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For the O(N) field theory withlF4 self-coupling, we construct the two-particle-irreducible~2PI! closed-
time-path~CTP! effective action in a general curved spacetime. From this we derive a set of coupled equations
for the mean field and its variance. They are useful for studying the nonperturbative, nonequilibrium dynamics
of a quantum field when full back reactions of the quantum field on the curved spacetime, as well as the
fluctuations on the mean field, are required. Applications to phase transitions in the early Universe such as at
the Planck scale or in the reheating phase of chaotic inflation are under investigation.
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I. INTRODUCTION

One major direction of research on quantum field theory
in curved spacetime@1–3# since the 1980s has been the ap-
plication of interacting quantum fields to the consideration of
symmetry breaking and phase transitions in the early uni-
verse, from the Planck to the grand unified energy scales
@4–12#. In a series of work, Hu, O’Connor, Shen, Sinha, and
Stylianopoulos@13–21# systematically investigated the effect
of spacetime curvature, dynamics, and finite temperature in
causing a symmetry restoration of interacting quantum fields
in curved spacetime. In general one wants to see how quan-

tum fluctuationsw around a mean fieldf̂ change as a func-
tion of these parameters. For this purpose, the two-particle-
irreducible ~2PI! effective action was constructed for an
N-component scalar O(N) model with quartic interaction
@14,10,19#. Hu and O’Connor@19# found that the spectrum
of the small-fluctuation operator contains interesting infor-
mation concerning how infrared behavior of the system de-
pends on the geometry and topology. The equation forf̂
containing contributions from the variance of the fluctuation
field ^w2& depicts how the mean field evolves in time. This
program explored two of the three essential elements of an
investigation of a phase transition@16#, the geometry and
topology and the field theory and infrared behavior aspects,
but not the nonequilibrium statistical-mechanical aspect.

For this and other reasons, Calzetta and Hu@22# started
exploring the closed-time-path~CTP! or Schwinger-Keldysh
formalism @23–26#, which is formulated with an ‘‘in-in’’
boundary condition. Because the CTP effective action pro-
duces a real and causal equation of motion@27,28#, it is well
suited for particle production back-reaction problems@29–
31#. Use of the CTP formalism in conjunction with the 2PI
effective action@32# and the Wigner function@33# enabled
Calzetta and Hu to construct a quantum kinetic field theory
~in flat spacetime!, deriving the Boltzmann field equation
from first principles@34#. The necessary ingredients were
then in place for an analysis of nonequilibrium phase transi-

tions@35#. In recent years these tools~CTP, 2PI! have indeed
been applied to the problems of heavy-ion collisions, pair
production in strong electric fields@36#, disoriented chiral
condensates@37,38#, and reheating in inflationary cosmology
@39#. However, none of these recent works has included
curved spacetime effects in a self-consistent manner, where
the spacetime governs the evolution of a quantum field and
is, in turn, governed by the quantum field dynamics. This is
especially important for Planck scale processes involving
quantum fluctuations with back reaction, such as particle cre-
ation @40#, galaxy formation@41#, preheating, and thermali-
zation in chaotic inflation@42,43#.

With this paper we return to the problems begun by
Calzetta, Hu, and O’Connor a decade ago. We wish to derive
the coupled equations for the evolution of the mean field and
its variance for the O(N) model in curved spacetime, which
should provide a solid and versatile platform for studies of
phase transitions in the early universe. The first order of
business is to construct the CTP-2PI effective action in a
general curved spacetime. The evolution equations are de-
rived from it. We must also deal with the divergences arising
in it. From the vantage point of the correlation hierarchy~and
the associated master effective action! as applied to a non-
equilibrium quantum field@44#, there isa priori no reason
why one should stop at the 2PI effective action. Indeed, the
2PI effective action corresponds to a further approximation
from the two-loop truncation of the master effective action
constructed from the full Schwinger-Dyson hierarchy
@45,44#. For problems where the mean field and the two-
point function give an adequate description~which is not the
case near the critical point, where one has to be careful!, the
CTP-2PI effective action is sufficient. In particular, the 2PI
effective action contains the commonly used large-N, time-
dependent Hartree-Fock, and one-loop approximations.

The O(N) model has been usefully applied to a great
variety of problems in field theory and statistical mechanics
@46#. The O(N) field theory has the advantage that it affords
use of the 1/N expansion@32,36#, which yields nonperturba-
tive evolution equations in the regime of strong mean field~it
yields local, coupled dynamical equations for the mean field
and the mode functions of the fluctuation field!. Recently it
has been applied to problems of nonequilibrium phase tran-
sitions @47–49#. In the preheating problem studied in the
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following paper @50#, we shall see that this is particularly
important for chaotic inflation scenarios@51#, in which the
inflaton mean-field amplitude can be on the order of the
Planck mass at the end of the slow-roll period@52,53#. The
1/N expansion has many attractive features, as it is known to
preserve the Ward identities of the O(N) model @54# and to
yield a covariantly conserved energy-momentum tensor@55#.
Furthermore, in the limit of largeN, the quantum effective
action for the matter fields can be interpreted as a leading-
order term in the expansion of the full~matter plus gravity!
quantum effective action@55#.

Mazzitelli and Paz@72# have studied thelF4 and O(N)
field theories in a general curved spacetime in the Gaussian
and large-N approximations, respectively. Their approach
differs from ours in that it is based on a Gaussian factoriza-
tion which does not permit systematic improvement either in
the loop expansion or in the 1/N approximation. In contrast,
our approach is based on a closed-time-path formulation of
the correlation dynamics, and the evolution equation we ob-
tain for the two-point function contains a two-loop radiative
damping contribution which is not present in the large-N
approximation. At leading order in the large-N approxima-
tion, our results agree with theirs, so that their renormaliza-
tion counterterms can be directly applied to the mean field
and gap equations derived here.

This paper is organized as follows. Sections II and III
present self-contained summaries of the two essential theo-
retical methodologies employed in this study, the closed-
time-path formalism and the two-particle-irreducible effec-
tive action. The adaptation of these tools to the quantum
dynamics of alF4 field theory in curved spacetime is pre-
sented in Sec. IV. The O(N) scalar field theory is treated in
Sec. V.

Throughout this paper we use units in whichc51.
Planck’s constant\ is shown explicitly~i.e., not set equal to
1! except in those sections where noted. In these units, New-
ton’s constant isG5\MP

22 , where MP is the Planck mass.
We work with a four-dimensional spacetime manifold, and
follow the sign conventions1 of Birrell and Davies@2# for the
metric tensorgmn , the Riemann curvature tensorRmnsr , and
the Einstein tensorGmn . We use Greek letters to denote
spacetime indices. The beginning Latin lettersa,b,c,d,e, f
are used as time branch indices~see Sec. II!, and the middle
Latin letters i , j ,k,l ,m,n are used as indices in the O(N)
space~see Sec. V!. The Einstein summation convention over
repeated indices is employed. Covariant differentiation is de-
noted with a nabla¹m or a semicolon.

II. SCHWINGER-KELDYSH FORMALISM

The Schwinger-Keldysh or ‘‘closed-time-path’’~CTP!
formalism is a powerful method for deriving real and causal
evolution equations for expectation values of quantum opera-
tors for nonequilibrium fields, i.e., for quantum systems
where the density matrixr and the HamiltonianH do not
commute,@H,r#Þ0. This can occur, for example, in a field

theory quantized on a dynamical background spacetime and
also in an interacting field theory with nonequilibrium initial
conditions. The methods discussed here are well suited to
studying the dynamics of an open quantum system. Excellent
reviews of the Schwinger-Keldysh method are Zhouet al.
@26# as applied to nonequilibrium quantum field theory and
Calzetta and Hu@22# as applied to back reaction in semiclas-
sical gravity. In this section we briefly review the
Schwinger-Keldysh method in the context of an interacting
scalar field theory in Minkowski space, with vacuum bound-
ary conditions.

Consider a scalar fieldF in Minkowski space with a
lF4 self-interaction. Studying the semiclassical properties
of the theory consists of taking the degrees of freedom to be
the classical fieldf̂ and fluctuationsw about the classical
field configuration. The equation of motion for small oscil-
lations of f̂ about the stable quantum-corrected equilibrium
configuration is obtained via a variational principle from the
effective actionG@f̂# @58#. In the conventional Schwinger-
DeWitt or ‘‘in-out’’ approach @1,57#, one couples a
c-number sourceJ ~which is a function onM4) to the field
f and computes the vacuum persistence amplitude in the
presence of the sourceJ. This amplitude has a path integral
representation

Z@J#5expS i\ W@J# D5E DfexpF i\SSF@f#

1E d4xJ~x!f~x! D G , ~2.1!

where the functional integral is a sum over classical histories
of the f field which are pure negative frequency@i.e., all
spatial Fourier modes off have a time dependence like
exp(ivt),v.0# in the asymptotic past and pure positive fre-
quency@;exp(2ivt)# in the asymptotic future.2

In a general nonequilibrium setting, such as in a curved or
dynamical spacetime or whenf̂ is time dependent, the no-
tion of positive frequency in the asymptotic past is in general
different from that in the asymptotic future. Hence, the ‘‘in’’
vacuum stateu0, in& defined atx052` and the ‘‘out’’
vacuum stateu0, out& defined atx05` are not necessarily
equivalent. The generating functionalZ@J# defined in Eq.
~2.1! is then the vacuum persistence amplitude

^0, outu0, in&J5^0, outuTexpS i\E d4xJ~x!FH~x! D u0, in&,

~2.2!

whereFH(x) is the Heisenberg field operator for the theory
without the sourceJ. This amplitude is in general complex.
It follows that the classical field obtained by functional dif-
ferentiation of 2 i\ lnZ@J# is the matrix element
^0, outuFHu0, in& which will in general be complex. In addi-
tion, the dependence off̂J[dW/dJ on J will not, in gen-

1In the classification scheme of Misner, Thorne, and Wheeler
@56#, the sign convention of Birrell and Davies@2# is classified as
(1,1,1).

2It is noted that these boundary conditions on the functional inte-
gral are equivalent~up to an overall normalization! to adding a
small imaginary term2 i ef2 to the classical action, wheree.0.
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eral, be causal@28,27#. In curved spacetime, the energy-
momentum tensor ^Tmn& is obtained by functional
differentiation ofW with respect togmn, which at one loop
yields a complex matrix element ofTmn(FH) between the
‘‘in’’ and ‘‘out’’ vacua, where FH is the Heisenberg field
operator andTmn(f) is the classical energy-momentum ten-
sor for the field@1#.

In the closed-time-path formalism, real and causal dynam-
ics for f̂ can be obtained, as well as the expectation value of
the energy-momentum tensor. Letx05x!

0 be far to the future
of any dynamics we wish to study. It is not necessary to
assume thatl50 or that the Hamiltonian is time indepen-
dent atx05x!

0. As in the previous ‘‘in-out’’ approach, sup-
pose we wish to compute the quantum-corrected equa-
tion governing the classical field f̂. Let M

5$(x0,xW )u2`<x0<x!
0% be the portion of Minkowski space

to the past of timex!
0. We start by defining a new manifold

as a quotient space,

M5~M3$1,2%!/;, ~2.3!

where; is an equivalence relation defined by the rules

~x,1 !;~x8,1 ! if x5x8,

~x,2 !;~x8,2 ! if x5x8, ~2.4!

~x,1 !;~x8,2 ! if x5x8 and x05x!
0.

The manifoldM is orientable, provided we reverse the sign
of the volume form between the1 and 2 pieces of the
manifold. It is then straightforward to generalize the usual
effective action construction to the new manifoldM. With
the volume form onM, we can generalize the classical ac-
tion SF toM,

SF@f1 ,f2#5SF@f1#2SF@f2#, ~2.5!

whereSF@f# is the classical action onM , andf1 andf2

denote thef field on the1 and2 branches ofM, respec-
tively. The spacetime integrations in the right-hand side of
Eq. ~2.5! are understood to be overM . In order forf6 to be
a function onM, we must have

f1~x!ux
!
05f2~x!ux

!
0. ~2.6!

The generating functional of vacuumn-point functions~i.e.,
expectation values in theu0, in& vacuum! for this theory is
then defined by

Z@J1 ,J2#5E
ctp
Df1Df2expF i\S SF@f1 ,f2#

1E
M
d4x~J1f12J2f2! D G , ~2.7!

where J1 and J2 are c-number sources on the1 and 2
branches ofM, respectively. The designation ‘‘ctp’’ indi-
cates that the functional integrals in Eq.~2.7! are over all
field configurations (f1 ,f2) such that~i! f15f2 at the
x05x!

0 hypersurface and~ii ! f1 (f2) consists of pure nega-

tive ~positive! frequency modes atx052`. It is not neces-
sary for the normal derivatives off1 andf2 to be equal at
x05x!

0. Because the theory is free in the asymptotic past, a
positive frequency mode3 is a solution to the spatial-Fourier
transformed Euler-Lagrange equation forf whose
asymptotic behavior atx052` is exp(2ivx0), for v.0.

The generating functional for connected diagrams is then
defined by

W@J1 ,J2#52 i\ lnZ@J1 ,J2#. ~2.8!

Classical fields on both1 and2 branches are then defined
as

f̂a~x!J6
5cab

dW@J1 ,J2#

dJb~x!
, ~2.9!

wherea,b are time branch indices with index set$1,2%.
The matrix cab is defined by c1151, c22521, and
c125c2150. The functional differentiation in Eq.~2.9! is
carried out with variations indJ1 anddJ2 which satisfy the
constraint thatdJ15dJ2 on thex05x!

0 hypersurface. The
J6 subscript in Eq.~2.9! indicates the functional depen-
dence onJ6 , which has been shown to be causal@28,27#. In
the limit J15J2[J, the classical fields on the1 and2
time branches become equal,

~f̂1~x!J6
!uJ15J2[J5~f̂2~x!J6

!uJ15J2[J

[f̂~x!J5J^0, inuFH~x!u0, in&J ,

~2.10!

whereu0, in& is the state which has evolved from the vacuum
at t0 under the interactionFHJ, and becomes the expectation
value^FH& in the limit J50. The effective action is defined
via the usual Legendre transform, withcab now acting as a
‘‘metric’’ on the internal 232 CTP field space,

G@f̂1 , f̂2#5W@J1 ,J2#2cabE
M
d4xJa~x!f̂b~x!,

~2.11!

where theJ subscripts onf̂6 are suppressed and the func-
tional dependence ofJ6 on f̂ via inversion of Eq.~2.9! is
understood. By direct computation, the inverse of Eq.~2.9! is
found to be

Ja~x! f̂6
52cab

dG@f̂1 , f̂2#

df̂b~x!
, ~2.12!

where we have indicated the explicit functional dependence
of J6 on f̂6 with a subscript, andcab is the inverse of the

3Here, the choice of vacuum boundary conditions corresponds to
adding a small imaginary parti e(f1

22 f2
2) to the classical ac-

tion SF. Alternatively, the boundary conditions correspond to the
usual prescriptionm2→m22 i e in SF@f#, but with Sctp now rede-
fined asSF@f1 , f2#5SF@f1#2SF@f2#!, where! denotes com-
plex conjugation@22#.
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matrix cab defined above. In the limitf̂15 f̂2[f̂, this
yields the evolution equation for the expectation value

J^FH&J[f̂J in the state which has evolved fromu0, in& un-
der the source interactionJFH . The evolution equation for
f̂, the vacuum expectation value^0, inuFHu0, in&, is there-
fore

dG@f̂1 , f̂2#

d f̂1

U
f̂15 f̂2[f̂

52
dG@f̂1 , f̂2#

d f̂2

U
f̂15 f̂2[f̂

50.

~2.13!

Using Eqs.~2.12! and~2.11!, an integro-differential equation
for G can be derived@28#, in which the functional differen-
tiations of G with respect to f̂6 are carried out with the
constraint that the variations off̂6 satisfy df̂15df̂2

whenx05x!
0. The differencefa2f̂a is naturally interpreted

as the fluctuations of a particular historyfa about the ‘‘clas-
sical’’ field configurationf̂a . Let us therefore define the
fluctuation fieldwa[fa2f̂a or, in terms of Heisenberg field
operators,

wH[FH2^FH&5FH2f̂, ~2.14!

where angular brackets around the Heisenberg field operator
FH denote an expectation value ofFH in the ~time-
independent! quantum state of the system. Performing the
change of variablesfa→wa in the functional integral, where

wa[fa2f̂a , ~2.15!

we obtain

G@ f̂1 , f̂2#52 i\ lnH E
ctp
Dw1Dw2

3expF i\S SF@f̂11 w1 , f̂21 w2#

2
dG@f̂1 , f̂2#

df̂a

waD G J . ~2.16!

This functional integro-differential equation has a formal so-
lution @58#

G@f̂1 , f̂2#5SF@f̂1 , f̂2#2
i\

2
ln det~Aab

21!

1G1@f̂1 , f̂2#, ~2.17!

whereAab(x, x8), the second functional derivative of the
classical action with respect to the fieldf6 , is

iAab~x, x8!5
d2SF

dfa~x!fb~ x8!
@f̂1 , f̂2#. ~2.18!

The inverse ofAab is the one-loop propagator for the fluc-
tuation fieldf. The functionalG1 in Eq. ~2.16! is defined as
2 i\ times the sum of all one-particle-irreducible vacuum-

to-vacuum graphs with propagator given byAab
21(x, x8) and

vertices given by a ‘‘shifted action’’SintF , defined by

SintF @ w1 , w2#5SF@w11f̂1 , w21 f̂2#2SF@f̂1 ,f̂2#

2E
M
d4xS dSF

dfa
@f̂6# Dwa2

1

2EMd4x
3E

M
d4x8S d2SF

dfa~x!dfb~ x8!
@f̂6# D

3wa~x!wb~ x8!. ~2.19!

For simplicity, we do not explicitly indicate the functional
dependence ofSintF on f̂6 . Figure 1 shows the diagrammatic
expansion forG1. Each vertex carries a spacetime label in
M and a time branch label in$1,2%. The lowest-order con-
tribution is order \2, i.e., at two loops. The propagator
A21 does not depend on\. The lndetA term in Eq.~2.17! is
the one-loop~order\) term in the CTP effective action. The
CTP effective action, as a functional off̂6 , can be com-
puted to any desired order in the loop expansion using Eq.
~2.17!. In general, this action contains divergences at each
order in the loop expansion, which need to be renormalized.

Functionally differentiatingG@f̂1 ,f̂2# with respect to
either f̂1 or f̂2 and making the identificationf̂1

5f̂25f̂ @as shown in Eq.~2.13!# yields a dynamical, real,
and causal evolution equation for the mean fieldf̂. Thus the
1PI effective actionG@f̂6# yieldsmean-fielddynamics for
the theory, which is a lowest-order truncation of the correla-
tion hierarchy@45,44#. However, for a detailed study of non-
perturbative growth of quantum fluctuations relevant to non-
equilibrium mean-field dynamics~or a symmetry-breaking
phase transition!, it is also necessary to obtain dynamical
equations for thevarianceof FH ,

^FH
2 &2^FH&25^FH

2 &2f̂25^wH
2 &[\G11~x,x!, ~2.20!

where\G11(x,x8) is the time-ordered Green function for
the fluctuation fieldwH , ^T„w(x)Hw(x8)H…&. A higher-order

FIG. 1. Diagrammatic expansion forG1. Lines represent the
propagatorAab

21(x,x8), and vertices terminating three lines are pro-

portional to f̂. Each vertex carries spacetime (x) and CTP
(1,2) labels.
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truncation of the correlation hierarchy is needed in order to
explicitly follow the growth of quantum fluctuations; the 2PI
effective action, to which we now turn, serves this purpose.

III. TWO-PARTICLE-IRREDUCIBLE FORMALISM

In a nonperturbative study of nonequilibrium field dynam-
ics in the regime where quantum fluctuations are significant,
the 1PI effective action is inadequate because it does not
permit a derivation of the evolution equations for the mean
field ^FH& and variance^wH

2 &, at a consistentorder in a
nonperturbative expansion scheme. In addition, the initial
data for the mean fieldf̂ do not contain any information
about the quantum state for fluctuationsw around the mean
field. The two-particle-irreducible~2PI! effective action
method can be used to obtain nonperturbative dynamical
equations for both the mean fieldf̂(x) and two-point func-
tion G(x,y), which contains the variance, as shown in Eq.
~2.20!. The 2PI method generalizes the 1PI effective action
to an actionG@f̂,G# which is a functional of possible histo-
ries for bothf̂ andG. Alternatively, the 2PI effective action
can be viewed as a truncation of the master effective action
to second order in the correlation hierarchy@44#. In this sec-
tion we briefly review how the 2PI method works; more
thorough presentations can be found in@32,34#.

Unlike the 1PI method where the mean field is fixed to be
f̂, the 2PI method fixes the mean field to bef̂ and the sum
of all self-energy diagrams to beG. This drastically reduces
the number of independent diagrams which must be com-
puted in order to obtainG@f̂,G# @45#. Coupled dynamical
equations for the evolution off̂ andG are obtained by sepa-
rately varyingG@f̂,G# with respect toG and f̂. Imposing
dG/df̂50 yields an evolution equation for the mean field
f̂, and settingdG/dG50 yields an evolution equation for
G, the ‘‘gap’’ equation. The variancêwH

2 & is the coinci-
dence limit of the two-point function\G, as seen from Eq.
~2.20!. In a nonequilibrium setting, the closed-time-path
method should be used in conjunction with the 2PI formal-
ism in order to obtain real and causal dynamics forf̂ and
G @34,35,45#.

Let us apply the 2PI method to a scalarlf4 theory in
Minkowski space, with vacuum initial conditions. In a direct
generalization of Sec. II, both a local sourceJa(x) and non-
local sourceKab(x,x8) ~which arec-number functions on
M) are coupled to the field via\cabJafa and
\cabccdKac(x,x8)fb(x)fd(x8) interactions. Following Eq.
~2.7!, the CTP generating functional is defined as a vacuum
persistence amplitude in the presence of the sourcesJ and
K, which has the path integral representation

Z@J,K#5E
ctp
Df1Df2expF i\S SF@f1 ,f2#

1E
M
d4xcabJafb1

1

2EMd4xEMd4x8cabccd
3Kac~x,x8!fb~x!fd~x8! D G . ~3.1!

Here, SF is as defined in Eq.~2.5!, and we are using
Z@J,K# as a shorthand for Z@J1 ,J2 ;K11 ,K22 ,
K12 ,K21]. The generating functional for normalized
n-point functions~connected diagrams! is defined by

W@J,K#52 i\ lnZ@J,K#. ~3.2!

The ‘‘classical’’ field f̂a(x)JK and two-point function
Gab(x,x8)JK are then given by

f̂a~x!JK5cab
dW@J,K#

dJb~x!
, ~3.3a!

\Gab~x,x8!JK52caccbd
dW@J,K#

dKcd~x,x8!
2f̂a~x!JKf̂b~x8!JK ,

~3.3b!

where we use the subscriptJK to indicate thatf̂a andGab
are functionals of the sourcesJ andK.

In the limit K5J50, the classical fieldf̂a satisfies

~f̂1!J5K505~f̂2!J5K505^fuFHuf&[f̂, ~3.4!

i.e., it becomes the expectation value of the Heisenberg field
operatorFH in the quantum stateuf& ~the mean field!. In the
same limit, the two-point functionGab is the CTP propagator
for the fluctuation field defined by Eq.~2.14!. The four com-
ponents of the CTP propagator are, forJ5K50,

\G11~x,x8! uJ5K505^fuT„wH~x!wH~x8!…uf&, ~3.5a!

\G22~x,x8! uJ5K505^fu T̃„wH~x!wH~x8!…uf&, ~3.5b!

\G12~x,x8! uJ5K505^fuwH~x8!wH~x!uf&, ~3.5c!

\G21~x,x8! uJ5K505^fuwH~x!wH~x8!uf&, ~3.5d!

in the Heisenberg picture. In the coincidence limitx85x, all
four components above are equivalent to the variance^wH

2 &
defined in Eq.~2.20!. Provided we can invert Eqs.~3.3a! and
~3.3b! to obtainJ andK in terms off̂ andG, the 2PI effec-
tive action can be defined as the double Legendre transform
~in both J andK) of W@J,K#

G@f̂,G#5W@J,K#2E
M
d4xcabJa~x!f̂b~x!

2
1

2EMd4xEMd4x8cabccdKac~x,x8!@\Gbd~x,x8!

1f̂b~x!f̂d~x8!#. ~3.6!

As with W@J,K#, we are usingG@f̂,G# as a shorthand for
G@f̂1 ,f̂2 ;G11 ,G22 ,G12 ,G21#. The JK subscripting
of f̂ andG is suppressed, but the functional dependence of
f̂ andG on J andK through inversion of Eqs.~3.3a! and
~3.3b! is understood. By direct functional differentiation of
Eq. ~3.6!, the inverses of Eqs.~3.3a! and~3.3b! are found to
be

56 665O(N) QUANTUM FIELDS IN CURVED SPACETIME



dG@f̂,G#

df̂a~x!
52cabJb~x!f̂G2

1

2
cabccdE

M
d4x8„Kbd~x,x8!f̂G

1Kdb~x8,x!f̂G…f̂c~x8!, ~3.7a!

dG@f̂,G#

dGab~x,x8!
52

\

2
caccbdKcd~x,x8!f̂G , ~3.7b!

where the subscript ‘‘f̂G’’ indicates thatK andJ are func-
tionals of f̂ andG. OnceG@f̂,G# has been calculated, the
evolution equations forf̂ andG are given by

dG@f̂,G#

df̂a~x!
U

f̂15f̂2[f̂

50, ~3.8a!

dG@f̂,G#

dGab~x,y!
U

f̂15f̂2[f̂

50. ~3.8b!

Of course, the two equations contained in Eq.~3.8a! are not
independent, just as in Eq.~2.13!. In addition, only two of
equations~3.8b! are independent, one on the diagonal and
one off diagonal in the ‘‘internal’’ CTP space. Using both
Eqs.~3.6! and~3.1!, an equation forG@f̂,G# in terms of the
sourcesK andJ can be derived,

G@f̂,G#52 i\ lnH E
ctp
Df1Df2expF i\S SF@f1 ,f2#1cabE

M
d4xJa~x!@fb~x!2f̂b~x!#

1
1

2
caccbdE

M
d4xE

M
d4x8Kab~x,x8!@fc~x!fd~x8!2f̂c~x!f̂d~x8!2\Gcd~x,x8!# D G J . ~3.9!

The sourcesK andJ in the right-hand side of Eq.~3.9! are functionals off̂, through Eqs.~3.7a! and~3.7b!. Expressing this
functional dependence, we obtain a functional integrodifferential equation forG,

G@f̂,G#5E
M
d4xE

M
d4x8

dG@f̂,G#

dGba~x8,x!
Gab~x,x8!2 i\ lnH E

ctp
Df1Df2expF i\S SF@f1 ,f2#2E

M
d4x

dG@f̂,G#

df̂a

~fa2f̂a!

2
1

\EMd4xEMd4x8
dG@f̂,G#

dGba~x8,x!
@fa~x!2f̂a~x!#@fb~x8!2f̂b~x8!# D G J . ~3.10!

We have dropped theJK subscripting because the functional derivatives in the equation are only with respect tof̂ andG. As
in Sec. II, a change of variablesDf6→Dw6 is carried out in the functional integral. The resulting equation

G@f̂,G#5E
M
d4xE

M
d4x8

dG@f̂,G#

dGba~x8,x!
Gab~x,x8!2 i\ lnH E

ctp
Dw1Dw2expF i\S SF@w11f̂1 ,w21f̂2#

2E
M
d4x

dG@f̂,G#

df̂a

wa2
1

\EMd4xEMd4x8
dG@f̂,G#

dGba~x8,x!
wa~x!wb~x8!D G J ~3.11!

has the formal solution@32#

G@f̂,G#5SF@f̂#2
i\

2
ln det~Gab!1

i\

2 EMd4x
3E

M
d4x8Aab~x8,x!Gab~x,x8!1G2@f̂,G#,

~3.12!

whereAab is the second functional derivative of the classical
actionSF, evaluated atf̂a . The functionalG2 is 2 i\ times
the sum of all two-particle-irreducible vacuum-to-vacuum
diagrams with lines given byGab and vertices given by a
shifted actionSintF . We have, forAab,

iAab~x,x8!5
d2SF

dfa~x!fb~x8!
@f̂# ~3.13!

and, forSintF ,

SintF @w#5SF@w1f̂#2SF@f̂#2E
M
d4xS dSF

dfa
@f̂# Dwa

2
i

2EMd4xEMd4x8Aab~x,x8!wa~x!wb~x8!.

~3.14!

The shifted action for thelf4 scalar field theory is

SintF @w#5Sint
F @w1#2Sint

F @w2#, ~3.15!
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in terms of

Sint
F @w#52

l

6EMd4xS 14w41f̂w3D , ~3.16!

where the functional dependence ofSintF on f̂6 is not shown
explicitly. Two types of vertices appear in Eq.~3.16!: a ver-
tex which terminates four lines and a vertex terminating
three lines which is proportional to the mean fieldf̂. The
expansion forG2 in terms ofG andf̂ is depicted graphically
up to three-loop order in Fig. 2. Each vertex carries a space-
time label inM and time branch label in$1,2%. In general,
the 2PI effective action contains divergences at each order in
the loop expansion. It has been shown formally that if the
field theory is renormalizable in the ‘‘in-out’’ formulation,
then the ‘‘in-in’’ equations of motion are renormalizable
@34#. In the closed-time-path formalism it is easier to carry
out explicit renormalization in the equations of motion, i.e.,
the mean-field and gap equations, which we will do in Sec.
VD.

Various approximations to the full quantum dynamics can
be obtained by truncating the diagrammatic expansion for
G2. Throwing awayG2 in its entirety would yield the one-
loop approximation. In Fig. 2, there are two two-loop dia-
grams, the ‘‘double bubble’’ and the ‘‘setting sun.’’ Retain-
ing just the double-bubble diagram yields the time-dependent
Hartree-Fock approximation@32#. Retaining both diagrams
gives a two-loop approximation to the theory.4 This approxi-
mation will yield a non-time-reversal-invariant mean-field
equation above threshold, due to the setting sun diagram
@44#. The time-reversal noninvariance of the mean-field
equation generated by the 2PI effective action is a conse-
quence of the fact that the 2PI effective action really corre-
sponds to a further approximation from the two-loop trunca-
tion ~in the sense of topology of vacuum graphs! of the
mastereffective action@44#. The two-loop truncation of the
master effective action is a functionalG l52@f̂,G,C3# which
depends on the mean fieldf̂, the two-point functionG, and
the three-point functionC3. The four-point functionC4 also
appears, but is not dynamical due to a constraint. The full set
of equations,

dG l52@f̂,G,C3#

df̂a

50, ~3.17a!

dG l52@f̂,G,C3#

dGab
50, ~3.17b!

dG l52@f̂,G,C3#

d~C3!abc
50, ~3.17c!

is time-reversal invariant. However, the 2PI effective action
is obtained by solving Eq.~3.17c! with a given choice of
causal boundary conditionsand substituting the resulting
C3 into G l52, to obtainG 2@f̂,G#. This ‘‘slaving’’ of C3 to
f̂ andG with a particular choice of boundary conditions is
what breaks the time-reversal invariance of the theory@44#.
In the paper following@50# where we discuss the preheating
dynamics, we work with further approximations which dis-
card the setting sun diagram, and thus regain time-reversal-
invariant equations.

IV. lF4 FIELD THEORY IN CURVED SPACETIME

In this section the quantum dynamics of a scalarlF4

field theory is formulated in semiclassical gravity, where the
matter fields are quantized on a curved classical background
spacetime.5 The two-particle-irreducible effective action is
used in conjunction with the CTP formalism to obtain
coupled evolution equations for the mean field^FH& and
variance^FH

2 &2^FH&2 in the lF4 model which are mani-
festly covariant.

Let us consider a quartically self-interacting scalar field
f in a globally hyperbolic, curved background spacetime
with metric tensorgmn . The diffeomorphism-invariant clas-
sical action for this system is

S@f,gmn#5SG@gmn#1SF@f,gmn#, ~4.1!

where gmn is the contravariant metric tensor, andSG and
SF are the classical actions of the gravity and scalar field
sectors of the theory, respectively. For the scalar field action,
we have

SF@f,gmn#52
1

2E d4xA2gFf~h1m21jR!f1
l

12
f4G ,
~4.2!

wherej is the ~dimensionless! coupling constant to gravity
~necessary in order for the field theory to be renormalizable
@59#!, h is the Laplace-Beltrami operator in terms of the
covariant derivative¹m , andR is the scalar curvature. The
constantm has units of inverse length, and thef self-
couplingl has units of 1/\. Following standard procedure in
semiclassical gravity@2#, we define the semiclassical action
for gravity to be

SG@gmn#5
1

16pGE d4xA2g@R22L1cR21bRabRab

4A different approximation, the 1/N expansion, is used in Sec. V
to study the nonequilibrium dynamics of the O(N) field theory.

5The semiclassical approximation is consistent with a truncation
of the quantum effective action for matter fields and gravity pertur-
bations at one loop@i.e., at orderO(\)# @29# or @in the case of the
O(N) field theory studied here# at leading order in the 1/N expan-
sion @55,19#.

FIG. 2. Diagrammatic expansion forG2. Lines represent the
propagatorG, and vertices are given bySintF . The vertices terminat-

ing three lines are proportional tof̂.

56 667O(N) QUANTUM FIELDS IN CURVED SPACETIME



1aRabgdRabgd#, ~4.3!

wherea, b, andc are constants with dimensions of length
squared,Rabgd is the Riemann tensor,Rab is the Ricci ten-
sor,L is the ‘‘cosmological constant’’~with units of inverse
length-squared!, A2g is the square root of the determinant
of gmn , andG ~with units of length divided by mass! is
Newton’s constant. As a result of the generalized Gauss-
Bonnet theorem@60#, the constantsa, b, and c are not all
independent in four spacetime dimensions; let us, therefore,
set a50. Classical Einstein gravity is obtained by setting
b50 and c50. Minimal and conformal coupling~for the
f field to gravity! correspond to settingj50 and j51/6,
respectively.

The motivation for including the arbitrary couplingj and
the higher-order curvature termsR2 andRabRab in the clas-
sical actionS is that we wish to study the semiclassical dy-
namics of the theory. In the semiclassical gravity field equa-
tion and matter field equations, divergences arise which
require a renormalization ofb, c, G, L, m, j, and l @2#.
These quantities are understood to be bare; their observable
counterparts are renormalized.

The classical Euler-Lagrange equation forf is obtained
by functionally differentiatingSF@f,gmn# with respect to
f, and settingdSF/df50,

S h1m21jR1
l

6
f2Df50. ~4.4!

The Euler-Lagrange equation for the metricgmn is obtained
by functional differentiation ofS with respect togmn ~it is
assumed that the variationsdf and dgmn are restricted so
that no boundary terms arise!,

Gmn1Lgmn1c ~1!Hmn1b ~2!Hmn528pGTmn ,
~4.5!

where the tensorsGmn ,
(1)Hmn , and

(2)Hmn are defined by
@61,62# andTmn is the classical energy-momentum tensor,

Tmn5~122j!f ;mf ;n1S 2j2
1

2Dgmng
rsf ;rf ;s22jf ;mnf

12jgmnfhf2jGmnf21
1

2
gmnSm21

l

12
f2Df2.

~4.6!

We are interested in the dynamics of expectation values in
the semiclassical theory, which in nonequilibrium field
theory doesnot follow directly from functional differentia-
tion of the usual Schwinger-DeWitt or ‘‘in-out’’ effective
action. Instead, the Schwinger-Keldysh formalism~reviewed
in Sec. II! should be used. Here we discuss the implementa-
tion of the Schwinger-Keldysh method in curved spacetime.

The first step is to generalize the closed-time-path~CTP!
manifoldM, defined in Eq.~2.3!, to curved spacetime. Let
S! be a Cauchy hypersurface chosen so that its past domain
of dependence@63#, D2(S!), contains all of the dynamics
we wish to study. Let us then define the manifold~with
boundary!

M[D2~S!!. ~4.7!

The CTP manifoldM is defined following Eq.~2.3! as a
quotient space constructed by identification on the hypersur-
faceS!,]M as in Eq.~2.3! where the equivalence relation
is the same as Eq.~2.4! except that the matching of1 and
2 time branches is now done onS!. We construct an orien-
tation onM using the canonical volume form fromM ,eM ,
and define the volume form onM to be

eM5H eM onM3$1%,

2eM onM3$2% .
~4.8!

Finally, we letf andgmn be independent on the1 and2
branches ofM, provided thatg1

mn5g2
mn and f15f2 on

S!. In other words,f andgmn must be a scalar and a tensor,
respectively, onM. In terms of the volume formeM , we can
write a scalar field action onM,

SF@f6 ,g6
mn#5SF@f1 ,g1

mn#2SF@f2 ,g2
mn#, ~4.9!

whereSF@f# is given by Eq.~4.2!, and g6
mn is the metric

tensor on the1 and2 branches ofM. Using Eq.~4.3! we
can similarly define the gravity actionSG onM,

SG@g1
mn ,g2

mn#5SG@g1
mn#2SG@g2

mn#, ~4.10!

where it is understood that only configurations ofg6
mn satis-

fying the constraintg1
mn5g2

mn on S! are permitted.
In semiclassical gravity the scalar field theory~with action

SF) is quantized on a classical background spacetime, with
metricgmn , whose dynamics is determined self-consistently
by the semiclassical geometrodynamical field equation. Let
us denote the Heisenberg-picture field operator for the ca-
nonically quantizedf field byFH . We wish to compute the
quantum effective actionG for this scalar field theory, using
the two-particle-irreducible~2PI! method described in Sec.
III. In terms of SF ~now defined on the curved manifold
M), we define the 2PI, CTP generating functional
Z@J,K,gmn# as follows:

Z@J,K,gmn#5E
ctp
Df1Df2expF i\S SF@f6 ,g6

mn#

1E
M
d4xA2gcc

abcJafb1
1

2EMd4xA2ga8

3E
M
d4x8A2gc8

8 caba8ccdc8

3Kac~x,x8!fb~x!fd~x8! D G , ~4.11!

where we have writtenZ@J,K,gmn# as a shorthand for
Z@J6 ,K66 ,g6

mn#. The three-index symbolcabc is defined by

cabc5H 1 if a5b5c51,

21 if a5b5c52,

0 otherwise.

~4.12!

The boundary conditions on the functional integral define the
initial quantum state~assumed here to be pure!. In this and a
subsequent paper~in which preheating dynamics of inflation-
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ary cosmology is studied@50#!, we are interested in the case
of a quantum state corresponding to a nonzero mean field
f̂, with vacuum fluctuations around the mean field. This en-
tails a definition of the vacuum state for thefluctuation field,
defined in Eq.~2.14!. In curved spacetime in general, there
does not exist a unique Poincare´-invariant vacuum state for a
quantum field@1,3#. For an asymptotically free field theory, a
choice of ‘‘in’’ vacuum state corresponds to a choice of a
particular orthonormal basis of solutions of the covariant
Klein-Gordon equation with which to canonically quantize
the field.

From Eq. ~4.11!, we can derive the two-particle-
irreducible~2PI! effective actionG@f̂,G,gmn# following the
method of Sec. III, with the understanding thatG now de-
pends functionally on the metricg6

mn on the1 and2 time
branches. The functional differentiations should be carried
out using a covariant generalization of the Diracd function
to the manifoldM @2#. The functional integrodifferential
equation~3.11! for the CTP-2PI effective action can then be
generalized to the curved spacetimeM in a straightforward
fashion, modulo the curved-spacetime ambiguities in the
boundary conditions of the functional integral~4.11!.

The ~bare! semiclassical field equations for the variance,
mean field, and metric can then be expressed in terms of
variations of SG@gmn#1G@f̂,G,gmn# with respect to
G66 , f6 , andg6

mn , respectively, followed by metric and
mean-field identifications between the1 and 2 time
branches,

d~SG@gmn#1G@f̂,G,gmn#!

dga
mn U

f̂15f̂25f̂; g
1
mn5g

2
mn5gmn

50,

~4.13a!

dG@f̂,G,gmn#

df̂a
U

f̂15f̂25f̂; g
1
mn5g

2
mn5gmn

50, ~4.13b!

dG@f̂,G,gmn#

dGab
U

f̂15f̂25f̂; g
1
mn5g

2
mn5gmn

50. ~4.13c!

As above, CTP indices are suppressed inside functional ar-
guments. Equations~4.13! constitute the semiclassical ap-
proximation to the full quantum dynamics for the system
described by the classical actionSG@gmn#1SF@f,gmn#. The
semiclassical field equation~with bare parameters! for gmn is
obtained directly from Eq.~4.13a!,

Gmn1Lgmn1c ~1!Hmn1b ~2!Hmn528pG^Tmn&,
~4.14!

where^Tmn& is the~unrenormalized! energy-momentum ten-
sor defined by

^Tmn&5
2

A2g
S dG@f̂,G,gmn#

dg1
mn D U

f̂15f̂25f̂; g
1
mn5g

2
mn5gmn

.

~4.15!

Equation~4.14! gives the spacetime dynamics; the dynamics
of f̂ andG are given by the mean-field and gap equations

~4.13b! and~4.13c!. In Eq. ~4.15!, the angle brackets denote
an expectation value of the energy-momentum tensor~with
the Heisenberg field operatorFH substituted forf in the
classical theory! with respect to a quantum stateuf& defined
by the boundary conditions on the functional integral in Eq.
~4.11!. In four spacetime dimensions~unrenormalized!
^Tmn& has divergences which can be absorbed by the renor-
malization of G, L, b, and c @2#. This renormalization
should be carried out in the field equations rather than in the
CTP effective action@28#.

The energy-momentum tensor as defined in Eq.~4.15! is
obtained by variation of the 2PI effective actionG, which is
a functional of the metricg6

mn on both the1 and2 time
branches. From Eq.~4.11!, it is possible to derive
G@f̂,G,gmn# as an arbitrary functional ofg1

mn and g2
mn .

However, in practice it is often easier to work in the simpli-
fied case where the metric is fixed to be the same on both the
1 and2 time branches, i.e.,

g1
mn5g2

mn[gmn, ~4.16!

in the computation ofG@f̂,G,gmn#. OnceG@f̂,G,gmn# ~or
some consistent truncation of the full quantum effective ac-
tion for SF) has been computed, it is then straightforward to
determine howG@f̂,G,gmn# should be generalized to the
case of an arbitrary metric onM, for whichg1

mn andg2
mn are

independent. The bare energy-momentum tensor^Tmn& can
then be computed using Eq.~4.15!. Accordingly, in Sec. V,
we fix g1

mn5g2
mn[gmn in the calculation ofG@f̂,G,gmn#.

The semiclassical Einstein equation is a subcase of the
general geometrodynamical field equation~4.14!, obtained
~after renormalization! by setting the renormalized
b5c5L50 ~assuming no cosmological constant! @2#:

Gmn528pG^Tmn&. ~4.17!

Having shown how to derive coupled evolution equations for
the mean field, variance, and metric tensor in semiclassical
gravity, we now turn our attention to the scalar O(N) model
in curved spacetime.

V. O„N… FIELD THEORY IN CURVED SPACETIME

In this section we derive coupled nonperturbative dynami-
cal equations for the mean fieldf̂ and variancêwH

2 & for the
minimally coupled O(N) scalar field theory with quartic self-
interaction and unbroken symmetry. The background space-
time dynamics is given by the semiclassical Einstein equa-
tion. These equations take into consideration the back
reaction of quantum particle production on the mean field,
and quantum fields on the dynamical spacetime, self-
consistently. In our model the Heisenberg-picture quantum
stateuf& is a coherent state for the fieldFH at the initial time
h0, in which the expectation valuêFH& is spatially homo-
geneous. The coherent state is defined with respect to the
adiabatic vacuum constructed via matching of WKB and ex-
act mode functions for the fluctuation field in some
asymptotic region of spacetime.

The O(N) field theory has the property that a systematic
expansion in powers of 1/N yields a nonperturbative reorga-
nization of the diagrammatic hierarchy which preserves the
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Ward identities order by order@54#. Unlike perturbation
theory in the coupling constant, which is an expansion of the
theory around the vacuum configuration, the 1/N expansion
entails an enhancement of the mean field byAN; this corre-
sponds to the opposite limit of strong mean field.~This is
precisely the situation which can arise in chaotic inflation at
the end of the slow-roll period, where the inflaton mean field
amplitude can be as large asMP/3 @50#.! As discussed in
Secs. II and III, the nonequilibrium initial conditions for the
mean field as well as the nonperturbative aspect of the dy-
namics requires use of both closed-time-path and two-
particle-irreducible methods. The 1/N expansion can be
achieved as a further approximation from the two-loop, two-
particle-irreducible truncation of the Schwinger-Dyson equa-
tions.

Although in this study we assume a pure state, the 2PI
formalism is also useful for an open system calculation, in
which the mean field is defined as the trace of the product of
the reduced density matrixr and the Heisenberg field opera-
tor FH , Tr(rFH). When the position-basis matrix element
^f1ur(h0)uf2& can be expressed as a Gaussian functional of
f1 andf2, the nonlocal sourceK can encompass the initial
conditions coming fromr(t0) in a natural way@34#. In order
to incorporate a density matrix whose initial condition is
beyond Gaussian order in the position basis, one can work
with a higher-order truncation of the master effective action
@44#. The leading-order 1/N approximation is equivalent to
assuming a Gaussian initial density matrix; therefore, the 2PI
effective action is adequate for our purposes.

A. Classical action for the O„N… theory

The O(N) field theory consists ofN spinless fields
fW 5$f i%, i51, . . . ,N, with an action which is invariant un-
der theN-dimensional real orthogonal group. The generally
covariant classical action for the O(N) theory ~with quartic
self-interaction! plus gravity is given by

S@f i ,gmn#5SG@gmn#1SF@f i ,gmn#, ~5.1!

where SG@gmn# is defined in Eq.~4.3! for the spacetime
manifold M with metric gmn , and the matter field action
SF@f i ,gmn# is given by

SF@f i ,gmn#52
1

2EMd4xA2gFfW •~h1m21jR!fW

1
l

4N
~fW •fW !2G . ~5.2!

The O(N) inner product is defined by6

fW •fW 5f if jd i j . ~5.3!

In Eq. ~5.2!, l is a ~bare! coupling constant with dimensions
of 1/\, andj is the~bare! dimensionless coupling to gravity.
The classical Euler-Lagrange equations are obtained by
variation of the actionS separately with respect to the metric
tensorgmn and the matter fieldsf i . In the classical action
~5.2!, the O(N) symmetry is unbroken. However, the O(N)
symmetry can be spontaneously broken, for example, by
changingm2 to 2m2 in SF. In the symmetry-breaking case
with tachyonic mass, the stable equilibrium configuration is
found to be

fW •fW 5
2Nm2

l
[v2, ~5.4!

which is a constant. If we wish to study the action for oscil-
lations about the symmetry-broken equilibrium configura-
tion, the O(N) invariance of Eq.~5.2! implies that we can
choose the minimum to be in any direction; we choose it to
be in the first, i.e., (f1)25v2. In terms of the shifted field
s5f12v and the unshifted fields ~the ‘‘pions’’!
p i5f i , i51, . . . ,N21, the action becomes

SF@s,pW ,gmn#52
1

2EMd4xA2gFs~h1m21jR!s

1pW •~h1m21jR!pW 12~m21jR!s2

12Al

2
Ms312Al

2
MpW •pW s

1
l

4
s42

l

2
pW •pW s21

l

4
~pW •pW !2G . ~5.5!

One can show that the effective mass of each of the ‘‘pions’’
pW ~defined as the second derivative of the potential! is zero,
due to Goldstone’s theorem. The theorem holds for the
quantum-corrected effective potential as well@64#. In this
paper we study the unbroken symmetry case, in order to
focus on the parametric amplification of quantum fluctua-
tions; this avoids the additional complications which arise in
spontaneous symmetry breaking, e.g., infrared divergences
@19,65,35#.

B. Quantum generating functional

We aim at deriving the mean-field and gap equations at
two-loop order. The 2PI generating functional for the O(N)
theory in curved spacetime is defined using the closed-time-
path method in terms ofc-number sourcesJa

i and nonlocal
c-number sourcesKab

i j on the CTP manifoldM,

6In our index notation, the Latin lettersi , j ,k,l ,m,n are used to
designate O(N) indices~with index set$1, . . . ,N%), while the Latin
lettersa,b,c,d,e, f are used below to designate CTP indices~with
index set$1,2%).
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Z@Ja
i ,Kab

i j ,gmn#5)
i ,a

E
ctp
Dfa

i expF i\S SF@f,gmn#

1E
M
d4xA2gcabJWa•fW b

1
1

2EMd4xA2gE
M
d4x8A2g8cabccd

3Kac
i j ~x,x8!fb

k~x!fd
l ~x8!d ikd j l D G ,

~5.6!

where the CTP classical action is defined as in Eq.~4.9!,
with f6

i replacingf6 , and the time branch indices ongmn

suppressed. The sourcesJa
i are coupled to the field by the

O(N) vector inner product

JWa•fW b5Ja
i fb

j d i j . ~5.7!

The time branch labels on the metric tensor are suppressed
for simplicity of notation.7 The designation ‘‘CTP’’ on the
functional integral indicates that we sum only over field con-
figurations for fa

i on M which satisfy the condition
f1
i 5f2

i onS!, whereS! is defined in Sec. IV. In addition,
the boundary conditions on the asymptotic past field configu-
rations for f6

i in the functional integral correspond to a
choice of ‘‘in’’ quantum stateuf& for the system. The gen-
erating functional for normalized expectation values is given
by Eq. ~3.2!, with the additional functional dependence of
bothW andZ on gmn understood. As above, we henceforth
omit all indices in functional arguments. In terms of this
functional, we can define the ‘‘classical’’ fieldf̂ and two-
point functionG by functional differentiation,

f̂a
i ~x!5

cab

A2g

dW

dJb
j ~x!

d i j , ~5.8!

f̂a
i ~x!f̂b

j ~x8!1\Gab
i j ~x,x8!

52
cac

A2g

cbd

A2g8

dW

dKcd
lm~x,x8!

d ikd j l . ~5.9!

In the zero-source limitKab
i j 5Ja

i 50, the classical fieldf̂a
i

satisfies

~f̂1
i !J5K505~f̂2

i !J5K505^fuFH
i uf&[f̂ i ~5.10!

as an expectation value of the Heisenberg field operator
FH

i in the quantum stateuf&. The fluctuation field is defined
@as in Eq.~2.14!# in terms of the Heisenberg field operator
FH and the mean fieldf̂ ~times the identity operator!,

wH
i 5FH

i 2f̂ i . ~5.11!

In the same limitJ5K50, the two-point functionGab
i j be-

comes the CTP propagator for the fluctuation field. The four
components of the CTP propagator are~for Ja

i 5Kab
i j 50)

\G11
i j ~x,x8! uJ5K505^fuT„wH

i ~x!wH
j ~x8!…uf&, ~5.12a!

\G22
i j ~x,x8! uJ5K505^fu T̃„wH

i ~x!wH
j ~x8!…uf&, ~5.12b!

\G12
i j ~x,x8!J5K505^fuwH

j ~x8!wH
i ~x!uf&, ~5.12c!

\G21
i j ~x,x8!J5K505^fuwH

i ~x!wH
j ~x8!uf&. ~5.12d!

In the coincidence limitx85x, all four components above
are equivalent to the mean-squared fluctuations~variance!
about the mean fieldf̂ i ,

\G11
i i ~x,x! uJ5K505^fu~wH

i !2uf&5^~wH
i !2&. ~5.13!

Provided that the above equations can be inverted to give
Ja
i andKab

i j in terms off̂a
i andGab

i j , we can define the 2PI
effective action as a double Legendre transform ofW,

G@f̂,G,gmn#5W@J,K,gmn#2E
M
d4xA2gcabJa

i f̂b
j d i j

2
1

2EMd4xA2gE
M
d4x8A2g8cabccd

3Kac
i j ~x,x8!@\Gbd

kl ~x,x8!

1f̂b
k~x!f̂d

l ~x8!#d ikd j l , ~5.14!

whereJa
i andKab

i j above denote the inverses of Eqs.~5.8!
and ~5.9!. From this equation, it is clear that the inverses of
Eqs.~5.8! and~5.9! can be obtained by straightforward func-
tional differentiation ofG,

1

A2g

dG

df̂a
i ~x!

5cabd i j S 2Jb
j ~x!2

1

2
ccdE

M
d4x8A2g8

3@Kbd
jk ~x,x8!1Kdb

jk ~x8,x!#f̂d
l dklD ,

~5.15!

1

A2g

dG

dGab
i j ~x,x8!

1

A2g8
52

\

2
caccbdKbd

jk ~x8,x!.

~5.16!

Performing the usual field shifting involved in the back-
ground field approach@58#, it can be shown that the 2PI
effective action which satisfies Eqs.~5.14!, ~5.15!, and~5.16!
can be written

7The suppression of CTP indices on the metric tensor does not
prevent computation of the expectation value of the stress-energy-
momentum tensor. It will be clear how to reinstate the time branch
indices after the 2PI effective action has been explicitly computed,
e.g., in the large-N approximation.
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G@f̂,G,gmn#5SF@f̂,gmn#2
i\

2
ln det@~Gab

i j !21#

1
i\

2 EMd4xA2gE
M
d4x8A2g8Ai j

ab~x8,x!

3Gab
i j ~x,x8!1G2@f̂,G,gmn#, ~5.17!

where the kernelA is the second functional derivative of the
classical action with respect to the fieldf,

iAi j
ab~x,x8!5

1

A2g
S d2SF

dfa
i ~x!fb

j ~x8!
@f̂,gmn# D 1

A2g8
, ~5.18!

andG2 is a functional to be defined below. EvaluatingAi j
ab

by differentiation of Eq.~5.2!, we find

iAi j
ab~x,x8!52H d i j c

ab@h1m21jR~x!#

1
l

2N
cabcd†@f̂c

k~x!f̂d
l ~x!#d i jdkl

12f̂c
k~x!f̂d

l ~x!d ikd j l ‡J d4~x2x8!
1

A2g8
,

~5.19!

where the four-index symbolcabcd is defined in exact anal-
ogy with Eq.~4.12!. In Eq. ~5.17!, G2 is 2 i\ times the sum
of all two-particle-irreducible vacuum-to-vacuum graphs
with propagatorG and vertices given by the shifted action
SintF , defined by

SintF @w,gmn#5SF@w1f̂,gmn#2SF@f̂,gmn#

2E
M
d4xS dSF

dfa
i @f̂,gmn# Dwa

i

2
1

2EMd4xEMd4x8S d2SF

dfa
i ~x!fb

j ~x8!
@f̂,gmn# D

3wa
i ~x!wb

j ~x8!. ~5.20!

The expansion ofG2 in terms ofG andf̂ is depicted graphi-
cally in Fig. 2. From Eqs.~5.20! and ~5.2!, SintF is easily
evaluated, and we find

SintF @w,gmn#5Sint
F @w1 ,gmn#2Sint

F @w2 ,gmn#, ~5.21!

in terms of an actionSint
F onM defined by

Sint
F @w,gmn#52

l

2NEMd4xA2gF14 ~wW •wW !2

1~f̂W •wW !~wW •wW !G . ~5.22!

The two types of vertices in Fig. 2 are readily apparent in Eq.
~5.22!. The first term corresponds to the vertex which termi-
nates four lines; the second term corresponds to the vertex
which terminates three lines and is proportional tof̂.

The actionG including the full diagrammatic series for
G2 gives the full dynamics forf̂ andG in the O(N) theory.
It is of course not feasible to obtain an exact, closed-form
expression forG2 in this model. Various approximations to
the full 2PI effective action can be obtained by truncating the
diagrammatic expansion forG2. Which approximation is
most appropriate depends on the physical problem under
consideration.

~1! Retaining both the ‘‘setting-sun’’ and the ‘‘double-
bubble’’ diagrams of Fig. 2 corresponds to the two-loop,
two-particle-irreducible approximation@44#. This approxi-
mation contains two-particle scattering through the setting-
sun diagram.

~2! A truncation of G2 retaining only the ‘‘double-
bubble’’ diagram of Fig. 2 yields equations forf̂ and G
which correspond to the time-dependent Hartree-Fock ap-
proximation to the full quantum dynamics@32,36#. This ap-
proximation does not preserve Goldstone’s theorem, but is
energy conserving~in Minkowski space! @36#.

~3! Retaining only the ( trGab
i j )2 piece of the double-

bubble diagram corresponds to taking the leading order 1/N
approximation, shown below in Sec. V C.

~4! A much simpler approximation consists of discarding
G2 altogether. This yields the one-loop approximation,
whose limitations have been extensively documented in the
literature@34,45,44,35#.

Let us first evaluate the 2PI effective action at two loops
@19,41#. This is the most general of the various approxima-
tions described above. Here both two-loop diagrams in Fig. 2
are retained. The 2PI effective action is given by Eq.~5.17!,
and in this approximation,G2 is given by

G2@f̂,G,gmn#5
l\2

4N F2
1

2
cabcdE

M
d4xA2g@Gab

i j ~x,x!Gcd
kl ~x,x!12Gab

ik ~x,x!Gcd
jl ~x,x!#d i jdkl

1
il

N
cabcdca8b8c8d8E

M
d4xA2gE

M
d4x8A2g8f̂a

i ~x!f̂a8
i 8 ~x8!@Gbb8

i i 8 ~x,x8!Gcc8
j j 8 ~x,x8!Gdd8

kk8 ~x,x8!

12Gbd8
i j 8 ~x,x8!Gcc8

jk8 ~x,x8!Gdb8
ki8 ~x,x8!#d jkd j 8k8G . ~5.23!

Functional differentiation ofG with respect tof̂ andG leads to the mean-field and gap equations, respectively. The gap
equation obtained at two loops is given by
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~G21! i j
ab~x,x8!5Ai j

ab~x,x8!1
il\

2N
cabcdd4~x2x8!@d i jdklGcd

kl ~x,x!12Gcd
i j ~x,x!#

1
\l2

2N2 c
acdecbc8d8e8dkk8d l l 8@f̂c

i ~x!f̂c8
j

~x8!Gdd8
kl

~x,x8!Gee8
k8 l 8~x,x8!12f̂c

k~x!f̂c8
l

~x8!Gdd8
k8 l 8~x,x8!Gee8

i j
~x,x8!

12f̂c
i ~x!f̂c8

k
~x8!Gdd8

l j
~x,x8!Gee8

l 8k8~x,x8!12f̂c
k~x!f̂c8

l
~x8!Gdd8

k8 j ~x,x8!Gee8
i l 8 ~x,x8!

12f̂c
k~x!f̂c8

j
~x8!Gdd8

k8 l ~x,x8!Gee8
j l 8 ~x,x8!#. ~5.24!

The mean-field equation is found to be

S ccb~h1m21jR!1cabcd
l

2N
f̂a
i f̂d

j d i j D f̂b
m2

i\2l2

4N2 E
M
d 4x8A2g8Scm~x,x8!

1
\lcabcd

2N
$d i j f̂d

mGab
i j ~x,x!1d j ld i

mf̂d
l @Gab

i j ~x,x!1Gab
ji ~x,x!#%, ~5.25!

in terms of a nonlocal functionScm(x,x8) defined by

Sem~x,x8!5cebcdca8b8c8d8f̂a8
i

~x8!@Gbb8
mi8~x,x8!Gcc8

j j 8 ~x,x8!Gdd8
kk8 ~x,x8!12Gbd8

mj8~x,x8!Gcc8
jk8 ~x,x8!Gb8d

ki8 ~x,x8!

1Gb8b
i 8m~x8,x!Gc8c

j j 8 ~x8,x!Gd8d
kk8 ~x8,x!12Gb8d

i 8 j 8~x8,x!Gc8c
kk8~x8,x!Gd8b

jm
~x8,x!#d jkd j 8k8d i i 8. ~5.26!

Taking the limit f̂1
i 5f̂2

i 5f̂ i in Eqs. ~5.24! and ~5.25!

yields coupled equations for the mean fieldf̂ i and the CTP
propagatorsGab

i j , on the fixed background spacetimegmn.
The equations, as well as the semiclassical Einstein equation
obtained from Eq.~4.13a!, are real and causal, and corre-
spond to expectation values in thef̂15f̂25f̂ limit. The
O(l2) parts of the above equations are nonlocal and dissi-
pative. The nonlocal aspect makes numerical solution diffi-
cult; the dissipative aspect will be addressed in a future pub-
lication @66#. One can regain the perturbative~amplitude!
expansion for the CTP effective action at two loops by ex-
panding the one-loop CTP propagators in Eq.~5.25! in a
functional power series inf̂.

C. Large-N approximation

We now carry out the 1/N expansion to obtain local, co-
variant, nonperturbative mean-field and gap equations for the
O(N) field theory in a general curved spacetime. The 1/N
expansion is a controlled nonperturbative approximation
scheme which can be used to study nonequilibrium quantum
field dynamics in the regime of strong quasiclassical field
amplitude@47,48,36,49#. In the large-N approach, the large-
amplitude quasiclassical field is modeled byN fields, and the
quantum-field-theoretic generating functional is expanded in
powers of 1/N. In this sense the method is a controlled ex-
pansion in a small parameter. Unlike perturbation theory in
the coupling constant, which corresponds to an expansion of
the theory around the vacuum, the large-N approximation
corresponds to an expansion of the field theory about a
strong quasiclassical field configuration@36#. At a particular
order in the 1/N expansion, the approximation yields trun-
cated Schwinger-Dyson equations which are gauge and
renormalization-group invariant, unitary, and~in Minkowski

space! energy conserving@36#. In contrast, the Hartree-Fock
approximation cannot be systematically improved beyond
leading order and~in the case of spontaneous symmetry
breaking! violates Goldstone’s theorem@49#.

Let us implement the leading order large-N approxima-
tion in the two-loop, 2PI mean-field and gap equations~5.25!
and ~5.24! derived above. This amounts to computing the
leading-order part ofG in the limit of largeN, which is
O(N). In the unbroken-symmetry case, this is easily carried
out by scalingf̂ by AN and leavingG unscaled@32#,

f̂a
i ~x!→ANf̂a~x!, ~5.27a!

Gab
i j ~x,x8!→Gab~x,x8!d i j , ~5.27b!

Ai j
ab~x,x8!→Aab~x,x8!d i j , ~5.27c!

wa
i ~x!→wa~x!, ~5.27d!

for all i , j . The Heisenberg field operatorwH
i scales likewa

i in
Eq. ~5.27d!. In the above equations, the connection between
the large-N limit and the strong mean-field limit is clear.

The truncation of the 1/N expansion should be carried out
in the 2PI effective action, where it can be shown that the
three-loop and higher-order diagrams do not contribute~at
leading order in the 1/N expansion!. Let us now also allow
the metricgmn to be specified independently on the1 and
2 time branches. We find, for the classical action,

SF@f,gmn#5SF@f1 ,g1
mn#2SF@f2 ,g2

mn#, ~5.28!

where
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SF@f,gmn#52
N

2EMd4xA2gFf~h1m21jR!f1
l

2
f4G .
~5.29!

The inverse of the one-loop propagator is8

iAab~x,x8!52Fcabc@hc
x1m21jRc~x!#

1
l

2
cabcdf̂c~x!f̂d~x!Gd4~x2x8!

1

A2g8b
.

~5.30!

Finally, for the CTP-2PI effective action at leading order in
the 1/N expansion, we obtain

G@f̂,G,gmn#5SF@f̂,gmn#2
i\N

2
ln det@Gab#

1
i\N

2 E
M
d4xA2gaE

M
d4x8A2g8b

3Aab~x8,x!Gab~x,x8!

2
l\2N

8
cabcdeE

M
d4xA2geGab~x,x!

3Gcd~x,x!1O~1!. ~5.31!

Applying Eq.~4.13b! and taking the limitsf̂15f̂25f̂ and
g1

mn5g2
mn5gmn, we obtain the gap equation forGab at lead-

ing order in the 1/N expansion,

~G21!ab~x,x8!5Âab~x,x8!1
i\l

2
cabcdGcd~x,x!d4~x2x8!

3
1

A2g8
1OS 1ND , ~5.32!

where

i Âab~x,x8![2Fcab@h1m21jR~x!#

1
l

2
cabcdf̂c~x!f̂d~x!Gd4~x2x8!

1

A2g8
.

~5.33!

Similarly, we obtain the mean-field equation forf̂ at leading
order in the 1/N expansion,

S h1m21jR1
l

2
f̂21

\l

2
G11~x,x! D f̂~x!1OS 1ND50,

~5.34!

where we note thatG11(x,x)5Gab(x,x) for all a,b, which
can be seen from Eq.~5.32!; therefore, to get a consistent set
of dynamical equations, we need only consider the11
component of Eq.~5.32!. It should also be noted that
Gab(x,x) is formally divergent. Regularization of the coin-
cidence limit of the two-point function and the energy-
momentum tensor is necessary. Multiplying Eq.~5.32! by
G and integrating over spacetime, we obtain a differential
equation for the11 CTP Green function,

S hx1m21jR~x!1
l

2
f̂2~x!1

\l

2
G11~x,x! DG11~x,x8!

1OS 1ND5d4~x2x8!
2 i

A2g8
, ~5.35!

where boundary conditions must be specified onG11 .
Equations~5.34! and ~5.35! are the covariant evolution

equations for the mean fieldf̂ and the two-point function
G11 at leading order in the 1/N expansion. Following Eq.
~5.13!, we denote the coincidence limit of\G11(x,x) by
^wH

2 &. With the inclusion of the semiclassical gravity field
equation~4.14!, these equations form a consistent, closed set
of dynamical equations for the mean fieldf̂, the time-
ordered fluctuation-field Green functionG11 , and the met-
ric gmn .

The one-loop equations forf̂ andG can be obtained from
the leading-order equations by setting\50 in Eq. ~5.35!,
while leaving the mean-field equation~5.34! unchanged. In
the Hartree approximation, the gap equation is unchanged
from Eq. ~5.32!, and the mean-field equation is obtained
from Eq.~5.34! by changing\→3\ @48#. The principal limi-
tation of the leading-order large-N approximation is that it
neglects the setting-sun diagram which is the lowest-order
contribution to collisional thermalization of the system@34#.
The system therefore does not thermalize at leading order in
1/N, and the approximation breaks down on a time scalet2
which is on the order of the mean free time for binary scat-
tering @49# ~collisional thermalization processes in reheating
the post-inflationary universe is discussed in a subsequent
paper@66#!.

Let us now use Eq.~4.13a! to derive the bare semiclassi-
cal Einstein equation for the O(N) theory at leading order in
1/N. This equation contains two partsdSG/dg1

mn and
dG/dg1

mn . The latter part is related to the bare energy-
momentum tensor̂Tmn& by Eq. ~4.15!. At leading order in
1/N, ^Tmn& is given by a sum of classical and quantum parts,

^Tmn&5Tmn
C 1Tmn

Q 2
lN

8
^wH

2 &2gmn , ~5.36!

where we define the classical part of^Tmn& by

Tmn
C 5NF ~122j!f̂ ;mf̂ ;n1S 2j2

1

2Dgmng
rsf̂ ;rf̂ ;s

22jf̂ ;mnf̂12jgmnf̂hf̂2jGmnf̂2

1
1

2
gmnSm21

l

4
f̂2D f̂2G ~5.37!

8Note that the indexb is not to be summed in the right-hand side
of Eq. ~5.30!, and thec subscript onh andR is a CTP index.
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and the quantum part of^Tmn& by

Tmn
Q 5N\ lim

x8→x

H F ~122j!¹m¹n81S 2j2
1

2Dgmng
rs¹r¹s8

22j¹m¹n12jgmng
rs¹r¹s2jGmn

1
1

2
gmnSm21

l

2
f̂21

\l

4
G11~x,x8! D GG11~x,x8!J

1O~1!. ~5.38!

The above expression forTmn
Q is divergent in four spacetime

dimensions, and needs to be regularized or renormalized.
The energy-momentum tensor in the one-loop approximation
is obtained by neglecting theO(\2) terms in Eq.~5.38!. It
can be shown using Eq.~5.35! that the energy-momentum
tensor at leading order in the 1/N expansion is covariantly
conserved, up to terms of orderO(1) ~next-to-leading order!.
The bare semiclassical Einstein equation is then given~in
terms of^Tmn& shown above! by Eq. ~4.14!.

At this point we formally setN51 since we are not in-
cluding next-to-leading-order diagrams in the 1/N expansion.
This can be envisioned as a simple rescaling of the Planck
mass byAN, since the matter field effective actionG is en-
tirely O(N). We now turn to the issue of renormalization.

D. Renormalization

To renormalize the leading-order large-N CTP effective
action in a general curved spacetime, one can use dimen-
sional regularization@67#, which requires formulating effec-
tive action inn spacetime dimensions. This necessitates the
introduction of a length parameterm21 into the classical
action,l→lm42n, in order for the classical action to have
consistent units. As above, we maintain the restriction
g1

mn5g2
mn5gmn, and we suppress indices inside functional

arguments.
Making a substitution of the gap equation into the

leading-order large-N 2PI effective action, we obtain

G@f̂,gmn#5SF@f̂,gmn#1
i\N

2
tr ln@~G21!ab#1

\2Nlm42n

8

3E
M
dnxA2gcabcd@Gab~x,x!Gcd~x,x!#,

~5.39!

in terms of the CTP propagatorGab(x,x8) which satisfies the
gap equation

~G21!ab5 i „hxc
ab1xab~x!…d~x2x8!

1

A2g8
, ~5.40!

in terms of a four-component ‘‘effective mass’’

xab~x!5~m21jR!cab1
lm42n

2
cabcd@f̂cf̂d1\Gcd~x,x!#.

~5.41!

The divergences in the effective action can be made explicit
with the use of the heat kernelKb

a(x,y;s) @68,67,69#. Let us
defineKb

a(x,y,s) which satisfies

]Kb
a~x,y;s!

]s
1E

M
dnzA2gzccd~G

21!ac~x,z!Kb
d~z,y;s!50,

~5.42!

with boundary conditions

Kb
a~x,y;0!5db

ad~x2y!
1

A2gy
~5.43!

at s50 @59#. From Eqs.~5.42! and ~5.39! it follows that
K2

15K1
250 for all x, y, and s, and thatK1

1 (K2
2) is a

functional of f̂1 (f̂2) only. The CTP effective action can
then be expressed as

G@f̂,gmn#5G IO
1 @f̂1 ,gmn#2G IO

2 @f̂2 ,gmn#, ~5.44!

in terms of a functionalG IO onM defined by

G IO
1 @f̂1 ,gmn#5SF@f̂1 ,gmn#2

i\N

2 E
M
dnxA2g

3E
0

`ds

s
K1

1~x,x;s!1
\2Nlm42n

8

3E
M
dnxA2gF E

0

`

dsK1
1~x,x;s!G2,

~5.45!

and similarly for G IO
2 . It follows from Eq. ~5.42! that

K1
1(x,x;s)@f̂1# is exactly the same functional off̂1 as

K2
2(x,x;s)@f̂2# is of f̂2 ; we denote it byK(x,x;s)@f̂#,

wheref̂ is a function onM .
The divergences in the effective action arise in the small-

s part of the integrations, so that in the equation

E
0

`ds

s
K~x,x;s!5E

0

s0ds

s
K~x,x;s!1E

s0

`ds

s
K~x,x;s! ~5.46!

only the first term on the right-hand side is divergent. Using
thes→01 asymptotic expansion forK(x,x;s) @59#, one has
~for a scalar field, such as the unbroken-symmetry large-N
limit of the O(N) model!

K~x,x;s!;~4ps!2n/2(
m50

`

smam~x!, ~5.47!

where thean(x) are the well-known ‘‘Hamidew coeffi-
cients’’ made up of scalar invariants of the spacetime curva-
ture @1,68#. The divergences then show up as poles in
1/(n24) after thes integrations are performed. They have
been evaluated for thelF4 theory in a general spacetime by
many authors~see, e.g.,@59,70,71#! and in the large-N limit
of the O(N) model@72#. At leading order in the 1/N expan-
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sion, the renormalization ofl, j, m, G, L, b, andc is re-
quired, but no field amplitude renormalization is required.
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