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Order parameter for confinement in large N gauge theories with fundamental matter
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In a solvable model of two-dimensional SN (N—<) gauge fields interacting with matter in both adjoint
and fundamental representations we investigate the nature of the phase transition separating the strong and
weak coupling regions of the phase diagram. By interpreting the Idrgelution of the model in terms of
SU(N) representations it is shown that the strong coupling phase corresponds to a region where a gap occurs
in the spectrum of irreducible representations. We identify a gauge-invariant order parameter for the general-
ized confinement-deconfinement transition and give a physical meaning to each phase in terms of the interac-
tion of a pair of test chargefS0556-282(97)05822-0

PACS numbsdis): 11.15.Pg, 12.38.Aw

I. INTRODUCTION phase structure of the model, as we will show, consists of
two general regions, one which we will define as weak cou-
The study of systems where interactions are mediated bpling wheregy,~1 and one of strong coupling witly, away
non-Abelian gauge fields is of direct relevance to the physifrom the identity element. It was noté¢d] that the behavior
cally interesting case of quantum chromodynamiQ<D). in the system of Tgg is markedly different in each phase
At high temperature or density these systems are expected tghen varying the parameter. Some effort was made to
undergo a phase transition where the character of the effeinterpret these characteristics physically and using the lan-
tive degrees of freedom changes dramatically. For exampleyuage of group characters we complete that task here.
in the low temperature phase of four-dimensional QCD, Even though two-dimensional Yang-Mills is a dynami-
quarks and gluons carrying color charge are not observed bughlly trivial theory, as the rank of the symmetry group is
rather confined into composite baryons and mesons. It is exaken to infinity, group theory can drive phase transitions.
pected, and can be shown in numerical simulations on th&ransitions of this type were first noted long ago in the lat-
lattice, that at sufficiently high temperatures this confinementice theory[5] but these are now considered to be lattice
is relaxed and the fundamental degrees of freedom becomatifacts. More recently such phase transitions have been
mobile in a quark-gluon plasma. Quantifying the differencesnoted in the continuum with the Douglas-Kazakov transition
between these phases has been a subject of study for sofiéd on the sphere and the related transition on the cylifidler
time now[1] and is adequately understood only in the casebeing prime examples. In these cases the theory is solved for
of pure gluodynamics without quarks. Here the Polyakoviarge rank symmetry group in terms of a single irreducible
loop operatoif 2] representation which saturates the evaluation of the partition
T function in a saddle-point approximation. The phase transi-
(Trg(x))= < TrP ex;( i f AO(X,T)dT) > (1.2 tion corresponds to a point where the distribution of occupa-
0 tion numbers for the rows of the associated Young table
provides an effective order parame{&] for the transition develops a gap6,7].
from the confined to the deconfined phase by testing to see if In the present case under consideration the situation is
the symmetries of the action are realized faithfully. As wesomewhat different. The saddle point is not determined in
will show it is useful to consider the trace of the group ele-general by a single irreducible representation of the gauge
mentg in group-theoretic terms as defining a group characgroup but by a linear combination of irreducible representa-
ter. Takingg in different irreducible representations will al- tions. This feature is also shared by Abelian and non-Abelian
low us to define unambiguously the strong and weakCoulomb gases in two dimensions with N)( and SU{N)
coupling regimes of a two-dimensional model even in thefinite rank gauge groupf8] and can be generalized to the
presence of fundamental matter. case of any compact Lie gauge group. In each of these cases
Solvable models are often of use in developing new ideathe state vector of the systerd], is a class function and
and testing hypotheses. Here we will use the model of théherefore can be represented by a linear combination of char-
non-Abelian Coulomb gas in one space and one time dimeracters,yr, of the irreducible representatioRsof the gauge
sion which has a nontrivial phase structure qualitativelygroup with coefficient@ that depend on the parameters of
similar to what we expect in four-dimensional QCD. In par- the model(temperature, pressure, gauge coupling constant,
ticular we will discuss a finite temperature model of staticetc)
adjoint and fundamental representation charges interacting
through SUN) gauge fields in the limiN— o _[4]. Itis most Pg(x)]= > arxr(g(X)). (1.2)
conveniently presented as a unitary matrix model and its R
solution can be found explicitly in the larde limit by cal-
culating the elemerd, of the gauge group which dominates = Consequently we see that there are two different points of
a saddle-point approximation of the partition function. Theview to take when solving these models in two dimensions.
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One is to find a dominant configuration of the gauge groug1+ 1)-dimensional Yang-Mills theory with gauge coupling
0o and the other is to find the dominant linear combination ofe at finite temperaturd it can be showrj10,11,4 that the
irreducible representation¥;. The main objective here is to grand partition function for a system of interacting static
guantify the connection between these two views and use ttolor charges is that of a gauged principal chiral model:

to characterize the differences between the strong and weak
coupling regimes of the non-Abelian Coulomb gas. As we N
will see, the characters of the gauge group are (_:ompletelz[)\,T]ZJ' [dA][dg]ex;{—J dx(— T Vg+i[A,g]|?
determined by traces of powers of the gauge matricas,. Tr 2y

In the two-dimensional model under consideration we will

show that the vanishing of particular coefficieatsprovides —\|Trg|?>— 2N« Re Trg) }
a convenient way to characterize the different phases of the

model. Clearly, if a particulaag is vanishing, then the sys-

tem does not have excitations which can effectively screen fere the integration over gauge fieldseffectively enforces
charge in_an irreducible representati@rinteracting with its  Gauss’ law as one integrates over all elements of the gauge
conjugateR. In this way we will be able to identify an order group with the Haar measufalg]. The fugacities of the
parameter for the transition from strong to weak couplingadjoint and fundamental charges are given by the parameters
and give a physical definition of the confinement-\ andN«, respectively. Since we consider the matrix-valued
deconfinement transition with fundamental matter present. fields A andg to be taken in the fundamental representation
The layout of this paper is as follows: First we present agf SU(N), the largeN limit will lead directly to the familiar
short description of the non-Abelian Coulomb gas modekituation of matrix models with larghi X N matrices. In or-
which will be used as a testbed for our program of usingder to keep all terms in the action of E@.1) at leadingN?
group characters to describe the different phases of a systegider in this limit we will restrict parameters of the system
of interacting gauge fields. In particular we will show that g;ch thaty=2T/e?N, \, andk are each of order 1.
this model possesses an interesting phase structure. We fol- For the discussion of a confinement-deconfinement phase
low with an eXpIiCit demonstration of the connection be- transition the most important aspect of the action in (Eq]_)
tween a gauge group elemegtand the characters of the jg a global symmetr[ A,g]=S A,zg] when the fundamen-
irreducible representations of the gauge group. Applyingg| charge fugacity vanishes. Here is a constant element
these general results to the case of the model at hand we W{lom the center of the gauge group, which forN)(is U(1)
show that the spectrum of irreducible representations proyng for SUN) is Zy. It is this symmetry and itgther-

vides a clear way to distinguish between phases of the modgho)dynamical breaking that lead to the deconfinement phase
with fundamental matter in much the same way the Polyakoyransition in this model. Ifc#0, the question of what rem-

(2.1

loop operator does in pure gluodynamics. nants of this symmetry persist is one we will answer in the
next sections.
Il. REVIEW OF THE NON-ABELIAN COULOMB GAS Additionally, there is a gauge invariance that can be used

The model on which we will base our investigation is that®© diagonalize the matnceg;,lex)ze' 8 . The densny' of

of the non-Abelian Coulomb gas in two dimensions as pre£igenvalues(6,x)=(1/N) Zi-; 5(6— a;(x)) corresponding

viously studied in[4]. This model, while lacking both dy- t© the largeN saddle-point evaluation of EQ.1) now com-

namical gauge and matter degrees of freedom, exhibits marfJ€tely characterizes the properties of the system. Our goal is

of the features expectd@®] in higher dimensional systems. to fl!’]d this d|str|but|pn of elgenvglues. Wlth_out loss of gen-

For instance in SU{) gluodynamics foN=3 we expect a erality we can consider the Fourier expansion

first order deconfinement transition with or without adjoint

matter. As one adds matter in the fundamental representation 1 1 .

it is expected that the latent heat associated with this transi- p(6,X)= 5 —+ 5— > ca(¥)e M, cp(x)* =c_n(x).

tion drops until the transition becomes continuous or is com- m T n#0 29

pletely washed out. As we will show in this section, the 22

two-dimensional non-Abelian Coulomb gas shares this be-

havior and is explicitly solvable in the lardgélimit. The fact ~ The configurations of the eigenvalue dens@y?2) that satu-

that we consider the limit where the rank of the symmetryrate Eq.(2.1) at largeN can be found via the collective field

group is taken to infinity is necessary to generate a phastheory approachl2,10. The method is essentially based on

transition in this simple model. the relation between matrix quantum mechanics and nonrel-
We will now outline the details of this model which are ativistic fermions[13]. Leaving the details t¢4], it can be

relevant to the phase structure and our interpretation of itshown that a solution of the saddle-point evaluation of Eq.

Beginning with the canonical quantization of (2.1) is given by

8 .
pom VE+2(\c;+Kk)cos9  Where p is real,

0 otherwise.

po(0)= (2.3
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The constant of integration;, has physical interpretation as hasu<1. As well, and of more importance for our analysis,
the Fermi energy of a collection ™ fermions[13] on the  we find that the expectation values of traces of powers of the
circle subject to a periodic potential. It is fixed by requiring group elemeng are given as a function of the single param-
the eigenvalue distribution to have unit normalization. Fur-eter u:

thermore, since the potential due to adjoint charges is nonlo-

cal in eigenvalue space, the Fourier moment[see Eq. In(u)

n — —
(2.2)] must be self-consistently determinEt]: (Trg /N>_C”_|O(M) : 2.8
c= j d0po( 0)cosh. (2.4 C_onsequently, it. ma.kes'sense for our purposes to redefine the
eigenvalue distribution in terms qf:

This pair of conditions is most conveniently analyzed by 2
introducing a new parameter=E/2(\c,+ k) and the inte- po( O, )= 7'r|—() Vu+cosh. (2.9
grals over the positive support gf+ cosé: oLk

2 In the next section we will use this definition and its connec-
[h(p)=— J dé conbdu+cosh. (2.5  tion to the dominant_ configqration of the gauge element to
m analyze the phase diagram in terms of group theory.

In terms ofu, the solution of the normalization and moment
conditions is given by lll. ORDER PARAMETERS AND SOME GROUP THEORY

(@) _ As is known, in the case of pure gluodynamics, the real-
=i ) (2.6) ization of the center symmetry of the gauge group governs
ol#t confinemen{2]. The Polyakov loop operator @¢x), which
and is related to the free energy T log(Trg(x)Trg"(0)) of a
conjugate pair of static, external fundamental charges sepa-
K 1 N ly(w) rated by a distance, serves as an order paramdtgfto test
;,: A2 ylgp) (27 confinement. Since T(x) transforms under the center as
Trg(x)—z Trg(x), the expectation value of the Polyakov
This last relation gives a family of lines in thé\{y,«/y) loop operator must average to zero if the center symmetry is
plane parametrized by. As is shown in Fig. 1 this family preserved. Physically this suggests that an infinite amount of
overlaps itself for lower densities of fundamental chargesgnergy is required to introduce a single fundamental test
«ly, signaling the fact that there are multiple solutions to thecharge into the system. The presence of a gas of fundamental
equations of motion in this region of the phase diagramgcharges k#0) changes this situation though by explicitly
Considering the free energy one can sHdvthat for lower  breaking the center symmetry. Consequently we lose the
densities of adjoint charges the stable solution pasl Polyakov loop operator as an order parameter for phase tran-
while at higher adjoint densities the stable solution hasl.  sitions in the system. In this section we introduce a suitable
In the intermediate regime there is a first order phase transgeneralization of the Polyakov loop operator which will al-
tion. As the density of fundamental charges is increased th®w us to identify a new order parameter.
first order transition is smoothed out and a third order phase As seen in the previous section, the solution of the non-
transition persists along the line=1. Abelian Coulomb gas with adjoint and fundamental repre-
The parametey is now seen to be useful for two differ-
ent reasons. First it characterizes the general structure of the
phase diagraniFig. 2) where the “strong coupling” regime
is the region withu>1 and the “weak coupling” regime

1

0.065 —

My

0.055

0.045

FIG. 2. Schematic picture of the phase diagram. The dotted
’ oo Ty T oo oo curve marks the first order part of the critical line. The solid curves
above and below it are the boundaries of the area with two possible
FIG. 1. Plot of the lineg2.7) for u ranging from 0.4(upper  phases. They join at a point which shows second order behavior.
right cornej to 75 (line at the extreme left The region of overlap-  For largerx/y we find a third order line £4=1) marked by a solid
ping lines corresponds to a region of first order phase transition. line.
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sentation charges is completely characterized by a Fouriewith a,=0 for r>N. The relationship of the symmetric
sum of the traces,=(Trg"/N), the higher winding Polya- functions{a,} to the traces of the group elemerg=Trg",
kov loops. As noted in4] the character of these traces is given[16] by the determinant

changes between the strong and weak coupling regimes. In
particular, in the strong couplingu(>1) phasec, is damped

exponentially withn while in the weak coupling £<1) St 1 0
phase the damping follows a power law behavior. Now we S, S, 2
will (econsider thi§ behavior in terms of group th.eory.. 1| S S, S, 3 0

Since the matrixg is an element of the special unitary a=—| . ' ) _
group, its trace in an irreducible representativdefines the Kk . . . . 0
group character for that representation: ) : ) ’

Si-1 S-2 Sz 0 S S k-1
Xr(9)=Trgg. 3.7 Sc Se.1 S, - S3S, S

For the N-dimensional fundamental representation of 3.6

SU(N), F, the group character is just the Polyakov loop
operator described above since we are considering group éost importantly, it can be shown that the elementary sym-
ements to be taken in the lowest fundamental representatiofiietric functions are nothing more than the characters of the
fundamental representations for the unitary gr¢ap,17.
xr(9)=Trg. (3.2  That is, for the fundamental representation which is the an-

) ] tisymmetric combination ok, N-dimensional representa-
Further simple examples are the symmet@} &nd antisym-  ions, v, (g)=a,.

metric (A) combinations of a pair of fundamentals where we  The determinant3.6) can be evaluatefll8] in terms of a

have multinomial expansion most compactly stated in terms of a
enerating function
xs(9)=3[(Trg)2+ Trg?],  xa(9)=3[(Trg)2-Trg?. 9 J
(3.3
. (—1)k d¥ Z Trg"
A general relation between characters and the group ele- Yi(9)= ———— —exg — > Zn (3.7
ments is given by the Weyl formula but is not necessary for ki dZ n=1 N 7=0

the following. A complete discussion can be found in stan-
dard referencetsee[15], for example. o
The main idea is that the eigenvalues of the group matriFOr our purposes though it is useful to convert to a contour
ces, which are the only relevant dynamical variables in théntegral about the origin:
grand partition functioni2.1), are completely determined by

the N quantities{Trg"}, n=1, ... N. In turn these traces (—1) dz . Trg"
form an algebraic basis equivalent to the characters oNthe xk(9)= ’ —meXF{ — z zn} (3.9
fundamental(completely antisymmetrjcirreducible repre- 2 z

sentations of SWY) (including the trivial representation
Here we will explicitly demonstrate the relationship betweentpaqe 1ast two expressions explicitly demonstrate the rela-

the basis of traces and the basis of group characters. Ultlfonship between the group elemenand thekth fundamen-

mately it is the group theoretic variables which we will use; ;
) al representation of the gauge group and are completely gen-
to characterize the phases of the moel). eral r?esults gauge group P y9

The standard basis for general functi¢osfinite degreg With these relations we see that there is a direct connec-

of the eigenvalues of a matrix is the set of elementgry SYMfion between the gauge group elemgrand the irreducible
metric functions/a,}. In terms of the eigenvalueg =€ of (f,nqamentalrepresentations of the gauge group. In particu-
the group elemery they are given by lar, in the previous section we have seen that in the [&fge
solution of the non-Abelian Coulomb gas a certain configu-
31:2 A, ration of the gauge matrig, saturated the evaluation of the
] partition function(2.1). Now it is natural to ask what is the
configuration of irreducible representations corresponding to
a,= 2 Nihy, the dominantgy. This corresponds to evaluating the expec-
= tation (x,(g)) in the background of the non-Abelian gas. In
principle this involves calculating expectations of the form
(Trg"t---Trg™), but because of the factorization of gauge-
a3=j<zk<, LR invariant objects in the limiN— o, this reduces to a product
of expectations({Trg"t)---(Trg™). Consequently x,(g)) is
determined by replacing @F by its expectation value in Eq.

L (3.4 (3.8). Of course expectation values of the group element
traces are intimately related to the eigenvalue dengifyu)
aN:H \j=deg=1 (3.5 [see Eq.(2.2)]; hence, after performing an infinite sum, we

obtain
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(-1 [ dz
<Xa>[p(01/~’L)]= 2 i ? 0.8
X ex Ejd@p(t? “) 0.6
2 ' a
1+7%2—27 cod 0.4
Xlog| ——— 3.9
z 0.2

Note that we have defined a new real parameteik/N on
the unit interval that effectively labels the fundamental rep- -10 s Z& " ) 0
resentations in the largd limit. Of course Eq.(3.9 now
depends on a continuous variable and is of a slightly differ-
ent functional form than the discrete caSg.). In the re-
mainder of this discussion we will consider only the charac-
ter parametrized bw as defined in Eq(3.9).

FIG. 3. Saddle-point relation fqu=0.5.

In general the integral3.9) can be evaluated by saddle-
point methods in the largd limit in which we are interested.
IV. CALCULATION OF THE EXPECTATION The relevant action in this limit is

OF FUNDAMENTALS
1+27°—2z cosd
72® '

In this section we will concentrate on calculatikg,) S(a,,u,z)=f dép(6,u)log (4.3
with eigenvalue density2.9) for the non-Abelian Coulomb
gas. This cal_culation will givg a _clear piC‘UFe of the grOUp'Solving the stationarity conditiodS'dz, =0 for « in terms
theoretic excitations present in different regions of the phase , , 0
diagram and consequently allow us to define an order paranf§ Zo We find that the saddle-point condition for the lafge
eter for the deconfinement transition even in the presence dehavior of the integral3.9) is given by the relationship
fundamental matter.

_Since explicit evaluation of Ed3.9) is difficult, we begin a= f dop(6, 1)
with some special limiting cases. As— —1 the support of
the eigenvalue distributio2.9) vanishes a¥=0. The dis-
tribution does not vanish though as it retains unit normalizaSince a is a real parameter restricted to the unit interval
tion and effectively becomes a delta functiéty). Conse- [0,1], it can be shown that the saddle-point value of the pa-
quently we find the gauge matrig is just the identity at rameterz, is real. Further, fozo>1 and 0<z,<1, Eq.(4.4)
w=—1, and hence returns values ofi>1 anda <0, respectively. Consequently

we need only consider real, negative values of the parameter

Zo( ZO - COS@)

—_—— . 4.4
1+ 75— 2z,c08) @4

ZO.
aNN) =2N\/Niw e~ 2MN@-122 (4 q) We now turn to an examination of the saddle-point ap-

proximation of Eq.(3.9) for different regions of the phase

diagram of the model at hand beginning with the weak cou-
In this limit we find that the distribution of characters is pling phaseu<1. In this case the support of the eigenvalue
symmetric aboutx=1/2 as one would expect in a system distribution (2.9) is bounded away fron#= = 7 and hence
where the total color charge is vanishing. As well in thisthe denominator in Eq4.4) is nonsingular for all values of
limit (x,) is nonvanishing and all fundamental representaz,. Consequently, in this regimer varies smoothly and
tions are present in the lardé background solution of the monotonically withz, and the relatiori4.4) can in principle
model. As we will see, this result is generic in the weakbe inverted to obtaizy(a). With this information, the large
coupling phaseu<1. N asymptotic form of the expectation value of the characters

In the opposite limit, ags—, it can be shown that the (y ) can be determined by standard saddle-point methods. In

eigenvalue distribution(2.9) approaches a constant value Fig. 3 we show a numerically calculated exampleacés a
p=1/27 with the eigenvalues of the group elemantoe-  function of z, for x=0.5. For this same case we show a
coming uniformly distributed on the unit circle. Since expec-schematic diagram of the magnitude of the expectation value
tation values of the traces of powers of the gauge matrix arg y,}| as a function ofx in Fig. 4. In particular we see that
essentially Fourier transforms of the eigenvalue distributionthe system has excitations in all irreducible representations.

(Xa)= lim

N— oo

it is easy to see thgfTrg")—0 in this limit and For u>1 the situation is somewhat different. Now the
support of the eigenvalue distributi@®.9) is the full interval
(Xa)— 00,0 - 4.2 fe[—m,m], and the denominator of Eq(4.4) causes

nonanalytic behavior to appear. As one incregsdhlrough
This limit corresponds to the extreme strong coupling phasenity the saddle-point relation fax shows this nonanalytic
of the model where the Polyakov loop operatorbehavior as a discontinuity aj=—1 (see Fig. 5. The result
((Trg)~{xwn)) has vanishing expectation value and theis that an open interval of values centered on=1/2 is
standard analysis would point to a phase where color chargesapped into this discontinuity when the saddle-point relation
are strictly confined into hadronlike structures. (4.4) is inverted. Since this discontinuity occurs in the
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a Z,
FIG. 4. Schematic diagram ¢fx)| vs a for n=0.5. FIG. 5. Saddle-point relation fou=1.2.

saddle-point relation, it is not surprising to find that the cur- . . )
vature associated with the Gaussian integration of the saddi€ltion and the system is always in the deconfined phase
point approximation is divergent, effectively forcing the in- Where all representations are present.
tegral to vanish. In terms of the expectation values of One immediate problem with using the fundamental rep-
different representations in the background of the nonfesentations to characterize the phase diagram arises when
Abelian Coulomb gas, we see that an open interval of funconsidering finite, odd rank groups. For example in the
damental representations centered aheutl/2 is missing physically relevant case of $8), there are only two funda-
from the spectrum in the large limit. In Fig. 6 we show an mental representatioris= 1,2 and the order parametgyy,,)
example of the behavior of the expectation vaisg,)| with  would naively denote the= 3/2 fundamental representation.
afor u=1.2. In terms of group theory this fractional representation is non-
The main outcome of this analysis is that the expectatiosense and strongly suggests that direct application of the
value of the central fundamental charagtgy,,) is vanishing  largeN results is not prudent. Even worse is the fact that a
if and only if u=1. Consequently it may be considered anfinite number of representations are not enough degrees of
order parameter distinguishing between the strong and wegkeedom to describe the change in character of the group
coupling phases of the model. Physically the situation iselements fromg~1 in the weak coupling phase tp away
clear. In the weak coupling phase the system can effectivelyom the identity in the strong coupling phase. Alternatively,
screen the interactions of any pair of charges regardless gfe are free to use any independent set of irreducible repre-
their representation since the system contains excitations niations to characterize the system. In particular the com-
zysrti?r:el(sjirlga?nounsh?ifktz %ﬁ:?ke_ glLoounpbl\:avsemc;CvﬂZ?; éﬂ::gtzﬁletely symmetric representations provide an equivalent al-
) ) N éebram basis to the fundamentals we have considered here.
are effecuvely deconfined. At the phase transition I!ne NONThe strength of this approach is that there is no restriction on
Abelian flux in the_a=1/2 fundamental representation be- the number of symmetric representations for the unitary
comes too energetlcally costly_to produce and th? system Cad}oups contrasting the— 1 fundamental representations for
no longer screen the interaction between a paiwef1/2 SU(N). Unfortunately, repeating the calculations of Sec. IV
With symmetric representations one discovers that there is no
strong signal for the phase transition and in particular one
cannot define an order parameter.

acting pair sees a linear confining potentidlough some-
what reduced as compared to the empty backgrpbukslone

further |ncrgase$gthe gap Iln the spegtr.um r?f fundamen';gl .. Despite the apparent difficulties with applying the current
representations becomes larger and In the extreme limitq i< 'tq finite rank gauge theories, we feel that the general

=2 the system contains only excitations in the trivial rép-concent of characterizing the phases of a gauge theory
resentation. This is precisely the confining phase of pure

gluodynamics.

1.

[ea}

V. DISCUSSION

1.5
As we have shown, the generalization of the concept of|<x >|
the Polyakov loop operator to probe the group-theoretic ex- =~ 1.4

citations of a system of non-Abelian electric charges pro- 1.3

vides a convenient and unified way to quantify the physics of

phase transitions. While the details of our presentation have -2

centered on a two-dimensional model with an infinite num- 1.1

ber of colors, the general concepts developed here should b

applicable to interacting gauge systems in arbitrary dimen- ! 0 03 02 e 0B i

sions for both infinite and finite rank\) gauge groups. Un-
fortunately we are unable to test these ideas in a solvable
two-dimensional model as for finifé there is no phase tran- FIG. 6. Schematic diagram ¢fx,)| vs « for u=1.2.

a
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coupled to matter by the spectrum of higher irreducible repPolyakov loops in this simple model both with and without
resentations is useful. In particular it would be interesting tofundamental representation matter.
investigate these ideas in the setting of lattice calculations of

gauge theories that are known to possess phase transitions.

fact, for the case of S(2) gauge theory, thd=1/2, 1, and
3/2 Polyakov loops have been calculated on the laftis
(see alsd20]). It would certainly be very instructive to have
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