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In this paper we take a deeper look at the technically elementary but physically robust viewpoint in which
the Casimir energy in dielectric media is interpreted as the change in the total zero-point energy of the
electromagnetic vacuum summed over all states. Extending results presented in previous papers we approxi-
mate the sum over states by an integral over the density of statesincluding finite volume corrections. For an
arbitrarily shaped finite dielectric, the first finite-volume correction to the density of states is shown to be
proportional to the surface area of the dielectric interface and is explicitly evaluated as a function of the
permeability and permitivity. Since these calculations are founded in an elementary and straightforward way on
the underlying physics of the Casimir effect they serve as an important consistency check on field-theoretic
calculations. As a concrete example we discuss Schwinger’s suggestion that the Casimir effect might be the
underlying physical basis behindsonoluminescence. The recent controversy concerning the relative importance
of volume and surface contributions is discussed. For sufficiently large bubbles the volume effect is always
dominant. Furthermore we can explicitly calculate the surface area contribution as a function of refractive
index. @S0556-2821~97!00922-3#

PACS number~s!: 12.20.Ds, 77.22.Ch, 78.60.Mq

I. INTRODUCTION

The Casimir effect in dielectrics is the subject of intense
ongoing interest. While there is no doubt that the effect is
real, certain suggested applications are somewhat controver-
sial. For instance, Schwinger has suggested that the Casimir
effect might be the underlying physics behind sonolumines-
cence@1–3#, while Carlson, Goldman, and Pe´rez-Mercader
have suggested possible applications to gamma ray bursts
@4#. More generally, the Casimir energy has sometimes been
invoked as a possible driving mechanism for ultrahigh-
energy astrophysical processes such as quasars. We feel that
all aspects of the discussion could benefit from the improved
understanding of the basic physics we provide in this paper.

Historically, the techniques used to investigate the Ca-
simir effect were typically a varied mixture of Schwinger’s
source theory, explicit calculations of electromagnetic
Green’s functions~seasoned with time-splitting regulariza-
tion!, and sometimes, more physically based regulator
schemes that take advantage of the analyticity properties of
the frequency dependent refractive index. A key early paper
is that by Schwinger, de Raad, and Milton@5#.

Schwinger’s most developed point of view can be gleaned
from the series of papers he recently wrote wherein he ex-
plored the possible relevance of the Casimir effect to sonolu-
minescence@1–3#. For the evolution of his views on this
subject see@6–9#.

Schwinger found@1# that ~for each polarization state! the
‘‘dielectric energy, relative to the zero energy of the vacuum,
[is given] by

E52VE d3kW

~2p!3

1

2
@\c#kS 12

1

Ae
D .’’ ~1!

This result can be interpreted in a straightforward manner as
the integral of thedifferencein dispersion relations over the
density of states@10,11#.

In addition to Schwinger’s bulk volume term, calculations
by Milton et al. @12–14# indicate the existence of a surface
correction. For a dilute~that is,e'1) spherical intrusion of
radiusR and dielectric constante1 in a dilute dielectric me-
dium of dielectric constante2 (e2'1), with the eigenmode
sum regulated by time splitting, the surface contribution is
equivalent to1
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A controversy has recently arisen over whether or not
Schwinger’s volume term should be retained, and whether or
not the surface term is the leading term in the Casimir energy
@13,14#. We have shown elsewhere@10,11# that the presence
of the volume term is generic, and have~among other argu-
ments! adduced reasons based on density-of-states calcula-
tions to bolster Schwinger’s calculation. In this paper we
shall pursue this matter further and shall extract as much
physics as possible from these density-of-states calculations.

The discussion, though elementary from a technical per-
spective, is quite sufficient to give the most important domi-

1See Eq.~51! of @13#, Eq. ~7.5! of @14#, or the equivalent Eq.~41!
of @12#. Those calculations only deal with spherical dielectric balls
with frequency independent dielectric properties, and use an ex-
plicit time-splitting regularization. The numerical coefficient in this
surface term is regularization dependent and it does not appear to be
possible to relate its absolute normalization to the number we will
calculate using Schwinger’s wave-number cutoff.
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nant contributions to the Casimir energy. These results serve
as an important consistency check on more sophisticated
field-theoretic calculations.

Furthermore, the present analysis extends Schwinger’s re-
sult by verifying that generically surface terms do in fact
show up, but assubdominantcorrections to the dominant
volume contribution. General arguments of this type are par-
ticularly useful because they allow us to studyarbitrary
shapes and not be limited by requirements of spherical sym-
metry.

We first discuss some general properties of the bulk vol-
ume term, noting in particular the dependence upon a physi-
cally meaningful ultraviolet cutoff, and then turn to the issue
of finite volume effects. While finite volume effects in con-
ductors ~or more precisely, for Dirichlet, Neumann, and
Robin boundaryconditions! are well understood, the analo-
gous problem for dielectricjunction conditions ~or even
acoustic junction conditions! is considerably less clear cut.
We attack the problem of finite volume effects in the pres-
ence of junction conditions via an extension of the Balian-
Bloch analysis for boundary conditions@15,16#. We show
that the presence of a dielectric interface modifies the density
of states by a term proportional to the surface area of the
interface and calculate the proportionality constant as an ex-
plicit function of the dielectric permitivity and permeability.
~For the related, and simpler, acoustic interface the change in
density of states is related to the physical fluid densities on
the two sides of the interface.!

Finally, we apply this formalism to the estimation of the
~electromagnetic! Casimir energy in generic dielectrics. We
show that for dielectric bubbles large compared to the cutoff
wavelength the volume term is dominant. We point out that
the numerical value of the net Casimir energy is strongly
dependent on the details of the high-frequency cutoff. Within
the context of sonoluminescence this high-frequency sensi-
tivity might explain the fact that small admixtures of gas in
the bubble undergoing sonoluminescence can have large ef-
fects on the total energy radiated: a small resonance in the
medium-frequency behavior of the refractive index can be
magnified by phase space effects, and lead to dramatic
changes in the total energy budget.

We mention in passing that there will also be an acoustic
Casimir energy associated with the phonon modes@17#. The
acoustic Casimir energy~while always present! is numeri-
cally negligible in comparison to the electromagnetic effect
being suppressed by a factor of~speed of sound/speed of
light!.

II. THE DENSITY OF STATES: BULK TERM

The physics underlying the Casimir effect is that every
eigenmode of the photon field has zero-point energy
En5(1/2)\vn ; the Casimir energy is the difference in zero-
point energies between any two well-defined physical situa-
tions

ECasimir~AuB!5(
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We always need a regulator to make sense of this energy
difference, though in many cases of physical interest~such as

dielectrics! the physics of the problem will automatically
regulate the difference for us and make the results finite.
Adding over all eigenmodes is prohibitively difficult, so it is
in general more productive to replace the sum over states by
an integral over the density of states.

Suppose we have a finite volumeV of some bulk dielec-
tric in which the dispersion relation for photons is given by
some functionv1(k), which describes the photon frequency
as a function of the wave number~three-momentum! k. Sup-
pose this dielectric to be embedded in an infinite background
with different dielectric properties described by a different
dispersion relationv2(k). We regulate infrared divergences
by putting the whole universe in a box of finite volumeV` ,
and calculate the bulk contribution to the total zero-point
energy of the electromagnetic field by summing the photon
energies over all momenta~and polarizations!, using the
usual and elementary density of states:@Volume# d3kW /(2p)3.
~In the next section we shall look at finite-volume corrections
to this density of states.!

Including photon modes both inside and outside the di-
electric body the energy of the system is
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Note that outside the dielectric body the photon dispersion
relation is that of the embedding dielectricv2(k). Note also
that we shall always use the subscript 2 to refer to the region
outsidethe embedded body, and shall use the subscript 1 to
refer to the regioninside.

If the embedded body is removed, and the hole simply
filled in with the embedding medium, we can calculate the
total zero-point energy as

Ehomogeneous52V`E d3kW

~2p!3

1

2
\v2~k!. ~5!

We definethe Casimir energy by subtracting these two zero-
point energies@10,11#

ECasimir[Eembedded body2Ehomogeneous
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The physical import of this definition is clear: The Casimir
energy is defined as thechangein the zero-point energy due
to a change in the medium.

Note also that the physical meaning of the zero of energy
is clear: the zero of energy is here taken to be that corre-
sponding to a homogeneous dielectric with dispersion rela-
tion v2(k).

To be obtuse, we could use a different zero for the energy
— this makes no difference as long as we keep the same zero
throughout any particular calculation. For instance, the zero-
point energy of the Minkowski vacuum is
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EMinkowski52V`E d3kW
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Thus an alternativedefinition for the Casimir energy is then

ECasimir
alternative[Eembedded body2EMinkowski
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For this alternative definition, the zero of energy is clearly
the Minkowski vacuum. As long as you stick with one fixed
definition throughout the calculation, or better yet, calculate
Casimir energy differences directly, quibbling about the zero
of energy does not matter.~Of course, if you change the zero
of energy in the middle of the calculation the answers will be
meaningless.!

From the general considerations in@10,11# we know that
the integrand must go to zero at large wave-number, and in
fact, for any pair of real physical dielectrics the integrand
must go to zero sufficiently rapidly to make the integral con-
verge.

An integration by parts yields

ECasimir5
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The boundary term vanishes because of the asymptotic be-
havior of thev i(k). The substitutionk5v i(k)ni then yields

ECasimir51
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While the difference between the refractive indices in the
above expression goes to zero sufficiently rapidly to make
the integral converge, it must be noted that the prefactor of
v3 implies that the net Casimir energy will be relatively
sensitive to the high-frequency behavior of the refractive in-
dices.

If the Casimir effect ultimately proves to be the correct
physical explanation for sonoluminescence, this sensitivity to
the details of the refractive index might plausibly explain
why sonoluminescence is sensitive to the admixture of small
trace gases into the bubble.~Of course the present calculation
is static, but the energy calculated in this way will be the
maximum energy that could possibly be released in a more
realistic dynamical calculation.! To make this qualitative
statement quantitative we would need a detailed model for
the refractive index as a function of frequency—a task that is
beyond the scope of this paper.

III. THE DENSITY OF STATES: FINITE-VOLUME
EFFECTS

A. Generalities

We now look at the contribution arising from subdomi-
nant finite-volume corrections to the density of states. The
key point here is that the existence of finite-volume terms
proportional to the surface area of the dielectric is ageneric
result. The fact that previous calculations@12–14# encoun-
tered a surface tension term proportional to (cutoff)3 is
hereby explained on general physical grounds without re-
course to special function theory.

We must notice at this stage that the dominant contribu-
tion to the Casimir energy is proportional to volume, as the
canonical bulk expression for the density of states is propor-
tional to the volume:@Volume#d3kW /(2p)3. It is reasonably
well known, though perhaps not so elementary, that for fields
subject toboundaryconditions~Dirichlet, Neumann, Robin!
the density of states is in general modified by finite volume
effects. In this paper we wish to extend these ideas to fields
subject tojunction conditions~acoustic, dielectric!.

For boundary conditions the general result is

(
n
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These are the first two terms in an asymptotic expansion in
1/k. For Dirichlet, Neumann, and Robin boundary conditions
the coefficients can be related directly to the known
asymptotic behavior of the heat kernel—they are simply the
Seeley-DeWitt coefficients in disguise and can be obtained,
for instance, by suitably transforming the results presented in
the monograph by Gilkey@19#.

There are additional terms in this expansion, proportional
to the various monomials appearing in the general formulae
for the higher Seeley-DeWitt coefficients, but we do not fur-
ther address this issue here except to point out that the next
term is proportional to the integral of the trace of the extrin-
sic curvature over the boundary.

An elementary discussion of the general existence of such
terms can be found in the textbook by Pathria@18#, while a
more extensive treatment can be found in the papers by
Balian and Bloch@15,16#.

For Dirichlet, Neumann, and Robin boundary conditions
the dimensionless variablej is a known function of the
boundary conditions imposed.

If we let N(k) denote the number of eigenmodes with
wave number less thank, then from the above we can write

N~k!;
1
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We shall now perform the analogous analysis for junction
conditions, adapting the Balian-Bloch formalism as needed.
Our formalism is applicable to both boundary conditions and
junction conditions. For clarity, and to aid in consistency
checking, we carry out brief parallel computations for the
boundary condition case.
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B. Scalar field

We start for simplicity with a scalar, rather than electro-
magnetic, field. We are interested in the following eigen-
value problem:

Df1k2f50, B@f#50. ~13!

HereB@f# denotes the boundary conditions imposed. Com-
mon boundary conditions are tabulated below.

Dirichlet boundary conditions(f50 on the boundary!:

j52p/4. ~14!

Neumann boundary conditions(]nf50 on the boundary;
where]n denotes the normal derivative!:

j51p/4. ~15!

Robin boundary conditions(]nf5kf on the boundary;
k real!:

j51p/4. ~16!

Surface damped boundary conditions (]nf5kkf on the
boundary;k real; note that the eigenvalue is now explicitly
present in the boundary condition as well as in the differen-
tial equation!:
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These results can be read off, for instance, from the paper by
Balian and Bloch@15#.

Comparing the Robin and surface damped boundary con-
ditions, it might naively be tempting to write

jRobin~k!5jdamped~k/k!. ~18!

However in the present context—an asymptotic expansion in
1/k—such an expression is meaningless. The best we can do
is to say that

jRobin~k!5 lim
k→`

jdamped~k/k!. ~19!

Thus for Robin boundary conditions we keep only the domi-
nantk→` piece of the Balian-Bloch result.

On the other hand, in the surface damped boundary con-
dition ~because of the explicit factor ofk appearing in this
boundary condition! it is meaningful to keep the inverse tan-
gent term of the Balian-Bloch result in our expression forj.
~As a consistency check, these coefficients are also calcu-
lated as special cases of the general formalism we shall de-
velop below.!

Acoustic junction conditions:We are ultimately interested
in junction conditions, rather thanboundary conditions. For
definiteness, we can think of an acoustic junction, wherein an
acoustic wave propagates across some fluid interface: say a
bubble of some dense fluid embedded in a lighter fluid. In
terms of the densities of the fluids, (r1, r2), and the velocity
potentials, (f1, f2), the acoustic junction conditions are

r1f15r2f2 , ~20!

]nf15]nf2 . ~21!

~See@20#, p. 24 or@20#, p. 81. These two conditions repre-
sent, respectively, the continuity of the pressure and the nor-
mal component of the velocity at the interface.! We must
point out at this stage that the change in propagation speed
and/or density causes a certain amount of reflection and re-
fraction, which then changes the density of states in the fluid
both insideandoutsidethe bubble~i.e., on both sides of the
interface! according to the general scheme

(
inside

;VE d3kW
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For the case of acoustic junction conditions, the dimension-
less variablesjout/in have not yet been calculated. We present
the calculation below, for now merely quoting the final re-
sult:

jout~r1 ,r2!5
p

4 Fr12r2

r11r2
G52j in~r1 ,r2!. ~24!

Formulation of the problem:On general grounds, we ex-
pect thej to be a function of both the acoustic refractive
index ~that is, a function of the relative acoustic velocities!,
and the relative densities. Ifv0 is some arbitrary reference
speed, we can define the refractive indices by

n1[k1v0 /v andn2[k2v0 /v, ~25!

and further define the relative refractive index byn5n1 /n2.
~Note in particular thatv is continuous across the interface,
whereaski is not.! It is also useful to define the density
contrast byr5r1 /r2.

In the special case where there is no dispersion, the phase
and group velocities are equal and we simply have

n15v0 /v1 and n25v0 /v2 . ~26!

We know, from first principles, that asn→1 andr→1
the acoustic boundary becomes indistinguishable, as both
fluids have the same density and refractive index, so we must
have

jout/in~n,r!→0 as n→1 and r→1. ~27!

To calculatej(n,r) for acoustic junction conditions, we
modify the discussion of Balian and Bloch~ @15#, p. 407! to
derive an expression forj(n,r) in terms of an integral in-
volving the reflection coefficientR(r,n;kW ).
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We start from the result for the density of states in terms
of the time-independent Green’s function@ @15#, Eq.~II.6!, p.
409#. Taking N(k) to be the number of modes with wave
number less thank, we can construct a suitably smoothed
density of states formally described by the relation

rdos~k!5FdN

dkG
smoothed

. ~28!

~Details of the smoothing procedure can be found in@15#.!
Note that we prefer to express the density of states in terms
of the wave-numberki rather than in terms of the variable
E5ki

2 . See Eq.~I.3! on p. 402 of@15#. Thus

rdos~k!;
dN

dk
;

dE

dk

dN

dE
;2krdos

BB~E!. ~29!

In terms of the asymptotic expansion of interest

rdos~k!;
1

2p2 @Vk21Sjk1O~1!#. ~30!

Working on either side of the interface~with i taking on
the values ‘‘in’’ or ‘‘out’’ as appropriate! Eq. ~II.6! on p. 409
of @15# yields

rdos
i ~ki !5

2ki

p E d3xW lim
xW8→xW

Im@G~xW ,xW8;ki1 i e!#, ~31!

where the integration overx now runs only over regioni as
appropriate.

It is important to realize that the Balian-Bloch formalism
is built up under the assumption that all the eigenvalues are
real—this constrains the type of problems we can deal with
to loss-free undamped situations.

We are interested in an arbitrary interface, but provided
the interface is smooth, we can locally replace it by its tan-
gent plane. This approximation is equivalent to neglecting
sub-dominant pieces proportional to the trace of the extrinsic
curvature.~If we were interested in explicitly calculating the
next coefficient in the expansion we would have to locally
approximate the surface by its osculating ellipsoid, as done
for the case of boundary conditions by Balian and Bloch.!

Truncating the expansion at the surface area term, we
locally approximate the interface by a plane interface, lo-
cated atz50, with region 2~the outside! at z.0 and region
1 ~the inside! at z,0. We are only interested in the diagonal
part of the Green’s function. To calculate this diagonal part
in region i we can assume the source is also in regioni and
write the total Green’s function in this region as a sum of a
direct and areflectedcontribution.

The direct part of the Green’s function is responsible for
the bulk contribution to the density of states, while the re-

flected part of the Green’s function gives the surface contri-
bution. Since, in the tangent plane approximation, we are
dealing with a perfectly flat interface higher order contribu-
tions are explicitly excluded.

The volume contribution has already been calculated in
@10,11#, and we are now interested in the extra piece of the
Green’s function that arises from reflection at the interface.
Using cylindrical coordinates, the contribution to the Green’s
function due to the reflected wave can be put into the Som-
merfeld representation~an integral over transverse wave
numberkt)

Greflection
i ~xW ,xW8;ki !5

i

4pE0

`

Ri~ki ,kt!J0~ktr !

3
exp@ iK ~ki ,kt!~z1z8!#

K~ki ,kt!
kt dkt .

~32!

@See Eq.~4.2.5! on p. 103 of @20#, with an appropriate
change of notation.# Note thatR(ki ,kt) is the reflection co-
efficient. It is a function of the frequency and the transverse
wave-number and will consequently depend on the precise
nature of the boundary conditions imposed. The Sommerfeld
representation has the interesting feature that it expresses a
Green function, which is related to the behavior of spherical
waves, in terms of a reflection coefficient defined for plane
waves. Here

K~ki ,kt!5Aki
22kt

2. ~33!

More explicitly

Kout~k2 ,kt!5Ak2
22kt

2. ~34!

K in~k1 ,kt!5Ak1
22kt

2. ~35!

If we look at the diagonal part of this reflection contribution,
(xW5xW8), and note thatJ0(0)51 we immediately see

Greflection
i ~xW ,xW ;ki !5

i

4pE0

`Ri~ki ,kt!exp@2iK ~ki ,kt!z#

K~ki ,kt!
ktdkt .

~36!

~Note that we are calculating what is in field theory parlance
an off-shell Green’s function. The integration overkt is an
integration over all off-shell transverse momenta, and this
integration is not to be limited by any on-shell constraint
such askt<ki .)

For the density of states~counting only the appropriate
contribution arising from either side of the interface, that is,
z.0 or z,0),

r reflection
i ~ki !5

ik i

2p2 SE
0

`

dzImF E
0

`

kt dkt Ri~ki1 i e,kt!
exp@2iK ~ki1 i e,kt!z#

K~ki1 i e,kt!
G . ~37!
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The z integration is trivial@becauseki has a small positive
imaginary part, which is inherited byK(ki ,kt), we can guar-
antee convergence of this integral#:

r reflection
i ~ki !52

ki

4p2 S ImF E
0

` Ri~ki1 i e,kt!

K~ki1 i e,kt!
2 kt dktG .

~38!

It is useful to define the dimensionless variable
u5kt /(ki1 i e), so thatu has a smallnegative imaginary
part. We get

r reflection
i ~ki !52

ki

4p2 S ImF E
0

`Ri~ki ,u2 i e!

12~u2 i e!2 uduG .
~39!

If we now take this contribution to the quantityrdos, and
convert to thej i variable as defined in this paper using

j i5
2p2

kS
r reflection

i , ~40!

we find

j i~ki !52
1

2
ImF E

0

` Ri~ki1 i e,kt!

K~ki1 i e,kt!
2 kt dktG . ~41!

Equivalently

j i~ki !52
1

2
ImF E

0

`Ri~ki ,u2 i e!

12~u2 i e!2 u duG . ~42!

This is our general result for the surface contribution to the
density of states. The surface term is seen to be a suitable
average of the reflection coefficient appropriate to the bound-
ary conditions at hand.~Note that if we were on shell, we
would interpretu as the sine of the angle of incidence, andu
would then be limited to the rangeuP@0,1#. As this is an
off-shell computation for the off-shell Green’s function, the
range of integration goes all the way to infinity and trying to
interpretu as the sine of the angle of incidence only leads to
unnecessary confusion. Indeed, in calculating this Green’s
function, we are effectively dealing with a spherical incident
wave, so there are many angles of incidenceu i . To identify
u as the sine ofthe angle of incidence only makes sense for
an incident plane wave, and is in the present context mean-
ingless.!

The application of this result to specific cases of interest
merely requires us to calculate the relevant reflection coeffi-
cients and perform the integrations.

The integral for standard boundary conditions:In some
well-known cases the relevant integrations are straightfor-
ward. For example for Dirichlet, Neumann, and Robin
boundary conditions the reflection coefficients are21, 11,
and11, respectively, and integrating out to some large cut-
off value of u we have

E
0

U 1

12~u2 i e!2 udu5
1

2E0

U2 1

12~x2 i e!
dx5

1

2
@2 ln$12~x2 i e!%#u0

U2
5

1

2
~ ln$11 i e%2 ln$12U21 i e%!

52@ ip1 ln~U221!#/2

'2
ip

2
2 ln~U !. ~43!

Note that the integral itself diverges, though the imaginary
part is both finite and independent of the cutoff. Taking this
imaginary part gives

j57
p

4
. ~44!

This reproduces the standard results quoted above@Eqs.
~14!–~16!#.

The surface damped boundary condition is a little trickier.
In this case the reflection coefficient can be shown to be

R~u!5
A12u22 ik

A12u21 ik
. ~45!

@See, for example, Eqs.~3.4.4! and ~3.4.5! on p. 87 of De-
Santo@20#, and translate to our notation. Note that an ana-
lytic continuation ink is required to turn the surface imped-

ance boundary condition discussed there into the surface
damped boundary condition discussed here.#

Subtracting and adding 1 to the integrand converts the
integral into that encountered in the previous calculation plus
an integral that is well behaved at infinity. The relevant in-
tegral is again elementary:

E
0

` 1

12u2FA12u22 ik

A12u21 ik
21Gudu512ln~11 ik!. ~46!

Taking the imaginary part of the above reproduces the result
announced in Eq.~17!:

j5
p

4
2arctan~k!. ~47!

Checking the above:
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Gdu85E
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u92 i eF ik

A2u91 i e1 ik
Gdu9

5E
21

` 1

u92 i eF k

Au92 i e1k
Gdu95E

2 i

` 2

ũ2 i e
F k

ũ1k2 i e
Gd ũ

52E
2 i

` F 1

ũ2 i e
2

1

ũ1k2 i e
Gd ũ52F lnS ũ2 i e

ũ1k2 i e
D G

2 i

1`

522F lnS 2 i 2 i e

2 i 1k2 i e D G512ln~11 ik!. ~48!

~The original contour was chosen to run underneath the two
branch cuts emanating fromu5211 i e and u5111 i e;
thus under the change of variablesu95Au221 the branch
cut must be chosen so that the new contour terminates at2 i
and not at1 i .!

The integral for acoustic junction conditions:We are fi-
nally ready to study the case of interest: acousticjunction
conditions. The reflection coefficient is now@20#, Eq.
~3.1.19!, p. 82#

R~r,n;u!5
rA12u22An22u2

rA12u21An22u2
. ~49!

Consistency check I:Note thatr→1` givesR511, as
appropriate for Neumann and Robin boundary conditions;
r→0 givesR521 as appropriate for the Dirichlet boundary
condition; whiler→` with k52 in/r fixed gives the sur-
face damped boundary condition.

Consistency check II:Similarly n→1` givesR521, as
appropriate for Dirichlet boundary conditions; finally
n→1 i` gives R511 as appropriate for Neumann and
Robin boundary conditions.

Observation:The reflection coefficient exhibits an inver-
sion symmetry as we move from one side of the interface to
the other, this symmetry being inherited by thej:

Rin~r,n;u!5Rout~1/r,1/n;u!. ~50!

Thus

j in~r,n!5jout~1/r,1/n!. ~51!

Calculation: We are interested in evaluating

Q5ImF E
0

` udu

12u2

rA12u22An22u2

rA12u21An22u2G . ~52!

The integrand has a pole atu51 of residue21/2, and
branch cuts emanating fromu561 which can be chosen to
terminate atu56n. Asymptotically, asu→`, the integrand
goes as

1

u

r21

r11
. ~53!

This is already enough to tell us that the imaginary part of
this integral can be finite if and only ifr is real. For the
acoustic equations this is actually very sensible physically
since it is meaningless to drive the density complex. To
evaluate this expression we subtract and add 1 to the inte-
grand, and make use of the integral*udu/(12u2), evalu-
ated in Eq.~43!, to write

Q51
p

2
1ImF E

0

` udu

12u2H rA12u22An22u2

rA12u21An22u2
11J G .

~54!

This conveniently gets rid of the pole so that the integral is
now unambiguously finite. Indeed

Q51
p

2
12r ImF E

0

` udu

12u2

A12u2

rA12u21An22u2G .

~55!

Now we also have to taken to be real, otherwise we step
outside the Balian-Bloch formalism. For now, also take
n.1, the alternative case being completely analogous. The
integrand is now imaginary only over the rangeuP@1,n#,
and we can change variables to set

Q51
p

2
1rF E

1

n2 du8

12u8
ImH iAu821

An22u81 irAu821
J G .

~56!

That is
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Q51
p

2
1rF E

1

n2 du8

12u8

An22u8Au821

~n22u8!1r2~u821!
G . ~57!

Equivalently

Q51
p

2
2rE

0

n221du9

u9

An2212u9Au9

~n2212u9!1r2u9
. ~58!

Now defineu95(n221)w.

Q51
p

2
2rE

0

1dw

w

A12wAw

11~r221!w
. ~59!

Note that the refractive indexn has now completely disap-
peared from the integral. This gives

Q51
p

2
2r

p

r11
52

p

2 Fr21

r11G . ~60!

We can redo the calculation forn,1. A few intermediate
steps change but the final result is the same. We finally have
our announced result

jout~r,n!5
p

4 Fr21

r11G5
p

4 Fr12r2

r11r2
G . ~61!

Note the remarkable result that this is independent ofn for n
real. With hindsight, we can see that the acoustic junction
conditions explicitly make reference only to the density of
the fluid, and not to the velocity of sound~refractive index!,
which might be viewed as ana posteriorijustification for the
absence of refractive index in the final result. However we
know of no simple physics argument that would justify this,
and must rely on the explicit calculation presented above.

As r→1` we recover Neumann and Robin boundary
conditions while asr→0 we recover Dirichlet boundary
conditions. Also note that on interchanging the two regions,
r→1/r, so we have

j in~r!5jout~1/r!52jout~r!, ~62!

as expected from our earlier discussion@see Eq.~51!#.

C. Electromagnetic field

For the electromagnetic field, we can use the analysis pre-
sented by Balian and Bloch in@16#, ~pp. 273–274! to view
the electromagnetic eigenvalue problem as a combination of
vector and scalar eigenvalue problems. A standard result is:
Perfect conductor boundary conditions(EW 3nW 50 and
B•
W nW 50 on the boundary!:

j50. ~63!

This vanishing of the surface term for perfect conductor
boundary conditions is due to a cancellation between
transverse-electric~TE! and transverse magnetic~TM!
modes.~For a surface of general shape the separation into TE
and TM modes is meaningless; TE and TM modes make
sense only in situations of extremely high symmetry. Never-
theless, sufficiently close to any conducting surface we may
approximate the surface by its tangent plane—and in this

approximationthe decomposition into TE and TM modes
makes sense. The general vector minus scalar decomposition
alluded to above thenapproximatelyreduces to the simpler
scalar plus scalar decomposition for the TE and TM modes.!

Dielectric junction conditions:For the case of ultimate
interest we are of course interested indielectric junction con-
ditions. A full appreciation of the~perhaps unexpected!
subtleties involved with dielectric junction conditions might
be gleaned from the fact that even for a plane interface the
situation is sufficiently complicated as to warrant a recent
600 page technical monograph@21#, and a continuing stream
of research papers~see, for instance,@22#!.

Nevertheless we can make a few general statements on
physical grounds before doing a detailed calculation ofj. In
analogy with the case of the scalar field, finite-volume effects
will distort the density of states bothinsideandoutsidethe
dielectric body according to the general scheme

(
inside

;VE d3kW

~2p!3 1SE j in

d3kW

~2p!3k
1•••, ~64!

(
outside

;~V`2V!E d3kW

~2p!3 1SE jout

d3kW

~2p!3k
1•••.

~65!

For the case of a dielectric junction, we expectj(e,m) to be
a function of the permeability and permitivity, and we know,
from first principles, that ase→1 andm→1 the dielectric
boundary disappears as both media become the same, so we
must have

j~e,m!→0 ase→1 andm→1. ~66!

When we turn to including dispersive effects we note that
j(e,m) should ultimately be taken to be a function of the
wave-number dependent quantitiese(k), m(k). Since we
know that ask→` the dielectric must ultimately mimic in-
dividual atoms embedded in vacuum, we must have

j„e~k!,m~k!…→0 ask→`. ~67!

The calculation ofj for the electromagnetic field is an
easy exercise given our results for the acoustic problem. We
decompose the electromagnetic field near the approximately
plane boundary into TE and TM modes. In terms of the
relative refractive index, relative permitivity, and relative
permeability, the reflection coefficients~for the outside re-
gion! are simply@20#, ~pp. 83–84!, or see@23#, Eqs.~86.4!
and ~86.6!, p. 295, or@24# ~pp. 281–282!2

RTE~e,m;u!5Racoustic~r5m,n;u!5
mA12u22An22u2

mA12u21An22u2
,

~68!

RTM~e,m;u!5Racoustic~r5e,n;u!5
eA12u22An22u2

eA12u21An22u2
.

~69!

2Be careful with all the different notations in use.
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~Remember thatn5Aem. Also, we have definedn5n1 /n2,
e5e1 /e2, andm5m1 /m2).

Thus, applying the previous acoustic results, we get the
remarkably simple formulas

jout
TE~m!5

p

4 Fm21

m11G5
p

4 Fm12m2

m11m2
G52j in

TE~m!. ~70!

jout
TM~e!5

p

4 Fe21

e11G5
p

4 Fe12e2

e11e2
G52j in

TM~e!. ~71!

Note that the result for the TE modes is independent ofe,
while that for the TM mode is independent ofm. Since most
typical dielectric materials are magnetically inert,m'1, the
TE contribution is typically much smaller than the TM con-
tribution.

Consistency check:Instead of appealing to the identifica-
tion of reflection coefficients, we can get the same results
directly from the dielectric boundary conditions. We know
that

EW', eEW n, HW ', andmHW n, ~72!

must be continuous across the boundary.
If we are dealing with a plane interface, or in the approxi-

mation that we are sufficiently close to a curved interface,
specifying the normal components of theEW and BW fields is
sufficient to completely determine the electromagnetic field.
In terms of these normal components the junction conditions
are simply the following.

TE mode:

m1H1
n5m2H2

n , ~73!

]nH1
n5]nH2

n . ~74!

TM mode:

e1E1
n5e2E2

n , ~75!

]nE1
n5]nE2

n . ~76!

Applying the formalism derived for the acoustic junction
conditions, the previously quoted results forj immediately
follow.

IV. THE CASIMIR ENERGY

Including these surface contributions to the density of
states, the total zero-point energy for a dielectric body em-
bedded in a background dielectric is easily seen to be

Eembedded body52VE d3kW

~2p!3

1

2
\v1~k!

12SE d3kW

~2p!3

1

2
\cF j̄ in~e,m!

v1~k!

ck G
12~V`2V!E d3kW

~2p!3

1

2
\v2~k!

12SE d3kW

~2p!3

1

2
\cF j̄ out~e,m!

v2~k!

ck G
1•••. ~77!

This is just the generalization of Eq.~4! above to include
surface effects. The quantityj̄ denotes anaverageover TE
and TM modes. To calculate the Casimir energy we now
simply subtract the homogeneous dielectric zero-point en-
ergy @Eq. ~7!# to obtain

ECasimir52VE d3kW

~2p!3

1

2
\@v1~k!2v2~k!#

12SE d3kW

~2p!3

1

2
\cF j̄ in~e,m!

n1
1

j̄ out~e,m!

n2
G

1•••. ~78!

Even though the surface terms seem to be additive, there is a
‘‘hidden’’ minus sign, as we shall see below, due to the fact
that j in(r)52jout(r).

This is quite enough to give a good qualitative feel for the
physics: the Casimir effect will in general induce a surface
tension that goes as (cutoff)3.

It is useful to define

J~e1 ,m1 ;e2 ,m2!5F j̄ in~e,m!

n1
1

j̄ out~e,m!

n2
G ~79!

and so write the Casimir surface tension as

s~surface tension!5E d3kW

~2p!3 \cJ~e1 ,m1 ;e2 ,m2!.

~80!

From our previous results forj, taking the case of magneti-
cally inert media for simplicity (m51), we see

J~n1 ,n2!5
p

8 F2
1

n1
1

1

n2
Gn1

22n2
2

n1
21n2

2 . ~81!

Here we indeed see that the two surface terms contribute
with opposite signs, largely cancelling each other. We can
factorize this to yield

J~n1 ,n2!51
p

8

~n12n2!2~n11n2!

n1n2~n1
21n2

2!
. ~82!

Note that this vanishes as (n12n2)2, with one factor of
(n12n2) coming from the fact that thej i individually tend
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to zero asn1→n2 and the second coming from the partial
cancellation discussed above. What does this do to the Ca-
simir energy:

ECasimir52VE d3kW

~2p!3

1

2
\ckFn22n1

n1n2
G

12SE d3kW

~2p!3

1

2
\c

p

8

~n12n2!2~n11n2!

n1n2~n1
21n2

2!

1•••. ~83!

This is our general result for the Casimir energy. We now
insert a momentum dependent refractive index into the above
to explictly evaluate the coefficients. The physical cutoff is
provided by the fact that both refractive indices are known to
tend to 1 at large momenta.

A naive hard cutoff, following the ideas of Schwinger,
simplifies these expressions considerably. Naive hard cutoffs
are of course an idealization that suppresses much of the
physical detail, and are justified only for order of magnitude
estimates and for comparison with the previous literature
where naive hard cutoffs are often the only extant results.
Suppose we take

n1~k!5n1Q~K2k!1Q~k2K ! ~84!

and

n2~k!5n2Q~K2k!1Q~k2K !. ~85!

~It is an additional gross oversimplification to set the cutoffs
for the two media equal to one another, but it is standard and
is the only way to make connection with previous calcula-
tions. Keeping separate cutoffs for the two media is straight-
forward but algebraically somewhat messy.!

The Casimir energy is then given by

ECasimir5
1

8p2 V\cK4F 1

n1
2

1

n2
G

1
1

6p2 S\cK3F j̄ in~n1 ,n2!

n1
1

j̄ out~n1 ,n2!

n2
G

1•••, ~86!

while the Casimir surface tension is

s5
1

6p2 \cK3F j̄ in~n1 ,n2!

n1
1

j̄ out~n1 ,n2!

n2
G . ~87!

Inserting the specific formulae forj then yields

s51
1

48p
\c

~n12n2!2~n11n2!

n1n2~n1
21n2

2!
K3. ~88!

Now particularize to dilute media, by takingn1'1'n2.

ECasimir'
1

8p2 V\cK4@n22n1#

1
1

48p
S\cK3@~n12n2!2#1•••. ~89!

The volume term here is the dilute medium limit of
Schwinger’s result@1#, while the surface area term repro-
duces the Miltonet al. result @12–14#. There is an overall
normalization difference between this surface term and the
special case calculated by Miltonet al., this normalization
difference being attributable to a different choice of regula-
tor. The critical physics lies in the volume versus surface
area dependence, the power of the cutoff dependence, and
the behavior as a function of refractive index.

Note that the bulk term is dominant if

VK@S, ~90!

that is, for dielectrics with linear dimensions satisfying

L;~V/S!@1/K5l0 /~2p!. ~91!

For a typical dielectric we estimatel0'1000 Å, so for di-
electrics of this size or greater the Casimir energy will be
dominated by bulk effect.This is certainly the case for
sonoluminescence where typical bubble radii are of order
100 000Å.

For small enough dielectric particles the surface term will
not be negligible in comparison to the volume term—this is
no great surprise to people studying mesoscopic systems for
which the existence of finite volume effects is well known.

Finally, we mention that for~nondispersive! Neumann-
Dirichlet-Robin boundary conditions the existence of a sur-
face term contributing to the total Casimir energy has been
known for some time—see, for instance,@25#.

V. DISCUSSION

The main results of this paper are the following.
~1! The Casimir energy in a dielectric medium is domi-

nated by a volume term. Indeed, for a finite volume of di-
electric 1, embedded in an infinite volume of different di-
electric 2,

ECasimir52VE d3kW

~2p!3

1

2
\@v1~k!2v2~k!#

12SE d3kW

~2p!3

1

2
\cJ~e1 ,m1 ;e2 ,m2!

1•••, ~92!

where the dots represent terms arising from higher-order dis-
tortions of the density of states due to finite-volume effects.

~2! If we adopt a simple cutoff model for the dispersion
relation, the volume term is

ECasimir
bulk 5

1

8p2 V\cK4F 1

n1
2

1

n2
G . ~93!

This result is completely in agreement with Schwinger’s cal-
culation in @1#, and in disagreement with@13,14#.

~3! In addition, there will be a subdominant contribution
to the Casimir energy that is proportional to the surface area
of the dielectric. This surface contribution takes the generic
form
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ECasimir
surface51

1

48p
S\cK3F ~n12n2!2~n11n2!

n1n2~n1
21n2

2! G . ~94!

This term is subdominant provided

V/S@1/K5l0 /~2p!. ~95!

~4! In general, we can expect these to be the first two
terms of a more general expansion that includes terms pro-
portional to various geometrical invariants of the body. By
analogy with the situation for nondispersive Dirichlet-
Neumann-Robin boundary conditions@15# we expect the
next term to be proportional to the trace of the extrinsic
curvature integrated over the surface of the body.

~5! The analysis of the present paper has been limited to
situations of real refractive index~loss-free insulating dielec-
trics!. Generalizing to lossy conducting media is clearly of

interest but will require a careful reassessment of the entire
formalism.
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