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I. INTRODUCTION AND RESULTS

Three-dimensional gauge theories coupled to matter are
relevant both in field theory and condensed matter physics.
An important feature of these theories is that, apart from the
usual Maxwell or Yang-Mills actions, there exists the possi-
bility of considering a Chern-Simons~CS! term as a part@1#
or as the entire@2# gauge field action. Moreover, even if the
CS term is not includedab initio, it will be induced through
fluctuation of Fermi fields@3,4#, by the parity-violating fer-
mion mass, and/or by the celebrated parity anomaly@1#.

A fundamental property of the CS action is that its pres-
ence forces a quantization law: the~non-Abelian! CS term is
noninvariant under ‘‘large’’ gauge transformations~i.e.,
gauge transformations carrying a nontrivial winding num-
ber!, implying that the coefficient of the CS term should be
quantized so that exp(iSCS) remains single valued. Concern-
ing the induced~through matter fluctuations! CS term, it is
well established that any gauge invariant regularization of
the massless fermionic determinant introduces a parity
anomaly in the form of6 1

2 SCS whose gauge noninvariance
compensates the gauge noninvariance of the otherwise parity
preserving effective action@3#. This parity anomalous contri-
bution is also present in the case of massive fermions@5#,
when other canonical parity-violating terms associated to the
fermion mass come into play.

The results above correspond to quantum field theory at
zero temperature. What aboutTÞ0? To our knowledge this
question was first addressed in@6# where it was argued that
the coefficient of the induced CS term remains unchanged at
finite temperature. Contrasting with this analysis, perturba-
tive calculations yielded effective actions with CS coeffi-
cients which are smooth functions of the temperature@7–16#.

It is important to notice that these computations dealt with
the fermion mass-dependent parity breaking and ignored the
parity anomaly related to gauge invariant regularizations.

The issue of renormalization of the CS coefficient induced
by fermions atTÞ0 was reanalyzed in Refs.@17,18# where it
was concluded that, in perturbation theory and on gauge in-
variance grounds, the effective action for the gauge field can-
not contain the smoothly renormalized CS coefficient which
was the answer of perturbative calculations. More recently,
the exact result for the effective action of a 011 massive
fermion system@19# as well as nonperturbative calculations
of the effective action in the 211 Abelian case@20# and its
explicit temperature-dependent parity-breaking part@21#
have explicitly shown that although the perturbative expan-
sion leads to a nonquantizedT-dependent CS coefficient, the
complete effective action can be seen to be gauge invariant
under both small and large gauge transformations, the
temperature-depending shift in the CS coefficient being just
a byproduct of considering just the first term in the expan-
sion of the effective action.

We extend in the present work the analysis presented in
@21# for the Abelian model to the case of 211 massive fer-
mions in a non-Abelian gauge background. By considering a
particular class of gauge field background configurations we
compute exactly the induced parity-breaking part of the ef-
fective action for three-dimensional massive fermions in the
fundamental representation of SU(N).

To be precise, we are concerned with

Godd~A,M !5
1

2
@G~A,M !2G~A,2M !#, ~1!

where

exp@2G~A,M !#5E DcDc̄ exp@2SF~A,M !#, ~2!

andSF(A,M ) is the action for massive fermions~with mass
M ) in a gauge backgroundAm . As mentioned above~see

*Permanent address: CONICET.
†Permanent address: CONICET. On leave from La Plata Univer-

sity, Argentina.
‡Permanent address: CICBA, Argentina.

PHYSICAL REVIEW D 15 NOVEMBER 1997VOLUME 56, NUMBER 10

560556-2821/97/56~10!/6547~9!/$10.00 6547 © 1997 The American Physical Society



@20# for a discussion!, the mass-dependent parity-violating
term is not the only one arising inG(A,M ); there is also a
local parity anomaly contribution in the form of half a CS
term arising in any gauge invariant regularization. This term,
first noticed atT50 in @3# for massless fermions and in@5#
for massive fermions, is mass and temperature independent
and can be removed by a local counterterm at the price of
breaking large gauge invariance. It is in fact not taken
into account in most of the literature analyzing
(211)-dimensional massive fermion models. To understand
the interplay between the two contributions, one can regard
the mass-dependent parity-violating term as naturally arising
due to the fact that the Lagrangian already contains at the
classical level a parity-violating mass term. Concerning the
mass-independent contribution which comes from the parity
anomaly, it can be seen as a necessary consequence of any
gauge invariant regularization of the path integral fermionic
measure. After these remarks, it is clear that our definition of
Godd excludes this last anomalous contribution but since it is
temperature independent, it does not affect our analysis.

The calculation of Eq.~1! for the general case, namely,
for anygauge field configuration is not something we can do
exactly. Instead of making a perturbative calculation dealing
with a small but otherwise arbitrary gauge field configura-
tion, we shall consider a restricted set of gauge field configu-
rations which can, however, be treated exactly.

In order to get an exact result we choose a particular
gauge field background which corresponds to a vanishing
color electric field and a time-independent color magnetic
field

A35A3~t!, ~3!

Aj5Aj~x! ~ j 51,2! ~4!

or any equivalent configuration by gauge transformations. In
the non-Abelian case we further restrictA3 to point in a fixed
direction in the internal space

A35uA3uň, ~5!

andAj to commute withA3,

@Aj ,A3#50 ~ j 51,2!. ~6!

Although for SU~2! this implies that all of the components of
Am commute, and can be thus seen as an ‘‘Abelian-like’’
configuration, for SU~N! with N.2 one can see that genuine
non-Abelian effects are incorporated. The configurations un-
der consideration are reminiscent of the ones treated in@4#
for massless fermions atT50; in that case Lorentz covari-
ance of the local result allowed straightforward generaliza-
tion to arbitrary backgrounds. Unfortunately, this will not be
the case here.

Our main result can be presented through the formula we
obtain forGodd

Godd5
ig

4p
trH arctanF tanhS bM

2 D tanS g

2E0

b

A3dt D G
3E d2xe i j Fi j J , ~7!

whereg is the coupling constant,b51/T, and tr is an ad-
equate trace in SU(N) ~matrix functions are defined as usual
as power series!.

The paper is organized as follows. We give in Sec. II a
more detailed description of the results presented in@21# for
the Abelian case so as to clarify the method of computation,
which relies on the ability to factorize the piece of the effec-
tive action depending on the sign of the fermion mass. The
same method is applied in Sec. III to the analysis of the
SU(N) case leading to formula~7!. Finally, in Sec. IV we
summarize and give a discussion of our results.

II. THE ABELIAN CASE

We are interested in evaluating the parity-odd piece of the
effective action~1! which is induced by integrating out mas-
sive fermions coupled to an Abelian gauge fieldAm in 2
11 dimensions at finite temperature.

The Euclidean actionSF(A,M ) is given by

SF~A,M !5E
0

b

dtE d2xc̄ ~]”1 ieA” 1M !c. ~8!

We are using Euclidean Dirac’s matrices in the representa-
tion

g15s1 , g25s2 , g35s3 , ~9!

wheres i are the familiar Pauli matrices andb51/T is the
inverse temperature. The label 3 is used to denote the Eu-
clidean time coordinatet. The fermionic fields in Eq.~2!
obey antiperiodic boundary conditions in the timelike direc-
tion

c~b,x!52c~0,x!, c̄ ~b,x!52 c̄ ~0,x!, ;x, ~10!

with x denoting the two space coordinates. The gauge field
satisfies periodic boundary conditions instead:

Am~b,x!5Am~0,x!, ;x. ~11!

We want to make a calculation which preserves an interest-
ing property of the imaginary time formulation, namely, that
there is room for gauge transformations with nontrivial
winding around the time coordinate, and any approximation
which assumes the smallness ofA3 may put the symmetry
under those large transformations in jeopardy.

Let us first discuss the nontrivial gauge transformations at
finite temperature. The set of allowed gauge transformations
in the imaginary time formalism is defined in the usual way:

c~t,x!→e2 ieV~t,x!c~t,x!, c̄ ~t,x!→eieV~t,x!c̄ ~t,x!,

Am~t,x!→Am~t,x!1]mV~t,x!, ~12!

whereV(t,x) is a differentiable function vanishing at spatial
infinity ( uxu→`), and whose time boundary conditions are
chosen in order not to affect the fields’ boundary conditions
~10! and~11!. It turns out thatV(t,x) can wind an arbitrary
number of times around the cyclic time dimension

V~b,x!5V~0,x!1
2p

e
k, ~13!
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wherek is an integer which labels the homotopy class of the
gauge transformation.

Invoking gauge invariance of the fermionic determinant

det~]”1 ieA” 1M !5E DcDc̄ expH 2E
0

b

dtE d2xc̄ ~]”

1 ieA” 1M !cJ , ~14!

we can always perform a gauge transformation of the fermi-
onic fields in the functional integral~14!,

c~t,x!5e2 ieV~t,x!c8~t,x! c̄~t,x!5eieV~t,x!c̄8~t,x!,
~15!

in order to pass to an equivalent expression where the gauge
field is traded forAm8 5Am1]mV:

det~]”1 ieA” 1M !5E Dc8Dc̄8expH 2E
0

b

dtE d2xc̄8

3~]”1 ieA” 81M !c8J . ~16!

We consider the configurations given by Eqs.~3! and ~4!,
namely,A3 is only a function oft, andAj is independent of
t. Under these assumptions, we see that the onlyt depen-
dence of the Dirac operator comes fromA3. This dependence
can however be erased by a redefinition of the integrated
fermionic fields as in Eq.~15! if we take

V~t!52E
0

t

dt8A3~t8!1S 1

bE0

b

dt8A3~t8!1
2pk

eb D t,

~17!

wherek is the arbitrary integer labeling the homotopy class.
Such a transformation rendersA38 constant. The freedom to
choosek could be used to further restrict the values of the
constantA38

0<A38,
2p

eb
, ~18!

or any of the intervals obtained by a translation of this one
by an integer number of 2p/eb. In this sense, the value of
the constant in such an interval is the only ‘‘essential,’’ i.e.,
gauge-invariant,A3(t)-dependent information contained in
the configurations ~3!,~4!, describing the holonomy
*0

bd t̃ A3( t̃ ) around the time direction~notice that theF3 j

components of the field curvature tensor identically vanish
for these configurations!. However, we will limit ourselves
to small gauge transformations (k50) in order to avoid any
assumption about large gauge invariance of the fermionic
measure in Eq.~14! and safely discuss the effect of large
gauge transformations on the final results. Thus the constant
field A38 takes the mean value ofA3(t):

Ã35
1

bE0

b

dtA3~t!. ~19!

Note that the spatial components ofAm remaint independent
after this redefinition.

After redefining the fermionic fields according to this pre-
scription, we see that the fermionic determinant we should
consider is now

det~]”1 ieA” 1M !5E DcDc̄ exp@2SF~Aj ,Ã3 ,M !#,

~20!

where

SF~Aj ,Ã3 ,M !5E
0

b

dtE d2xc̄ @]”1 ie~g jAj1g3Ã3!1M #c,

~21!

and we removed the primes for the sake of clarity.
Since the Dirac operator in the previous equation is in-

variant under imaginary time translations it is convenient to
perform a Fourier transformation on the time variable forc

and c̄ :

c~t,x!5
1

b (
n52`

1`

eivntcn~x!,

c̄ ~t,x!5
1

b (
n52`

1`

e2 ivntc̄n~x!, ~22!

where vn5(2n11)p/b is the usual Matsubara frequency
for fermions. Then the Euclidean action is written as an in-
finite series of decoupled actions, one for each Matsubara
mode:

SF~Aj ,Ã3 ,M !5
1

b (
n52`

1` E d2xc̄n~x!@d” 1M1 ig3

3~vn1eÃ3!#cn~x!, ~23!

whered” is the 111 Euclidean Dirac operator corresponding
to the spatial coordinates and the spatial components of the
gauge field

d” 5g j~] j1 ieAj !. ~24!

As the action splits up into a series and the fermionic mea-
sure can be written as

Dc~t,x!Dc̄ ~t,x!5 )
n52`

n51`

Dcn~x!Dc̄n~x! ~25!

the 211 determinant is an infinite product of the corre-
sponding 111 Euclidean Dirac operators

det~]”1 ieA” 1M !5 )
n52`

n51`

det@d” 1M1 ig3~vn1eÃ3!#.

~26!

Explicitly, the 111 determinant for a given mode is a func-
tional integral over 111 fermions
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det@d” 1M1 ig3~vn1eÃ3!#

5E DxnDx̄ n expH 2E d2xx̄ n~x!@d” 1M1 ig3

3~vn1eÃ3!#xn~x!J . ~27!

In order to computeGodd we factorize now these determi-
nants in a piece which is sensitive to the sign ofM and a
piece which is not. The Euclidean actionSn corresponding to
the moden may be conveniently recasted in the following
form:

Sn5E d2xx̄ n~d” 1rneig3fn!xn ~28!

with

rn5AM21~vn1eÃ3!2; fn5arctanS vn1eÃ3

M
D .

~29!

We next realize that the change of fermionic variables

xn~x!5e2 i ~fn/2!g3x8n~x!, x̄ n~x!5 x̄ 8n~x!e2 i ~fn/2!g3

~30!

makes the actionSn independent offn . This is not a gauge
transformation but a global chiral rotation in the 111 Eu-
clidean fermionic variables. Correspondingly, the fermionic
measure picks up an anomalous Fujikawa Jacobian@22# so
that one ends with

det@d” 1M1 ig3~vn1eÃ3!#5Jn@A,M # det@d” 1rn#,
~31!

where

Jn@A,M #5expS 2 i
efn

2p E d2xe jk] jAkD , ~32!

with e jk denoting the 111 Euclidean Levi-Civita symbol.
Recalling the definition ofGodd, we see that the second

factor in expression~31! does not contribute to it, since it is
invariant under M→2M . The Jacobian~32!, instead,
changes to its inverse. As a consequence, the parity odd
piece in the effective action is given in terms of the infinite
set ofn-dependent Jacobians

exp@2Godd#5 )
n52`

n51`

Jn@A,M # ~33!

or

Godd52 (
n52`

n51`

lnJn@A,M #5 i
e

2p (
n52`

n51`

fnE d2xe jk] jAk .

~34!

There only remains to perform the summation over thefn’s.
This can be done by using standard techniques in finite tem-
perature field Theory. We define

S5 (
n52`

n51`

arctanS vn1eÃ3

M
D , ~35!

whose sign will obviously depend on the sign ofM . We
make this explicit by rewritingS as

S5
M

uM u (
n52`

n51`

arctanS vn1eÃ3

uM u D ~36!

or, using the expression forvn ,

S~x,y!5
M

uM u (
n52`

n51`

arctanS ~2n11!p1x

y D , ~37!

where x5ebÃ3, and y5buM u are the two dimensionless
parameters built from the original ones. This series must be
regularized, and the standard technique consists in subtract-
ing the zero-field value of each term; notice that the sum of
these zero-field contributions conditionally converges to 0.
Then

S~x,y!5
M

uM u (
n52`

n51` E
0

x

du
d

du
arctanS ~2n11!p1u

y D .

~38!

As the series now converges absolutely we can first perform
the summation. The sum to be evaluated is then

(
n52`

n51`
y

y21@~2n11!p1u#2
, ~39!

which is solved by the summation formula

(
n52`

n51`
1

~n2x1!~n2x2!
52

p@cot~px1!2cot~px2!#

x12x2
.

~40!

After performing the integral we get

S5
M

uM u
arctanF tanhS buM u

2 D tanS 1

2
ebÃ3D G . ~41!

Thus the parity-odd part ofG finally reads

Godd5 i
e

2p

M

uM u
arctanF tanhS buM u

2 D
3tanS e

2E0

b

dtA3~t! D G E d2xe jk] jAk . ~42!

There are several observations to be made about our result
~42!. First we observe that this result has the proper zero
temperature limit

lim
T→0

Godd→
1

2

M

uM u
SCS, ~43!

whereSCS is the Chern-Simons action

6550 56C. D. FOSCO, G. L. ROSSINI, AND F. A. SCHAPOSNIK



SCS5 i
e2

4pE d3xemnaAm]nAa , ~44!

which shows up in our particular configuration~3!,~4! as
(e2/2p)*dtA3(t)*d2xe i j ] iAj . So we get the induced
Chern-Simons term at zero temperature. As it is well known,
in the zero temperature case the result is not invariant under
large gauge transformations. The quantization of the spatial
integral that measures the flux of the magnetic field through
a spacelike manifoldt5const in units of 2p/e shows that
Eq. ~43! changes by the addition of an odd multiple ofip
under a large gauge transformation with odd winding num-
ber when the magnetic flux is odd. This gauge noninvariance
is compensated by the parity anomaly discussed in the Intro-
duction when the complete result is regularized in a gauge
invariant scheme.

The same situation occurs in the finite temperature result
~42!. A large gauge transformation with odd winding number
k52p11 shifts the argument of the tangent in (2p11)p.
Although the tangent is not sensitive to such a change, one
has to keep track of it by shifting the branch used for arctan
definition. This amounts to the same result as in theT→0
limit: the gauge noninvariance ofGodd under large gauge
transformations is compensated by the parity anomaly
6 1

2 SCS.
Now we observe that a perturbative expansion in terms of

e yields the usual perturbative result

Godd5
1

2

M

uM u
tanhS uM ub

2 DSCS1O~e4!, ~45!

where the coefficient of the Chern-Simons term acquires a
smooth dependence on the temperature. Were we consider-
ing only the first nontrivial order in perturbation theory, we
would find a clash between temperature dependence and
gauge invariance@17,18#: the gauge noninvariance of the in-
duced CS term is no longer compensated by the parity
anomaly. Now we learn, as it was stressed in@19# in a (0
11)-dimensional example and in@20# in 211 dimensions,
that one has to consider the full result in order to analyze
gauge invariance.

Finally, we observe that the result~42! is not an extensive
quantity in Euclidean time. It is, however, extensive in space,
and that is indeed all one expects in finite temperature field
theory. In contrast, theT50 limit becomes an extensive
quantity in space-time, as is expected from zero temperature
field theory.

We shall now extend the previous results, obtained for
space-independentA3 and time-independentAj to the some-
what more general situation of a smooth spatial dependence
of A3 besides the previous arbitrary time dependence.

The fermionic determinant we should calculate, after get-
ting rid of the t dependence ofA3 will have a form analo-
gous to Eq.~20! with the only difference of having anx
dependence inÃ3. As there is no explicit time dependence in
the Dirac operator, we again pass to a Fourier description of
the time coordinate. Defining thex-dependent fieldsrn(x)
andfn(x),

rn~x!5AM21@vn1eÃ3~x!#2;

fn~x!5arctanS vn1eÃ3~x!

M
D , ~46!

we have for the complete fermionic determinant an expres-
sion equivalent to the previous case:

det~]”1 ieA” 1M !5 )
n52`

`

det@d” 1rn~x!eig3fn~x!#.

~47!

The determinant corresponding to then-mode is again writ-
ten as a functional integral over (111)-dimensional fields,
but a transformation such as Eq.~30! is now a local chiral
rotation of the (111)-dimensional fermions and gives rise
to

det@d” 1rn~x!eig3fn~x!#5Jn det@d” 81rn~x!#, ~48!

where

d” 85d” 2
i

2
]”fng3 ~49!

and the anomalous Jacobian reads

Jn5expH 2 i
e

2pE d2xFfn~x!e jk] jAk1
1

4
fn~x!Dfn~x!G J .

~50!

Thex dependence of the phase factorfn affects the result in
two ways. First, we see that the field redefinition changes the
operatord” to d” 8 which depends on the sign ofM , and so
there will be a contribution toGodd coming from the deter-
minant of d” 81rn(x). Second, the Jacobian is now a more
involved function offn , since the field redefinition affects
the Dirac operator which is used to define the fermionic in-
tegration measure. In a first approximation, we shall only
take into account the contribution coming from the Jacobian,
since the one that follows from the determinant of the Dirac
operator is of higher order in a derivative expansion~and we
are assuming that thex dependence ofÃ3 is smooth!. The
contribution which is quadratic infn is irrelevant to the
parity breaking piece, since it is even inM . Thus, neglecting
the terms containing derivatives ofÃ3, we have forGodd a
result which looks similar to a natural generalization of the
previous case:

Godd5 i
e

2p

M

uM u E d2x arctanF tanhS uM ub
2 D

3tanS e

2E0

b

dtA3~t,x! D Ge jk] jAk~x!. ~51!

It is not hard to check that the reliability of the approxima-
tion of neglecting derivatives ofÃ3 is assured if the condi-
tion

ue] j Ã3u!M2 ~52!
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is fulfilled. To end with this example, let us point that all the
remarks we made for the case of a space-independentA3 also
apply to this case.

III. THE NON-ABELIAN CASE

We extend in this section the previous analysis to the
non-Abelian case. Although we shall consider, as in the Abe-
lian case, particular background field configurations which
allow us to make exact computations, the results will exhibit
genuine non-Abelian effects through nontrivial commutators
of spatial components of the gauge field. Our analysis will be
valid for the SU(N) case although some points are made
explicit for the particularN52,3 cases. As we shall see,
details arising in calculations are due to technicalities asso-
ciated with handling the non-Abelian symmetry; once they
are overcome, the results appear as a natural extension of the
Abelian ones.

The Euclidean fermionic action which describes the sys-
tem is now written as

SF~A,M !5E
0

b

dtE d2xc̄ ~D” 1M !c, ~53!

where the covariant derivative acting on the fermions in the
fundamental representation of SU(N) is defined as

Dm5]m1 igAm , ~54!

and the gauge connectionAm is written as

Am5Am
a ta ~55!

with ta denoting Hermitian generators of the Lie algebra
(a51, . . . ,N221), verifying the relations

ta
†5ta , @ta ,tb#5 i f abctc , tr~tatb!5

1

2
dab , ~56!

with f abc the totally antisymmetric structure constants. For
the particular case of SU~2!, which we shall consider in more
detail, we havef abc5eabc since the generators will be taken
to be the usual Pauli matrices.

We are concerned with the parity-odd piece of the effec-
tive action defined in Eq.~1!. Fermionic~bosonic! fields sat-
isfy again antiperiodic~periodic! boundary conditions in the
timelike direction.

We shall in this case restrict the set of configurations for
the gauge fields given by Eqs.~3!–~6! in order to be able to
calculateGodd exactly. Before doing so, let us clarify a point
about the nature of the gauge group boundary conditions in
imaginary time.

Non-Abelian gauge transformations are defined by their
action on the fermionic and gauge fields:

c~t,x!→cU~t,x!5U~t,x!c~t,x!,

c̄ ~t,x!→ c̄U~t,x!5c~t,x!U†~t,x!,

Am~t,x!→Am
U~t,x!5U~t,x!Am~t,x!U†~t,x!

2
i

g
U~t,x!]mU†~t,x!. ~57!

In order to decide the boundary conditions the gauge group
element should satisfy in the timelike direction, one requires
that the periodicity of the gauge field and the antiperiodicity
of the fermions is unaltered under a gauge transformation.
Concerning the gauge field, this only imposes onU the con-
dition

U~b,x!5hU~0,x!, ~58!

where h is an element ofZN , the center of SU~N!. Now,
concerning fermions, the condition onU depends on whether
they are in the fundamental or adjoint representation. In the
fundamental one, it is easily seen that

U~b,x!5U~0,x!, ~59!

while in the adjoint representation, condition~58! follows
instead. As we assume fermions are in the fundamental rep-
resentation, the group elementsU(t,x) are taken to be
strictly periodic @a condition in fact analogous to the one
used for the Abelian case in Eq.~13!#. One can then prove
@23# that for compact groups

w~U !5
1

12p2N
trE d3xemnaU21]mUU21]nUU21]aU

~60!

is an integer number that labels homotopically equivalent
gauge transformations. Thus the distinction between large
and small gauge transformations has a different origin here
than in the Abelian case.

We thus consider a class of configurations equivalent by
gauge transformations to

A35uA3u~t!ň, ~61!

Aj5Aj~x!, @Aj ,ň#50~ j 51,2!. ~62!

where ň is a fixed direction in the Lie algebra (ň5nata ,
nana51).

We note that conditions~61! and ~62! assure the vanish-
ing of the color electric fields, as well as the time indepen-
dence of the color magnetic fields. Regarding the condition
~62!, which requires the spatial gauge field components to
commute with A3, it is worth remarking that its conse-
quences depend strongly on whether the group considered is
SU~2! or SU(N) with N.2. In the former case, the only
solution to Eq.~62! corresponds to a configuration with all
the gauge field components pointing in the same directionň
in internal space, i.e., an ‘‘Abelian-like’’ configuration. In
contrast, forN.2, configurations with@A1 ,A2#Þ0 are in-
deed possible.

To make the point above more explicit let us analyze the
simple specific example of SU~3! with the generators given
by the standard Gell-Mann matrices; one can then takeA1
andA2 as linear combinations oft1, t2 andt3 @generators of
a SU~2! subgroup# and A3 pointing in the direction oft8.
This situation easily generalizes toN.3 since one can con-
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struct the set of generators for a higherN in such a way that
it contains the generators corresponding to SU(N21) as a
subset of block-diagonal matrices, and one of the extra gen-
erators can be always defined as to commute with them.
Thus it is possible to takeA1 andA2 as noncommuting vec-
tors in the subalgebra corresponding to SU(N21) and A3
commuting with them.

Coming back to the general case, let us point out that, as
in the Abelian case, one can erase thet dependence ofA3
component by considering a change of variables for the fer-
mionic fields corresponding to a gauge transformation of the
form

U~ t !5eigV~t!ň ~63!

and

V~t!52E
0

t

dt8A3
~ ň!~t8!1S 1

bE0

b

dt8A3
~ ň!~t8! D t.

~64!

Now, because of condition~62! the space components of the
gauge field remain unchanged under this transformation,
while A3 takes the constant valueÃ35(1/b)*0

bdtA3(t)

5uÃ3uň. After these remarks, we assume a gauge transfor-
mation has been made on the fermions in order to reach a
constantÃ3 and the rest of conditions~61! and ~62! for the
gauge field.

After a Fourier transformation on the time variable forc

andc̄ of the form~22! the Euclidean action can be written as
an infinite series of decoupled actions:

SF5
1

b (
n52`

1` E d2xc̄n~x!@d” 1M1 ig3~vn1gÃ3
ata!#cn~x!,

~65!

where d” 5g j (] j1 igAj ) is the non-Abelian Dirac operator
corresponding to the spatial coordinates and the spatial com-
ponents of the gauge field. Concerning the fermionic mea-
sure, we write it in the form

Dc~t,x!Dc̄ ~t,x!5 )
n52`

n51`

Dcn~x!Dc̄n~x!, ~66!

so that again the 211 determinant becomes an infinite prod-
uct of the corresponding 111 Euclidean Dirac operators

det~]”1 igA” 1M !5 )
n52`

n51`

det@d” 1M1 ig3~vn1gÃ3
ata!#.

~67!

We now show that the same trick which leads to the decou-
pling of parity-breaking and parity-conserving parts of the
determinant for the Abelian case can be applied here. First,
we use the property

M1 ig3~vn1gÃ3
ata!5rneifn, ~68!

where

rn5AM21~vn1gÃ3
ata!2; fn5arctanS vn1gÃ3

ata

M
D .

~69!

The usual definition of functions of matrices in terms of
power series has been used above. It is important to realize
that, beingfn a nontrivial Hermitean function of a matrix in
the Lie algebra, it will in general have components along the
generatorsta and also along the identity matrix, namely,

fn5fn
011fn

ata . ~70!

As an illustration, we consider the SU~2! case. A somewhat
lenghty but otherwise straightforward calculation yields ex-
plicit expressions for these components offn :

fn
05

1

2
arctanS 2Mvn

M21
g2

4
uÃ3u22vn

2D ,

fn
a5arctanS gMuÃ3u

M22
g2

4
uÃ3u21vn

2D na. ~71!

The 111 determinant for a given mode is a functional inte-
gral over 111 fermions that using Eq.~68! can be written as

det@d” 1M1 ig3~vn1gÃ3
ata!#

5E DxnDx̄ n expH 2E d2xx̄ n~x!~d” 1rneig3fn!

3xn~x!J . ~72!

We now perform the change of fermionic variables

xn~x!5e2 i ~fn/2!g3x8n~x!, x̄ n~x!5 x̄ 8n~x!e2 i ~fn/2!g3,
~73!

and verify that due to the last condition in Eq.~62! it indeed
decouples the parity-violating part of the effective action.
We find, including the anomalous Fujikawa Jacobian

det@d” 1M1 igg3~vn1Ã3
ata!#5Jn det@d” 1rn#. ~74!

The Jacobian in Eq.~74! reads@22#

Jn@A,M #5expF2 i tr
fn

2 E d2xAG , ~75!

with A5Aata denoting the 111 Euclidean anomaly under
an infinitesimal non-Abelian axial transformation. As this
transformation isx independent, there is no difference be-
tween finite and infinitesimal transformations and one can
just simply iterate the infinitesimal Fujikawa Jacobian@22# in
order to get the finite answer~75!. Also note thatfn

0 ~the
component along the identity! does not contribute to the
Jacobian since tr(fn

0A)50. A standard calculation leads for
the two-dimensional non-Abelian anomaly the answer~see,
for example,@24#!
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A5
g

2p
e i j Fi j ~76!

so that the Jacobian finally takes the form

Jn@A,M #5expF2
ig

4p
trS fnE d2xe i j Fi j D G . ~77!

We see from Eqs.~67! and ~74! that the parity odd piece of
the effective action is again given in terms of the infinite set
of n-dependent Jacobians:

Godd@A,M #52 (
n52`

n51`

lnJn@A,M #

5
ig

4p
trF S (

n52`

1`

fnD E d2xe i j Fi j G . ~78!

Now we have to perform the summation over thefn’s. A
careful analysis of the steps performed in the Abelian case
shows that the result~41! is valid for matrix valued gauge
fields. Thus we get

Godd5
ig

4p
trH arctanF tanhS bM

2 D tanS g

2
bÃ3D G E d2xe i j Fi j J .

~79!

This is the main result in this section, which extends Eq.~42!
to SU(N) background fields.

We can check this result by doing explicit computations
with the componentsfn

a given in Eq.~71! for the SU~2! case.
From Eq.~78!,

Godd@A,M #5
ig

8p (
n52`

1`

fn
aE d2xe i j Fi j

a . ~80!

Using Eq.~71! we have to compute

S5 (
n52`

`

arctanS gMuÃ3u

M22
g2

4
uÃ3u21vn

2D ~81!

or, in terms of dimensionless variables,

m5bM , x5
g

2
buÃ3u, ~82!

S~x,m!5 (
n52`

`

arctanS 2mx

m22x21~2n11!2p2D . ~83!

The sum is convergent, but in order to calculateS it will be
convenient to write

S~x,m!5E
0

x

du
]S

]u
~u,m!. ~84!

The implicit subtraction of a zero-field contribution vanishes
term by term in this case.

After some calculations, one has

]S

]x
~x,m!52m (

n52`

`
m21~2n11!2p21x2

@m21~2n11!2p22x2#214m2x2
.

~85!

One could now arrange this expression to use the summation
formula ~40!. With the purpose of illustration we use instead
the standard Regge-type trick to rewrite Eq.~85! as a contour
integral of the form

]S

]x
~x,m!52

m

2p i RC
dztanh~z/2!

m22z21x2

@m22z22x2#214m2x2
,

~86!

where C is a contour including all the poles of tanh(z/2).
After continuingC into the upper and lower half-planes to
pick up the four poles of the fraction only, we end with

]S

]x
~x,m!5

i

2F tanhS x2 im

2 D2tanhS x1 im

2 D G . ~87!

Using this expression in Eq.~84! we finally get

S~x,m!52arctan@ tanh~m/2!tan~x/2!# ~88!

so thatGodd can be written as

Godd5
ig

4p
arctanF tanhS bM

2 D tanS g

4
buÃ3u D GnaE d2xe i j Fi j

a .

~89!

Finally, observing that (nata)(2k11)5(1/22k)nata and only
odd powers enter the expansions of the functions involved,
we see that the result is identical to Eq.~79!.

In order to analyze the result~79! let us write it in the
most general form

Godd5
ig

4p
trH arctanF tanhS bM

2 D
3tanS g

2E0

b

dtA3~t! D G E d2xe i j Fi j J . ~90!

Then we note that in the zero-temperature limit one has

lim
T→0

Godd5
ig2

8p

M

uM u
trS E

0

b

dtA3~t!E d2xe i j Fi j D . ~91!

This result is the usual one: namely,

lim
T→0

Godd5
1

2

M

uM u
SCS, ~92!

restricted to the particular background we have considered.
HereSCS is the non-Abelian CS action

SCS5
ig2

8pE d3xemnatrS FmnAa2
2

3
AmAnAaD , ~93!

which for a gauge field satisfying the restrictions~62! reads

6554 56C. D. FOSCO, G. L. ROSSINI, AND F. A. SCHAPOSNIK



SCS5
ig2

4p
trE d3xA3e i j Fi j . ~94!

We thus recover the zero-temperature result first obtained in
@3# by calculating the vacuum expectation value of the fer-
mion current in a constant non-Abelian field strength tensor
background or in@4# in a static non-Abelian magnetic back-
ground such as ours. We recall, however, that gauge invari-
ance under large gauge transformations is obtained only
when the parity anomaly6 1

2 SCS is added to the mass- and
temperature-dependent expression forGodd.

We finally note that a perturbative expansion in powers of
the coupling constantg shows a smooth temperature depen-
dence of the CS coefficient:

Godd5
1

2
tanhS Mb

2 DSCS1O~e4!. ~95!

Concerning the gauge invariance of the finite temperature
result we note that, in contrast to the Abelian case, there is no
room for large gauge transformations preserving the condi-
tions ~61! and~62! under which our result~90! was obtained.
We can only quote gauge invariance under small gauge
transformations that do not mix spatial and time components.
However, we expect that the large gauge invariance appar-
ently broken by the perturbative expansion~95! should be
recovered by the full result.

IV. SUMMARY AND DISCUSSION

We have been able to compute the exact form of the
parity-violating contribution to the finite temperature effec-
tive action for 211 massive fermions in a restricted set of
gauge backgrounds, both for Abelian and non-Abelian gauge
groups. Our computation reproduces the standard results
both at zero temperature and/or perturbation theory.

The Abelian case allows for a complete analysis of the
gauge invariance under large transformations; we have found
that the mass and temperature-dependent contribution is not
invariant but its variation is cancelled~modulo 2p i ) when
the parity anomalous contribution6 1

2 SCS is incorporated.
We recall that in the zero temperature limit the gauge invari-
ant result contains two contributions in the form of CS terms,
one arising canonically from the fermion mass parity-
violating term and the other coming from the necessary par-
ity anomaly of the gauge invariant fermionic measure in odd
dimensions. The present analysis gives a closed answer to
the puzzle of gauge invariance of the effective action at finite
temperature: the perturbative result in which the CS coeffi-
cient acquires a smooth dependence on the temperature is
correct, but shows that any perturbative order is insufficient
to maintain large gauge invariance.

The non-Abelian case follows the pattern described above
in every detail. Although the restrictions imposed on the
background fields do not allow the study of large gauge
transformations, notice that the zero temperature limit shows
the presence of two CS contributions with appropriate coef-
ficients so as to cancel the gauge noninvariance of each
other. This strongly suggests that the same behavior is to be
expected concerning large gauge transformations at finite
temperature.
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