (M6) is Calabi-Yau
~Ricci-flat and Kähler! and the equations of motion obtained
from the four-dimensional effective action

S45E d4xAgF2R1
1

2
~¹D !21

1

2
expS 2

2

A3
D D ~¹a!2

1
1

2
~¹D!21e2DH2G , ~3!

where

D[f1A3D, gmn5eD g̃mn , ~4!

are satisfied.
Now let us find stringy wormhole solution by considering

either a or Bmn as matter which supports the throat of the
wormhole. Here we confine our main interest to the first case
~the nonsingular wormhole!. The latter case leads to the sin-
gular wormhole. The nonsingular case is realized whenH
5D50. The action is given by

S5E d4xAgF2R1
1

2
~¹D !21

1

2
expS 2

2

A3
D D ~¹a!2G .

~5!

One can considera(x) as the source of the wormhole. We
thus take the Noether currentJm5e2(2/A3)D]ma and require
its conservation

]m~AgJm!50. ~6!

Therefore we have to perform the functional integration over
conserved current densities. We introduce the general O~4!-
symmetric Euclidean metric as

ds25N2~r!dr21R2~r!dV3
2 ~7!

with two scale factors (N,R). The O~4!-symmetric current
density has one nonzero component@J0(r)# and its conser-
vation in Eq.~6! means thatAgJ0 is a constant. This constant
is related to the global chargeQ of the wormhole
@Q/Vol(S3)#. Thus one finds

J05
Q

2p2

1

NR3 . ~8!

The action~5! can be rewritten as

S56E d4xF2
RR82

N
2NR1

1

12

R3

N
D82

1
Q2

48p4

N

R3expS 2

A3
D D G , ~9!

where the prime means the derivative with respect tor.
From the above action, the equations of motion are

RR82

N2
2R2

1

12

R3

N2D821
Q2

48p4

1

R3expS 2

A3
D D 50,

~10!

2
R82

N
12S RR8

N D 8
2N1

1

4

R2

N
D82

2
Q2

16p4

N

R4expS 2

A3
D D 50, ~11!

2
1

6S R3D8

N D 8
1

Q2

24A3p4

1

NR3expS 2

A3
D D 50. ~12!

For N51 gauge, Eqs.~10! and ~12! are reduced to

R82511
1

12
R2D822

Q2

48p4

1

R4expS 2

A3
D D , ~13!

~R3D8!85
Q2

4A3p4

1

R3expS 2

A3
D D . ~14!

From Eq.~14!, one finds the dilaton equation

R6D825
Q2

4p4expS 2

A3
D D 2

Q2

4p4expS 2

A3
D0D , ~15!

where the integration constant is chosen so thatD has van-
ishing derivative at the wormhole neck (r50). Substituting
this into Eq.~13!, one obtains

R82512
R0

4

R4 , R0
45

Q2

48p4expS 2

A3
D0D . ~16!

Here R05R(r50) corresponds to the radius of wormhole
neck (R850). Equation~11! is satisfied with Eqs.~15! and
~16! and thus is a redundant one. The resulting solution
~stringy wormhole! to Eq. ~16! has the asymptotic behavior
R(r)→6r asr→6`, corresponding to two asymptotically
flat regions and has minimum atR0. Furthermore, Eq.~15! is
solved to obtain

expS 2
2

A3
D D 5

Q2

48p4

1

R4 , ~17!

which will prove very useful for the computation of the per-
turbed action on later. Note thatD is nonsingular for finiter
and thus the integrand of the action is finite too. For an
explicit calculation, we wish to solve the differential equa-
tion ~16! by numerical analysis. We introduce the rescalings
(r/r0 ,R/R0 ,D/D0) with r05R0. The resulting solution is
shown in Fig. 1. Far from the wormhole throat (r/R0.1),
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one can ignore the effect of gravity and the Euclidean space
becomes flat (R;r). Here one can find the wormhole neck
(R850) near r50. Now let us substitute the results of
R(r)/R0 in Fig. 1 into Eq.~17!. Then one obtains the behav-
ior of the wormhole dilaton@D(r)#. As is shown in Fig. 2,D
does not have any singular point.

Let us now consider O~4!-symmetric fluctuations about
the nonsingular wormhole solution. In general, the interpre-
tation of the wormhole depends on whether or not there are
negative modes around the solution. If one finds odd number
of negative modes, the solution corresponds to a bounce and
describes the nucleation and growth of wormhole in the
Minkowski spacetime. If there are even number of negative
modes, the path integral would be real and classical solution
would resemble an instanton rather than a bounce. If there is
no negative mode, the solution is called an instanton and
describes the tunneling and mixing of two states of the same
energy. The small fluctuations are given by

R~r!5Rc~r!1r ~r!, N~r!511n~r!,

D~r!5Dc~r!1d~r!, ~18!

whereRc ,Dc represent the classical wormhole background.
Substituting these into Eq.~9! and then take only the bilinear
parts in (r ,n,d) of the action. This is because from this part
one can derive the linearized equations which are essential
for the fluctuation study. Here we choose then(r)50 gauge,
since the quadratic action is invariant under the O~4!-general
coordinate transformations. The bilinear action is then given
by

Sbil512p2E drF2Rcr 8222Rc8rr 8

1
1

12
~R3d8216Rc

2Dc8rd813RcDc8
2r 2!1

Q2

48p4

1

Rc
3

3expS 2

A3
D D S 6

r 2

Rc
2 22A3

dr

Rc
1

2

3
d2D G . ~19!

After some calculation, Eq.~19! can be rewritten as

Sbil512p2E drF2Rcr 821S 9

Rc
2

R0
4

Rc
5D r 21

Rc
3

12
d82

1
1

2
Rc

2Dc8rd822A3dr1
2

3
Rcd

2G ~20!

with the boundary terms which are not relevant for our study.
Dealing with Eq. ~20! is difficult. This is because of the
presence ofr -d coupling terms. Actually one has to find the
new canonical variables that diagonalize the action~20!.
However, thanks to the relation~17!, one has the relation
between r and d. Linearizing Eq. ~17! leads to d
52A3r /Rc and inserting this into Eq.~20!, we obtainSbil
50 which leads to a trivial case. In order to avoid this trivial
case, we assume the relation as

d52A3a
r

Rc
~21!

by introducinga as the parameter. This means thatd is not
an independent variable. The above is the simplest assump-
tion which is appropriate in the spirit of linear perturbation.
Otherwise, the analysis becomes very difficult. Using Eq.
~21!, we find the desirable bilinear form

Sbil512p2~a221!E drFRcr 821S R0
4

Rc
51

a21

a11

9

Rc
D r 2G .

~22!

One can easily check thatSbil50 for a51. Since the bilin-
ear from Eq.~22! is positive definite fora2.1, there are no
negative modes in this region. Thus the range of the param-
eter should be confined toa2,1. But for a2,1, the action
is unbounded from below, because of the negative sign of the
kinetic term. In this case, we need the GHP rotation@12,13#
for scale factor (r→ ir ). Taking the variation of the action
~22! with respect tor , on gets the Schro¨dinger-type equation

RcF2~Rcr 8!81S R0
4

Rc
51

a21

a11

9

Rc
D r G5v2r . ~23!

FIG. 1. R/R0 as a function ofr/R0. The solid, dotted and
dashed lines correspond to wormhole scale factor (R/R0),
R(r)/R0'1.274, andR/R05r. The singular point (rsg) is deter-
mined as a solution toR(rsg)/R051/Acos(p/2A3)'1.274.

FIG. 2. D/D0 as a function ofr/R0. No singular point is found.

6686 56BRIEF REPORTS



Here we choose a prefactorRc on the left-hand side in such
a way that the above equation can be solved explicitly.

In order to obtain a familiar expression, let us introduce
the new variablez5*0

rdr/Rc . Here the wormhole solution
is given byRc5R0Acosh2z. Then Eq.~23! can be written as

2
d2

dz2
r 1S 1

cosh22z
19

a21

a11D r 5v2r , ~24!

which corresponds to the Schro¨dinger equation for a particle
moving in the potential 1/cosh22z19@(a21/a11)#. The
spectrum of this problem is well known:

v259
a21

a11
1k2~a positive number!. ~25!

The above means that there is a continuous spectrum of
negative modes whena2,1. The general solution to Eq.
~24! can be obtained in@14,15# as

r 5C1Acosh2zFS 1

4
1 i

k

4
,
1

4
2 i

k

4
,
1

2
;2sinh22zD

1C2Acosh2zsinh2zFS 3

4
1 i

k

4
,
3

4
2 i

k

4
,
3

2
;2sinh22zD ,

~26!

where k25v229@(a21)/(a11)#. Here the coefficientes
C1 andC2 will be determined from the boundary condition
that asz→`(r→`) the wave function has the asymptotic
form limz→`r (z);eikz.

We perform the analysis of O~4!-symmetric fluctuations
on the stringy wormhole background with the gaugen(r)
50,r (r)Þ0. Instead of diagonalizing the quardratic action,
we choose the relationd52A3ar /Rc which is inspired by
Eq. ~17!. Rubakov and Shvedov@8# reported that there exists
only one negative moder (2)(r)51/Rc

2(r) with v2524 for
the pure gravity case. The existence of one negative mode

implies that the wormhole contribution into the functional
integral is imaginary, which corresponds to the instability of
the parent universe against the emission of a baby universe.
In our caser (r)5Rc satisfies Eq.~23! over the entire region
with v259@(a21)/(a11)#21. But this solution is not a
small perturbation and thus we discard it. On the other hand,
we find a continuous spectrum of negative modes fora2

,1. It has been shown by Coleman@16# that the bounce
interpretation of a classical solution requires exactly one
negative mode. In general, the reality and imaginarity of the
path integral depends on the sign of the determinant of fluc-
tuatuons. The essential property is whether the number of
negative modes is odd or even. The odd case belongs to the
bounce, while the even case is related to the instanton. Here
we obtain the continuous spectrum of negative modes. The
existence of a continuous negative modes leads to diffrent
problems. Lavrelashvili, Rubakov, and Tinyakov~LRT! @17#
pointed out that an infinite number of negative modes may
appear around the bounce. But Tanaka and Sasaki@18# ar-
gued that the above LRT claim is an artifact due to their
inadequate choice of gauge~LRT gauge!, which was inevi-
tably implied by the Lagrangian formalism. For the LRT
gauge ofn(r)Þ0,r (r)50 in @18#, one can obtain the bilin-
ear action from Eq.~9!. One has to use the constraint equa-
tion ~10! to eliminate then(r) terms. Unfortunately, we can-
not get the relation betweenn(r) and d(r) by linearizing
Eq. ~10!. Further the corresponding action turns out to be
trivial.

In our case, we choose the gauge ofn(r)50,r (r)Þ0.
Under this gauge, one has to perform the Hamiltonian analy-
sis arisen from Ref.@18#. At this stage, it is not clear to
conclude whether the stringy wormhole is a bounce or an
instanton.
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