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We compute the exact canonically induced parity-breaking part of the effective action-fbmfassive
fermions, in particular, Abelian and non-Abelian gauge field backgrounds. The method of computation resorts
to the chiral anomaly of the dimensionally reduced thep®0556-282197)01222-§

PACS numbes): 11.10.Wx, 11.30.Er

[. INTRODUCTION AND RESULTS It is important to notice that these computations dealt with
the fermion mass-dependent parity breaking and ignored the
Three-dimensional gauge theories coupled to matter arparity anomaly related to gauge invariant regularizations.
relevant both in field theory and condensed matter physics. The issue of renormalization of the CS coefficient induced
An important feature of these theories is that, apart from th®y fermions aff # 0 was reanalyzed in Refsl7,18 where it
usual Maxwell or Yang-Mills actions, there exists the possi-was concluded that, in perturbation theory and on gauge in-
bility of considering a Chern-Simor€9) term as a parfl] variance grounds, the effective action for the gauge field can-
or as the entiréz:l gauge field action. Moreover, even if the not contain the Smoothly renormalized CS coefficient which
CS term is not includedb initio, it will be induced through ~Was the answer of perturbative calculations. More recently,
fluctuation of Fermi field§3,4], by the parity-violating fer- the exact result for the effective action of a-Q massive
mion mass, and/or by the celebrated parity anon&ly fermion systeni19] as well as nonperturbative calculations
A fundamental property of the CS action is that its pres-of the effective action in the 21 Abelian cas¢20] and its
ence forces a quantization law: theon-Abelian CS term is ~ explicit temperature-dependent parity-breaking pg2t]
noninvariant under “|arge” gauge transformatior(j;e_' have explicitly shown that although the perturbative expan-
gauge transformations carrying a nontrivial winding num-sion leads to a nonquantizddependent CS coefficient, the
ben, implying that the coefficient of the CS term should be complete effective action can be seen to be gauge invariant
quantized so that exj%g) remains single valued. Concern- under both small and large gauge transformations, the
ing the inducedthrough matter fluctuationsC$S term, it is temperature-depending shift in the CS coefficient being just
well established that any gauge invariant regularization oft byproduct of considering just the first term in the expan-
the massless fermionic determinant introduces a paritgion of the effective action.
anoma|y in the form oft+ %SCS whose gauge noninvariance We extend in the present work the analySiS presented in
compensates the gauge noninvariance of the otherwise paritg1] for the Abelian model to the case off2L massive fer-
preserving effective actiof8]. This parity anomalous contri- Mions in a non-Abelian gauge background. By considering a
bution is also present in the case of massive ferm{@js Particular class of gauge field background configurations we
when other canonical parity-violating terms associated to théompute exactly the induced parity-breaking part of the ef-
fermion mass come into play. fective action for three-dimensional massive fermions in the
The results above correspond to quantum field theory aundamental representation of SUX.
zero temperature. What aboltt 0? To our knowledge this ~ To be precise, we are concerned with
guestion was first addressed[®] where it was argued that .
the coefficient of the induced CS term remains unchanged at
finite temperature. Contrasting with this analysis, pert?era- Toad AM)= E[F(A’M)_F(A’_M)]’ @
tive calculations yielded effective actions with CS coeffi-
cients which are smooth functions of the temperafidrel 6. where
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[20] for a discussiop the mass-dependent parity-violating whereg is the coupling constani3=1/T, and tr is an ad-
term is not the only one arising ii(A,M); there is also a equate trace in SW) (matrix functions are defined as usual
local parity anomaly contribution in the form of half a CS as power serigs

term arising in any gauge invariant regularization. This term, The paper is organized as follows. We give in Sec. Il a
first noticed afT=0 in [3] for massless fermions and 6] more detailed description of the results presente@iq for

for massive fermions, is mass and temperature independetite Abelian case so as to clarify the method of computation,
and can be removed by a local counterterm at the price ofvhich relies on the ability to factorize the piece of the effec-
breaking large gauge invariance. It is in fact not takentive action depending on the sign of the fermion mass. The
into account in most of the literature analyzing same method is applied in Sec. Ill to the analysis of the
(2+ 1)-dimensional massive fermion models. To understand&8U(N) case leading to formulé7). Finally, in Sec. IV we
the interplay between the two contributions, one can regardummarize and give a discussion of our results.

the mass-dependent parity-violating term as naturally arising

due to the fact that the Lagrangian already contains at the Il. THE ABELIAN CASE

classical level a parity-violating mass term. Concerning the _ ) ) ] )
mass-independent contribution which comes from the parity We are interested in evaluating the parity-odd piece of the
anomaly, it can be seen as a necessary consequence of dfective action(1) which is induced by integrating out mas-
gauge invariant regularization of the path integral fermionicsive fermions coupled to an Abelian gauge fidlg in 2
measure. After these remarks, it is clear that our definition of~ 1 dimensions at finite temperature.

[ o4q €Xcludes this last anomalous contribution but since itis The Euclidean actio$:(A,M) is given by

temperature independent, it does not affect our analysis.

: B —
The calculation of Eq(1) for the general case, namely, SF(A,M)ZJ de d2xy(b+ieA+M)y. (8)
for any gauge field configuration is not something we can do 0

exactly. Instead of making a perturbative calculation dealing{N ) , . ) )
with a small but otherwise arbitrary gauge field configura-"/€ aré using Euclidean Dirac's matrices in the representa-
tion, we shall consider a restricted set of gauge field configut®n
rations which can, however, be treated exactly.

In order to get an exact result we choose a particular
gauge field background which corresponds to a vanishingvhere o; are the familiar Pauli matrices ang= 1/T is the
color electric field and a time-independent color magnetiGnyerse temperature. The label 3 is used to denote the Eu-

Y1=01, 7Y2=02, 7Y3=03, 9

field clidean time coordinate-. The fermionic fields in Eq(2)
obey antiperiodic boundary conditions in the timelike direc-
A3:A3( T)! (3) t|on
A=A (=12 @ Y(BX)=—p(0X), P(BX)=—p(0x), Vx, (10

or any equivalent configuration by gauge transformations. Ifwith x denoting the two space coordinates. The gauge field
the non-Abelian case we further restiie to pointin a fixed  satisfies periodic boundary conditions instead:

direction in the internal space
3 A (BX)=A,0x), Vx. (11
As=[Adln, © We want to make a calculation which preserves an interest-
ing property of the imaginary time formulation, namely, that
there is room for gauge transformations with nontrivial
[Aj,As]=0 (j=1,2. ()  winding around the time coordinate, and any approximation
which assumes the smallness Af may put the symmetry
Although for SU2) this implies that all of the components of under those large transformations in jeopardy.
A, commute, and can be thus seen as an “Abelian-like” Let us first discuss the nontrivial gauge transformations at
configuration, for SIIN) with N>2 one can see that genuine finite temperature. The set of allowed gauge transformations
non-Abelian effects are incorporated. The configurations unin the imaginary time formalism is defined in the usual way:
der consideration are reminiscent of the ones treatdd|in

andA; to commute withAg,

for massless fermions at=0: in that case Lorentz covari-  #(7.X)—e ® ™y (r.x),  ¢(7,x) ey (7,x),
ance of the local result allowed straightforward generaliza-
tion to arbitrary backgrounds. Unfortunately, this will not be A (1, X)—A(7,X)+3d,0(7,X), (12

the case here.
Our main result can be presented through the formula w
obtain forI" ;44

gvhereﬂ(r,x) is a differentiable function vanishing at spatial
infinity (|x|—), and whose time boundary conditions are
chosen in order not to affect the fields’ boundary conditions

g (8 (10) and(11). It turns out that)(7,x) can wind an arbitrary
ta.r( _f A3d ’T) :|

5 number of times around the cyclic time dimension

i M
| %tr{ arctar% tanl'( 'BT .

2
xf dZXGiJFij}, @ QBX)=0(0x)+ K, (13
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wherek is an integer which labels the homotopy class of theNote that the spatial componentsAf remaint independent
gauge transformation. after this redefinition.

Invoking gauge invariance of the fermionic determinant  After redefining the fermionic fields according to this pre-
scription, we see that the fermionic determinant we should
consider is now

dew+ieA+M)=f DwﬁexW’—fﬁdrf d?x (4
0
de(ﬂ+ieA+M):J DyDy exl — Se(A; Ag,M)],

+ieA+M) 1,0) : (14 (20)
we can always perform a gauge transformation of the fermiwhere
onic fields in the functional integrdll4),

~ B — —
. = 2 i A
Wrx)=e CQX g (1) rx) =N YT (1.x), Se(Aj Az, M) J'O drf d*xy[+ie(y;Aj+ vsAz) + M1y,
(15 (21)

in order to pass to an equivalent expression where the gaugad we removed the primes for the sake of clarity.
field is traded forAl’LzAMJr 3,42 Since the Dirac operator in the previous equation is in-
variant under imaginary time translations it is convenient to

— B — erform a Fourier transformation on the time variable for
de‘(ﬁ+ieA+M)=J Dlﬁ’Dlﬂ,eXp{—j drj d?y’ P do
0

and y:
. 1 -
X(ﬂ‘l‘leA/“‘M)lﬂ',}. (16) l/l(T,X)Z— 2 eiwnfwn(x),
n=—o
We consider the configurations given by E¢3) and (4), o
namely,Az is only a function ofr, andA; is independent of " _ - e ity 29
7. Under these assumptions, we see that the entiepen- Y(7.x) n=—o Yn(X), (22

dence of the Dirac operator comes fréw This dependence
can however be erased by a redefinition of the integratewhere w,=(2n+1)=/B is the usual Matsubara frequency

fermionic fields as in Eq(15) if we take for fermions. Then the Euclidean action is written as an in-
finite series of decoupled actions, one for each Matsubara
7 18 27k mode:
Q(T):_f dr'Asz(7')+ —f dr'Az(7')+ T,
0 Blo ep L
(7 Se(A) Az, M)=— _Ew fd2X¢n(X)[d+M+iy3
wherek is the arbitrary integer labeling the homotopy class. "
Such a transformation rendefg constant. The freedom to X (wn+€Ag) ¢hn(X), (23
choosek could be used to further restrict the values of the
constantAg whered is the 1+ 1 Euclidean Dirac operator corresponding
to the spatial coordinates and the spatial components of the
2 gauge field

or any of the intervals obtained by a translation of this one ) . . ) o
by an integer number of 2/eg. In this sense, the value of As the action splits up into a series and the fermionic mea-
the constant in such an interval is the only “essential,” i.e.,SUré can be written as

gauge-invariantA;(7)-dependent information contained in
the configurations (3),(4), describing the holonomy

J8d7A5(7) around the time directiotinotice that theF ;
components of the field curvature tensor identically vanish
for these configurations However, we will limit ourselves the 2+1 determinant is an infinite product of the corre-
to small gauge transformationk= 0) in order to avoid any sponding X1 Euclidean Dirac operators

assumption about large gauge invariance of the fermionic
measure in Eq(14) and safely discuss the effect of large _
gauge transformations on the final results. Thus the constant deté+ieA+M)= [] defd+M+iys(w,+ehg)].

n=+ow

DY(r)DY(rx)= 11 Dyn() DY) (29

n=-+owx

field A} takes the mean value @(7): e 26
ﬂfifﬁdms(r). (19) Explici_tly, the 1+1 determina_mt for a given mode is a func-
Blo tional integral over 1 fermions
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defd+M+iys(w, +eA S wn €A
{ v3(wp 3)] arctar(n—3 , (39

S= >, N

n=-—o

= | DxiDxnexp — | Xy (X)[d+M +i
j An®Xn p[ f Xa(x)L & whose sign will obviously depend on the sign . We

make this explicit by rewritingS as

X(wn+eA3)]Xn(X)]- 27 e 4o -
M s r(w”+ ehq a6
In order to computd’ 44 We factorize now these determi- S= IM[nE arcta M| (36)
nants in a piece which is sensitive to the signvfand a
piece which is not. The Euclidean acti8g corresponding to  or, using the expression fas,,
the moden may be conveniently recasted in the following
form: ML (2n+1)m+x
S(x,y)=anm arctar{— . (37

Si= f d2Xxn(d+ prel 75?0 x, (28) _
where x=eBA;, and y=p|M| are the two dimensionless

with parameters built from the original ones. This series must be

regularized, and the standard technique consists in subtract-

_ wn+€hg ing the zero-field value of each term; notice that the sum of
Pn= \/M2+(wn+eA3)2; ¢,=arcta - ) these zero-field contributions conditionally converges to 0.
Then
(29)
=40
We next realize that the change of fermionic variables M " x d (2n+1)7+u
S(x,y)—m E duﬁarcta _—.
. — —_ . n=—« JO
Xn(X) =€ A1y (x),  xn(X)=x"n(x)e" (WD7s (38)

(30
) . o As the series now converges absolutely we can first perform
makes the actioss, mdependen_t ofp, . Th's IS not a gaugeé  the summation. The sum to be evaluated is then
transformation but a global chiral rotation in thet1 Eu-

clidean fermionic variables. Correspondingly, the fermionic n=+o y
measure picks up an anomalous Fujikawa Jacof#2h so 5 > (39
that one ends with n=-=y°+[(2n+1)7+u]
defd+M+iys(w,+ehg)]=J,[AM] defd+p,], which is solved by the summation formula
(31) N
1 B [ cot( mX4) — cot( 7X5) |
where n=w (N=X1)(N—X7) X1 Xz .
(40)
. e({bn 2
\]n[A,M]:eX _|_f d ijk&jAk , (32)
271. . .
After performing the integral we get
with €;, denoting the ¥ 1 Euclidean Levi-Civita symbol. M IM| 1 _
Recalling the definition of",44, We see that the second S= Warcta+tank(7 tar(ie,BAg,”. 41

factor in expressiori31) does not contribute to it, since it is
invariant under M— —M. The Jacobian(32), instead, . .
changes to its inverse. As a consequence, the parity od-l;ihUS the parity-odd part df finally reads

piece in the effective action is given in terms of the infinite
set ofn-dependent Jacobians T =i £ ﬂarcta tan M
°odd™ " 2.7 M| 2
n=+o
— = e (s
eXF[ Fodd] nﬂm Jn[A,M] (33) Xtar( EJ dTAg(T)) f dZXEjk‘?jAk' (42)
0
or .
There are several observations to be made about our result
n=+o e "It (42). First we observe that this result has the proper zero
Tog=— 2 InJ,[AM]=i—— > ¢nJ d2x €A - temperature limit
n=—ox n=—o
= lim I - (43)
im I oq¢— 5 1777 Scs: 43
There only remains to perform the summation overdhés. T—0 | 2 M|

This can be done by using standard techniques in finite tem-
perature field Theory. We define whereS¢g is the Chern-Simons action
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e? —Ju2 = 2.
i 3 x)—\/M +lw,teAg(X)]%5
Ses=i - | @PxepoAuiAs, 44 P [+ €Be(0)]
wn+eAg(X
<1>n(x):arctar<—n A )), (46)
which shows up in our particular configuratid8),(4) as M
(e’12m) [dTA(7) [d*X€;;0iA;. So we get the induced o .
Chern-Simons term at zero temperature. As it is well known V€ have for the complete fermionic determinant an expres-

in the zero temperature case the result is not invariant undeb’rlon equivalent to the previous case:

large gauge transformations. The quantization of the spatial %

integral that measures the flux of the magnetic field through  gegp+ieA+M)= [] defd+p,(x)e 73],

a spacelike manifold-=const in units of 2r/e shows that n=-o

Eq. (43) changes by the addition of an odd multiple iof 47

under a large gauge transformation with odd winding num-

ber when the magnetic flux is odd. This gauge noninvariance N€ determinant corresponding to thenode is again writ-

is compensated by the parity anomaly discussed in the Intrd€" @s @ functional integral over {11)-dimensional fields,
ut a transformation such as E@®O) is now alocal chiral

duction when the complete result is regularized in a gaug 7 - > h ) .
invariant scheme. rotation of the (4 1)-dimensional fermions and gives rise

The same situation occurs in the finite temperature resufP
(42). A large gauge transformation with odd winding number
k=2p+1 shifts the argument of the tangent inp(21)r.
Although the tangent is not sensitive to such a change, ongn
has to keep track of it by shifting the branch used for arctan
definition. This amounts to the same result as in The0 i
limit: the gauge noninvariance df.,qq under large gauge d’=d—§¢9¢ny3 (49
transformations is compensated by the parity anomaly

defd+pn(x)€72MX]=J, defd’ +py(x)], (48

ere

1
*2Scs- i o and the anomalous Jacobian reads
Now we observe that a perturbative expansion in terms of
e yields the usual perturbative result e 5 1
Jn=ex _Iﬁf dX| @n(X) €A+ Z(ﬁn(x)Aan(x) .

Lo 1Mo (Mg -
odd_imtan —

ScstO(e%), (45) :
Thex dependence of the phase factfyy affects the result in

two ways. First, we see that the field redefinition changes the

. . ) operatord to d’ which depends on the sign &f, and so
where the coefficient of the Chern-Simons term acquires & .re will be a contribution td ,qq COMing from the deter-

;mooth dependence on the temperature. Were we consid%—mam ofd’+ p,(x). Second, the Jacobian is now a more
Ing only_ the first nontrivial order in perturbation theory, we involved function of¢,,, since the field redefinition affects

would frnd a clas? 1bet¥;/]een temperature .depencfieﬂce aMfle Dirac operator which is used to define the fermionic in-
gauge invarianckl7,18: the gauge noninvariance of the in- tegration measure. In a first approximation, we shall only

duced CS term is no Ionger compensated bY the PatYake into account the contribution coming from the Jacobian,
a”"m?'y- NQW we leam, as it was s_tressec{I_B] In a (0 since the one that follows from the determinant of the Dirac
+1)-dimensional example and [120] in 2+1 dimensions, harat0r is of higher order in a derivative expansiand we
that one has to consider the full result in order to analyze . =~ .
gauge invariance. are assuming tr_rat t_h}e depend_en_ce o;_A3_|s smooth. The
Finally, we observe that the res@2) is not an extensive con.tnbunon.whrc'h IS quadret_rc ] IS irrelevant to 'rhe
quantity in Euclidean time. It is, however, extensive in spaceP2/ty breaking piece, since it is evenlih. Thus, neglecting
and that is indeed all one expects in finite temperature fiel¢he terms containing derivatives &f;, we have forl',4q &
theory. In contrast, th&=0 limit becomes an extensive result which looks similar to a natural generalization of the

quantity in space-time, as is expected from zero temperatur@evious case:

field theory.
We shall now extend the previous results, obtained for - e M fdzx arcta tanP('Mm)
. . X odd
space-independei; and time-independer; to the some- 2 |M| 2

what more general situation of a smooth spatial dependence

of Az besides the previous arbitrary time dependence. xtar( EdeTA ( )
-2 U ; 3(7,X)

The fermionic determinant we should calculate, after get- 2Jo

ting rid of the = dependence of\; will have a form analo-

gous to Eq.(20) with the only difference of having aw It is not hard to check that the reliability of the approxima-

dependence iR,. As there is no explicit time dependence in tion of neglecting derivatives ok, is assured if the condi-

the Dirac operator, we again pass to a Fourier description dion

the time coordinate. Defining the-dependent fields,(x) _

and ¢p(x), led;As|<M? (52

ij&jAk(X). (51)
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is fulfilled. To end with this example, let us point that all the i
remarks we made for the case of a space-indeperdgalso - aU(T.X) d,U7(7.%). (57)
apply to this case.
In order to decide the boundary conditions the gauge group
lll. THE NON-ABELIAN CASE element should satisfy in the timelike direction, one requires
) , ) ) . that the periodicity of the gauge field and the antiperiodicity
We extend in this section the previous analysis to théyt the fermions is unaltered under a gauge transformation.

non-Abelian case. Although we shall consider, as in the AbeConcerning the gauge field, this only imposeslbthe con-
lian case, particular background field configurations whichyition '

allow us to make exact computations, the results will exhibit

genuine non-Abelian effects through nontrivial commutators U(B,x)=hU(0x), (58

of spatial components of the gauge field. Our analysis will be

valid for the SUN) case although some points are madewhereh is an element ofZy, the center of S(N). Now,
explicit for the particularN=2,3 cases. As we shall see, concerning fermions, the condition dhdepends on whether
details arising in calculations are due to technicalities assahey are in the fundamental or adjoint representation. In the
ciated with handling the non-Abelian symmetry; once theyfundamental one, it is easily seen that

are overcome, the results appear as a natural extension of the

Abelian ones. U(B.,x)=U(0x), (59

The Euclidean fermionic action which describes the sys- hile in the adioi . diticB8) foll
tem is now written as while in the adjoint representation, conditi¢g8) follows

instead. As we assume fermions are in the fundamental rep-
B o resentation, the group element$(7,x) are taken to be
S,:(A,M)=f drf d’xy(D+ M)y, (53 strictly periodic[a condition in fact analogous to the one
0 used for the Abelian case in E@L3)]. One can then prove

. o . ) ) [23] that for compact groups
where the covariant derivative acting on the fermions in the

fundamental representation of U is defined as

trf d*xe,,,,U"19,UU"19,UU"t9,U
(60)

i w(lh= 127°N
D,=d,TigA,, (54) T

and the gauge connectidh, is written as is an integer number that labels homotopically equivalent

gauge transformations. Thus the distinction between large
and small gauge transformations has a different origin here
than in the Abelian case.

We thus consider a class of configurations equivalent by
gauge transformations to

A =A%T, (55

with 7, denoting Hermitian generators of the Lie algebra
(a=1,... N2—1), verifying the relations

1 ~
T;=Ta, [7a:7Tp]=if apcTe tr(TaTb)=§5ab, (56) Az=|Ag|(7)n, (61)

: . . A=A (x), [A,n]=0(j=1,2). 62
with f,,. the totally antisymmetric structure constants. For i=A0, [A;N]=0(] ) (62
the particular case of @), which we shall consider in more
detail, we havd ,,.= €,1 Since the generators will be taken nana=1)
to \t;\?etg?euigg::;izlél r\?v?ttr:ut:ﬁs-parity-odd piece of the effec- We note that condition{61) and (62) assure the vanish-
tive action defined in Eq1). Fermionic(bosonig fields sat- ing of the color electric fields, as well as the time indepen-

. . N U s . dence of the color magnetic fields. Regarding the condition
Lislfnyeﬁlgglgiraerlttlirz)enrlodliperlodld boundary conditions in the (62), which requires the spatial gauge field components to

We shall in this case restrict the set of configurations forcommute WithAg, it is worth remarking that its conse-

the gauge fields given by Eq&)—(6) in order to be able to quences depend strongly on whether the group considered is

. ; - SU2) or SUNN) with N>2. In the former case, the only
calculatel” .44 €xactly. Before doing so, let us clarify a point ; . . .
about the nature of the gauge group boundary conditions iﬁolutlon to Eq.(62) corresponds to a configuration with all

wheren is a fixed direction in the Lie algebranE&n?r,,

imaginary time. the gauge field components pointing in the same direation
Non-Abelian gauge transformations are defined by theifn internal space, i.e., an “Abelian-like” configuration. In
action on the fermionic and gauge fields: contrast, forN>2, configurations witH A; ,A,]#0 are in-
deed possible.
P(1,%)— P (7, X)=U(7,X) ¥(7,X), To make the point above more explicit let us analyze the

simple specific example of SB) with the generators given
— —T B + by the standard Gell-Mann matrices; one can then #ake
Y(1.X) = g (7.) = P(r ) U (7,%), andA, as linear combinations of;, 7, and 75 [generators of
a SU?2) subgroup and A5 pointing in the direction ofrg.
AL (7. X)—=AL(7,X)=U(7,X)A,(1,x)UT(7,x) This situation easily generalizes k>3 since one can con-
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struct the set of generators for a higieiin such a way that

it contains the generators corresponding to BY(l) as a pn= \/M2+(wn+gz\g¢a)2; qbn:arctar(

subset of block-diagonal matrices, and one of the extra gen-

erators can be always defined as to commute with them. (69)

Thus it is possible to také; andA, as noncommuting vec- The ysual definition of functions of matrices in terms of

tors in the subalgebra corresponding to 83(1) andA;  power series has been used above. It is important to realize

commuting with them. _ that, beinge, a nontrivial Hermitean function of a matrix in
Coming back to the general case, let us point out that, age Lje algebra, it will in general have components along the

in the Abelian case, one can erase thdependence oh;  generatorsr, and also along the identity matrix, namely,
component by considering a change of variables for the fer-

mionic fields corresponding to a gauge transformation of the D=1+ $ir,. (70
form

wnt ghAgTa
v

5 As an illustration, we consider the $2) case. A somewhat
U(t)=g'9®(nn (63 lenghty but otherwise straightforward calculation yields ex-
plicit expressions for these componentsdgf:

and
o 1 2Mw,
T . 18 o (bn:E arcta & ,
— ! ! n A ~
Q(7)=- JOdT A7)+ Efo dr' A3 (7 )) T. M2+ Z|A3|2—w%
(64)
Now, because of conditiof62) the space components of the p2=arcta gl;/I|A3| na. (71)

gauge field remain unchanged under this transformation,
while A; takes the constant valudz=(1/8)fEdrAs(7)

=|As|n. After these remarks, we assume a gauge transforrpe 111 geterminant for a given mode is a functional inte-

mation rl"fls been made on the fgrmions in order to reach Gral over 1+ 1 fermions that using Eq68) can be written as
constantA; and the rest of condition1) and(62) for the

gauge field. defd+M +iys(w,+ gA3T,) |
After a Fourier transformation on the time variable ffor

and.z,//.o!c the fo_rm(22) the Euclidearj act.ion can be writtenas  _ f DXnD; exp[ _ f d2x;(x)(d+pnei vadn)
an infinite series of decoupled actions:

M?— Z|’A3|2+ w;

> " A X0 72
SF:/_B’n:E—x Xy (X)[d+M +iys(@n+ gASTY) 1(X), X(x)] 72

(65  We now perform the change of fermionic variables

where d= vy;(d;+igA;) is the non-Abelian Dirac operator  y (x)=e '($/273y’ (x), z(x)zfn(x)e*i(%&)ys,
corresponding to the spatial coordinates and the spatial com- (73
ponents of the gauge field. Concerning the fermionic mea-
sure, we write it in the form and verify that due to the last condition in E§2) it indeed
decouples the parity-violating part of the effective action.
_ n=to o We find, including the anomalous Fujikawa Jacobian
Dy(r)Dyp(rx)= [ D) Dipra(x),  (66) N
= defd+M+igys(w,+A3T)]=J, defd+p,]. (74
so that again the 21 determinant becomes an infinite prod- 1o jacobian in Eq74) reads[22]
uct of the corresponding#1 Euclidean Dirac operators

: (79

n=+to N J,{A,M]=ex;{—itr%f d?xA
dets+ighA+M)= I defd+M+iys(w,+gAiry)].

n=—o
(67)  with A= A%7% denoting the ¥ 1 Euclidean anomaly under
an infinitesimal non-Abelian axial transformation. As this
We now show that the same trick which leads to the decoutransformation isx independent, there is no difference be-
pling of parity-breaking and parity-conserving parts of thetween finite and infinitesimal transformations and one can
determinant for the Abelian case can be applied here. Firsjust simply iterate the infinitesimal Fujikawa Jacobjaa] in

we use the property order to get the finite answd5). Also note that¢ﬂ (the
_ ' component along the identjtydoes not contribute to the
M+iys(w,+gA3T.) =pne (68)  Jacobian since tr&ﬂA) =0. A standard calculation leads for

the two-dimensional non-Abelian anomaly the ansygsre,
where for example,[24])
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g

so that the Jacobian finally takes the form

ig

Jn[A,M]=ex;{ 47Ttr . (77)

d’nj d*xe;;F)

We see from Eqs67) and(74) that the parity odd piece of
the effective action is again given in terms of the infinite set g3

of n-dependent Jacobians:

n=+wx

ToadAM]=— X

n=—o

(nzzoc ¢n)fd2XeijFij

INJ,[AM]

_l9
=2t . (78

Now we have to perform the summation over thgs. A

careful analysis of the steps performed in the Abelian case
shows that the resuldl) is valid for matrix valued gauge

fields. Thus we get

i
| %tr[ arcta+ tanl‘( 'BT

M tan(gﬁ&)“d?xﬂjl:ij].
(79

This is the main result in this section, which extends @8)
to SU(N) background fields.

We can check this result by doing explicit computations

with the componentg? given in Eq.(71) for the SU2) case.
From Eq.(78),

. 4+
ig
Fod AM]= %n;w ¢ﬁJ d*xe;Ff -

(80)
Using Eq.(71) we have to compute
- M|A
3= > arcta %2 IAd (82)
n=—wx ~
M2~ Z|A3|2+wr21
or, in terms of dimensionless variables,
g ~
m=pM. x=5p[Aq, (82
Soem= 3 are r( 2mx ®3)
X,m)= arcta .
et m2—x2+(2n+1)272

The sum is convergent, but in order to calculatét will be
convenient to write

x g3
E(X,m)zfodum(u,m). (84

The implicit subtraction of a zero-field contribution vanishes

term by term in this case.
After some calculations, one has
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(92( —om S m?+ (2n+1)272+x2

—(X,m)=2m .

24 == [M?+(2n+1)27% = x?]?+ 4m?x?
(89)

One could now arrange this expression to use the summation
formula (40). With the purpose of illustration we use instead
the standard Regge-type trick to rewrite E8F) as a contour
integral of the form

m2—z24x2

— 22— X212+ 4m3x?’
(86)

~m
5(x,m)— o ﬁ:dztanr(z/Z)[m2

where C is a contour including all the poles of tamtf).
After continuingC into the upper and lower half-planes to
pick up the four poles of the fraction only, we end with

)Y i X—im X+im g
&—X(x,m)—ztan 5 —tan 5 (87
Using this expression in E84) we finally get
3 (x,m)=2arctaftani m/2)tan(x/2) ] (88
so thatl" ,4q can be written as
ig BM g ~
Fodd=ﬂarcta+tan>‘(7 tar(Z,B|A3|) naf d2XeijFi"’}.
(89)

Finally, observing that f27,) 2" =(1/22)n?r, and only
odd powers enter the expansions of the functions involved,
we see that the result is identical to E@9).

In order to analyze the resulf9) let us write it in the
most general form

i M
| %trr arctarii tanl‘( 'BT)

B
Xtar(%J’o dTA3(7'))

Then we note that in the zero-temperature limit one has

J dzxeijFijJ . (90)

in2
i _ig® M B )
-II-ILnOFOdd_SW |M|tr( J;) dTA3(T)f d XeijFij)- (91)

This result is the usual one: namely,
1M

ImI g5 77 ,
o0 odd 2|M|SCS

(92)

restricted to the particular background we have considered.
Here Scg is the non-Abelian CS action

ig? 2
SCSZEJ d3xewatr( FMVAa— §AMAVA0( , (93

which for a gauge field satisfying the restrictiof@2) reads
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ig 5 The Abelian case allows for a complete analysis of the
Scszﬂtff d°xAze;;Fij . (94 gauge invariance under large transformations; we have found
that the mass and temperature-dependent contribution is not
We thus recover the zero-temperature result first obtained itivariant but its variation is cancelle@nodulo 2mi) when
[3] by calculating the vacuum expectation value of the ferthe parity anomalous contributiott 3 Scs is incorporated.
mion current in a constant non-Abelian field strength tensotVe recall that in the zero temperature limit the gauge invari-
background or if4] in a static non-Abelian magnetic back- ant result contains two contributions in the form of CS terms,
ground such as ours. We recall, however, that gauge invarPne arising canonically from the fermion mass parity-
ance under large gauge transformations is obtained onlyiolating term and the other coming from the necessary par-

when the parity anomaly: £Scs is added to the mass- and ity anomaly of the gauge invariant fermionic measure in odd
temperature-dependent expressionIfgyy. dimensions. The present analysis gives a closed answer to
We f|na||y note that a perturbative expansion in powers Oﬁhe puZZle of gauge invariance of the effective action at finite
the Coup"ng Constarg shows a smooth temperature depen_temperature: the perturbative result in which the CS coeffi-
dence of the CS coefficient: cient acquires a smooth dependence on the temperature is
correct, but shows that any perturbative order is insufficient
1 M 4 to maintain large gauge invariance.
I odd=tanh ——| Scs+ O(€%). (99) The non-Abelian case follows the pattern described above
in every detail. Although the restrictions imposed on the
Concerning the gauge invariance of the finite temperaturbackground fields do not allow the study of large gauge
result we note that, in contrast to the Abelian case, there is nmansformations, notice that the zero temperature limit shows
room for large gauge transformations preserving the condithe presence of two CS contributions with appropriate coef-
tions(61) and(62) under which our resulf90) was obtained. ficients so as to cancel the gauge noninvariance of each
We can only quote gauge invariance under small gaugether. This strongly suggests that the same behavior is to be
transformations that do not mix spatial and time componentsxpected concerning large gauge transformations at finite
However, we expect that the large gauge invariance appatemperature.
ently broken by the perturbative expansib) should be
recovered by the full result. ACKNOWLEDGMENTS
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