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We show that gravitational radiation is produced quite efficiently in interactions of classical waves created
by resonant decay of a coherently oscillating field. As an important example we consider simple models of
chaotic inflation, where we find that today’s ratio of energy density in gravitational waves per octave to the
critical density of the Universe can be as large as 10212 at the maximal wavelength of order 105 cm. In the pure
lf4/4 model with inflaton self-couplingl510213, the maximal today’s wavelength of gravitational waves
produced by this mechanism is of order 106 cm, close to the upper bound of operational LIGO and TIGA
frequencies. The energy density of waves in this model, though, is likely to be well below the sensitivity of
LIGO or TIGA at such frequencies. We discuss the possibility that in other models the interaction of classical
waves can lead to an even stronger gravitational radiation background.@S0556-2821~97!01914-0#

PACS number~s!: 98.80.Cq, 04.30.Db, 05.30.Jp

I. INTRODUCTION

Recent research in inflationary cosmology has attracted
attention to highly nonequilibrium states created in a decay
of a coherently oscillating field after the end of inflation.
These states could support a number of nonequilibrium phe-
nomena, such as nonthermal symmetry restoration@1# and
baryogenesis@1,2# shortly after or during the decay of the
oscillating field.

In this paper we want to show that nonequilibrium states
produced by the decay of coherent oscillations of a field are
a quite efficient source of a stochastic background of gravi-
tational waves.

There are several possible processes in the early Universe
capable of producing a stochastic background of relic gravi-
tational waves. One is the parametric amplification of
vacuum graviton fluctuations during inflation@4#. This pro-
cess is efficient on all superhorizon scales. Waves with low-
est frequencies cause inhomogeneities of cosmic microwave
background@5#. In conventional scenarios, this restricts the
amplitude of high-frequency gravitational waves to be far
below @6# the experimental limits accessible for direct detec-
tion experiments in the near future; this conclusion changes
in superstring-motivated cosmologies@7#. Another source of
gravitational radiation is classical emission that accompanies
collisions of massive bodies. A natural source in this class in
the early Universe is a strongly first-order phase transition
when gravitational waves are produced in collisions of
bubbles of a new phase@8–10#, in particular the phase tran-
sition that terminates first-order inflation@9#. Gravitational
radiation is also emitted during the decay of a cosmic string
network @11#.

In this paper we discuss a new source of relic gravita-
tional waves. Coherent oscillations of a scalar field can pro-
duce large fluctuations of Bose fields via parametric ampli-
fication ~parametric resonance! @12#. As was shown in Ref.
@13# ~see also Ref.@14# for a discussion of a quantum-to-

classical transition in a different context!, when fluctuations
amplified in this manner reach sufficiently large values, they
become essentially classical. Namely, at that time, the fields
and their canonical momenta approximately commute, and
the quantum averages can be approximated by classical av-
erages over realizations of the inital data. The classical fluc-
tuations emerging in this way can be viewed either as clas-
sical waves traveling through the Universe or, at least
qualitatively, as quantum ‘‘particles’’ in states with large oc-
cupation numbers. The fluctuations interact with the oscillat-
ing background and one another. This interaction, which we
call rescattering@13#, is accompanied by gravitational radia-
tion. That is the effect we want to estimate.

Favorable conditions for an effective parametric reso-
nance in cosmology naturally appear in inflationary models
@15,16#. We consider two types of simple inflationary models
here. One type of model has two scalar fields with an inter-
action potential of the formg2f2X2/2, and the resonance
produces mostly fluctuations of a scalar fieldX other than the
field f that oscillates~although subsequent rescattering pro-
cesses produce large fluctuations of the fieldf as well!. We
consider a range of moderate values of the couplingg2 ~see
below!; in this case fluctuations ofX are not suppressed too
strongly by nonlinear effects~cf. Refs.@17–19#!. In simplest
models of this type,f is the inflaton itself. For these models,
we find that typically;1025 of the total energy of the Uni-
verse goes into gravitational waves, at the time of their pro-
duction. The minimal today’s frequencyfmin of these waves
is typically of order 105 Hz, and today’s spectral density at
this frequency can be as large as 10212 of the critical density.

Another type of model we considered was the purelf4

model of chaotic inflation. In this model, the minimal today’s
frequencyfmin is of order 10

4 Hz, close to the upper bound
of the operational Laser Interferometer Gravitational Wave
Observatory ~LIGO! and Truncated Icosahedral Gravita-
tional Wave Antenna~TIGA! frequencies @3#: 10 Hz
& f LIGO&104 Hz. We do not yet have efficient means of
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extrapolating our numerical results for today’s spectral inten-
sity to the minimal frequency of this model, but we do not
expect it to be above 10211 of the critical density. That
would be well below the sensitivity of LIGO or TIGA at
frequencies of order 104 Hz.

Nevertheless, as the precise content of Bose fields that
could be important in the dynamics in the early Universe is
at present unknown, we believe it is premature to rule out the
possibility of experimental detection, even already by LIGO
or TIGA, of gravity waves produced by the mechanism that
we consider here. At the end of this paper, we discuss the
possibility of a stronger background of gravitational waves
in models with more fields or more complicated potentials.

II. GENERAL FEATURES
OF POST-INFLATIONARY DYNAMICS

In scenarios where inflation ends by resonant decay of
coherent field oscillations, post-inflationary dynamics has
two rapid stages. At the first of these, called preheating@15#,
fluctuations of Bose fields interacting with the oscillating
field grow exponentially fast, as a result of parametric reso-
nance, and achieve large occupation numbers. At the second
stage, called semiclassical thermalization@13#, rescattering
of produced fluctuations smears out the resonance peaks in
power spectra and leads to a slowly evolving state, in which
the power spectra are smooth@13,17,18#. The system begins
to exhibit chaotic behavior characteristic of a classical non-
linear system with many degrees of freedom. In the course of
subsequent slow evolution, the power spectra propagate to
larger momenta; we expect that eventually this process will
lead to a fully thermalized state~which does not admit a
semiclassical description!.

In many models, we find that during the stage of semi-
classical thermalization, or chaotization, fluctuations grow
somewhat beyond their values at the end of, the resonance
stage. In such cases, the most effective graviton production
takes place at the end of, and shortly after, the chaotization
stage.

In order not to confine ourselves to any particular type of
inflationary scenario, we will not assume that the oscillating
field f is the inflaton itself.~It is distinct from the inflaton,
for example, in hybrid inflationary models@20#.! Let us de-
note the amplitude of the zero-momentum mode of this field,
f0 , at the end of the chaotization stage asfch, the fre-
quency of its oscillations asm, and the Hubble parameter at
that time asHch. These same parameters at the end of infla-
tion, when the oscillations start, will be denoted asf(0),
m(0), andH(0). In simplest models of chaotic inflation, in
which f is the inflaton,f(0);MPl , andH(0);m(0). Al-
though we will use such models for illustrative purposes, our
general formulas do not assume these conditions. Oscilla-
tions off cannot start unlessm(0)*H(0), but on theother
hand, they can start atm(0)@H(0), if they have to be trig-
gered by some other field. Even ifH(0);m(0), as insimple
models of chaotic inflation, we still have

Hch,Hr!m, ~1!

whereHr is the Hubble parameter at the end of the resonance

stage. This is because the frequency of oscillations redshifts
slower ~if at all! than the Hubble parameter. We will use
condition ~1! in what follows.

We will consider models, in which oscillating fieldf in-
teracts with a massless scalar fieldX. The Lagrangians for
these models are of the form

L5 1
2g

mn]mf]nf1 1
2g

mn]mX]nX2V~f,X!, ~2!

where

V~f,X!5Vf~f!1 1
2g

2f2X2, ~3!

andVf is a potential for the fieldf. We will consider two
types of Vf : Vf5 1

2m
2f2 ~massivef) and Vf5 1

4lf4

~masslessf). The effect we discuss is not limited to these
particular models and exists in a wide variety of inflationary
models that have a preheating stage. Note that in the model
with masslessf, the frequencym of oscillations off0 at the
end of chaotization ism;Alfch.

The oscillatingf amplifies fluctuations ofX via paramet-
ric resonance. An important parameter in the problem is the
resonance parameterq. Depending on the choice of the po-
tential for f ~see above!, q5g2f2(0)/4m2 ~massivef) or
q5g2/4l ~masslessf).

In the case of massivef, it is useful to introduce, in
addition to the resonance parameterq, the redshifted reso-
nance parameter at the end of the resonance stage

qr5q
f̄2~ t r !

f2~0!
, ~4!

where t r is the time corresponding to the end of the reso-
nance stage, andf̄(t r) is the amplitude of oscillations of
f0 at that time. In the model with massivef and massless
X, parametric resonance can fully develop in an expanding
Universe ifqr*1 @17#. Similarly, we can introduce

qch5
qfch

2

f2~0!
. ~5!

For uniformity of notation, we will sometimes useqr or
qch instead ofq in the case of masslessf; there is no differ-
ence between the three of these in that case.

Resonant production is most effective for fluctuations of
fields that couple tof not too weakly but also not too
strongly, those withqr;1. For qr@1, the maximal size of
X fluctuations is significantly suppressed by nonlinear effects
@17–19#. Because, for instance, superstring models predict a
plethora of scalar fields, we expect that some of those will
have couplings in the optimal range. So, in what follows we
consider moderate values ofqr , 1&qr&100.

In the model with massivef, the oscillating zero-
momentum modef0 drops rapidly at the end of the chaoti-
zation stage, and all its energy at that time is transferred to
fluctuations@18#. The variance off, ^(df)2&, at the end of
chaotization is thus much larger thanfch

2 . This does not
happen in the model with masslessf. So, in what follows we
consider two cases:^(df)2&&fch

2 and ^(df)2&@fch
2 .

For q*1 in the model where a masslessf interacts with
X, parametric resonance forf itself is insignificant. To study
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a case different in that respect, we consider also the pure
lf4/4 model, in whichf decays solely due to self-coupling
@g250 in Eq. ~3!#.

III. CALCULATIONAL PROCEDURES

Because the time scale of processes that give rise to gravi-
tational radiation is much smaller than the time scale of the
expansion of the UniverseHch

21 , the energy of gravitational
waves can be approximately computed starting from the
well-known formulas for flat space-time. Total energy of
gravitational waves radiated in directionn5k/v in flat
space-time is@21#

dE

dV
52GL i j ,lm~n!E

0

`

v2Ti j * ~k,v!Tlm~k,v!dv, ~6!

whereTi j (k,v) are Fourier components of the stress tensor,
andL i j ,lm is a projection tensor made of the components of
n and Kronecker’sd ’s:

L i j ,lm~n!5d i ld jm22njnmd i l1
1
2ninjnlnm2 1

2d i jd lm

1 1
2 d i j nlnm1 1

2d lmninj . ~7!

For models with two fields (f andX) with potentials~3! and
moderateqr , we will present both analytical estimates and
numerical calculations based on Eq.~6!. For analytical esti-
mates, we choose a specific process—gravitational brems-
strahlung that accompanies creation and annihilation of fluc-
tuations of the fieldf. This is not the only process that can
produce a significant amount of gravitational radiation. For
example, because the equations of motion for fluctuations
contain oscillating terms, due to the interaction withf0, the
collection ofX andf fluctuations works~until f0 decays
completely! as a gravitational antenna. The reason why we
concentrate on bremsstrahlung fromf is that it is a signifi-
cant source of gravity waves withsmall frequencies. Indeed,
we will see that both the frequency dependence and the over-
all magnitude of the effect are reasonably close to those of
the full intensity for small frequencies that we obtain numeri-
cally. So, bremsstrahlung fromf appears to be at least one
of the main sources of gravitational radiation with small fre-
quencies in the states we consider here.

Numerical calculations were done for simple models of
chaotic inflation, in whichf is the inflaton itself. The calcu-
lations were done in conformal time, in which the evolution
of the system is Hamiltonian~for more detail, see Ref.@17#!,
and then rescaled back to the physical time. We computed
directly Fourier transformsTi j (k,v) over successive inter-
vals of conformal time, the duration of which was taken
small compared to the time scale of the expansion yet large
enough to accommodate the minimal frequency of gravity
waves we had in these calculations. Intensities from different
intervals were summed up with the weight that takes into
account expansion of the Universe~see more on that below!.
Being a finite size effect, the minimal frequency of our nu-
merical calculations was much larger than the actual minimal
frequency of gravity waves,vmin;Hch. In the models with
two fields (f andX), the spectrum obtained numerically is
approximated reasonably well by the bremsstrahlung spec-

trum at small frequencies. This allows us to extrapolate the
numerical results tov;vmin using the frequency depen-
dence of bremsstrahlung.

For the purelf4/4 model, the analytical method that we
use to estimate the intensity of radiation does not apply at
frequencies for which we have numerical data. So, we do not
have efficient means of extrapolating our numerical results to
vmin . For this model, we contented ourselves with numerical
simulations.

IV. ANALYTICAL ESTIMATES

In general,X andf fluctuations produced by parametric
resonance scatter off the homogeneous oscillating back-
ground~condensate! of f, knockingf out of the condensate
and into modes with nonzero momenta. In cases when reso-
nance amplifies mostly fluctuations ofX, the scattering pro-
cess can be viewed as a decay ofX, Xk→Xk81fp , in the
time-dependent background field of the condensate. It can
also be thought of as evaporation of the inflaton condensate.
There is also the inverse process~condensation!.

We will assume that bremsstrahlung fromf is at least
one of the main sources of gravity waves with small frequen-
cies ~we will specify the notion of ‘‘small’’ frequency be-
low!. For estimation purposes, we will neglect its interfer-
ence with possible small-frequency radiation from other
sources.

As we noted in the Introduction, one can describe the
states we are considering either as collections of interacting
classical waves, or as collections of ‘‘particles’’ in modes
with large occupation numbers. For estimating the intensity
of bremsstrahlung that accompanies creation and annihila-
tion of fluctuations of the fieldf, the description of these
fluctuations in terms of particles is more convenient.

For the notion of particle, i.e., an entity moving freely
after it has been created~or before it is destroyed!, to have
anything but purely qualitative meaning, the energy of a
freely moving ‘‘particle’’ should not be modulated too
strongly by its interactions with the background. In the mod-
els ~2! with qr*1, fluctuations off are reasonably well
described as particles, even in the case of masslessf where
they are coupled to the oscillatingf0. Indeed, typical mo-
mentap of f fluctuations at the end of the chaotization stage
are of orderm, the frequency of oscillations off0 at that
time. The frequency of oscillations of a mode with momen-
tum p;m ~the would-be energy of a particle! is only mod-
erately modulated by its coupling to the oscillatingf0. Note
also that forqr*1, the Hartree correction to the frequency
squared off, g2X2, does not exceedm2 itself @18#, so inter-
action withX also does not modulate frequencies of fluctua-
tions off too much.

So, let us consider fluctuations off as particles, neglect-
ing modulations of their energy, and estimate the intensity of
gravitational bremsstrahlung emitted by these particles in the
scattering processes described above.

As we will see shortly, to describe radiation with small
enough frequencies, we can regard the particles—quanta of
f—as having both position and momentum reasonably well
defined and thus behaving in that respect as classical par-
ticles. Consider the stress tensor of a single classical particle:
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T1
i j ~x,t !5 f ~ t !

pipj

p0
d3„x2r ~ t !…, ~8!

where pm and r are the particle’s time-dependent four-
momentum and position. The functionf (t) describes how
the particle was created or destroyed; if the creation and
destruction processes can be regarded as instantaneous,
f (t)5u(t2t1) for a particle created at timet1, and
f (t)5u(t22t) for a particle destroyed at timet2. Using
identity transformations, we write the Fourier transform of
the stress tensor~8! as

vT1
i j ~k,v!5

1

2p i E2`

` pipj

p0~12nv!
f ~ t !

]

]t
eivt2 ikrdt, ~9!

wherev[ ṙ is the particle’s velocity. The uncertainty that we
can tolerate in the position of a particle, to be able to use this
formula, is of order 1/k. Uncertainty we can tolerate in the
momentum is of order of the momentum spread among the
particlesDp. Thus, both the position and the momentum can
be sufficiently well defined whenv5k!Dp. In the models
with two fields, at the end of chaotization,Dp;m, so Eq.~9!
applies forv!m.

On the other hand, in the purelf4/4 model, fluctuations
do not grow during chaotization, so for the most efficient
graviton production we should consider the end of the reso-
nance stage. The power spectrum of fluctuations at the end of
resonance, and long into chaotization, is concentrated in
rather narrow peaks, so thatDp!m. Then, Eq.~9! applies
only at quite low frequencies, much lower than those we had
in numerical simulations. As a result, for this model, we
could not check our analytical estimates against numerical
simulations.

In the rest of this section we consider the models with two
fields. Forv!m, not only we can use the semiclassical ex-
pression for the stress tensor off, but in addition each act of
evaporation~or condensation! of af particle can be regarded
as instantaneous. So, we can use the small-frequency ap-
proximation, familiar from similar problems in electrody-
namics@22#. It amounts to integrating by parts in Eq.~9! and
then replacing the exponential with unity. After that, the in-
tegral is trivially taken and depends only on the particle’s
final ~or initial! momentum.

Substituting the small-frequency limit of Eq.~9! in Eq.
~6!, we obtain the energy of gravitational waves radiated in a
single act of evaporation~or condensation!:

d2E

dVdv
5

G

~2p!2
p4sin4u

p0
2~12vcosu!2

, ~10!

wherep is the magnitude of the final~or initial! momentum
p of thef particle,v5p/p0, andu is the angle betweenp
and the radiation wave vectork.

To obtain the total powerP radiated by a unit volume, we
multiply Eq. ~10! by the rate at whichf fluctuations are
created~or destroyed!, add the contributions from the cre-
ation and annihilation processes together, and integrate the
result over momenta withnf(p)/(2p)3, wherenf(p) are
the occupation numbers off fluctuations, and also over the

solid angleV. The rates of the creation and annihilation
processes are almost equal~see below!. We obtain

dP
dv

'4GE
0

`

nf~p!R~p!F~v !
p4dp

~2p!3
, ~11!

whereR(p) is the evaporation~condensation! rate and the
function

F~v !5
4

v2S 22
4

3
v22

12v2

v
ln
11v
12v D ~12!

arises after integration over direction of particle’s momen-
tum; we have assumed that both the occupation numbers and
the rate depend only on the absolute value of momentum.
Notice that the spectrum~11! is v independent, as character-
istic of small-frequency bremsstrahlung.

To estimate the rateR, we will consider, qualitatively,
X fluctuations also as ‘‘particles’’ characterized by their own
occupation numbersnX(k). This is not a strictly defensible
view, asX fluctuations are strongly coupled to the oscillating
background, but it should do for estimation purposes.

Consider first the casê(df)2&&fch
2 . The rateR(p) can

then be estimated as

R~p!;
g4fch

2

m E d3k

~2p!3
nX~k!nX~k2p!

8vkvk2pp
0 , ~13!

where a factor of 1/m appears instead of the usual energy
d function because energy of the ‘‘particles’’ participating in
the process is not conserved, due to time dependence of
f0. This factor estimates the time scale at which energy
nonconservation sets in; in our case, it is the period of the
oscillations off0.

Notice that the rate~13! is larger than the net kinetic rate,
which would enter a kinetic equation forf, by a factor of
order of a typical occupation number ofX. The net kinetic
rate is the difference between two~large! numbers, the rate at
which collisions supply particles to a given mode and the
rate at which they remove them. But each collision is accom-
panied by bremsstrahlung, soR is not the net kinetic rate but
a rate of the ‘‘in’’ and ‘‘out’’ processes separately.

We can use the following estimates@18#:
p;k;m,vk

2;g2fch
2 , nX;1/g2. Using these estimates, we

obtainR(p);m/g2, for p;m. Such a large value of the rate
@R(p)@m# means that a typical collision produces not a
singlef particle but a ‘‘complex’’ ofO(1/g2) particles with
almost equal values of momentum. At the end of chaotiza-
tion, nf;qch/g2 ~so that ^df2&;fch

2 @18#!. Using that we
obtain for the power

dP
dv

;
m4fch

2

g2MPl
2 . ~14!

An estimate for the total energy density of gravitational
waves is obtained by multiplying the powerP by the time
Dt during which the radiation was substantial. For the ratio
of rGW per octave to the total energy density of the Universe
after chaotization, we obtain
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S 1

r tot

drGW
dlnv D

ch

;
m4fch

2

g2MPl
2 r tot

vDt;
m2

g2MPl
2 vDt, ~15!

where in the last relation we usedr tot;m2fch
2 . The time

during which the radiation was substantial is determined by
the redshift,Dt;Hch

21 . For the model with masslessf recall
thatm2;lfch

2 .
For the opposite case,^(df)2&@fch

2 , we need to replace
fch
2 in estimates ~13!–~15! by ^(df)2&, and to use

r tot;m2^(df)2&. We see that the final estimate in Eq.~15!
remains unchanged.

These estimates apply at the end of the chaotization stage
and extend into the infrared up to frequencies of the order of
the horizon scale at that time,v;Hch. ~We will present
estimates for today’srGW below.!

As an example, consider the model with massivef in
which f is the inflaton itself, andm51026MPl . Take g

2

51026, which in this case corresponds toq'23104 @17#.
We obtainr tot

21drGW/dlnv;1026 atv;Hch. ~This number
will be three orders of magnitude larger atw;m).

Our analytical estimates are rather crude, as we were
somewhat cavalier with numerical factors. They do bring
out, however, not only the frequency dependence of the ef-
fect but also its parametric dependence. Notice, for example,
that if the last estimate in Eq.~15! contained a different
power ofq2, that would change the estimate by many orders
of magnitude, in drastic disagreement with our numerical
results.

V. BACKGROUND GRAVITATIONAL RADIATION
TODAY

Let us now translate the above estimates into estimates for
gravitational background radiation today. It is important that
gravitational radiation produced after preheating has not in-
teracted with matter since then@23#.

First, let us estimate the physical wavelength today,
l52p/k0, that corresponds to a wave vectorkch at the end of
the chaotization stage. We havek05kchach/a0, wherea0 is
the scale factor today. Thermal equilibrium was established
at some temperatureT* , and the Universe was radiation
dominated at that time. This happened when relevant reac-
tion rates became equal to the expansion rate. We can find
the Hubble parameter at that time asH

*
2 58pGr* /3, where

r*5g*p2T
*
4 /30, andg*[g(T* ); g(T) stands for the effec-

tive number of ultrarelativistic degrees of freedom at tem-
peratureT. The expansion factor fromT5T* down to
T5T0'3 K is given by a* /a05(g0 /g* )

1/3(T0 /T* )
5(g0

1/3/g
*
1/12)(8p3/90)1/4(T0 /AH*MPl), where g0[g(T0).

Depending upon model parameters, the Universe could ex-
pand fromT5Tch to T5T* as matter or radiation domi-
nated. We can writeH*5Hch(ach/a* )

a, wherea52 for the
radiation-dominated case anda53/2 for a matter-dominated
Universe. We obtaink05kchach/a05kch(ach/a* )(a* /a0)
'1.2kch(HchMPl)

21/2(ach/a* )
12a/2T0. The model-de-

pendent factor (ach/a* ) does not enter this relation in the
radiation-dominated case and enters in power 1/4
for a matter-dominated Universe. In the simple models
that we consider below, this factor gives a not very import-
ant correction~at most an order of magnitude!. For today’s

wavelength, corresponding to wave vectorkch at the end
of chaotization, we find l52p/k0'0.5(MPlHch)

1/2kch
21

(a* /ach)
12a/2 cm.

The smallest wave vector of radiation that could be pro-
duced at the end of chaotization is of orderHch. The corre-
sponding maximal today’s wavelengthlmax will fall into the
range of the LIGO detector, i.e.,lmax.33106 cm, when
Hch,105–106 GeV.

For illustration, let us consider simple models of chaotic
inflation with potentials~3!, where the oscillating fieldf is
the inflaton itself. The Hubble parameter at the end of the
chaotization stage in these models can be extracted from nu-
merical integrations of Refs.@13,17,18#. For example, for
massless inflaton we getHch/MPl5(3l/2p)1/2tch

22 , where
tch is conformal time at the end of the chaotization stage. For
l510213 and, say,q530, we get~see Fig. 1! tch'125. This
givesHch/MPl'1.4310211 andlmax'1.33105 cm. Another
example is the case of massive inflaton withm51026MPl
and q5104. Here we findHch/MPl'231029. This gives
lmax in the range 104–105 cm.

An interesting case is that of the purelf4/4 model
@g250 in Eq. ~3!#. In this case, fluctuations do not grow
during chaotization~they actually decrease due to redshift!,
so the most efficient production of gravity waves takes place
after the end of the resonance~preheating! stage. So, instead
of Hch in the above formulas we useHr , the Hubble param-
eter at the end of resonance. We have
Hr /MPl5(3l/2p)1/2t r

22 , wheret r is conformal time at the
end of resonance. In this model, resonance develops slower
than that in models withqr*1. As a result,Hr is smaller,
and today’s maximal wavelength is larger. Forl510213, we
get t r'500 @13#, andHr /MPl'9310213, which gives, for
radiation produced at that time,lmax'53105 cm. Note, that
by the timet'1000 the inflaton still has not decayed in this
model, fluctuations are still highly nonequilibrium, and grav-
ity waves generation will continue even at later time. This
will increaselmax by at least another factor of 2 bringing it
close to the upper boundary of operational LIGO and TIGA
frequencies.

Now, let us estimate today’s intensity of radiation. The
today’s ratio of energy in gravity waves to that in radiation is
related to (rGW/r tot)ch via

FIG. 1. Variances of fieldsX ~solid curve! andf ~dotted curve!
as functions of conformal time in the model with massless inflaton
for l510213 andq530.
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S rGW
r rad

D
0

5S rGW
r tot

D
ch
S acha*

D 422aS g0g* D
1/3

. ~16!

For the often-used parameterVg(v)[(rcrit
21drGW/dlnv)0,

wherercrit is the critical energy density, we obtain, using Eq.
~15!,

Vg~v!h2;V radh
2

m2

g2MPl
2

v

Hch
S acha*

D 422aS g0g* D
1/3

, ~17!

where V rad is today’s value of the ratior rad/rcrit :
V radh

254.3131025 @24#. When the oscillating zero-
momentum mode decays completely during the stage of
chaotization,fch

2 in Eq. ~17! is replaced bŷ (df)2&ch.
For example, in the case of massless inflaton with

l510213 and q530, we havefch
2 ;1025MPl

2 , and with
g* /g0;100 the estimate~17! gives Vgh

2;10212 at
lmax;105 cm.

VI. NUMERICAL RESULTS

Using the fully nonlinear method of Ref.@13#, we have
studied numerically gravitational radiation in the model
wheref is the massless inflaton withVf5lf4/4. We have
considered two distinct cases: the purelf4 model and the
model where the inflaton interacts with a massless fieldX
according to Eq.~3!. In either case, the model is classically
conformally invariant, and, in conformal variables, the equa-
tions of motion reduce to those in flat space-time. The res-
caled conformal time t is related to time t by
Alf(0)dt5a(t)dt/a(0). The rescaled conformal fieldsx
and w are related to the original fields by
X5xf(0)a(0)/a(t) and f5wf(0)a(0)/a(t). In this
model,f(0)'0.35MPl anda(t)/a(0)'0.51t11 @17#.

In the conformal variables, the equations of motion be-
come

ẅ2¹2w1w314qx2w50,

ẍ2¹2x14qw2x50. ~18!

We recall thatq[g2/4l. We have solved these equations of
motion directly in the coordinate space, on a 1283 spatial
lattice, in a box with periodic boundary conditions. The ini-
tial conditions for fluctuations correspond to conformal
vacuum at the time when the oscillations ofw0 start@13,18#.
The initial conditions for the coherently oscillating inflaton’s
zero-momentum mode arew0(0)51, ẇ0(0)50.

Using fast Fourier transform~FFT!, we monitored the
power spectra,Pf(k) and Px(k), of the fieldsw and x.
These power spectra are proportional towk*wk and xk* xk
averaged over the direction ofk, wherewk and xk are the
Fourier transforms of the fields. We normalized the power
spectra in such a way that Parseval’s theorem reads
*d3kPw(k)5L23*d3x@w(x)2w0#

2[Var(w), and similarly
for the fieldx. Since the system is on average homogeneous,
the volume average in the last equation is equivalent to an
average over realizations of the initial data~the ensemble
average!: Var(w)5^@w(x)2^w&#2&.

The time evolution of the variances^x2& and^(dw)2& for
resonance parameterq530 ~taken as an exmaple! is shown
in Fig. 1. We see that in this case, the parametric resonance
ends att'73. The resonance stage is followed by a plateau
~cf. Refs. @17,18#!. At the plateau, the variances of fluctua-
tions do not grow, but an important restructuring of the
power spectrum ofx takes place. The power spectrum ofx
changes from being dominated by a resonance peak at some
nonzero momentum to being dominated by a peak near zero.
~For someq, though, the strongest peak is close to zero
already during the resonance.! When the peak near zero be-
comes strong enough, the growth of variances resumes~in
Fig. 1, that happens att'84), and the system enters the
chaotization stage.

The power spectrum off during the time interval of Fig.
1 is shown in Fig. 2. The rescaled comoving momentumk is
related to the physical momentum kphys as
kphys5Alf(0)a(0)k/a(t). Note that in the range
1&k&10, the power spectrum is approximately a power
law, as characteristic of Kolmogorov spectra@25#.

Interaction of the fields with gravity is not conformal, and
the flat-space-time formula~6! for the energy of gravity
waves can be used only after we make an approximation.
The approximation replaces the actual expanding Universe
with a sequence of static Universes. Specifically, conformal
time was divided into steps ofDt5L, whereL is the size of
the integration box, and at each step the physical variables
~fields, frequency, and momenta! were obtained from the
conformal ones, using fora(t) the actual scale factor taken
at the middle point of the step. The energy of gravitational
waves was computed at each step using Eq.~6!, with the
corresponding physical variables. Namely, we calculated the
stress tensorTi j (x,t) of the physical fields on solutions to
Eq. ~18! and then used FFT to find its Fourier transform
Ti j (k,v) in the boxL33Dt for each time step. Note, that
the potential term ofTi j does not contribute to Eq.~6!,
L i j ,lmg

i j glm50, so we need to calculate only the ‘‘kinetic’’
part of the stress tensor,Ti j

kin[] if] jf1] iX] jX ~in the case
with two fields!. Also, since the radiation is isotropic, we
calculated the right-hand side of Eq.~6! for one direction
only, n5(1,0,0). Finally, the energies of gravitational waves
produced at all the steps were summed up.

FIG. 2. Power spectrum of the fieldf for the same model as in
Fig. 1, output every period at the maxima ofw0(t); k is rescaled
comoving momentum~see text!.
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Today’sVg , in physical units, that had been accumulated
by conformal timet5200 is shown in Fig. 3 for two values
of q: q530 ~dashed line! andq5105~dotted line!. The solid
line corresponds to the purelf4 model~no interaction with
X field! and includes contributions from times up to
t51600. In the latter case, the peaks inVg at frequencies
f*43107 Hz, seen in the figure, are correlated with peaks
in the power spectrum off at early stages of chaotization,
cf. Ref. @13#. Since we included contributions toVg from
times long after the time when the peaks in the power spec-
trum disappeared, and yet the peaks inVg had not been
washed out, we suggest that in this model the peaks inVg
are a feature potentially observable at present. Observation
of such peaks could select a particular model of inflation.

We see also that in the model with two interacting fields
(f andX), the linearv dependence at smallv, characteris-
tic of bremsstrahlung, is overall well borne out, both for
q530 andq5105. The minimal today’s frequency in this
model is fmin;105 Hz. Extrapolating the results of Fig. 3 to
that minimal frequency using the linear law, we obtain the
magnitude ofVgh

2 of order 10212 for q530 and of order
10213 for q5105. The analytical estimate~17! ~using
fch
2 ;1025MPl

2 ) also givesVgh
2 of order 10212 and 10213

for theseq, at the minimal frequency.
In the purelf4/4 model, we could not discern any simple

pattern of frequency dependence forVg at small frequencies.
This is consistent with our discussion of this model in Sec.
IV: if the linear frequency dependence sets in at all in this
model, that happens only at frequencies much smaller than
those in Fig. 3. This makes it difficult for us to extrapolate
our numerical results for this model to the maximal today’s
wavelength, lmax;106 cm, or, equivalently, minimal fre-
quencyfmin of order 10

4 Hz. We have no reason to suppose,
however, thatVgh

2 can actually increase to small frequen-
cies, beyond its value of order 10211 at f;106 Hz.

To confirm that Fig. 3 is not a numerical artifact, we have
made runs in which the interaction was switched off, i.e.,
g2 was set to zero, att5100, for the caseq530. To exclude
also the effect of self-interaction, the termlf4 was replaced
at that time bym2f2. The system then becomes a collection

of free particles~plus the oscillating zero-momentum back-
ground! and, if solved exactly in infinite space, should not
radiate. In our simulations, the intensity of radiation during
the interval fromt5100 tot5125 was three orders of mag-
nitude smaller than it was during the same time interval with
the interaction present.

VII. CONCLUSION

We have shown that gravitational radiation is produced
quite efficiently in interactions of classical waves created by
resonant decay of a coherently oscillating field. For simple
models of chaotic inflation in which the inflaton interacts
with another scalar field, we find that today’s ratio of energy
density in gravitational waves per octave to the critical den-
sity of the Universe can be as large as 10212 at the maximal
wavelength of order 105 cm. In the purelf4 model, the
maximal today’s wavelength of gravitational waves pro-
duced by this mechanism is of order 106 cm, close to the
upper bound of operational LIGO and TIGA frequencies.
The energy density of the waves in this model is likely to be
well below the sensitivity of LIGO or TIGA at such frequen-
cies.

In other types of inflationary models~or even with other
parameters!, the effect can be much stronger. We do not
exclude that among these there are cases in which it can be
observable already by LIGO or TIGA. The relevant situa-
tions are as follows:

~1! At some values of the coupling constantg2 ~or the
resonance parameterq), the most resonant momenta are
close tok50. In the model with massless inflaton this hap-
pens, for example, forq5100 ~and does not happen for
q530 orq5105, which we discussed so far; in these cases,
the most resonant momenta are atk;1). The lowest fre-
quency that we had in the box in our numerical simulations
for q5100 was f'83106 Hz. At that frequency,Vg for
q5100 was almost two orders of magnitude larger than that
for q5105. In addition, the entire spectrum of gravitational
waves appears to be shifted to the left with respect to the
spectra shown in Fig. 3. Cases when resonance is ‘‘tuned’’ to
be close tok50 deserve further study. The question remains,
how large, in such cases, the intensity of gravitational waves
can be at the horizon scale,Hch.

~2! It is important to consider in detail those models of
inflation ~for example, hybrid inflation@20#!, in which the
oscillating field need not be the inflaton itself, and so the
frequency of the oscillations may be unrelated to the inflaton
parameters. Of interest are also models in which the restric-
tion on the inflaton mass, imposed by the normalization of
density fluctuations on large scales, is relaxed. In the extreme
case, the oscillating field is unrelated to generation of pri-
mordial density fluctuations~or inflation itself!, and the fre-
quency of its oscillations may be lowered, with the corre-
sponding increase in today’s wavelength of gravitational
radiation. For the intensity of the radiation to be of a poten-
tially observable magnitude, the initial amplitude of the field
has to be close to the Planck scale.

~3! In models where large fluctuations produced at pre-
heating cause nonthermal phase transitions, as suggested in
Ref. @1#, domains or strings can form. A large amount of
gravitational radiation can be produced in collisions of do-

FIG. 3. Today’s spectral density of gravitational waves in the
pure lf4 model ~solid line! and in the model where interaction
g2f2X2 with a massless scalar fieldX is added; the dashed line
corresponds toq530, and the dotted line corresponds toq5105,
whereq5g2/4l, andl13[l/10213. We usedg* /g05100.
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main walls, in a way somewhat similar to how it happens
@9,10# in models of first-order inflation, or in decays of a
string network, cf. Ref.@11#. In particular, in cases when
domains are formed, intensity of gravitational radiation at the
horizon scale, at the moment when the domain structure dis-
appears, is expected to be much larger than in cases without
domains.

It should be noted that certain alternative methods of de-
tection of gravitational waves can be particularly well suited
for the new source of gravitational radiation that we discuss
here. For example, in Ref.@26# the possibility of electromag-
netic detection was considered for the gravitational waves

with frequencyf'108 Hz and with amplitude comparable to
our expectations.
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