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O(N) quantum fields in curved spacetime
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For the OQ) field theory withx®* self-coupling, we construct the two-particle-irreducib®Pl) closed-
time-path(CTP) effective action in a general curved spacetime. From this we derive a set of coupled equations
for the mean field and its variance. They are useful for studying the nonperturbative, nonequilibrium dynamics
of a quantum field when full back reactions of the quantum field on the curved spacetime, as well as the
fluctuations on the mean field, are required. Applications to phase transitions in the early Universe such as at
the Planck scale or in the reheating phase of chaotic inflation are wunder investigation.
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[. INTRODUCTION tions[35]. In recent years these todISTP, 2P) have indeed
been applied to the problems of heavy-ion collisions, pair
One major direction of research on quantum field theoryproduction in strong electric fieldg36], disoriented chiral
in curved spacetimfl—3] since the 1980s has been the ap-condensatel37,38, and reheating in inflationary cosmology
plication of interacting quantum fields to the consideration off 39]. However, none of these recent works has included
symmetry breaking and phase transitions in the early unicurved spacetime effects in a self-consistent manner, where
verse, from the Planck to the grand unified energy scalethe spacetime governs the evolution of a quantum field and
[4-12]. In a series of work, Hu, O’Connor, Shen, Sinha, andiS; in turn, governed by the quantum field dynamics. This is
Stylianopoulog13—21] systematically investigated the effect €Specially important for Planck scale processes involving
of spacetime curvature, dynamics, and finite temperature jfuantum fluctuations with back reaction, such as particle cre-

causing a symmetry restoration of interacting quantum field&tion [40], galaxy formation41], preheating, and thermali-

in curved spacetime. In general one wants to see how quat?rf"tio.n in c_haotic inflation42,43.
With this paper we return to the problems begun by

tum fluctuationsy around a mean fiel change as a func-  c4\zetta, Hu, and O'Connor a decade ago. We wish to derive
tion of these parameters. For this purpose, the two-particlepe coupled equations for the evolution of the mean field and
irreducible (2PI) effective action was constructed for an jis variance for the a{) model in curved spacetime, which
N-component scalar ®() model with quartic interaction should provide a solid and versatile platform for studies of
[14,10,19. Hu and O’Connoi19] found that the spectrum phase transitions in the early universe. The first order of
of the small-fluctuation operator contains interesting infor-pysiness is to construct the CTP-2PI effective action in a
mation concerning how infrared behavior of the system degeneral curved spacetime. The evolution equations are de-
pends on the geometry and topology. The equationdfor rived from it. We must also deal with the divergences arising
containing contributions from the variance of the fluctuationin it. From the vantage point of the correlation hierar¢agd
field (@?) depicts how the mean field evolves in time. This the associated master effective aclias applied to a non-
program explored two of the three essential elements of aaquilibrium quantum field44], there isa priori no reason
investigation of a phase transitidi6], the geometry and why one should stop at the 2P| effective action. Indeed, the
topology and the field theory and infrared behavior aspects2PI effective action corresponds to a further approximation
but not the nonequilibrium statistical-mechanical aspect. from the two-loop truncation of the master effective action
For this and other reasons, Calzetta and[R2] started constructed from the full Schwinger-Dyson hierarchy
exploring the closed-time-pallCTP) or Schwinger-Keldysh [45,44). For problems where the mean field and the two-
formalism [23—26], which is formulated with an “in-in”  point function give an adequate descriptigvhich is not the
boundary condition. Because the CTP effective action procase near the critical point, where one has to be carehé
duces a real and causal equation of mofi@n,28,, it is well CTP-2PI effective action is sufficient. In particular, the 2PI
suited for particle production back-reaction problef@8—  effective action contains the commonly used lakgjetime-
31]. Use of the CTP formalism in conjunction with the 2PI dependent Hartree-Fock, and one-loop approximations.
effective action[32] and the Wigner functioi33] enabled The ON) model has been usefully applied to a great
Calzetta and Hu to construct a quantum kinetic field theoryariety of problems in field theory and statistical mechanics
(in flat spacetimg deriving the Boltzmann field equation [46]. The ON) field theory has the advantage that it affords
from first principles[34]. The necessary ingredients were use of the 1IN expansior{32,36], which yields nonperturba-
then in place for an analysis of nonequilibrium phase transitive evolution equations in the regime of strong mean figld
yields local, coupled dynamical equations for the mean field
and the mode functions of the fluctuation fiel®ecently it
*Electronic address: sramsey@physics.umd.edu has been applied to problems of nonequilibrium phase tran-
"Electronic address: hu@umdhep.umd.edu sitions [47—-49. In the preheating problem studied in the
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following paper[50], we shall see that this is particularly theory quantized on a dynamical background spacetime and
important for chaotic inflation scenari§1], in which the also in an interacting field theory with nonequilibrium initial
inflaton mean-field amplitude can be on the order of theconditions. The methods discussed here are well suited to
Planck mass at the end of the slow-roll peri{&2,53. The studying the dynamics of an open quantum system. Excellent
1/N expansion has many attractive features, as it is known toeviews of the Schwinger-Keldysh method are Zheiual.
preserve the Ward identities of the I model[54] and to  [26] as applied to nonequilibrium quantum field theory and
yield a covariantly conserved energy-momentum tefs6).  Calzetta and H{i22] as applied to back reaction in semiclas-
Furthermore, in the limit of largé, the quantum effective sical gravity. In this section we briefly review the
action for the matter fields can be interpreted as a leadingschwinger-Keldysh method in the context of an interacting
order term in the expansion of the fithatter plus gravity  scalar field theory in Minkowski space, with vacuum bound-
qguantum effective actiofb5]. ary conditions.

Mazzitelli and PaZ72] have studied tha®* and ON) Consider a scalar field in Minkowski space with a
field theories in a general curved spacetime in the Gaussian®* self-interaction. Studying the semiclassical properties
and largeN approximations, respectively. Their approachof the theory consists of taking the degrees of freedom to be

differs from ours in that it is based on a Gaussian factorizathe classical field$ and fluctuationsp about the classical
tion which does not permit systematic improvement either irfield configuration. The equation of motion for small oscil-

the loop expansion or in theN/approximation. In contrast,  |4tions of ¢ about the stable quantum-corrected equilibrium

our approach is based on a closed-time-path formulation ofyniqration is obtained via a variational principle from the
the correlation dynamics, and the evolution equation we ob-

tain for the two-point function contains a two-loop radiative efo%S'Fa/e actl‘c‘).nl“[ﬁ’]’ [58]. In thhe [clog%entmnal Schv;nnger-
damping contribution which is not present in the lafge- evvitt “or “in-out™ approac =/, one couples a

_ . . . ) 4 .
approximation. At leading order in the large-approxima- nun;ber sout[cel ,E\r’]Vh'Ch s a functpnt onil) to tlhte(j'elq h
tion, our results agree with theirs, so that their renormaliza-d’ and computes the vacuum persistence amplitude in the

tion counterterms can be directly applied to the mean fieldresence of the sourck This amplitude has a path integral

and gap equations derived here. representation

This paper is organized as follows. Sections Il and llI i i
present self—contained summarie; of the two essential theo- Z[J]:ex%_W[J]) :f D¢exp[—
retical methodologies employed in this study, the closed- h h
time-path formalism and the two-particle-irreducible effec-
tive action. The adaptation of these tools to the quantum +f d*xJ(x) p(x)
dynamics of and* field theory in curved spacetime is pre-

sented in Sec. IV. The @) scalar field theory is treated in . . . . C
Sec. V where the functional integral is a sum over classical histories

of the ¢ field which are pure negative frequenfiye., all
spatial Fourier modes o have a time dependence like
wEXplot),w>0] in the asymptotic past and pure positive fre-

ST¢]

» (2D

Throughout this paper we use units in whia+1.
Planck’s constant is shown explicitly(i.e., not set equal to
1) except in those sections where noted. In these units, Ne . . . 2
ton’s constant isG=%M;?, where Mp is the Planck mass. quencyl ~exp(-iot)] n Fhe_ asymptotic future. -

We work with a four-dimensional spacetime manifold, and In a_general no_nequmbrlurrj s.ettl-ng, such as in a curved or
follow the sign conventiortsof Birrell and Davieg2] for the ~ dynamical spacetime or whe# is time dependent, the no-
metric tensog,,, , the Riemann curvature tensRy, ., , and t|9n of positive freq_uency in the as_ymptot|c pastis in geﬂe’r,al
the Einstein tensof,,. We use Greek letters to denote different from tha't in the_asympto(t)|c future. Hence, the “in
spacetime indices. The beginning Latin letterd,c,d,e,f  vVacuum state]0, in) defined atx’=—c and the “out”

are used as time branch indiceee Sec. )i and the middle vacuum statg0, oub defined atx’=c are not necessarily
Latin lettersi,j,k,I,m,n are used as indices in the ) equn/_alent. The generating fL_JnctlonZ[J] c_jefmed in Eq.
space(see Sec. Y. The Einstein summation convention over (2.1) is then the vacuum persistence amplitude

repeated indices is employed. Covariant differentiation is de-

- . i
noted with a nabl&, or a semicolon. (0, ouf0, iny,=(0, outTex;{%f d4xJ(x)CI>H(x)) |0, in),

Il. SCHWINGER-KELDYSH FORMALISM 2.2
The Schwinger-Keldysh or “closed-time-path{CTP) where®(x) is the Heisenberg field operator for the theory
formalism is a powerful method for deriving real and causalWwithout the source. This amplitude is in general complex.
evolution equations for expectation values of quantum operal follows that the classical field obtained by functional dif-
tors for nonequilibrium fields, i.e., for quantum systemsferentiation of —i#InZ[J] is the matrix element
where the density matrip and the HamiltoniarH do not (0, out®4|0, in) which will in general be complex. In addi-
commute[H,p]#0. This can occur, for example, in a field tion, the dependence @b,=S5W/ 83 on J will not, in gen-

Un the classification scheme of Misner, Thorne, and Wheeler 2t is noted that these boundary conditions on the functional inte-
[56], the sign convention of Birrell and Davi¢g] is classified as gral are equivalenfup to an overall normalizationto adding a
(+,+,+). small imaginary term-ieg? to the classical action, wheke>0.
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eral, be causa[28,27. In curved spacetime, the energy- tive (positive) frequency modes at®= —. It is not neces-

momentum tensor(T,,) is obtained by functional sary for the normal derivatives @f, and¢_ to be equal at

differentiation of W with respect tog#”, which at one loop x°=x?. Because the theory is free in the asymptotic past, a

yields a complex matrix element af,,(®,) between the positive frequency modés a solution to the spatial-Fourier

“in” and “out” vacua, where ® is the Heisenberg field transformed Euler-Lagrange equation forp whose

operator andr ,,(¢) is the classical energy-momentum ten- asymptotic behavior at’= — = is exp(—iwx’), for ©>0.

sor for the field[1]. The generating functional for connected diagrams is then
In the closed-time-path formalism, real and causal dynamelefined by

ics for ¢ can be obtained, as well as the expectation value of )

the energy-momentum tensor. bét=x° be far to the future WL, J-]=—if InZ[J, ,J_]. (2.8

of any dynamics we wish to study. It is not necessary t

assume thak =0 or that the Hamiltonian is time indepen-

dent atx°=x°. As in the previous “in-out” approach, sup-

pose we wish to compute the quantum-corrected equa- ) SW[J, ,J_]

. . . A —cab LTt

tion governing the classical field ¢. Let M $a(X)y.=¢C 5Ig(x) (2.9

={(x%,x)| —0=<x°<x%} be the portion of Minkowski space

to the past of time . We start by defining a new manifold wherea,b are time branch indices with index sgt,—}.

0Classical fields on both- and — branches are then defined

as a quotient space, The matrix ¢® is defined byc*"=1,c"=-1, and
c*~=c~"=0. The functional differentiation in Eq2.9) is
M=(MX{+,-}/~, (2.3 carried out with variations i#J, and8J_ which satisfy the

constraint thatsJ, = 8J_ on thex=x° hypersurface. The
J. subscript in Eq.(2.9) indicates the functional depen-
dence onJ.. , which has been shown to be cau8,27. In
the limit J, =J_=J, the classical fields on the and —

where~ is an equivalence relation defined by the rules

(X, +)~(x",+) if x=x’,

(X, —)~(x",—) if x=x' (2.4 time branches become equal,
(X,+)~(X’,—) if x=x'" and XOZXS. ((’2)+(X)Ji)|J+=J_EJ:(‘%*(X)Ji)|\]+=J_EJ
The manifold M is orientable, provided we reverse the sign = $(x),= 50, in|®(x)|0, in);,
of the volume form between the- and — pieces of the (2.10

manifold. It is then straightforward to generalize the usual
effective action construction to the new manifold. With  where|0, in) is the state which has evolved from the vacuum
the volume form onM, we can generalize the classical ac- atty under the interactio®,J, and becomes the expectation
tion SF to M, value(d ) in the limit J=0. The effective action is defined
via the usual Legendre transform, with® now acting as a
ST, ¢-1=ST¢.1-ST¢-1, (2.9 “metric” on the internal 2<2 CTP field space,

where ST ¢] is the classical action oM, and ¢, and ¢ _ . o . .
denote thep field on the+ and — branches ofM, respec- Ly, - 1=W[I; I ]—c? fMd XJa(X) ¢p(X),
tively. The spacetime integrations in the right-hand side of

Eq. (2.5 are understood to be ovif. In order for¢ . to be (213
a function onM, we must have where theJ subscripts onp. are suppressed and the func-
b4 ()] 0= d_(X)|0. (2.6)  tional dependence of. on & via inversion of Eq.(2.9) is
* * understood. By direct computation, the inverse of @) is
The generating functional of vacuumpoint functions(i.e., found to be
expectation values in th, in) vacuum for this theory is A A
then defined by I = by, ] 21
a(X) b Cab ~ ’ ( . 2)
i B Spp(X)
— _| cF
A LtpD¢+D¢_ex;{h(S (b0 where we have indicated the explicit functional dependence

of J. on ¢. witha subscript, and,j, is the inverse of the

: (2.7

+f d4X(J+¢+_J—¢—)>
M

SHere, the choice of vacuum boundary conditions corresponds to
whereJ, and J_ are c-number sources on the¢ and — adding a small imaginary park(¢,2— ¢_?) to the classical ac-
branches ofM, respectively. The designation “ctp” indi- tion S". Alternatively, the boundary conditions correspond to the
cates that the functional integrals in EQ.7) are over all  usual prescriptiorm?—m?—ie in ST ¢], but with Se, now rede-
field configurations ¢, ,¢_) such that(i) ¢, =¢_ at the fined asST ¢, ¢_1=ST¢.1-ST$_1*, wherex denotes com-
x%=x? hypersurface ani) ¢. (¢_) consists of pure nega- plex conjugatior{22].
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VEGE
0b+ 144 = 0b- 144 =
(2.13
Using Egs(2.12 and(2.11), an integro-differential equation m o >

for I' can be derived28], in which the functional differen-
tiations of I' with respect to ¢.. are carried out with the ~ FIG. 1. Diagrammatic expansion fdr,. Lines represent the
constraint that the variations 0f¢>+ satisfy 5¢+ 5¢7 propagatord,, (x,x"), and vertices terminating three lines are pro-

ortional to ¢. Each vertex carries spacetime)(and CTP
whenx®=x°. The differencep,— ¢, is naturally interpreted E)+ '_) Iabels¢ vertex ! pacetime)(
as the fluctuations of a particular histogy about the “clas- ’

sical” field configuration¢,. Let us therefore define the to-vacuum graphs with propagator given Hyl(x, x') and

fluctuation fielde,= ¢4~ ¢, or, in terms of Heisenberg field vertices given by a “shifted action'S’,, defined by
operators,

matrix c2® defined above. In the I|m|t¢Jr ¢ d) this T
yields the evolution equation for the expectation value -

@)=, in the state which has evolved frof@, in) un-
der the source interactioh® . The evolution equation for

&, the vacuum expectation valy@, in|®|0, in), is there-
fore

ST, d_] ST, &1

SASA0

Si';t[ P+, ‘Pf]ZSF[<P++a’+ y -t &7]_SF[(2’+ ,(}L]

=Py~ (D) =Dy~ ¢, (2.14 s
1
where angular brackets around the Heisenberg field operator —f (5¢ [¢- ]) Pa— —f d*x
®,, denote an expectation value @by in the (time-
independent quantum state of the system. Performing the . 52SF R
change of variable&,— ¢, in the functional integral, where f d*x (W[¢t])
Pa=a— <Ai>a, (2.19 X @a(X)@p( X"). (2.19
we obtain For simplicity, we do not explicitly indicate the functional
dependence o:fsﬁt on ¢.. . Figure 1 shows the diagrammatic
I[ &,, d_1=—i% In J De.De_ expansion forl’;. Each vertex carries a spacetime label in
ctp M and a time branch label i+, —}. The lowest-order con-

tribution is order#?, i.e., at two loops. The propagator
| ; 5 A~ ! does not depend di. The Inde# term in Eq.(2.17) is
_ F
Xex[{h( Slost ors bt o] the one-looporder#) term in the CTP effective action. The

. . CTP effective action, as a functional éfi, can be com-
o[, o] puted to any desired order in the loop expansion using Eq.
B 5 Pall(- 218 (217, | l, this acti tains di t each
50 (2. 7)._ n general, this action contains divergences at eac
order in the loop expansion, which need to be renormalized.

This functional integro-differential equation has a formal so- Functlonally d|1°ferent|at|ngr[d>+ ,&_] with respect to

lution [58] either ¢+ or ¢_ and making the identificationg,
o o i% =¢_= ¢ [as shown in Eq(2.13] yields a dynamical, real,
Mo, p_1=STd., d_1— > In de(A;bl) and causal evolution equation for the mean figldThus the
1PI effective actionl'[ ¢-.] yields mean-fielddynamics for
+T4(d., ], (2.17)  the theory, which is a lowest-order truncation of the correla-

tion hierarchy[{45,44). However, for a detailed study of non-
where A2°(x, x), the second functional derivative of the perturbative growth of quantum fluctuations relevant to non-

classical action with respect to the fied. , is equilibrium mean-field dynamicéor a symmetry-breaking
phase transition it is also necessary to obtain dynamical
b 5%SF A A equations for thevarianceof @,
iA%°(x, x")=

5¢a(x)¢b( X/) [¢+ ’ ¢—] (218) , , . ,

(PR — (D) =(DF) — d*=(ef) =1 G L (X,X), (2.20
The inverse of42® is the one-loop propagator for the fluc-
tuation field¢. The functionall’; in Eq. (2.16) is defined as where2 G, . (x,X") is the time-ordered Green function for
—i# times the sum of all one-particle-irreducible vacuum-the fluctuation fieldey, (T(@(X)ye(X')H)). A higher-order
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truncation of the correlation hierarchy is needed in order tHere, S is as defined in Eq(2.5, and we are using

explicitly follow the growth of quantum fluctuations; the 2Pl Z[J,K] as a shorthand for Z[J . ,J_;K, . ,K__,

effective action, to which we now turn, serves this purposeK, _,K_,]. The generating functional for normalized
n-point functions(connected diagramss defined by

Ill. TWO-PARTICLE-IRREDUCIBLE FORMALISM W[J,K]=—i# InZ[J,K]. (3.2

In a nonperturbative study of nonequilibrium field dynam- B o - _ .
ics in the regime where quantum fluctuations are significant] N€ cI,asswaI field #4(x);x and two-point function
the 1P| effective action is inadequate because it does ndpan(X.x") sk are then given by
permit a derivation of the evolution equations for the mean

field (®y) and variance(¢?), at a consistentorder in a [ba(x)mzcabM' (3.39
nonperturbative expansion scheme. In addition, the initial 0Jp(Xx)
data for the mean fieldb do not contain any information SW[I.K]

about the quantum state for fluctuatiopsaround the mean 4G (x x’).w=2c..c — X)X
field. The two-particle-irreducible(2P]) effective action ab(X:X" )3k = 2CacCg OKeg(X,X") $a(X)akbu(X )k
method can be used to obtain nonperturbative dynamical (3.3b

equations for both the mean fielf(x) and two-point func- . - -
tion G(x,y), which contains the variance, as shown in Eq.Where we use the subscripK to indicate thatp, and Gap

(2.20. The 2PI method generalizes the 1P effective actiorf'€ functionals of the sourcdsandk.
to an actiorl'[ $,G] which is a functional of possible histo- " the limit K=J=0, the classical field, satisfies

ries for both¢ andG. Alternatively, the 2P| effective action
can be viewed as a truncation of the master effective action
to second order in the correlation hierarddy]. In this sec-

tion we briefly review how the 2Pl method works; more operatord,, in the quantum statkp) (the mean fieldl In the

thorough presentations can be found 32,34]. o . . .
. S same limit, the two-point functio ,, is the CTP propagator
Unlike the 1PI method where the mean field is fixed to befor the fluctuation field defined by E6.14). The four com-

&, the 2P1 method fixes the mean field to $eand the sum ponents of the CTP propagator are, for K=0,
of all self-energy diagrams to b@. This drastically reduces

(¢+)1=k=0=(¢_)s—k=0=(B|Ppld)=0, (3.9

i.e., it becomes the expectation value of the Heisenberg field

the number of independerjt diagrams which must be Coth++(X1X/)\J:K:OZ<¢|T((PH(X)(PH(X,))|¢>a (3.53

puted in order to obtaid’[ ¢,G] [45]. Coupled dynamical

equations for theAevqution ab andG are obtajned by sepa- ﬁG,,(X,X')‘J=K=O=<¢|T(¢H(X)@H(X'))|(f)), (3.5b

rately varyingl'[ ¢,G] with respect toG and ¢. Imposing

oT'/5¢=0 vyields an evolution equation for the mean field ARG (XX )j3=k=0=(len(X")en(x)[¢), (350
, and settingsI'/ §G=0 yields an evolution equation for

g, the “gap”gequation. '?lhe variancée?) is thqe coinci- G-+ (%X a-k-0=(¢len(X) en(x)¢), (3.50

dence limit of the two-point functio G, as seen from Eq. in the Heisenberg picture. In the coincidence lixlit=x, all

(2.20. In a nonequilibrium setting, the closed-time-path four components above are equivalent to the varideds
method should be used in conjunction with the 2PI formal'defined in Eq(2.20. Provided we can invert Eq3.39 and

ism in order to obtain real and causal dynamics doand (3.3 to obtaind andK in terms ofé andG, the 2P! effec-

G [34,35,45. : X .
Let us apply the 2Pl method to a scabap” theory in ?i\éeb?)‘iﬁ?]na%?jnKt))eogsg[nJEdK?S the double Legendre transform

Minkowski space, with vacuum initial conditions. In a direct
generalization of Sec. Il, both a local sourtgx) and non-
local sourceK,,(X,x") (which arec-number functions on r[gb,e]z\/\/[J,K]_J d“xcabJa(x)fz)b(x)

M) are coupled to the field viazc®J,¢, and M

7.c3PcCIK (X, X") p(X) py(X') interactions. Following Eq. 1

(2.7), the CTP generating functional is defined as a vacuum - _f d4xf d*x’ c@PcCUK (X, X" ) A Gpg(X,X")
persistence amplitude in the presence of the souicasd 2)m M

K, which has the path integral representation

+ dp(X) pa(x')]. (3.6

As with W[J,K], we are usind’[¢,G] as a shorthand for
I[és,¢_:G.,,G__,G,._,G_,]. The JK subscripting
of ¢ andG is suppressed, but the functional dependence of

1
+f d*xc, ¢y + Ef d4Xf d*x’ c@bccd ¢ andG on J andK through inversion of Eqs(3.3a and
M M M (3.3b is understood. By direct functional differentiation of
Eq. (3.6), the inverses of Eq$3.39 and(3.3b) are found to
. (3.1 be

2[3.K]= fctpoDd)-eXﬁ{;i—( STbs ]

X Kac(X,X’)¢b(X)¢d(X')>
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6] 1 e RIS -
m— —C be(X)qSG_ =c?% df d*x’ (Kbd(x X )¢G 5¢a(X) ¢ s 0, (3.89
+Kap(X',X) 3) be(X'), (3.7a
— =0. (3.8b
8Gap(X.Y)| 5 o _;
ST, T eememe

f
o trmrm.  _ _ _ A~ackhbd " ~
6Gap(X,X") 2C ¢ Kea(X.X") g6 » (3.7 Of course, the two equations contained in E289 are not
independent, just as in EqR.13. In addition, only two of
equations(3.8b are independent, one on the diagonal and

where the subscript $G" indicates thatk andJ are func-  one off diagonal in the “internal” CTP space. Using both

tionals of ¢ andG. OnE:eF[gAb,G] has been calculated, the Egs.(3.6) and(3.1), an equation fof [ ¢,G] in terms of the
evolution equations fotp andG are given by sourceK andJ can be derived,

[Gl=ih In{ fctpD¢+D¢exr{f';( ST+ 6 1+6™ | dWLI D400~ )]

1 - -
+goree | anx d“x'Kab<x,x'>[¢c<x)¢d<x')—¢c<x>¢d<x'>—hecd(x,x'>])H. 39
M M

The sourceK andJ in the right-hand side of Eq3.9) are functionals ofp, through Eqgs(3.7a and(3.7h. Expressing this
functional dependence, we obtain a functional integrodifferential equatioh,for

. . o[ ¢,G] o ST[¢,G] .
F[¢,G]=fMd“XJMd4x mGab(x,x)—lﬁlnH D¢.D¢- exn[ (SF[¢+,¢ 1- f d*x 5% ———(¢a— )

a

——f d*x f d*x’ TS, ])[¢a(x) $a() ][ bo(X") = (X’ )]) ] (3.10

OGpa(x',x

We have dropped th&K subscripting because the functional derivatives in the equation are only with resgeenthG. As
in Sec. Il, a change of variablés¢..—D ¢ is carried out in the functional integral. The resulting equation

. o[ ¢,G i . .
I'N¢,G]= fMd4XfMd4X,—5GbEI?X',i) Gap(X,X')—if In| LtpDQDJFD(p_eX[{%( SToi+ds ,o_+d_]
B 5F[d> G] o [ gy 5F[¢ G]
|
has the formal solutioh32] - , 52SF ~
iA (X,X )—W[(b] (313)
- ~_ if i%
M[5,61=8T41- 5 ndetGay)+ 5 | and, forsh,
~ = _ 71 e
x fMd‘*x'Aab(x',x>Gab<x,x')+r2[¢,e], Sl e]1=5Te+$1-5T] fM ( 5o [¢])
(3.12

i
_ 1 qab ’ 4
2fMd“xJMd“x AT(XX") @a(X) @p(X").

where 42 is the second functional derivative of the classical (3.149
actionS*, evaluated ath,. The functionall', is —i% times .

the sum of all two-particle-irreducible vacuum-to-vacuum The shifted action for tha ¢ scalar field theory is
diagrams with lines given b¥s,, and vertices given by a

shifted actionS,,. We have, forA?", Srlel=Snle+]1-Shle-1. (3.19
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et (SO0 - mfionl,
ab
' @ N @ ; > ST\ $.G.Csl

FIG. 2. Diagrammatic expansion fdf,. Lines represent the s time-reversal invariant. However, the 2P effective action
pI’OpagatOIG, and vertices are g|Yen hS}ii]t' The vertices terminat- |s Obtalned by So|V|ng Eq(317o Wlth a glven Ch0|Ce of
ing three lines are proportional . causal boundary conditionand substituting the resulting
Cs into I',_,, to obtainI" ;[ ¢,G]. This “slaving” of Cs to
¢ and G with a particular choice of boundary conditions is
N 1 what breaks the time-reversal invariance of the thdd#.
SiFnt[QD]: _ _f d4x(_cp4Jr &5903), (3.16 In the paper foIIowmg{SO] where we dlsquss'the preheatlrjg
6Jm 4 dynamics, we work with further approximations which dis-
card the setting sun diagram, and thus regain time-reversal-
invariant equations.

in terms of

where the functional dependence&y, on ¢-. is not shown
explicitly. Two types of vertices appear in E®.16): a ver- .
tex which terminates four lines and a vertex terminating V- A®" FIELD THEORY IN CURVED SPACETIME

three lines which is proportional to the mean fiehd The In this section the quantum dynamics of a scalah*
expansion fol', in terms ofG and ¢ is depicted graphically ~field theory is formulated in semiclassical gravity, where the
up to three-loop order in Fig. 2. Each vertex carries a spacenatter fields are quantized on a curved classical background
time label inM and time branch label if+,—}. In general, spacetime. The two-particle-irreducible effective action is
the 2PI effective action contains divergences at each order iused in conjunction with the CTP formalism to obtain
the loop expansion. It has been shown formally that if thecoupled evolution equations for the mean figi#,) and
field theory is renormalizable in the “in-out” formulation, variance(®?2)—(®)? in the A\®* model which are mani-
then the “in-in” equations of motion are renormalizable festly covariant.
[34]. In the closed-time-path formalism it is easier to carry Let us consider a quartically self-interacting scalar field
out explicit renormalization in the equations of motion, i.e., ¢ in a globally hyperbolic, curved background spacetime
the mean-field and gap equations, which we will do in Secwith metric tensomg,,,. The diffeomorphism-invariant clas-
VD. sical action for this system is

Various approximations to the full quantum dynamics can
be obtained by truncating the diagrammatic expansion for S ¢,9*1=Sg*"1+ ST 6,9*"], (4.1
I',. Throwing awayl', in its entirety would yield the one-
loop approximation. In Fig. 2, there are two two-loop dia-
grams, the “double bubble” and the “setting sun.” Retain-
ing just the double-bubble diagram yields the time-depende
Hartree-Fock approximatiof32]. Retaining both diagrams
gives a two-loop approximation to the thedr¥his approxi- 1 A
mation will yield a non-time-reversal-invariant mean-field SF[qﬁ,gl“’]:—Ef d4x\/—_g{ H(O+m?+¢R) p+ 1—2¢4 ,
equation above threshold, due to the setting sun diagram
[44]. The time-reversal noninvariance of the mean-field (4.2)

equation generated by the 2P| effective action is a consgyhere ¢ is the (dimensionlesscoupling constant to gravity
quence of the fact that the 2P| effective action really correpecessary in order for the field theory to be renormalizable
s_ponqls to a further approximation from the two-loop trunca-[59]), O is the Laplace-Beltrami operator in terms of the
tion (in the sense of topology of vacuum graptef the  qyariant derivativeV ,, andR is the scalar curvature. The
mastereffective action44]. The two-loop truncation of the .,nstantm has unitg of inverse length, and the self-
master effective action is a functionll - [ ¢,G,C3] which  coupling\ has units of %. Following standard procedure in
depends on the mean fielt] the two-point functionG, and  semiclassical gravity2], we define the semiclassical action
the three-point functiol©;. The four-point functiorC, also  for gravity to be

appears, but is not dynamical due to a constraint. The full set

where g#¥ is the contravariant metric tensor, as¥ and

S" are the classical actions of the gravity and scalar field
mectors of the theory, respectively. For the scalar field action,
we have

of equations, wv— 1 f 4, [— _ ap
S g#"] o d XV—g[R—2A+CRE+bR*R 4
6T —,[$,G,C
M-29.8.Cal_, (3173
Oa SThe semiclassical approximation is consistent with a truncation

of the quantum effective action for matter fields and gravity pertur-
bations at one loopi.e., at orderO(#)] [29] or [in the case of the
A different approximation, the IV expansion, is used in Sec. V. O(N) field theory studied heleat leading order in the W expan-
to study the nonequilibrium dynamics of the N)( field theory. sion[55,19.
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+aR“B75Ra5ya], 4.3 The CTP manifoldM is defined following Eq.(2.3) as a
quotient space constructed by identification on the hypersur-
wherea, b, andc are constants with dimensions of length face>,CdM as in Eq.(2.3) where the equivalence relation
squaredR,z,s is the Riemann tensoR,; is the Ricci ten- s the same as Eq2.4) except that the matching of and
sor, A is the “cosmological constant{with units of inverse  — time branches is now done &,. We construct an orien-
length-squarexl V—g is the square root of the determinant tation on.M using the canonical volume form froM, ey ,
of g,,, and G (with units of length divided by magds  and define the volume form aM to be
Newton’s constant. As a result of the generalized Gauss-
Bonnet theorenj60], the constants, b, andc are not all | ew onMX{+},
independent in four spacetime dimensions; let us, therefore, Em= —€&; onM x{—}.
seta=0. Classical Einstein gravity is obtained by setting
b=0 andc=0. Minimal and conformal couplingfor the  Finally, we let¢ andg*” be independent on theé and —
¢ field to gravity correspond to setting=0 and {=1/6, branches ofM, provided thatg4”=g*” and ¢, =¢_ on
respectively. 2... In other words¢ andg”” must be a scalar and a tensor,
The motivation for including the arbitrary couplifgand  respectively, onM. In terms of the volume forng,, , we can
the higher-order curvature terr® andR*#R,; in the clas-  write a scalar field action o,
sical actionS is that we wish to study the semiclassical dy-
namics of the theory. In the semiclassical gravity field equa- ST .94"1=5T¢,.9¢"1-STeo- 0", (49
tion and matter field equations, divergences arise which . o - )
require a renormalization df, ¢, G, A, m, & and\ [2]. WhereSTg¢] is given by Eq.(4.2), andg%” is the metric
These quantities are understood to be bare; their observapgnsor on thet and — branches of\M. Using Eq.(4.3) we
counterparts are renormalized. can similarly define the gravity actiof® on M,

The classical Euler-Lagrange equation #bris obtained R S
by functionally differentiatingST ¢,9*”] with respect to STg4".9""1=ST9%"1- S7Tg"], (4.10
¢, and settingsS/ 5¢=0,

4.8

where it is understood that only configurationsgdf’ satis-
A fying the constraing’”=g*" on X, are permitted.
O+ m?+ éR+ 5 $?| $=0. (4.4) In semiclassical gravity the scalar field thedwith action
S is quantized on a classical background spacetime, with
The Euler-Lagrange equation for the metgjg, is obtained ~Metricg,,, whose dynamics is determined self-consistently
by functional differentiation ofS with respect tog** (it is Py the semiclassical geometrodynamical field equation. Let
assumed that the variationp and g“* are restricted so US denote the Heisenberg-picture field operator for the ca-

that no boundary terms arjse nonically quantized field by ®,,. We wish to compute the
quantum effective actioh' for this scalar field theory, using

G,,+Ag,,+cPH,,+b @PH,,=-87GT,,, the two-particle-irreduciblé2Pl) method described in Sec.

(4.5 ll. In terms of " (now defined on the curved manifold

o @ _ M), we define the 2Pl, CTP generating functional
where the tensor§,,,'’H,,, and *’H ,, are defined by Z[J,K,g*"] as follows:

[61,62 andT,, is the classical energy-momentum tensor,

Z[‘J1 K,g,uv] = Jctde)Jde)eX;{;i_( SF[d)i ,g/;l/]

1
T/,L]/: (1_ 2§)¢;,u¢;v+ ( 25_ E g,u,vgpa(ﬁ;pd);(r_ 2§¢,,u,v¢

1
+j d*x\/—g.c3"%, b, + EJ d*x\—ga
M M

A
m2+1—2¢2) P2,

(4.6 Xf d4xr\/?(;,caba’ccdcr
We are interested in the dynamics of expectation values in M
the semiclassical theory, which in nonequilibrium field
theory doesnot follow directly from functional differentia- X Kac(X,X')¢b(X)¢d(X')>
tion of the usual Schwinger-DeWitt or “in-out” effective
action. Instead, the Schwinger-Keldysh formaligeviewed \yhere we have writterZ[J,K,g*"] as a shorthand for
in Sec. I) should be used. Here we discuss the implementaz[\]+ K. .,g""]. The three-index symbaf*® is defined by
tion of the Schwinger-Keldysh method in curved spacetime. -~ = ~~ 7~

The first step is to generalize the closed-time-g&mnP) 1 ifa=b=c=+,

manifold M, defined in Eq(2.3), to curved spacetime. Let

1
+2£9,,90 ¢—§GW¢2+§QW

, (4.11

be_ ] — ifa=b=c=—
3, be a Cauchy hypersurface chosen so that its past domain cPe= 1 ifa=b=c ' (4.12

of dependenc¢63], D_(Z,), contains all of the dynamics 0 otherwise.

we wish to study. Let us then define the manifdlgith - ] ) ]
boundary The boundary conditions on the functional integral define the

initial quantum statéassumed here to be plrén this and a
M=D_(%,). 4.7 subsequent papén which preheating dynamics of inflation-
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ary cosmology is studiefb0Q]), we are interested in the case (4.13h and(4.139. In Eq. (4.15), the angle brackets denote
of a quantum state corresponding to a nonzero mean fieldn expectation value of the energy-momentum teitsith

&, with vacuum fluctuations around the mean field. This enthe Heisenberg field operatdp, substituted for¢ in the
tails a definition of the vacuum state for thectuation fielg ~ classical theorywith respect to a quantum stdig) defined
defined in Eq.(2.14. In curved spacetime in general, there by the boundary conditions on the functional integral in Eq.
does not exist a unique Poincadrwariant vacuum state fora (4.11. In four spacetime dimensiongunrenormalizey
quantum field 1,3]. For an asymptotically free field theory, a (T,,) has divergences which can be absorbed by the renor-
choice of “in” vacuum state corresponds to a choice of amalization of G, A, b, and ¢ [2]. This renormalization
particular orthonormal basis of solutions of the covariantshould be carried out in the field equations rather than in the

Klein-Gordon equation with which to canonically quantize CTP effective actiorj28].
the field. The energy-momentum tensor as defined in @dqlH is

From Eq. (4.11), we can derive the two-particle- obtained by variation of the 2PI effective actibn which is

ireducible(2P)) effective actionl[ ¢,G,g*"] following the @ functional of the metrig”" on both the+ and — time
method of Sec. Ill, with the understanding tHatnow de-  branches. From Eq.(4.11, it is possible to derive
pends functionally on the metrig4” on the+ and— time  I'[#,G,g*”] as an arbitrary functional of%” and g“”.
branches. The functional differentiations should be carrieddowever, in practice it is often easier to work in the simpli-
out using a covariant generalization of the Dirddunction  fied case where the metric is fixed to be the same on both the
to the manifoldM [2]. The functional integrodifferential + and — time branches, i.e.,

equation(3.11) for the CTP-2PI effective action can then be P

generalized to the curved spacetifdein a straightforward 9% =9- =97, (4.16

fashion, modulo the curved-spacetime ambiguities in the ) - v - v
boundary conditions of the functional integ@l.11). in the computation of’[ $,G,g*"]. Oncel'[¢,G,g""] (or

The (bare semiclassical field equations for the variance,SOMe consistent truncation of the full quantum effective ac-
mean field, and metric can then be expressed in terms dfon for S has been computed, it is then straightforward to
variations of S9[g“*]+T[$,G,g*"] with respect to determine hovyl“[¢,G,g’f"] should bg generalized to the
G.., ¢, andg”’, respectively, followed by metric and €aS€ of an arbitrary metric o, for whichg/” andg”” are

mean-field identifications between the and — time independent. The bare energy-momentum teK3or,) can
then be computed using EG.15. Accordingly, in Sec. V,

branches, )
we fix g4”"=g*"=g*” in the calculation of [ ¢,G,g*"].
5(SG[g“”]+F[g%,G,g”V]) The semiclassical Einstein equation is a subcase of the
597 o =0, general geometrodynamical field equati@hl4), obtained
b= =i g{"=gl"=gn” (after renormalization by setting the renormalized
(4133 p=c=A=0 (assuming no cosmological constaf2]:
wy G, =—87G(T,,). 4.1
oT$.G.g""] o (@13 o (Tun) (4.1
Oa b.=d =i ghir=ghr=guv Having shown how to derive coupled evolution equations for
T the mean field, variance, and metric tensor in semiclassical
oT[$,G,g*"] gravity, we now turn our attention to the scalarN)(model
5G =0. (4.1309 in curved spacetime.
a

b= _=¢ gi'=ghr=grr

V. O(N) FIELD THEORY IN CURVED SPACETIME
As above, CTP indices are suppressed inside functional ar-
guments. Equation$4.13 constitute the semiclassical ap-  In this section we derive coupled nonperturbative dynami-
proximation to the full quantum dynamics for the systemcal equations for the mean fieltl and variance ¢?) for the
described by the classical acti®f[g**]+ST#,9*"]. The  minimally coupled ON) scalar field theory with quartic self-
semiclassical field equatidwith bare parameteygor g“”is interaction and unbroken symmetry. The background space-

obtained directly from Eq(4.133, time dynamics is given by the semiclassical Einstein equa-
W @ . tion. .These equations t.ake into cpnsideration the pack
GuytAgu,teWH,,+b PH,, = —87G(T,,), reaction of quantum particle production on the mean field,
(4.14 and quantum fields on the dynamical spacetime, self-

consistently. In our model the Heisenberg-picture quantum
state| ¢) is a coherent state for the fiedel, at the initial time
770, in which the expectation valugb,,) is spatially homo-
geneous. The coherent state is defined with respect to the
. adiabatic vacuum constructed via matching of WKB and ex-
bo=d_=d; gh=ghr=gmv act mode functions for the fluctuation field in some
(4.15 asymptotic region of spacetime.

The OWN) field theory has the property that a systematic
Equation(4.14) gives the spacetime dynamics; the dynamicsexpansion in powers of i yields a nonperturbative reorga-
of ¢ andG are given by the mean-field and gap equationsnization of the diagrammatic hierarchy which preserves the

where(T,,) is the (unrenormalizeglenergy-momentum ten-
sor defined by

2 (5r[$b,e,gW])

;w)z \/_—g\ 5gliy

(T
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Ward identities order by ordef54]. Unlike perturbation b-d=d s . (5.3
theory in the coupling constant, which is an expansion of the .
theory around the vacuum configuration, th&l Bxpansion

entails an enhancement of the mean field\y; this corre- |- Eq. (5.2, \ is a(barg coupling constant with dimensions

sponds to the opposite limit of strong mean fiefdihis is of 1/4, and¢ is the(bare dimensionless coupling to gravity.

precisely the situation which can arise in chaotic inflation atThe classical Euler-Laarance equations are obtained b
the end of the slow-roll period, where the inflaton mean field grange €q y

. : .~ “variation of the actiors separately with respect to the metric
amplitude can be as Iarge_ MP/S [5(?]-') As dlz_;pussed " tensor and the matterr) fieldsszi In the IOclassic:al action
Secs. Il and Ill, the nonequilibrium initial conditions for the Yuu _ '
mean field as well as the nonperturbative aspect of the dy>-2» the ON) symmetry is unbroken. However, the KX
namics requires use of both closed-time-path and twoSYMmMmetry can be ZspontFaneously broken, for example, by
particle-irreducible methods. The NL/expansion can be changingm®to —m®in S". In the symmetry-breaking case

achieved as a further approximation from the two-loop, two With tachyonic mass, the stable equilibrium configuration is

particle-irreducible truncation of the Schwinger-Dyson equafound to be

tions.
Although in this study we assume a pure state, the 2PI )
formalism is also useful for an open system calculation, in b d= 2Nm =2 (5.4)

which the mean field is defined as the trace of the product of
the reduced density matrixand the Heisenberg field opera-
tor &, Tr(pd,). When the position-basis matrix element
(#1p(7m0)| P2) can be expressed as a Gaussian functional ofvhich is a constant. If we wish to study the action for oscil-
¢, and ¢,, the nonlocal sourc& can encompass the initial lations about the symmetry-broken equilibrium configura-
conditions coming fronp(ty) in a natural way34]. In order  tion, the O(N) invariance of Eq.5.2) implies that we can

to incorporate a density matrix whose initial condition is choose the minimum to be in any direction; we choose it to
beyond Gaussian order in the position basis, one can worke in the first, i.e., $1)2=v?. In terms of the shifted field
with a higher-order truncation of the master effective actiono=¢*—v and the unshifted fields(the “pions”)
[44]. The leading-order N approximation is equivalent to #'=¢', i=1,... N—1, the action becomes

assuming a Gaussian initial density matrix; therefore, the 2PI

effective action is adequate for our purposes.

; ; 1
A. Classical action for the Q(N) theory F S v — _J 4, [ 2
_ _ _ _ STo,m,g*"] 5 Md XV—g|lo(d+m°+¢éR)o
The O(N) field theory consists ofN spinless fields
J)z{d)i}, i=1,... N, with an action which is invariant un- - 2 > 2 2
der theN-dimensional real orthogonal group. The generally t (LM Ry m+2(m™+ ER)o
covariant classical action for the 8] theory (with quartic N N
self-interaction plus gravity is given by +2 \[EM o3+2 \[EM T TO
S ¢',g""1=5%g"]1+ST ' ,9""], (5.1 B S Ly ] BT
4 2 4 ' '

where S¥[g*"] is defined in Eq.(4.3 for the spacetime
manifold M with metric g,,,,, and the matter field action
ST ¢',g*"] is given by One can show that the effective mass of each of the “pions”
7 (defined as the second derivative of the potehtkero,
due to Goldstone’s theorem. The theorem holds for the
. 1 . . quantum-corrected effective potential as wdH]. In this
SF[¢',9,W]=—§f d4x\/—_g[¢~(D+m2+ éER) ¢ paper we study the unbroken symmetry case, in order to
M focus on the parametric amplification of quantum fluctua-

N L tions; this avoids the additional complications which arise in
+—(-)?|. (5.2  spontaneous symmetry breaking, e.g., infrared divergences
4N [19,65,35.

The O(N) inner product is defined By B. Quantum generating functional

We aim at deriving the mean-field and gap equations at
®n our index notation, the Latin letteiisj,k,I,m,n are used to two-loop order. The 2Pl generating functional for theNJp(
designate Q) indices(with index se{1, . .. N}), while the Latin  theory in curved spacetime is defined using the closed-time-
lettersa,b,c,d,e,f are used below to designate CTP indi¢eith ~ path method in terms af-number sourced, and nonlocal
index set{+,—1}). c-number sourceK}, on the CTP manifold\,
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- . i - 5.1
203, Ky.0,1=11 | Dd%?—‘”{% STb9"" ¢ 61D
i,a Jctp -
In the same limitJ=K =0, the two-point functiorG}, be-
+J d4x~/—gcab5a-<f>b comes the CTP propagator for the fluctuation field. The four
M

components of the CTP propagator &ier Jia= K p=0)

1 ) .
+EJMd“XJ—_ngd“x'\/—g’cabch HGL, (x,x")yk=0={ $| T(eL(¥) @L(x )| b), (5.123

><Kgc(x,x’)¢',§(x)¢'d(x’)6ik5”)}, AGY_(x,X ) y=k=0=( | T(eh()eh(x'DI¢),  (5.12b
(5.6) AGY_(x,X")3-k=0= (Bl ehk(X ) @n(x)|#), (5.120
where the CTP classical action is defined as in &g9), . i .
with ¢'. replacingé. , and the time branch indices at” AGL L (X,X")j=k=0=(Pleu(X)el{(x")[¢). (5.120
suppressed. The sourcd$ are coupled to the field by the
O(N) vector inner product In the coincidence limix’ =x, all four components above
L. o are equivalent to the mean-squared fluctuatiorariance
Jar pp=Ja04; - (5.7 about the mean field',

The time branch labels on the metric tensor are suppressed i _ ol 2

for simplicity of notation” The designation “CTP” on the AGL L (X,X)|3=k=0=(d|(e)*|#)=((¢1)?). (5.13
functional integral indicates that we sum only over field con-

figurations for ¢, on M which satisfy the condition Provided that the above equations can be inverted to give

¢'.= ¢ onX,, whereX, is defined in Sec. IV. In addition, J. andK!, in terms of¢, and G, , we can define the 2PI
the boundary conditions on the asymptotic past field conflgueffecuve actlon as a double Legendre transfornWgf
rations forqb+ in the functional integral correspond to a

choice of “in” quantum statd ¢) for the system. The gen- R o

erating functional for normalized expectation values is given I'[¢,G,g*"]=W[J,K,g*"]— f d“x\/—_gcab\];qs{)éij

by Eq. (3.2), with the additional functional dependence of M

both W andZ on g#” understood. As above, we henceforth

1
omit all indices in functional arguments. In terms of this _Ef d“x\/—gf d*x’—g'cabccd
functional, we can define the “classical” fiel¢ and two- M M
point functionG by functional differentiation, X Kgc(x,x')[ﬁe'g'd(x,x')
+ B(¥) Ba(x') 1818 (5.14
= 5.8
Bu(x)= J_ I (5.8) -
where J;, and K, above denote the inverses of E¢5.9)
Ba(X¥) Ph(X') +HG(X,X") and(5.9). From this equation, it is clear that the inverses of
Egs.(5.8) and(5.9) can be obtained by straightforward func-
Cac Chd SW K ail tional differentiation ofl",
sk, (5.9
,/ gv—g' 5K HOX,x")
Ny 1 o j 1 =g’
In the zero-source limiK!),=J.=0, the classical fieldp! o O G| (X)) 5] dXIV—g
a V=g 8¢y(x) M
satisfies
(') 3-k—0=(})i—k—0=(B|PL|p)=a' (5.10 XIKBGx,x") + KA (X! X)]¢d5kl),
as an expectation value of the Heisenberg field operator (5.15

(I)iH in the quantum statgp). The fluctuation field is defined
[as in EQ.(2.14)] in terms of the Heisenberg field operator 1 ST 1

- )
®, and the mean field (times the identity operatpr =PI (X', x).

J—g 8G(x,x") ‘/_g 2

(5.16
"The suppression of CTP indices on the metric tensor does not

prevent computation of the expectation value of the stress-energyRerforming the usual field shifting involved in the back-

momentum tensor. It will be clear how to reinstate the time branctground field approacli58], it can be shown that the 2PI

indices after the 2Pl effective action has been explicitly computedgffective action which satisfies Eq$.14), (5.15, and(5.16

e.g., in the largeN approximation. can be written
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: F r1—qF r1_ oF v
F[%,G,g“”]=SF[<Ai>,g””]—%In de{(ng)_l] S 0,9 1= Sl ¢+ ,0""] =Sl e ,0*"], (6.2

in terms of an actiors,,, on M defined by
—f d*x\— J d*x’\/— Aab X' ,X)
Sl ¢.9*"1=— f d*xy/— { (¢-¢)°

Gl (x,x)+T,[$,G,g*"], (5.17)
where the kernel is the second functional derivative of the +(§5. ¢)(g- g;)} (5.22
classical action with respect to the field

1 / 528° v 1 The two types of vertices in Fig. 2 are readily apparent in Eq.
=g\ S0 Bhx) [¢> g"’] =g (5.18  (5.22. The first term corresponds to the vertex which termi-
9 a b nates four lines; the second term corresponds to the vertex

andT', is a functional to be defined below. Evaluating®  which terminates three lines and is proportionakfto

iARO(x,x") =

by differentiation of Eq(5.2), we find The actionI” including theA full diagrammatic series for
I', gives the full dynamics foep andG in the O(N) theory.
iA_a}b(X,X,)z _ 5ijcab[D+m2+§R(x)] It is of course not feasible to obtain an exact, closed-form

expression fod, in this model. Various approximations to
the full 2PI effective action can be obtained by truncating the
abcc{[d)c ¢d(X)]5u5k| d|agrammat|c_expan5|on fof,. Which approximation is
most appropriate depends on the physical problem under
consideration.
(1) Retaining both the “setting-sun” and the “double-
/—g" bubble”.diagrams pf Fig. 2 cprres_ponds to_the two—lpop,
two-particle-irreducible approximatiofd4]. This approxi-
(5.19 mation contains two-particle scattering through the setting-

where the four-index symba®*°? is defined in exact anal- Sun diagram. » .

ogy with Eq.(4.12. In Eq.(5.17, T, is —i# times the sum (2) A truncation of I', retaining only theA double-

of all two-particle-ireducible vacuum-to-vacuum graphsbubble” diagram of Fig. 2 yields equations fab and G

with propagatorG and vertices given by the shifted action which correspond to the time-dependent Hartree-Fock ap-

+2K(X) py(X) 8 8y 1t 8*(x—x")

gﬁw defined by proximation to the full quantum dynami¢82,3€. This ap-
proximation does not preserve Goldstone’s theorem, but is
St e,0""1=ST o+ $,9*"]1— ST ¢,9*"] energy conservingin Minkowski spacg [36].
- (3) Retaining only the (18.,)? piece of the double-
_f d4x( 68 [ g,w]) ol bubble diagram corresponds to taking the leading ordsr 1/
S a approximation, shown below in Sec. V C.
- (4) A much simpler approximation consists of discarding
3 Ef g f di 6°S (5.9 I', altogether. This yields the one-loop approximation,
SPL(X) ph(X") 9 whose limitations have been extensively documented in the
_ _ literature[34,45,44,3%
X @a(X) @h(X"). (5.20 Let us first evaluate the 2PI effective action at two loops

R [19,41]. This is the most general of the various approxima-
The expansion ofF ; in terms ofG and¢ is depicted graphi- tions described above. Here both two-loop diagrams in Fig. 2
cally in Fig. 2. From Eqgs(5.20 and (5.2), Si';t is easily are retained. The 2PI effective action is given by Eqgl?),
evaluated, and we find and in this approximatiorl;’, is given by

. AR 1 )
F2[¢,G,g”“]=m[—§cab°df d*x v/ = g Gly(X,X) Gey(X,X) + 2GL4(X,X) GLy(x,X) ] 8;; 8
M

cabcdca b'c’d’ f d‘w_f d*x' =g’ BL00 L (X )[GEL, (XX )G (x,x")GKE, (x,x")

+2G] 5 (X G (x,x")GKY, (X, X) 188 e |

cc’

(5.23

Functional differentiation of” with respect to and G leads to the mean-field and gap equations, respectively. The gap
equation obtained at two loops is given by
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iNA . -
(G‘l)f}b(x,x’)=Af}b(x,x’)+mcab°d5“(x—x’)[6" 8GR (X, x) +2GU(x,%)]

2

+ Ak acdegbe’d’e’ g o 1 % ' le ' Gk/l' "4+ 2aK | ' Gk’l’ ' Gij '
WC kk’ ||r[¢C(X)¢C,(X ) dd,(X,X ) ee (X,X ) ¢c(x)¢cf(x ) dd’ (X,X ) ee,(X,X )

+ 240 B (X )Gl (X, X )Gk (X,X") +2BK(X) L, (X' )Gl (X,X') Gl (X,X')
+2¢K00) L, (x )G (x,x) G (x,x")]. (5.24)

The mean-field equation is found to be
b 2 bd)\""" T m iﬁz)\Z
c(O+m*+ ¢R) + ¢ —} dLy 5 ¢b——2f dx'V—g'2°M(x,x")
2N ! AN“
ﬁ)\cade Tmeij m 7| ij ji
+ T{@j $d Gap(X,X) + 81 8] ol Gp(X,X) + Gap(X,X) I}, (5.29
in terms of a nonlocal functio® “™(x,x’) defined by

semx,x’)=cebedga’d’e’d gl ) IGM (x,x" )G (x,x") G, (x,x) + 26T, (x,x ) G (x,x") G} ((x,x")

+ Gib,,rg(x’ ,x)Gf:j,'C(x' ,x)GE'f;(x’ X)+ ZGL,,jc;(x’ ,x)G'é'f;(x’ ,x)GLr?b(x’ X) 1858k G- (5.26

Taking the limit ¢, =¢ =4' in Egs. (5.24 and (5.25  SPacg energy conserving36]. In contrast, the Hartree-Fock
yields coupled equations for the mean fiéhland the CTP approximation cannot be systematically improved beyond

i . . leading order andin the case of spontaneous symmetry
ij v
propagatorsG,,, on the fixed background spacetingé”. breaking violates Goldstone’s theorefdd)].

The equations, as well as the semiclassical Einstein equation : : .

: Let us implement the leading order larbeapproxima-
obtained from Eq.§4.13a, are. real andA caugalt a.nd COMTe" tion in the two-loop, 2Pl mean-field and gap equatimg5
spor;d to expectation values in thie, = ¢_=¢ limit. The 534 (5.24) derived above. This amounts to computing the
O(\?) parts of the above equations are nonlocal and d'SS'reading-order part of in the limit of large N, which is

pative. The nonlocal aspect makes numerical solution difin(N)' In the unbroken-symmetry case, this is easily carried
cult; the dissipative aspect will be addressed in a future pUb()ut by scalingd by N and leavingG unscaled32]
lication [66]. One can regain the perturbativamplitude y 99 Dy '
expansion for the CTP effective action at two loops by ex- B %) s N

panding the one-loop CTP propagators in E§.25 in a Pa(X) N0, (5.273
functional power series ikp. . .
Gly(x,x" )= Gap(x,x") 8", (5.279
C. Large-N approximation

ab ’ ab ’
We now carry out the N expansion to obtain local, co- A (XX = ABXXT) 8, (5.279

variant, nonperturbative mean-field and gap equations for the ‘

O(N) field theory in a general curved spacetime. Th 1/ 0(X)— @a(X), (5.270
expansion is a controlled nonperturbative approximation

scheme which can be used to study nonequilibrium quantury,
field dynamics in the regime of strong quasiclassical field
amplitude[47,48,36,49 In the largeN approach, the large-
amplitude quasiclassical field is modeledNyields, and the

\ ) . . . . The truncation of the N expansion should be carried out
guantum-field-theoretic generating functional is expanded IR the 2PI effective action. where it can be shown that the
powers of IN. In this sense the method is a controlled ex- i

o . . . three-loop and higher-order diagrams do not contri{ate
pansion in a small parameter. Unlike perturbation theory in ading order in the N expansiol Let us now also allow

the coupling constant, which corresponds to an expansion e metricg,,, to be specified independently on the and

the theory around the vacuum, the Iam_geapprommatlon — time branches. We find, for the classical action,
corresponds to an expansion of the field theory about a

strong quasiclassical field configuratif®6]. At a particular . , . v . v

order in the 1IN expansion, the approximation yields trun- S1¢,9""1=ST¢, 04" 1-STé-.0%"],  (5.28
cated Schwinger-Dyson equations which are gauge and

renormalization-group invariant, unitary, afid Minkowski ~ where

ralli,j. The Heisenberg field operattpt, scales Iike(pia in
Eqg. (5.279. In the above equations, the connection between
the largeN limit and the strong mean-field limit is clear.
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ST¢,9""1=- gf d4x\/—_g[ H(O+mP+ ER) p+ %¢4 _
M

(5.29
The inverse of the one-loop propagatdt is
iA%P(X,X") = —| AP+ m?+ £Ry(X) ]
£ cCUB(X) pg(X) | 8H(X—X' )=
2 Cc d g b
(5.30

Finally, for the CTP-2PI effective action at leading order in

the 1N expansion, we obtain
N , ~ - RN
I[$,6,9""1=576,g""1~ —-In de{Gqy]

iAN
| axi=a e,
M M

X A%P(X",X)Gap(X,X")

Mi2N
- 3 cabcdej d4X\/__geGab(X1X)
M
X Geg(X,X)+0(1). (5.32)
Applymg Eq.(4.13h and taking the limitsp. = ¢_ = ¢ and

=g""=g"”, we obtain the gap equation f&,;, at lead-
ing order in the I expansion,

(G™Hab(x,x")= A20(x,x") + IhT)\c""“cc’ch(x,x) S*(x—x")

1 1

X +0| =], 5.3

At .
where
i A20(x,x" )= — | 2[00+ m?+ ¢R(X) ]

+5cab°d<%c(x)<}5d<x> SH(x—x") t

2 g
(5.33

Similarly, we obtain the mean-field equation forat leading
order in the 1N expansion,

O+ m?+ éR+ ¢>2 =0,

(5.39

G++(X X))¢(X)+O .

8Note that the inded is not to be summed in the right-hand side
of Eq. (5.30, and thec subscript orid andR is a CTP index.

S. A. RAMSEY AND B. L. HU

56

where we note thab, | (X,X) =G,p(X,X) for all a,b, which
can be seen from E@5.32); therefore, to get a consistent set
of dynamical equations, we need only consider the-
component of Eq.(5.32. It should also be noted that
G.p(X,X) is formally divergent. Regularization of the coin-
cidence limit of the two-point function and the energy-
momentum tensor is necessary. Multiplying E§.32 by

G and integrating over spacetime, we obtain a differential
equation for thet + CTP Green function,

2%
(D +m?+ ER(x) + 2¢2(x)+ G (X,X) |Gy (X,X")

where boundary conditions must be specifiedGn, .
Equations(5.34 and (5.35 are the covariant evolution

equations for the mean fiel& and the two-point function
G, . at leading order in the W expansion. Following Eqg.
(5.13, we denote the coincidence limit &G ,(x,x) by
(¢2). With the inclusion of the semiclassical gravity field
equation(4.14), these equations form a consistent, closed set

of dynamical equations for the mean fielfl, the time-
ordered fluctuation-field Green functidd, , , and the met-
rc g, -

The one-loop equations fc}f andG can be obtained from
the leading-order equations by settihg=0 in Eq. (5.35),
while leaving the mean-field equatidf.34 unchanged. In
the Hartree approximation, the gap equation is unchanged
from Eg. (5.32, and the mean-field equation is obtained
from Eq.(5.34) by changingi — 3# [48]. The principal limi-
tation of the leading-order largd-approximation is that it
neglects the setting-sun diagram which is the lowest-order
contribution to collisional thermalization of the syst¢&4].

The system therefore does not thermalize at leading order in
1/N, and the approximation breaks down on a time seale
which is on the order of the mean free time for binary scat-
tering[49] (collisional thermalization processes in reheating
the post-inflationary universe is discussed in a subsequent
paper{66]).

Let us now use Eqg4.133 to derive the bare semiclassi-
cal Einstein equation for the @) theory at leading order in
1/N. This equation contains two partS®/ sg”” and
oI'15g%7. The latter part is related to the bare energy-
momentum tensofT,,) by Eq. (4.15. At leading order in
1N, (T,,) is given by a sum of classical and quantum parts,

+O(N =8*(x—x") (5.35

AN
<T > TC +TQ __<¢H>zg,u,1ﬂ (5.36

where we define the classical part(df,,) by

=N|(1-28) ., ¢.,+

1 "
25_ E) gﬂvgpu(ﬁ;p(ﬁ;o’
—2¢.,,0+280,,00— G, b2

(5.37

) RN
- 2, Maola2
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and the quantum part @f ,,) by The divergences in the effective action can be made explicit
with the use of the heat kernKl}(x,y;s) [68,67,69. Let us
defineK§(x,y,s) which satisfies

1
T9,=Nfi lim [ {(1— 26)V,V,+| 2¢- 5) 9.,9°°V,V,,

x'—x IKE(X,Y;s)
- 7 n, /_ —1yac d cQ)—
~26V,V,+2£0,,9"V Y, £G,,, 7s *fMdZV 9Cea( G )T (x,2)Kp(2,y39) =0,
L 2, Nop N e ’ (5.42
29| MH ZETH 7 G (XX 1G4 (X with boundary conditions
+O(1). (5.39
KB(x,y;0)= 838(x—Y) (5.43

The above expression fd’rg,, is divergent in four spacetime vV~ 9y
dimensions, and needs to be regularized or renormalized. .
The energy-momentum tensor in the one-loop approximatioﬁtfzo,[sg]' From Egs.(5.42 and (5.39 It+f0||0\£VS .that
is obtained by neglecting th@(42) terms in Eq.(5.39. It <~ ~K+=0 for all x, y, ands, and thatK, (K-) is a
can be shown using Ed5.35 that the energy-momentum functional of ¢, (¢_) only. The CTP effective action can
tensor at leading order in theNL/expansion is covariantly then be expressed as
conserved, up to terms of ord@(1) (next-to-leading order ~ ~ ~
The bare semiclassical Einstein equation is then giiren I[¢,9*1=T o[ ¢, .9*"1-T o[ d-.9*"], (5.44
terms of(T,,) shown aboveby Eq.(4.14. _ . _
At this point we formally seN=1 since we are not in- in terms of a functional’,o on M defined by
cluding next-to-leading-order diagrams in thé&l¥xpansion. BN
This can be envisioned as a simple rescaling of the Planck 15 v — oFr wvy_ _f ny [—
mass byy/N, since the matter field effective actidhis en- Polé+.0"1=S1d+.0"1~ = Md x/=g
tirely O(N). We now turn to the issue of renormalization. 5 aen
f”ds N _ AN

X | —KI(X,X;8)+ ——F——

D. Renormalization oS 8

To renormalize the leading-order larbeCTP effective e — [ n ]
action in a general curved spacetime, one can use dimen- XfMd xN~g 0 dsKy(x.x;s)

sional regularizatiof67], which requires formulating effec-

tive action inn spacetime dimensions. This necessitates the (5.49
introduction of a length parametgr™! into the classical . _

action,\—\ 4", in order for the classical action to have an+d similarly fqr I'o. It follows from Eq' (5.42 that
consistent units. As above, we maintain the restrictiorK:(X,X;S)[¢,] is exactly the same functional ap, as
g4'=g""=g"", and we suppress indices inside functionalK~(x,x;s)[¢_] is of ¢_; we denote it byK(x,x;s)[ ¢],

2

arguments. o . where ¢ is a function onM.
Making a substitution of the gap equation into the The divergences in the effective action arise in the small-
leading-order largé¥ 2PI effective action, we obtain s part of the integrations, so that in the equation
. . iZN - A2NA AN " w
M9 1=sTd.01+ (G = ("= [*Prps+ [ Tkixxs) (.46
0 S ’, 0 S o So S "
X fMan\/—gCade[Gab(X,X)ch(X,X)], only the first term on the right-hand side is divergent. Using

thes— 0" asymptotic expansion fdf(x,x;s) [59], one has
(5.39 (for a scalar field, such as the unbroken-symmetry Idtge-
limit of the O(N) mode)
in terms of the CTP propagat@®;,,(x,x") which satisfies the
gap equation

K(x,x;s)~(4ws)‘”’220 s™a(X), (5.47
(G™1)=i (0,c%+ x2%(x)) 8(x— ") "

1
, (5.4
g o0

in terms of a four-component “effective mass”

where thea,(x) are the well-known “Hamidew coeffi-
cients” made up of scalar invariants of the spacetime curva-
ture [1,68]. The divergences then show up as poles in
e 1/(n—4) after thes integArations are performed. They have
abron ;2 ab ., M abed 5 5 been evaluated for thed™ theory in a general spacetime by
XTOO=(mHER) e 2 ¢ TdedatiGe(xx)]. many authorgsee, e.9.[59,70,71) and in the largeN limit
(5.4  of the ON) model[72]. At leading order in the N expan-
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sion, the renormalization of, &, m, G, A, b, andc is re-
quired, but no field amplitude renormalization is required.
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