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Casimir effect in dielectrics: Surface area contribution
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In this paper we take a deeper look at the technically elementary but physically robust viewpoint in which
the Casimir energy in dielectric media is interpreted as the change in the total zero-point energy of the
electromagnetic vacuum summed over all states. Extending results presented in previous papers we approxi-
mate the sum over states by an integral over the density of stetlesling finite volume correctiong-or an
arbitrarily shaped finite dielectric, the first finite-volume correction to the density of states is shown to be
proportional to the surface area of the dielectric interface and is explicitly evaluated as a function of the
permeability and permitivity. Since these calculations are founded in an elementary and straightforward way on
the underlying physics of the Casimir effect they serve as an important consistency check on field-theoretic
calculations. As a concrete example we discuss Schwinger’s suggestion that the Casimir effect might be the
underlying physical basis behistnoluminescenc&he recent controversy concerning the relative importance
of volume and surface contributions is discussed. For sufficiently large bubbles the volume effect is always
dominant. Furthermore we can explicitly calculate the surface area contribution as a function of refractive
index.[S0556-282097)00922-3

PACS numbe(s): 12.20.Ds, 77.22.Ch, 78.60.Mq

I. INTRODUCTION This result can be interpreted in a straightforward manner as
the integral of thelifferencein dispersion relations over the
The Casimir effect in dielectrics is the subject of intensedensity of state$10,11.

ongoing interest. While there is no doubt that the effect is In addition to Schwinger’s bulk volume term, calculations

real, certain suggested applications are somewhat controvepy Milton et al. [12—14 indicate the existence of a surface

sial. For instance, Schwinger has suggested that the Casimiprrection. For a dilutéthat is,e~1) spherical intrusion of

effect might be the underlying physics behind sonoluminesradiusR and dielectric constard; in a dilute dielectric me-

cence[1-3], while Carlson, Goldman, and Rz-Mercader dium of dielectric constang, (e,~1), with the eigenmode

have suggested possible applications to gamma ray bursssim regulated by time splitting, the surface contribution is

[4]. More generally, the Casimir energy has sometimes beeaquivalent to

invoked as a possible driving mechanism for ultrahigh-

energy astrophysical processes such as quasars. We feel that 1 o2 1
all aspects of the discussion could benefit from the improved Esutacs™ — 771C(€1~ €2)°R (cr)® 2

understanding of the basic physics we provide in this paper.

Historically, the techniques used to investigate the Ca- A controversy has recently arisen over whether or not
simir effect were typically a varied mixture of Schwinger's Schwinger’s volume term should be retained, and whether or
source theory, explicit calculations of electromagneticnot the surface term is the leading term in the Casimir energy
Green’s functiongseasoned with time-splitting regulariza- [13,14. We have shown elsewhef&0,11] that the presence
tion), and sometimes, more physically based regulatobf the volume term is generic, and hat@mong other argu-
schemes that take advantage of the analyticity properties ghenty adduced reasons based on density-of-states calcula-
the frequency dependent refractive index. A key early papefions to bolster Schwinger's calculation. In this paper we
is that by Schwinger, de Raad, and Miltgs). shall pursue this matter further and shall extract as much

Schwinger's most developed point of view can be gleaneghysics as possible from these density-of-states calculations.
from the series of papers he recently wrote wherein he ex- The discussion, though elementary from a technical per-

plored the possible relevance of the Casimir effect to sonoluspective, is quite sufficient to give the most important domi-
minescencq1-3]. For the evolution of his views on this

subject se¢6-9]. _—

Schwinger found1] that (for each polarization statéhe  1see Eq(51) of [13], Eq.(7.5) of [14], or the equivalent Eq41)
“dielectric energy, relative to the zero energy of the vacuum,qf [12]. Those calculations only deal with spherical dielectric balls
[is given] by with frequency independent dielectric properties, and use an ex-

plicit time-splitting regularization. The numerical coefficient in this
Kk 1 1 surface term is regularization dependent and it does not appear to be
E Vf (2m)° 2[fic]k( 1 \/;)

(1) possible to relate its absolute normalization to the number we will
calculate using Schwinger’'s wave-number cutoff.
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nant contributions to the Casimir energy. These results serdielectricg the physics of the problem will automatically
as an important consistency check on more sophisticatecbgulate the difference for us and make the results finite.
field-theoretic calculations. Adding over all eigenmodes is prohibitively difficult, so it is
Furthermore, the present analysis extends Schwinger’s réa general more productive to replace the sum over states by
sult by verifying that generically surface terms do in factan integral over the density of states.
show up, but asubdominantcorrections to the dominant Suppose we have a finite volunveof some bulk dielec-
volume contribution. General arguments of this type are partric in which the dispersion relation for photons is given by
ticularly useful because they allow us to studybitrary  some functionw,(k), which describes the photon frequency
shapes and not be limited by requirements of spherical symas a function of the wave numbéhree-momentumnk. Sup-
metry. pose this dielectric to be embedded in an infinite background
We first discuss some general properties of the bulk volwith different dielectric properties described by a different
ume term, noting in particular the dependence upon a physdispersion relationw,(k). We regulate infrared divergences
cally meaningful ultraviolet cutoff, and then turn to the issueby putting the whole universe in a box of finite volurie ,
of finite volume effects. While finite volume effects in con- and calculate the bulk contribution to the total zero-point
ductors (or more precisely, for Dirichlet, Neumann, and energy of the electromagnetic field by summing the photon
Robin boundaryconditiong are well understood, the analo- energies over all momentéand polarizations using the

gous problem for dielectrigunction conditions (or even  sual and elementary density of stafaolume] d3k/(2)3.
acoustic junction conditionss considerably less clear cut. (i the next section we shall look at finite-volume corrections
We attack the problem of finite volume effects in the pres-g this density of statek.

ence of junction conditions via an extension of the Balian- |ncluding photon modes both inside and outside the di-
Bloch analysis for boundary conditiorid5,16. We show  gjectric body the energy of the system is
that the presence of a dielectric interface modifies the density

of states by a term proportional to the surface area of the Pk 1
interface and calculate the proportionality constant as an ex- E ermbedded bode 2V J = (k)
plicit function of the dielectric permitivity and permeability. Y (2m)° 2

(For the related, and simpler, acoustic interface the change in P 1
density of states is related to the physical fluid densities on _ -
the two sides of the interfade. +2(Va V)j (2m)° ZﬁwZ(k)' @
Finally, we apply this formalism to the estimation of the
(electromagneticCasimir energy in generic dielectrics. We Note that outside the dielectric body the photon dispersion
show that for dielectric bubbles large compared to the cutoffelation is that of the embedding dielectrig(k). Note also
wavelength the volume term is dominant. We point out thathat we shall always use the subscript 2 to refer to the region
the numerical value of the net Casimir energy is stronglyoutsidethe embedded body, and shall use the subscript 1 to
dependent on the details of the high-frequency cutoff. Withinyefer to the regiorinside
the context of sonoluminescence this high-frequency sensi- |f the embedded body is removed, and the hole simply
tivity might explain the fact that small admixtures of gas infilled in with the embedding medium, we can calculate the
the bubble undergoing sonoluminescence can have large &btal zero-point energy as
fects on the total energy radiated: a small resonance in the
medium-frequency behavior of the refractive index can be BR 1
magnified by phase space effects, and lead to dramatic — ch — )
changes in the total energy budget. Eromageneas 2V (2m)° gheald ©
We mention in passing that there will also be an acoustic
Casimir energy associated with the phonon mdd&s. The  We definethe Casimir energy by subtracting these two zero-
acoustic Casimir energgwhile always preseptis numeri-  point energie$10,11]
cally negligible in comparison to the electromagnetic effect
being suppressed by a factor fpeed of sound/speed of E casimi™= Eembedded body” Ehomogeneous
light).

d3k 1
=2V | ——==h k)— k)T. 6
Il. THE DENSITY OF STATES: BULK TERM f (2m)32 L1k~ wx(k)] ©

The physics underlying the Casimir effect is that everypy . i qical import of this definition is clear: The Casimir

eigenmode of the photon field has zero-point energy : ' ; T
E.=(1/2)h w,; the Casimir energy is the difference in zero- fonzr?:%;;eefil:etzgea;gg\uaggem the zero-point energy due

point energies between any two well-defined physical situa- Note also that the physical meaning of the zero of energy

tions is clear: the zero of energy is here taken to be that corre-
1 sponding to a homogeneous dielectric with dispersion rela-
- => = — tion w,(k).
Ecasimi(AlB) ; Zﬁ[wn(A) n(8)] ® To be obtuse, we could use a different zero for the energy
— this makes no difference as long as we keep the same zero
We always need a regulator to make sense of this energfproughout any particular calculation. For instance, the zero-
difference, though in many cases of physical inte(esth as  point energy of the Minkowski vacuum is
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d3k 1 lll. THE DENSITY OF STATES: FINITE-VOLUME
Emtinkowski= 2V f 2n)? EﬁCk' (7) EFFECTS

A. Generalities

Thus an alternativeefinitionfor the Casimir energy is then We now look at the contribution arising from subdomi-

) nant finite-volume corrections to the density of states. The
Eallematve g edded body” EMinkowski key point here is that the existence of finite-volume terms

- proportional to the surface area of the dielectric igemeric

:va dk Eh[ (k) ck] result. The fact that previous calculatiof2—14 encoun-

(2m)3 2 “1 tered a surface tension term proportional to (cufof
. hereby explained on general physical grounds without re-

d3k course to special function theory.

+2(V°°_V)f 2m)3 Eﬁ[‘”2(k)_Ck]' ®) We must notice at this stage that the dominant contribu-
tion to the Casimir energy is proportional to volume, as the
For this alternative definition, the zero of energy is clearlyc@nonical bulk expression for the density of states is propor-

the Minkowski vacuum. As long as you stick with one fixed tional to the volume{Volume]d3k/(2)3. It is reasonably
definition throughout the calculation, or better yet, calculatewell known, though perhaps not so elementary, that for fields

Casimir energy differences directly, quibbling about the zergsubject toboundaryconditions(Dirichlet, Neumann, Robin
of energy does not mattefOf course, if you change the zero the density of states is in general modified by finite volume
of energy in the middle of the calculation the answers will beeffects. In this paper we wish to extend these ideas to fields

meaningless. subject tojunction conditions(acoustic, dielectric
From the general considerations[it0,11] we know that For boundary conditions the general result is
the integrand must go to zero at large wave-number, and in 3 -
fact, for any pair of real physical dielectrics the integrand E ~Vf d°k +Sf ¢ d°k Lo (11)
must go to zero sufficiently rapidly to make the integral con- = (2m)° (27)°k
verge.

An integration by parts yields
These are the first two terms in an asymptotic expansion in
Vi (= 4 1/k. For Dirichlet, Neumann, and Robin boundary conditions
ECasimiFWJO d(k*)[w1(k) = w(K)] the coefficients can be related directly to the known
asymptotic behavior of the heat kernel—they are simply the
Vi 5 . Seeley-DeWitt coefficients in disguise and can be obtained,
:W[{k [wi(k)— wz(k)]}|o for instance, by suitably transforming the results presented in
the monograph by Gilke}19].

o 3 There are additional terms in this expansion, proportional
- fo [dwy (k) —dw;(k) ]k, ) {0 the various monomials appearing in the general formulae

for the higher Seeley-DeWitt coefficients, but we do not fur-

The boundary term vanishes because of the asymptotic b her address this issue here except to point out that the next

havior of thea;(K). The substitutiork= w; (k)n: then yields erm is proportional to the integral of the trace of the extrin-
sic curvature over the boundary.

An elementary discussion of the general existence of such
Eer Vf SJ’mw3[n§’(w)—nf(w)]dw. (10)  terms can be found in the textbook by Patr_[ﬂs], while a
6mc more extensive treatment can be found in the papers by
Balian and BlocH15,14.

While the difference between the refractive indices in the For Dirichlet, Neumann, and Robin boundary conditions
above expression goes to zero sufficiently rapidly to makdéhe dimensionless variabl¢ is a known function of the
the integral converge, it must be noted that the prefactor oboundary conditions imposed.
w® implies that the net Casimir energy will be relatively  If we let N(k) denote the number of eigenmodes with
sensitive to the high-frequency behavior of the refractive in-wave number less thaq then from the above we can write
dices.

If the Casimir effect ultimately proves to be the correct
physical explanation for sonoluminescence, this sensitivity to
the details of the refractive index might plausibly explain
why sonoluminescence is sensitive to the admixture of small
trace gases into the bubbl@f course the present calculation
is static, but the energy calculated in this way will be the We shall now perform the analogous analysis for junction
maximum energy that could possibly be released in a moreonditions, adapting the Balian-Bloch formalism as needed.
realistic dynamical calculation.To make this qualitative Our formalism is applicable to both boundary conditions and
statement quantitative we would need a detailed model fojunction conditions. For clarity, and to aid in consistency
the refractive index as a function of frequency—a task that ishecking, we carry out brief parallel computations for the
beyond the scope of this paper. boundary condition case.

1(1 .1
N(k)~ 5| 3Vk +§§Sk2+0[k] . (12)
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B. Scalar field Inp1=0nch>. (2D
We start for simplicity with a scalar, rather than electro-

magnetic, field. We are interested in the following eigen-(See[zo], p. 24 or[20], p. 81. These two conditions repre-
value problem: sent, respectively, the continuity of the pressure and the nor-
2, _ mal component of the velocity at the interfac®/e must

Ap k=0, Bl¢]=0. 13 point out at this stage that the change in propagation speed
and/or density causes a certain amount of reflection and re-
fraction, which then changes the density of states in the fluid
both inside andoutsidethe bubble(i.e., on both sides of the
interface according to the general scheme

Here B[ ¢] denotes the boundary conditions imposed. Com
mon boundary conditions are tabulated below.
Dirichlet boundary conditiong$=0 on the boundany

J——yy (14)
Neumann boundary conditiorfg,,¢=0 on the boundary; > Vf o’k +Sf & o’k + (22)
n% — i ~ f BRI
whered,, denotes the normal derivative inside (2m)® " (2m)%
E=+7l4. (15 R .
d3k d3k
Robin boundary conditionéd,¢= k¢ on the boundary; O%de”(vw_V)J 2m)3 +S foutﬁsiJr s
x real:
(23
&=+ mla. (16)

For the case of acoustic junction conditions, the dimension-
Surface damped boundary condition ¢=kk¢ on the less variableg, ., have not yet been calculated. We present
boundary;k real; note that the eigenvalue is now explicitly the calculation below, for now merely quoting the final re-
present in the boundary condition as well as in the differensult:

tial equation:
T 1 1+ix T Eoul _mpTee
= — —_| | |=== oul P1,P2) &in(p1,p2)- (24
£ 7 2Im In T ie 7 arctani «). (17) 4 pi1+ps
These results can be read off, for instance, from the paper by Formulation of the problemOn general grounds, we ex-
Balian and BlocH15]. pect the¢ to be a function of both the acoustic refractive
~ Comparing the Robin and surface damped boundary corndex (that is, a function of the relative acoustic velocilies
ditions, it might naively be tempting to write and the relative densities. if, is some arbitrary reference
speed, we can define the refractive indices by
ERrobir K) = gdampe& Kk/K). (19

However in the present context—an asymptotic expansion in n=kwg/w andn,=kvy/w, (25

1/k—such an expression is meaningless. The best we can do

is to say that and further define the relative refractive indextoy nq/n,.

o (Note in particular thatv is continuous across the interface,
gR"b‘“(K)_klmgdampe&K/k)' (19 whereask; is not) It is also useful to define the density
contrast byp=p,/p,.
Thus for Robin boundary conditions we keep only the domi-  In the special case where there is no dispersion, the phase
nantk—oe piece of the Balian-Bloch result. and group velocities are equal and we simply have
On the other hand, in the surface damped boundary con-
dition (because of the explicit factor & appearing in this
boundary conditionit is meaningful to keep the inverse tan-
gent term of the Balian-Bloch result in our expressiongor ] o
(As a consistency check, these coefficients are also calcu- We know, from first principles, that as—1 andp—1
lated as special cases of the general formalism we shall déb€ acoustic boundary becomes indistinguishable, as both
velop below) fluids have the same density and refractive index, so we must
Acoustic junction conditiondiVe are ultimately interested have
in junction conditionsrather tharboundary conditionsFor
definiteness, we can think of an acoustic junction, wherein an éouin(Myp)—0 asn—1 andp—1. (27)
acoustic wave propagates across some fluid interface: say a
bubble of some dense fluid embedded in a lighter fluid. In

terms of the densities of the fluidsy{, p,), and the velocity 1© calculateé(n,p) for acoustic junction conditions, we
potentials, ¢, &,), the acoustic junction conditions are ~ Modify the discussion of Balian and Blo¢i15], p. 407 to
derive an expression faf(n,p) in terms of an integral in-

p1p1=p2chs, (20)  volving the reflection coefficienR(p,n;k).

n1=v0/vl and nzzvolvz. (26)
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We start from the result for the density of states in termdflected part of the Green'’s function gives the surface contri-
of the time-independent Green'’s functipfil5], Eq.(Il.6), p.  bution. Since, in the tangent plane approximation, we are
409]. Taking N(k) to be the number of modes with wave dealing with a perfectly flat interface higher order contribu-
number less thak, we can construct a suitably smoothed tions are explicitly excluded.
density of states formally described by the relation The volume contribution has already been calculated in

[10,11], and we are now interested in the extra piece of the

Green’s function that arises from reflection at the interface.

(28) Using cylindrical coordinates, the contribution to the Green'’s

smoothed function due to the reflected wave can be put into the Som-

(Details of the smoothing procedure can be found1f].) merfeld representatiortan integral over transverse wave
Note that we prefer to express the density of states in term@umberk;)

of the wave-numbek; rather than in terms of the variable
E=k?. See Eq(1.3) on p. 402 of[15]. Thus

[dN
Pdod K) = aK

) .o i ®
reflectiod X, X' 1 Ki) = Efo R'(ki ,kp)Jo(kir)
dN dEdN

=T BB . _ ,
K(ki ki)
In terms of the asymptotic expansion of interest 32)
1 . .
T L2 [See Eqg.(4.2.5 on p. 103 of[20], with an appropriate
Paod ) 2772[Vk +Sek+O(1)]. (30 change of notatiof.Note thatR(k; ,k;) is the reflection co-

efficient. It is a function of the frequency and the transverse
Working on either side of the interfad@vith i taking on  wave-number and will consequently depend on the precise
the values “in” or “out” as appropriat¢ Eq. (I1.6) on p. 409 nature of the boundary conditions imposed. The Sommerfeld
of [15] yields representation has the interesting feature that it expresses a
ol Green function, which is related to the behavior of spherical
pldos(ki):#J' d3xﬁlimalm[G(x,x’;ki+ie)], (31) x:z:i ::]etrirms of a reflection coefficient defined for plane

X' —x

where the integration over now runs only over region as K(k; ki) = \/kiz— ktz. (33
appropriate.

It is important to realize that the Balian-Bloch formalism  More explicitly
is built up under the assumption that all the eigenvalues are

real—this constrains the type of problems we can deal with K out( K2, k) = Vk5— k. (34)
to loss-free undamped situations.
We are interested in an arbitrary interface, but provided
Kin(ka ko) = VKT K. (35

the interface is smooth, we can locally replace it by its tan-
gent plane. This approximation is equivalent to neglectingl . . : I
sub-dominant pieces proportional to the trace of the extrinsi fawe*I,OOk at the diagonal part of th.|s reerFt|on contribution,
curvature (If we were interested in explicitly calculating the (X=X'), and note thaf(0)=1 we immediately see

next coefficient in the expansion we would have to locally

approximate the surface by its osculating ellipsoid, as doneGi )= i =RI(K; k) exd 2iK (k; Ko)z] dk
for the case of boundary conditions by Balian and Blpch. reflectiorl X:X:Ki) = 47 ), K(k; k) NER
Truncating the expansion at the surface area term, we (36)

locally approximate the interface by a plane interface, lo-

cated atz=0, with region 2(the outsidg¢ atz>0 and region (Note that we are calculating what is in field theory parlance

1 (the inside at z<0. We are only interested in the diagonal an off-shell Green’s function. The integration ougris an

part of the Green’s function. To calculate this diagonal partintegration over all off-shell transverse momenta, and this

in regioni we can assume the source is also in regiamd integration is not to be limited by any on-shell constraint

write the total Green’s function in this region as a sum of asuch ask;<k;.)

direct and areflectedcontribution. For the density of state&ounting only the appropriate
The direct part of the Green'’s function is responsible forcontribution arising from either side of the interface, that is,

the bulk contribution to the density of states, while the re-z>0 or z<0),

exl 2iK (ki +i€,k,)z]
K(k+1e k)

f:kt dk, Ri(k +iek) (37)

_ ik w
Prefiectior Ki) =2_77|28j0 dzim
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The z integration is trivial[becausek; has a small positive
imaginary part, which is inherited b¥(k; ,k;), we can guar- (ki) =~
antee convergence of this integral

T rorudu @

f Ri(ki,u—ie)

Ri(k;+ie.k) This is our general result for the surface contribution to the
f 2k dk | density of states. The surface term is seen to be a suitable
K(ki+iek)? ™ t} average of the reflection coefficient appropriate to the bound-
(38)  ary conditions at handNote that if we were on shell, we
would interpretu as the sine of the angle of incidence, and
would then be limited to the rangee[0,1]. As this is an
off-shell computation for the off-shell Green’s function, the
range of integration goes all the way to infinity and trying to
. K, =Ri(k; ,u—ie€) interpretu as the sine_ of the angle_of incidenpe only leads to
Prefiectiod Ki)=— 7295 |m[f ————udul. unnecessary confusion. Indeed, in calculating this Green’s
4 o 1-(u—ie) function, we are effectively dealing with a spherical incident
(39 wave, so there are many angles of incideAceTo identify
If we now take this contribution to the quantifyys, and Y aS the sine othe angle of ingid_ence only makes sense for
convert to thet' variable as defined in this paper using an incident plane wave, and is in the present context mean-

i i
plreflectior{ Ki)=— m Sim

It is wuseful to define the dimensionless variable
u=k;/(kj+ie), so thatu has a smallnegativeimaginary
part. We get

ingless)
2m? The application of this result to specific cases of interest
'3 :k_splreﬂectionv (40 merely requires us to calculate the relevant reflection coeffi-
cients and perform the integrations.
we find The integral for standard boundary conditionist some

well-known cases the relevant integrations are straightfor-

i 1 Ri(ki+ie k) ward. For example for Dirichlet, Neumann, and Robin

g(k)=- §|m fo K(ki+ie k)2 ke dky|. (4D poundary conditions the reflection coefficients are, +1,
and + 1, respectively, and integrating out to some large cut-

Equivalently off value ofu we have
fu ! d—lfuz ! 1|1 —1|1' In{1—U2+i
o mu U_E o m 2 n{ (X—IE)}]|0 _E( n{ +I6}— n{ — +I€})
=—[im+In(U%-1)]/2
i
m—7—ln(U). (43

Note that the integral itself diverges, though the imaginaryance boundary condition discussed there into the surface

part is both finite and independent of the cutoff. Taking thisdamped boundary condition discussed Here.

imaginary part gives Subtracting and adding 1 to the integrand converts the
integral into that encountered in the previous calculation plus
an integral that is well behaved at infinity. The relevant in-

a
&= IZ. (44)  tegral is again elementary:
This reproduces the standard results quoted al@s. w 1 [ M1—u2—ik
(14—-(16)]. f > ——1|udu=+2In(1+ik). (46
01U J1—u+ix

The surface damped boundary condition is a little trickier.
In this case the reflection coefficient can be shown to be
Taking the imaginary part of the above reproduces the result

— . announced in Eq17):
R(u)= K (45)
1-u+ik -
&= Z—arctamx). (47)

[See, for example, Eq$3.4.4 and(3.4.5 on p. 87 of De-
Santo[20], and translate to our notation. Note that an ana-
lytic continuation in« is required to turn the surface imped- Checking the above:
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foo 1 [m_”—lludu—fc 1

0 1—(u—ie)’| J1—(u—ie)+ix

1= (WP =ie)—ik
= —— - ——1|udu
o l-(u—ie)| Jy1—(u’—ie)+ik
_f’o 1 —2ik d
o 1= (U -ie)| I—(uZ=ie) +ix He

f“’ 1 [ —iK f‘o 1 [ i K
= ’ H - . u,: n H < . du”
ol—u +|e{ 1—Uu'+ietix -1u —IG{ —u"+ietik
© 1 K o 2 K ~
:j " . " du”:f ~ . #du
—1u —IEL u' —ie+k —-iu—lefUt+k—le
o[ 1 — U—ie i
=2j = —|du=2|In| =——
—ifu—le U+k—Ie€ Uu+k—le i
2l — = | =21 48
" i) |7 HAN K. 48

(The original contour was chosen to run underneath the tw@'he integrand has a pole at=1 of residue—1/2, and
branch cuts emanating from=—1+ie andu=+1+ie; branch cuts emanating from= =1 which can be chosen to
thus under the change of variable$=\u?—1 the branch terminate au= +n. Asymptotically, as1i— =, the integrand
cut must be chosen so that the new contour terminates at goes as

and not at+i.)

The integral for acoustic junction conditiongVe are fi- } E (53
nally ready to study the case of interest: acougtiuction up+tl’
conditions The reflection coefficient is now20], Eq.
(3.1.19, p. 82 This is already enough to tell us that the imaginary part of

this integral can be finite if and only if is real. For the

R(p,n;u

p\/l uZ— \/nz—uz
NI\

(49

Consistency check Note thatp— +« givesR=+1, as

appropriate for Neumann and Robin boundary conditions;
p—0 givesR=—1 as appropriate for the Dirichlet boundary

condition; while p—« with k= —in/p fixed gives the sur-
face damped boundary condition.
Consistency check IBimilarly n— 4+ givesR=—1, as

appropriate for

Dirichlet boundary conditions;

acoustic equations this is actually very sensible physically
since it is meaningless to drive the density complex. To
evaluate this expression we subtract and add 1 to the inte-
grand, and make use of the integfaldw (1—u?), evalu-
ated in Eq.(43), to write

j UdUJp\/l_z—m }

1-0?| py1—u?+ JnZ— 12

T
Q:+E+|m

(54)

finally This conveniently gets rid of the pole so that the integral is

n—+ic gives R=+1 as appropriate for Neumann and now unambiguously finite. Indeed
Robin boundary conditions.

Observation:The reflection coefficient exhibits an inver- T
sion symmetry as we move from one side of the interface to Q=+ §+2P Im

the other, this symmetry being inherited by tfie

Rin(p,n;u) =Ry 1/p,1inju). (50
Thus
&in(p,N) = Eoul 1lp,1in). (51)
Calculation: We are interested in evaluating
Q=Im{JWZUdi Tt Tl (52)
0 1-u" py1-u?+ n?—u?

fw udu Ji—-u?
0 1-U? p1—u?+nZ—u2’
(55

Now we also have to taka to be real, otherwise we step
outside the Balian-Bloch formalism. For now, also take
n>1, the alternative case being completely analogous. The
integrand is now imaginary only over the range[1,n],

and we can change variables to set

[l i

alll
1 1-u Jn?—u’+ipJu’' -1

Q=+g+p
(56)

That is
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- 2 du’ nZ=u i —1 approximationthe decomposition infco TE and TM mode;_
Q=+ 5P J =0 2 o YT . (67 makes sense. The general vector minus scalar decomposition
1 U (n“—u’)+p(u'—-1) alluded to above theapproximatelyreduces to the simpler
Equivalentl scalar plus scalar decomposition for the TE and TM mogdes.
quivalently Dielectric junction conditions:For the case of ultimate
2 " 2 interest we are of course interestedlirlectric junction con-
Q:+E_pfn 71d# 2n 1-u \/f . (59 ditions A full appreciation of the(perhaps unexpectgd
2 o U (n°-1-u")+pu” subtleties involved with dielectric junction conditions might
- ) be gleaned from the fact that even for a plane interface the
Now defineu”=(n"—1)w. situation is sufficiently complicated as to warrant a recent
o 1dw VI—waw 600 page technical monograffhl], and a continuing stream
Q=+—= _pj - (590  of research papersee, for instancg22]).
2 oW 1+(p?—1)w Nevertheless we can make a few general statements on

o ) physical grounds before doing a detailed calculatios.dh
Note that the refractive indem has now completely disap- analogy with the case of the scalar field, finite-volume effects
peared from the integral. This gives will distort the density of states boinside and outsidethe
dielectric body according to the general scheme

. T T W p—1 60
Q= 2 pp+1_ 2|lp+1] (60 s 3 3
~vf—g+sf Snpoae T, (69
We can redo the calculation for<1. A few intermediate inside (27) "(2m)%k
steps change but the final result is the same. We finally have ) )
our announced result Vv f d3k S d3k
~(V,— ———+ .
- p—l 7| p1—p2 outside ( ) (277) gout(zﬂ_) k
bo ) =41 1= 3 o (61 (65

L For the case of a dielectric junction, we expét¢, u) to be
Note th? remark_able result that this is mdependem ﬁ‘ff N afunction of the permeability and permitivity, and we know,
real. With hindsight, we can see that the acoustic junction ) £« principles, that ag—1 and u—1 the dielectric

conditi.ons explicitly make reference only to the Qensity Ofboundary disappears as both media become the same, so we
the fluid, and not to the velocity of sourjtefractive inde, must have

which might be viewed as aaposteriorijustification for the

absence of refractive index in the final result. However we &(e,u)—0 ase—1 andu—1. (66)

know of no simple physics argument that would justify this,

and must rely on the explicit calculation presented above. When we turn to including dispersive effects we note that
As p—+ we recover Neumann and Robin boundary £(e, ) should ultimately be taken to be a function of the

conditions while asp—0 we recover Dirichlet boundary wave-number dependent quantitieék), w(k). Since we

conditions. Also note that on interchanging the two regionsknow that ask— the dielectric must ultimately mimic in-

p—1lp, so we have dividual atoms embedded in vacuum, we must have

&in(p) = Eoud Lp) = — Eaud p), (62 &(e(k),u(k))—0 ask—oo, (67)
as expected from our earlier discussisee Eq.(51)]. The calculation of¢ for the electromagnetic field is an
o easy exercise given our results for the acoustic problem. We
C. Electromagnetic field decompose the electromagnetic field near the approximately

For the electromagnetic field, we can use the analysis prédlane boundary into TE and TM modes. In terms of the
sented by Balian and Bloch if6], (pp. 273—-274%to view relative refractive index, relative permitivity, and relative
the electromagnetic eigenvalue problem as a combination gfermeability, the reflection coefficientéor the outside re-
vector and scalar eigenvalue problems. A standard result i§ion are simply[20], (pp. 83—84, or see[23], Egs.(86.4

Perfect conductor boundary conditionéExn=0 and and(86.6, p. 295, or[24] (pp. 281-28%

B-n=0 on the bounday PN ey sy

RTE(E,,LL;U)= Racousti%p:’u’n;u):

é=0. (63) uN1—uZ+nZ=u?’

. - 68
This vanishing of the surface term for perfect conductor (68)
boundary conditions is due to a cancellation between s [
transverse-electric(TE) and transverse magneti¢TM) RTM(E,M;U):Racoustifp:eyn;u)ze 1-u-Vn-u _
modes(For a surface of general shape the separation into TE eV1—u?+Jn?—u?
and TM modes is meaningless; TE and TM modes make (69

sense only in situations of extremely high symmetry. Never-
theless, sufficiently close to any conducting surface we may
approximate the surface by its tangent plane—and in this ?Be careful with all the different notations in use.
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(Remember thah=+/eu. Also, we have defined=n,/n,,

dk
e=¢€/ey andu= w1/ uy). Eembedded body ZVJ W Eﬁwl(k)
Thus, applying the previous acoustic results, we get the

remarkably simple formulas Pk 1 [ w1(K)
+ZSJW§ﬁC fin(ﬂ#)?
mpu—1| m e TE -
ol ) =7 =7 =—&n(p). (70 a3k 1
out(lu 4 pn+1| 4l put+pu, in LA +2(Vx—V)fW§hw2(k)
_ _ dk 1 [— w,(K)
™, _T€"Ll]_mea—el gy +28f—g—ﬁc , 2
(&) =777 2 €1t e én(€). (7D (2m)° 2 Soul €. —gy
+oe (77)

Note that the result for the TE modes is independer, of o o .
while that for the TM mode is independent of Si?lce most This is just the generallzatl_on of E¢4) above to include
typical dielectric materials are magnetically ingit=1, the ~ Surface effects. The quantity denotes araverageover TE
TE contribution is typically much smaller than the TM con- and TM modes. To calculate the Casimir energy we now
tribution. simply subtract the homogeneous dielectric zero-point en-

Consistency chechnstead of appealing to the identifica- €r9Y [E. (7)] to obtain
tion of reflection coefficients, we can get the same results

3
directly f the dielectric bound ditions. We k d°k 1
tfl['ftc y from the dielectric boundary conditions. We know E casimi= ZVJ Wﬁh[wl(k)_wZ(k)]

d*k 1. |En(en) Eoden)
E', €E", H, anduH", (72) +25 (2m)32 C{ n, + n,

+.-. (78
must be continuous across the boundary.

If we are dealing with a plane interface, or in the approxi-Even though the surface terms seem to be additive, there is a
mation that we are sufficiently close to a curved interface;*hidden” minus sign, as we shall see below, due to the fact
specifying the normal components of theandB fields is  thaté&in(p) = — &oudp)-
sufficient to completely determine the electromagnetic field. This is quite enough to give a good qualitative feel for the
In terms of these normal components the junction condition®hysics: the Casimir effect will in general induce a surface

are simply the following. tension that goes as (cutoff)
TE mode: It is useful to define
. En(en)  Eoulem)
piHT=uoHy, (73 E(€1,p1;€2,02)= mn + oun (79
1 2
n n and so write the Casimir surface tension as
dnHI=3d,H3. (74)
face tensi f il (= :
™ mode: o(surface tension= 27 CE (€1, M1;€0,40).
(80)
€,E]=e,E7, (75 From our previous results faf, taking the case of magneti-
cally inert media for simplicity =1), we see
9nE=0,ED. (76) _ a1  1]ni-nj
E(ng,np)=g| — —+ —|5—.
(N1.2) =7 N, Nyn3+n3 @D

Applying the formalism derived for the acpustic junction Here we indeed see that the two surface terms contribute
conditions, the previously quoted results foimmediately with opposite signs, largely cancelling each other. We can

follow. factorize this to yield
7 (Ng—Nyz)2(Ng+ny)

IV. THE CASIMIR ENERGY Z(ny,ny)=+—
(N1.n2)=+g niNy(n3+n3)

(82

Including these surface contributions to the density of
states, the total zero-point energy for a dielectric body em- Note that this vanishes asi{—n,)?, with one factor of
bedded in a background dielectric is easily seen to be (n;—n,) coming from the fact that thé; individually tend
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to zero asn;—n, and the second coming from the partial The volume term here is the dilute medium limit of
cancellation discussed above. What does this do to the C&chwinger’s resul{1], while the surface area term repro-

simir energy:

No—ny
ninN;

d3k 1
Ecasimi= ZVJ' (271_)3 EﬁCk
d*k 1 7 (n;—ny)%(ny+ny)
—_— — C_
(222778  niny(n?+nj)

+oee (83

+2S

duces the Miltonet al. result[12—14. There is an overall
normalization difference between this surface term and the
special case calculated by Miltost al., this normalization
difference being attributable to a different choice of regula-
tor. The critical physics lies in the volume versus surface
area dependence, the power of the cutoff dependence, and
the behavior as a function of refractive index.

Note that the bulk term is dominant if

VK>S, (90

This is our general result for the Casimir energy. We now
insert a momentum dependent refractive index into the abovghat is, for dielectrics with linear dimensions satisfying

to explictly evaluate the coefficients. The physical cutoff is
provided by the fact that both refractive indices are known to

tend to 1 at large momenta.

L~(VIS)>1K=N\o/(27). (92)

A naive hard cutoff, following the ideas of Schwinger, For a typical dielectric we estimate,~1000 A, so for di-
simplifies these expressions considerably. Naive hard cutoffslectrics of this size or greater the Casimir energy will be
are of course an idealization that suppresses much of thgominated by bulk effectThis is certainly the case for
physical detail, and are justified only for order of magnitudesonoluminescence where typical bubble radii are of order
estimates and for comparison with the previous literaturel00 000A.

where naive hard cutoffs are often the only extant results.

Suppose we take
ny(k)=n;0(K—-k)+ 0 (k—K) (84)
and

Ny(K)=n,0(K—K)+ 0 (k—K). (85)

For small enough dielectric particles the surface term will
not be negligible in comparison to the volume term—this is
no great surprise to people studying mesoscopic systems for
which the existence of finite volume effects is well known.

Finally, we mention that fornondispersive Neumann-
Dirichlet-Robin boundary conditions the existence of a sur-
face term contributing to the total Casimir energy has been
known for some time—see, for instan¢@p].

(It is an additional gross oversimplification to set the cutoffs

for the two media equal to one another, but it is standard and

V. DISCUSSION

is the only way to make connection with previous calcula-

tions. Keeping separate cutoffs for the two media is straight-

forward but algebraically somewhat megsy.
The Casimir energy is then given by

ng nz}

§_in(n1 ,N3) +§_0ut(nlan2)
ny Ny

1 4
Ecasimi—g 2 VhcK

1
672

+.. (86)

+

SﬁcKs{

while the Casimir surface tension is

1 Ein(N1,nz)  EoudN1,ny)
_ 3| Sin ou
Inserting the specific formulae f@r then yields
1 (ng—ny)2(ni+ny) o
=+ — K*.
T=T 287 C NiNy(ni+n3) (88

Now particularize to dilute media, by taking~1~n,.
1 4
ECasimirngVﬁCK [n2—n4]

+ iSchK3[(n —ny)?]+- - (89)
48 Tz '

The main results of this paper are the following.

(1) The Casimir energy in a dielectric medium is domi-
nated by a volume term. Indeed, for a finite volume of di-
electric 1, embedded in an infinite volume of different di-
electric 2,

~ d*k 1
Ecasimi™= ZVJ Wiﬁ[wl(k)_wz(k)]

dk
+28j W EﬁC:(Gl,Ml;EZ'MZ)
o 2

where the dots represent terms arising from higher-order dis-
tortions of the density of states due to finite-volume effects.

(2) If we adopt a simple cutoff model for the dispersion
relation, the volume term is

1 1
n——n—2 . (93

This result is completely in agreement with Schwinger’s cal-
culation in[1], and in disagreement witt3,14].

(3) In addition, there will be a subdominant contribution
to the Casimir energy that is proportional to the surface area
of the dielectric. This surface contribution takes the generic
form
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1 (n;—Nny)2(n;+ny) interest but will require a careful reassessment of the entire
Edaam * @SﬁCKs mn(nZrnd) |’ (94)  formalism.
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