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In a solvable model of two-dimensional SU(N) (N→`) gauge fields interacting with matter in both adjoint
and fundamental representations we investigate the nature of the phase transition separating the strong and
weak coupling regions of the phase diagram. By interpreting the largeN solution of the model in terms of
SU(N) representations it is shown that the strong coupling phase corresponds to a region where a gap occurs
in the spectrum of irreducible representations. We identify a gauge-invariant order parameter for the general-
ized confinement-deconfinement transition and give a physical meaning to each phase in terms of the interac-
tion of a pair of test charges.@S0556-2821~97!05822-0#

PACS number~s!: 11.15.Pg, 12.38.Aw

I. INTRODUCTION

The study of systems where interactions are mediated by
non-Abelian gauge fields is of direct relevance to the physi-
cally interesting case of quantum chromodynamics~QCD!.
At high temperature or density these systems are expected to
undergo a phase transition where the character of the effec-
tive degrees of freedom changes dramatically. For example,
in the low temperature phase of four-dimensional QCD,
quarks and gluons carrying color charge are not observed but
rather confined into composite baryons and mesons. It is ex-
pected, and can be shown in numerical simulations on the
lattice, that at sufficiently high temperatures this confinement
is relaxed and the fundamental degrees of freedom become
mobile in a quark-gluon plasma. Quantifying the differences
between these phases has been a subject of study for some
time now @1# and is adequately understood only in the case
of pure gluodynamics without quarks. Here the Polyakov
loop operator@2#

^Trg~x!&5K TrP expS i E
0

1/T

A0~x,t!dt D L ~1.1!

provides an effective order parameter@3# for the transition
from the confined to the deconfined phase by testing to see if
the symmetries of the action are realized faithfully. As we
will show it is useful to consider the trace of the group ele-
mentg in group-theoretic terms as defining a group charac-
ter. Takingg in different irreducible representations will al-
low us to define unambiguously the strong and weak
coupling regimes of a two-dimensional model even in the
presence of fundamental matter.

Solvable models are often of use in developing new ideas
and testing hypotheses. Here we will use the model of the
non-Abelian Coulomb gas in one space and one time dimen-
sion which has a nontrivial phase structure qualitatively
similar to what we expect in four-dimensional QCD. In par-
ticular we will discuss a finite temperature model of static
adjoint and fundamental representation charges interacting
through SU(N) gauge fields in the limitN→` @4#. It is most
conveniently presented as a unitary matrix model and its
solution can be found explicitly in the largeN limit by cal-
culating the elementg0 of the gauge group which dominates
a saddle-point approximation of the partition function. The

phase structure of the model, as we will show, consists of
two general regions, one which we will define as weak cou-
pling whereg0;1 and one of strong coupling withg0 away
from the identity element. It was noted@4# that the behavior
in the system of Trg0

n is markedly different in each phase
when varying the parametern. Some effort was made to
interpret these characteristics physically and using the lan-
guage of group characters we complete that task here.

Even though two-dimensional Yang-Mills is a dynami-
cally trivial theory, as the rank of the symmetry group is
taken to infinity, group theory can drive phase transitions.
Transitions of this type were first noted long ago in the lat-
tice theory @5# but these are now considered to be lattice
artifacts. More recently such phase transitions have been
noted in the continuum with the Douglas-Kazakov transition
@6# on the sphere and the related transition on the cylinder@7#
being prime examples. In these cases the theory is solved for
large rank symmetry group in terms of a single irreducible
representation which saturates the evaluation of the partition
function in a saddle-point approximation. The phase transi-
tion corresponds to a point where the distribution of occupa-
tion numbers for the rows of the associated Young table
develops a gap@6,7#.

In the present case under consideration the situation is
somewhat different. The saddle point is not determined in
general by a single irreducible representation of the gauge
group but by a linear combination of irreducible representa-
tions. This feature is also shared by Abelian and non-Abelian
Coulomb gases in two dimensions with U(N) and SU(N)
finite rank gauge groups@8# and can be generalized to the
case of any compact Lie gauge group. In each of these cases
the state vector of the system,C, is a class function and
therefore can be represented by a linear combination of char-
acters,xR , of the irreducible representationsR of the gauge
group with coefficientsaR that depend on the parameters of
the model~temperature, pressure, gauge coupling constant,
etc.!

C@g~x!#5(
R

aRxR„g~x!…. ~1.2!

Consequently we see that there are two different points of
view to take when solving these models in two dimensions.
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One is to find a dominant configuration of the gauge group
g0 and the other is to find the dominant linear combination of
irreducible representations,C. The main objective here is to
quantify the connection between these two views and use it
to characterize the differences between the strong and weak
coupling regimes of the non-Abelian Coulomb gas. As we
will see, the characters of the gauge group are completely
determined by traces of powers of the gauge matrices, Trgn.
In the two-dimensional model under consideration we will
show that the vanishing of particular coefficientsaR provides
a convenient way to characterize the different phases of the
model. Clearly, if a particularaR is vanishing, then the sys-
tem does not have excitations which can effectively screen a
charge in an irreducible representationR interacting with its
conjugateR̄. In this way we will be able to identify an order
parameter for the transition from strong to weak coupling
and give a physical definition of the confinement-
deconfinement transition with fundamental matter present.

The layout of this paper is as follows: First we present a
short description of the non-Abelian Coulomb gas model
which will be used as a testbed for our program of using
group characters to describe the different phases of a system
of interacting gauge fields. In particular we will show that
this model possesses an interesting phase structure. We fol-
low with an explicit demonstration of the connection be-
tween a gauge group elementg and the characters of the
irreducible representations of the gauge group. Applying
these general results to the case of the model at hand we will
show that the spectrum of irreducible representations pro-
vides a clear way to distinguish between phases of the model
with fundamental matter in much the same way the Polyakov
loop operator does in pure gluodynamics.

II. REVIEW OF THE NON-ABELIAN COULOMB GAS

The model on which we will base our investigation is that
of the non-Abelian Coulomb gas in two dimensions as pre-
viously studied in@4#. This model, while lacking both dy-
namical gauge and matter degrees of freedom, exhibits many
of the features expected@9# in higher dimensional systems.
For instance in SU(N) gluodynamics forN>3 we expect a
first order deconfinement transition with or without adjoint
matter. As one adds matter in the fundamental representation
it is expected that the latent heat associated with this transi-
tion drops until the transition becomes continuous or is com-
pletely washed out. As we will show in this section, the
two-dimensional non-Abelian Coulomb gas shares this be-
havior and is explicitly solvable in the largeN limit. The fact
that we consider the limit where the rank of the symmetry
group is taken to infinity is necessary to generate a phase
transition in this simple model.

We will now outline the details of this model which are
relevant to the phase structure and our interpretation of it.
Beginning with the canonical quantization of

(111)-dimensional Yang-Mills theory with gauge coupling
e at finite temperatureT it can be shown@10,11,4# that the
grand partition function for a system of interacting static
color charges is that of a gauged principal chiral model:

Z@l,T#5E @dA#@dg#expF2E dxS N

2g
Tru¹g1 i @A,g#u2

2luTrgu222Nk Re TrgD G . ~2.1!

Here the integration over gauge fieldsA effectively enforces
Gauss’ law as one integrates over all elements of the gauge
group with the Haar measure@dg#. The fugacities of the
adjoint and fundamental charges are given by the parameters
l andNk, respectively. Since we consider the matrix-valued
fields A andg to be taken in the fundamental representation
of SU(N), the largeN limit will lead directly to the familiar
situation of matrix models with largeN3N matrices. In or-
der to keep all terms in the action of Eq.~2.1! at leadingN2

order in this limit we will restrict parameters of the system
such thatg[2T/e2N, l, andk are each of order 1.

For the discussion of a confinement-deconfinement phase
transition the most important aspect of the action in Eq.~2.1!
is a global symmetryS@A,g#5S@A,zg# when the fundamen-
tal charge fugacityk vanishes. Herez is a constant element
from the center of the gauge group, which for U(N) is U~1!
and for SU(N) is ZN . It is this symmetry and its~ther-
mo!dynamical breaking that lead to the deconfinement phase
transition in this model. IfkÞ0, the question of what rem-
nants of this symmetry persist is one we will answer in the
next sections.

Additionally, there is a gauge invariance that can be used
to diagonalize the matricesgi j (x)5eia i (x)d i j . The density of
eigenvaluesr(u,x)5(1/N) ( i 51

N d„u2a i(x)… corresponding
to the large-N saddle-point evaluation of Eq.~2.1! now com-
pletely characterizes the properties of the system. Our goal is
to find this distribution of eigenvalues. Without loss of gen-
erality we can consider the Fourier expansion

r~u,x!5
1

2p
1

1

2p (
nÞ0

cn~x!e2 inu, cn~x!* 5c2n~x!.

~2.2!

The configurations of the eigenvalue density~2.2! that satu-
rate Eq.~2.1! at largeN can be found via the collective field
theory approach@12,10#. The method is essentially based on
the relation between matrix quantum mechanics and nonrel-
ativistic fermions@13#. Leaving the details to@4#, it can be
shown that a solution of the saddle-point evaluation of Eq.
~2.1! is given by

r0~u!5HA 8

gp2 AE12~lc11k!cosu where r is real,

0 otherwise.

~2.3!
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The constant of integration,E, has physical interpretation as
the Fermi energy of a collection ofN fermions@13# on the
circle subject to a periodic potential. It is fixed by requiring
the eigenvalue distribution to have unit normalization. Fur-
thermore, since the potential due to adjoint charges is nonlo-
cal in eigenvalue space, the Fourier momentc1 @see Eq.
~2.2!# must be self-consistently determined@14#:

c15E dur0~u!cosu. ~2.4!

This pair of conditions is most conveniently analyzed by
introducing a new parameterm5E/2(lc11k) and the inte-
grals over the positive support ofm1cosu:

I n~m!5
2

p E du cosnuAm1cosu. ~2.5!

In terms ofm, the solution of the normalization and moment
conditions is given by

c15
I 1~m!

I 0~m!
~2.6!

and

k

g
5

1

4I 0~m!2 2
l

g

I 1~m!

I 0~m!
. ~2.7!

This last relation gives a family of lines in the (l/g,k/g)
plane parametrized bym. As is shown in Fig. 1 this family
overlaps itself for lower densities of fundamental charges,
k/g, signaling the fact that there are multiple solutions to the
equations of motion in this region of the phase diagram.
Considering the free energy one can show@4# that for lower
densities of adjoint charges the stable solution hasm.1
while at higher adjoint densities the stable solution hasm,1.
In the intermediate regime there is a first order phase transi-
tion. As the density of fundamental charges is increased the
first order transition is smoothed out and a third order phase
transition persists along the linem51.

The parameterm is now seen to be useful for two differ-
ent reasons. First it characterizes the general structure of the
phase diagram~Fig. 2! where the ‘‘strong coupling’’ regime
is the region withm.1 and the ‘‘weak coupling’’ regime

hasm,1. As well, and of more importance for our analysis,
we find that the expectation values of traces of powers of the
group elementg are given as a function of the single param-
eterm:

^Trgn/N&5cn5
I n~m!

I 0~m!
. ~2.8!

Consequently, it makes sense for our purposes to redefine the
eigenvalue distribution in terms ofm:

r0~u,m!5
2

pI 0~m!
Am1cosu. ~2.9!

In the next section we will use this definition and its connec-
tion to the dominant configuration of the gauge element to
analyze the phase diagram in terms of group theory.

III. ORDER PARAMETERS AND SOME GROUP THEORY

As is known, in the case of pure gluodynamics, the real-
ization of the center symmetry of the gauge group governs
confinement@2#. The Polyakov loop operator Trg(x), which
is related to the free energy2T log^Trg(x)Trg†(0)& of a
conjugate pair of static, external fundamental charges sepa-
rated by a distancex, serves as an order parameter@3# to test
confinement. Since Trg(x) transforms under the center as
Trg(x)→z Trg(x), the expectation value of the Polyakov
loop operator must average to zero if the center symmetry is
preserved. Physically this suggests that an infinite amount of
energy is required to introduce a single fundamental test
charge into the system. The presence of a gas of fundamental
charges (kÞ0) changes this situation though by explicitly
breaking the center symmetry. Consequently we lose the
Polyakov loop operator as an order parameter for phase tran-
sitions in the system. In this section we introduce a suitable
generalization of the Polyakov loop operator which will al-
low us to identify a new order parameter.

As seen in the previous section, the solution of the non-
Abelian Coulomb gas with adjoint and fundamental repre-

FIG. 1. Plot of the lines~2.7! for m ranging from 0.4~upper
right corner! to 75 ~line at the extreme left!. The region of overlap-
ping lines corresponds to a region of first order phase transition.

FIG. 2. Schematic picture of the phase diagram. The dotted
curve marks the first order part of the critical line. The solid curves
above and below it are the boundaries of the area with two possible
phases. They join at a point which shows second order behavior.
For largerk/g we find a third order line (m51) marked by a solid
line.
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sentation charges is completely characterized by a Fourier
sum of the tracescn5^Trgn/N&, the higher winding Polya-
kov loops. As noted in@4# the character of these traces
changes between the strong and weak coupling regimes. In
particular, in the strong coupling (m.1) phasecn is damped
exponentially withn while in the weak coupling (m,1)
phase the damping follows a power law behavior. Now we
will reconsider this behavior in terms of group theory.

Since the matrixg is an element of the special unitary
group, its trace in an irreducible representationR defines the
group character for that representation:

xR~g![TrRg. ~3.1!

For the N-dimensional fundamental representation of
SU(N), F, the group character is just the Polyakov loop
operator described above since we are considering group el-
ements to be taken in the lowest fundamental representation:

xF~g!5Trg. ~3.2!

Further simple examples are the symmetric (S) and antisym-
metric (A) combinations of a pair of fundamentals where we
have

xS~g!5 1
2 @~Trg!21Trg2#, xA~g!5 1

2 @~Trg!22Trg2#.
~3.3!

A general relation between characters and the group ele-
ments is given by the Weyl formula but is not necessary for
the following. A complete discussion can be found in stan-
dard references~see@15#, for example!.

The main idea is that the eigenvalues of the group matri-
ces, which are the only relevant dynamical variables in the
grand partition function~2.1!, are completely determined by
the N quantities$Trgn%, n51, . . . ,N. In turn these traces
form an algebraic basis equivalent to the characters of theN
fundamental~completely antisymmetric! irreducible repre-
sentations of SU(N) ~including the trivial representation!.
Here we will explicitly demonstrate the relationship between
the basis of traces and the basis of group characters. Ulti-
mately it is the group theoretic variables which we will use
to characterize the phases of the model~2.1!.

The standard basis for general functions~of finite degree!
of the eigenvalues of a matrix is the set of elementary sym-
metric functions$ar%. In terms of the eigenvaluesl j5eiu j of
the group elementg they are given by

a15(
j

l j ,

a25(
j ,k

l jlk ,

a35 (
j ,k, l

l jlkl l ,

•

•

•

, ~3.4!

aN5) l j5detg51 ~3.5!

with ar[0 for r .N. The relationship of the symmetric
functions$ar% to the traces of the group elements,Sn5Trgn,
is given @16# by the determinant

ak5
1

k! U S1 1 0 •••

S2 S1 2 0 •••

S3 S2 S1 3 0 •••

•

•

•

•

•

•

•

•

•

•

•

•

0

Sk21 Sk22 Sk23 ••• S2 S1 k21

Sk Sk21 Sk22 ••• S3 S2 S1

U .

~3.6!

Most importantly, it can be shown that the elementary sym-
metric functions are nothing more than the characters of the
fundamental representations for the unitary group@16,17#.
That is, for the fundamental representation which is the an-
tisymmetric combination ofk, N-dimensional representa-
tions,xk(g)5ak .

The determinant~3.6! can be evaluated@18# in terms of a
multinomial expansion most compactly stated in terms of a
generating function

xk~g!5
~21!k

k!

dk

dzk expF2 (
n51

`
Trgn

n
znGU

z50

. ~3.7!

For our purposes though it is useful to convert to a contour
integral about the origin:

xk~g!5
~21!k

2p i R dz

zk11 expF2 (
n51

`
Trgn

n
znG . ~3.8!

These last two expressions explicitly demonstrate the rela-
tionship between the group elementg and thekth fundamen-
tal representation of the gauge group and are completely gen-
eral results.

With these relations we see that there is a direct connec-
tion between the gauge group elementg and the irreducible
~fundamental! representations of the gauge group. In particu-
lar, in the previous section we have seen that in the largeN
solution of the non-Abelian Coulomb gas a certain configu-
ration of the gauge matrixg0 saturated the evaluation of the
partition function~2.1!. Now it is natural to ask what is the
configuration of irreducible representations corresponding to
the dominantg0 . This corresponds to evaluating the expec-
tation ^xk(g)& in the background of the non-Abelian gas. In
principle this involves calculating expectations of the form
^Trgn1•••Trgnr&, but because of the factorization of gauge-
invariant objects in the limitN→`, this reduces to a product
of expectations,̂Trgn1&•••^Trgnr&. Consequentlŷxk(g)& is
determined by replacing Trgn by its expectation value in Eq.
~3.8!. Of course expectation values of the group element
traces are intimately related to the eigenvalue densityr~u,m!
@see Eq.~2.2!#; hence, after performing an infinite sum, we
obtain
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^xa&@r~u,m!#[
~21!aN

2p i R dz

z

3expFN

2 E dur~u,m!

3 logS 11z222z cosu

z2a D G . ~3.9!

Note that we have defined a new real parametera5k/N on
the unit interval that effectively labels the fundamental rep-
resentations in the largeN limit. Of course Eq.~3.9! now
depends on a continuous variable and is of a slightly differ-
ent functional form than the discrete case^xk&. In the re-
mainder of this discussion we will consider only the charac-
ter parametrized bya as defined in Eq.~3.9!.

IV. CALCULATION OF THE EXPECTATION
OF FUNDAMENTALS

In this section we will concentrate on calculating^xa&
with eigenvalue density~2.9! for the non-Abelian Coulomb
gas. This calculation will give a clear picture of the group-
theoretic excitations present in different regions of the phase
diagram and consequently allow us to define an order param-
eter for the deconfinement transition even in the presence of
fundamental matter.

Since explicit evaluation of Eq.~3.9! is difficult, we begin
with some special limiting cases. Asm→21 the support of
the eigenvalue distribution~2.9! vanishes atu50. The dis-
tribution does not vanish though as it retains unit normaliza-
tion and effectively becomes a delta functiond~u!. Conse-
quently we find the gauge matrixg is just the identity at
m521, and hence

^xa&5 lim
N→`

S N
aND52NA 2

Np
e22N~a21/2!2

. ~4.1!

In this limit we find that the distribution of characters is
symmetric abouta51/2 as one would expect in a system
where the total color charge is vanishing. As well in this
limit ^xa& is nonvanishing and all fundamental representa-
tions are present in the largeN background solution of the
model. As we will see, this result is generic in the weak
coupling phasem,1.

In the opposite limit, asm→`, it can be shown that the
eigenvalue distribution~2.9! approaches a constant value
r51/2p with the eigenvalues of the group elementg be-
coming uniformly distributed on the unit circle. Since expec-
tation values of the traces of powers of the gauge matrix are
essentially Fourier transforms of the eigenvalue distribution,
it is easy to see that̂Trgn&→0 in this limit and

^xa&→d0,a . ~4.2!

This limit corresponds to the extreme strong coupling phase
of the model where the Polyakov loop operator
(^Trg&;^x1/N&) has vanishing expectation value and the
standard analysis would point to a phase where color charges
are strictly confined into hadronlike structures.

In general the integral~3.9! can be evaluated by saddle-
point methods in the largeN limit in which we are interested.
The relevant action in this limit is

S~a,m,z!5E dur~u,m!logS 11z222z cosu

z2a D . ~4.3!

Solving the stationarity conditiondS/dzuz0
50 for a in terms

of z0 we find that the saddle-point condition for the largeN
behavior of the integral~3.9! is given by the relationship

a5E dur~u,m!
z0~z02cosu!

11z0
222z0cosu

. ~4.4!

Since a is a real parameter restricted to the unit interval
@0,1#, it can be shown that the saddle-point value of the pa-
rameterz0 is real. Further, forz0.1 and 0,z0,1, Eq.~4.4!
returns values ofa.1 anda,0, respectively. Consequently
we need only consider real, negative values of the parameter
z0 .

We now turn to an examination of the saddle-point ap-
proximation of Eq.~3.9! for different regions of the phase
diagram of the model at hand beginning with the weak cou-
pling phase,m,1. In this case the support of the eigenvalue
distribution ~2.9! is bounded away fromu56p and hence
the denominator in Eq.~4.4! is nonsingular for all values of
z0 . Consequently, in this regimea varies smoothly and
monotonically withz0 and the relation~4.4! can in principle
be inverted to obtainz0(a). With this information, the large
N asymptotic form of the expectation value of the characters
^xa& can be determined by standard saddle-point methods. In
Fig. 3 we show a numerically calculated example ofa as a
function of z0 for m50.5. For this same case we show a
schematic diagram of the magnitude of the expectation value
u^xa&u as a function ofa in Fig. 4. In particular we see that
the system has excitations in all irreducible representations.

For m.1 the situation is somewhat different. Now the
support of the eigenvalue distribution~2.9! is the full interval
uP@2p,p#, and the denominator of Eq.~4.4! causes
nonanalytic behavior to appear. As one increasesm through
unity the saddle-point relation fora shows this nonanalytic
behavior as a discontinuity atz0521 ~see Fig. 5!. The result
is that an open interval ofa values centered ona51/2 is
mapped into this discontinuity when the saddle-point relation
~4.4! is inverted. Since this discontinuity occurs in the

FIG. 3. Saddle-point relation form50.5.
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saddle-point relation, it is not surprising to find that the cur-
vature associated with the Gaussian integration of the saddle-
point approximation is divergent, effectively forcing the in-
tegral to vanish. In terms of the expectation values of
different representations in the background of the non-
Abelian Coulomb gas, we see that an open interval of fun-
damental representations centered abouta51/2 is missing
from the spectrum in the largeN limit. In Fig. 6 we show an
example of the behavior of the expectation valueu^xa&u with
a for m51.2.

The main outcome of this analysis is that the expectation
value of the central fundamental character^x1/2& is vanishing
if and only if m>1. Consequently it may be considered an
order parameter distinguishing between the strong and weak
coupling phases of the model. Physically the situation is
clear. In the weak coupling phase the system can effectively
screen the interactions of any pair of charges regardless of
their representation since the system contains excitations in
all representations of the gauge group. We conclude that the
system looks much like a quark-gluon plasma where charges
are effectively deconfined. At the phase transition line non-
Abelian flux in thea51/2 fundamental representation be-
comes too energetically costly to produce and the system can
no longer screen the interaction between a pair ofa51/2
fundamental charges. In this strong coupling phase the inter-
acting pair sees a linear confining potential~though some-
what reduced as compared to the empty background!. As one
further increasesm the gap in the spectrum of fundamental
representations becomes larger and in the extreme limit
m5` the system contains only excitations in the trivial rep-
resentation. This is precisely the confining phase of pure
gluodynamics.

V. DISCUSSION

As we have shown, the generalization of the concept of
the Polyakov loop operator to probe the group-theoretic ex-
citations of a system of non-Abelian electric charges pro-
vides a convenient and unified way to quantify the physics of
phase transitions. While the details of our presentation have
centered on a two-dimensional model with an infinite num-
ber of colors, the general concepts developed here should be
applicable to interacting gauge systems in arbitrary dimen-
sions for both infinite and finite rank (N) gauge groups. Un-
fortunately we are unable to test these ideas in a solvable
two-dimensional model as for finiteN there is no phase tran-

sition and the system is always in the deconfined phase
where all representations are present.

One immediate problem with using the fundamental rep-
resentations to characterize the phase diagram arises when
considering finite, odd rank groups. For example in the
physically relevant case of SU~3!, there are only two funda-
mental representationsk51,2 and the order parameter^x1/2&
would naively denote thek53/2 fundamental representation.
In terms of group theory this fractional representation is non-
sense and strongly suggests that direct application of the
largeN results is not prudent. Even worse is the fact that a
finite number of representations are not enough degrees of
freedom to describe the change in character of the group
elements fromg;1 in the weak coupling phase tog away
from the identity in the strong coupling phase. Alternatively,
we are free to use any independent set of irreducible repre-
sentations to characterize the system. In particular the com-
pletely symmetric representations provide an equivalent al-
gebraic basis to the fundamentals we have considered here.
The strength of this approach is that there is no restriction on
the number of symmetric representations for the unitary
groups contrasting theN21 fundamental representations for
SU(N). Unfortunately, repeating the calculations of Sec. IV
with symmetric representations one discovers that there is no
strong signal for the phase transition and in particular one
cannot define an order parameter.

Despite the apparent difficulties with applying the current
results to finite rank gauge theories, we feel that the general
concept of characterizing the phases of a gauge theory

FIG. 4. Schematic diagram ofu^xa&u vs a for m50.5. FIG. 5. Saddle-point relation form51.2.

FIG. 6. Schematic diagram ofu^xa&u vs a for m51.2.
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coupled to matter by the spectrum of higher irreducible rep-
resentations is useful. In particular it would be interesting to
investigate these ideas in the setting of lattice calculations of
gauge theories that are known to possess phase transitions. In
fact, for the case of SU~2! gauge theory, theJ51/2, 1, and
3/2 Polyakov loops have been calculated on the lattice@19#
~see also@20#!. It would certainly be very instructive to have
more complete information about the higher representation

Polyakov loops in this simple model both with and without
fundamental representation matter.
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