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Einstein’s equations with a negative cosmological constant admit solutions which are asymptotically anti–de
Sitter space. Matter fields in anti–de Sitter space can be in stable equilibrium even if the potential energy is
unbounded from below, violating the weak energy condition. Hence there is no fundamental reason that black
hole horizons should have a spherical topology. In anti–de Sitter space Einstein’s equations admit black hole
solutions where the horizon can be a Riemann surface with genusg. The caseg50 is the asymptotically
anti–de Sitter black hole first studied by Hawking and Page, which has a spherical topology. The genus one
black hole has a new free parameter entering the metric, the conformal class to which the torus belongs. The
genusg.1 black hole has no other free parameters apart from the mass and the charge. All such black holes
exhibit a natural temperature which is identified as the period of the Euclidean continuation and there is a mass
formula connecting the mass with the surface gravity and the horizon area of the black hole. The Euclidean
action and entropy are computed and used to argue that the mass spectrum of states is positive definite.
@S0556-2821~97!06520-X#

PACS number~s!: 04.70.Dy, 04.70.Bw

I. INTRODUCTION

In general relativity it was widely believed that black
holes formed by gravitational collapse should have a spheri-
cal horizon @1#. In the stationary case this is ensured by
Hawking’s theorem@2#, under the assumption of asymptotic
flatness and positivity of matter energy. The ‘‘topological
censorship theorem’’ of Friedmann, Schleich, and Witt@3# is
another indication of the impossibility of nonspherical hori-
zons. The theorem states that in a globally hyperbolic, as-
ymptotically flat spacetime, any two causal curves extending
from past to future null infinity are homotopic. As pointed
out by Jacobson and Venkataramani@4#, a black hole with a
toroidal surface topology would provide a possible violation
of topological censorship, as a light ray from past infinity
linking with the hole of the torus and then back to future
infinity would not be deformable to a light ray traveling from
past to future outside the black hole. Thus the hole must
quickly close up, before a light ray can pass through. In fact,
as was shown by Shapiro, Teutolsky, and Winicour@5#, a
temporarily toroidal horizon can form in gravitational col-
lapse, in a way consistent with the theorems. For nonstation-
ary black holes, and under the assumptions of asymptotic
flatness and the dominant energy condition for matter fields,
Gannon@6# proved that a smooth black hole must be either a
two-sphere or a torus. All these results made essential use of
the condition of asymptotic flatness, which entails a vanish-
ing cosmological constant.

Einstein’s equations with cosmological termL admit
black hole solutions which are asymptotic to either de Sitter
(L.0) or anti–de Sitter (L,0) space. These solutions
have a spherical horizon and obey thermodynamics laws like
asymptotically flat black holes@7–9#. In de Sitter space, one
can find locally static solutions of the form

ds252Vdt21V21dr21r 2ds2, V5C2
2m

r
2

Lr 2

3
,

for any C, provided the two-dimensional line elementds2

has constant curvaturek52C. Then forC.0 we have the
asymptotically de Sitter black hole, with positive mass and
spherical horizons. IfC,0, the black hole interpretation of
the solution is lost unless the mass parameter is negative. In
anti–de Sitter space the situation is just the opposite. In 211
dimensions there are the recently discovered locally anti–de
Sitter black hole solutions@10#, which have constant curva-
ture everywhere, not just asymptotically at infinity, and the
Brill’s multi-black-hole solution@11#. The horizon of a (2
11)-dimensional spacetime is a closed line, which leaves
not much space for introducing a nontrivial topology. On the
other hand, there does not seem to exist a reasonable, higher
dimensional generalization of the Banados-Teitelboim-
Zanelli ~BTZ! black hole. The metrics recently found have
horizons with a spherical topology, but all the anti–de Sitter
conserved charges are infinite@12#. So, apparently, one had
to give up the condition of constant curvature. Planar and
cylindrical black holes in anti–de Sitter space were indeed
discovered by Lemos@13,14#, which upon compactification
became toroidal. Open and closed black strings@15# are also
likely to form topologically toroidal black holes@16#. On the
other hand, A˚ minneborget al. @17# presented a class of so-
lutions in 311 dimensions, displaying the causal structure
characteristic of black holes, and having constant negative
curvature everywhere. Hence they were locally isometric to
anti–de Sitter space but, surprisingly, showed an event hori-
zon with the topology of a Riemann surface with arbitrary
genus. Finally, Mann@18#, and then Brill@11#, introduced a
class of black solutions admitting all the above horizon to-
pologies, which can have both positive or negative mass,
which can be charged, and which have a curvature singular-*Electronic address: vanzo@science.unitn.it
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ity in the origin.1 At the moment it was unclear whether
these topological black holes could result from gravitational
collapse but, since then, this question was also settled affir-
matively @19#. So we finally have topologically nontrivial
black holes, albeit in anti–de Sitter space.

Although anti–de Sitter space does not seem to corre-
spond to the world in which we live, its importance has been
noticed on many occasions@20–25#. Two features seem
worth mentioning. First, anti–de Sitter and Weyl conformal
gravity are the only types of gravity which have a consistent
interaction with massless higher spin fields@26# and, second,
consistent anti–de Sitter strings exist for anyDÞ26 ~or D
Þ10! @27#, provided the cosmological term has the critical
value which is required by anomaly cancellation.

In this paper we would like to investigate the thermody-
namics properties of the topological black holes from the
point of view of the Euclidean formulation~for a detailed
treatment of the Hamiltonian thermodynamics of asymptoti-
cally anti–de Sitter black holes see@28#!. We point out that
higher genus black holes are really ‘‘cosmological black
holes,’’ inasmuch as their size is the size of the~anti–de
Sitter! universe itself. Hence they could only exist during the
inflationary era, when the cosmological constant was not
small. The toroidal black hole, on the other hand, can exist in
a virtually flat space, as the size is governed by the mass and
the conformal class of the torus, rather than by the cosmo-
logical constant.

In Sec. I, we begin by presenting the metric and discuss-
ing the relevant geometric features, including the asymptotic
behavior at infinity. We shall not discuss entirely the causal
structure~it is presented in@29#!; nor will we become confi-
dent in how the black hole could result from gravitational
collapse of some topologically nontrivial~i.e., nonspherical!
matter configuration~this is explained in@19#!. In Sec. II, we
define the mass and show it obeys a Smarr-like formula. We
point out that, due to the asymptotic behavior of the metric,
there is no other way to make finite the Hamiltonian than
subtracting a reference background in the same topology
class of the actual solution. The natural choice would seem
to be the solutions of A˚ minneborget al., to which the black
hole approaches asymptotically, but a thermodynamics argu-
ment will favor a rather different choice. In Sec. III, we
determine the off-shell Euclidean action and use it to evalu-
ate the entropy of the black hole. Some discrepancies regard-
ing the mass spectrum will then be resolved.

In the following, we shall use the curvature conventions
of the Hawking-Ellis book@1# and employ Planck dimen-
sionless units.

II. TOPOLOGICAL BLACK HOLES

The class of metrics to consider is

ds252Vdt21V21dr21r 2s i j dxidxj , ~1!

wheres i j is the metric of a two-manifoldS, which is not
assumed to be a topological sphere, andV5 f (r ). The non-
vanishing components of the Ricci tensor are

Rtt52V2Rrr 5
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2
VV91
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r
, Ri j 5Ri j 2~rV81V!s i j ,

~2!

where the calligraphic’sRi j refers tos i j . Now one verifies
immediately that the function

V5k2
k8

r
1

r 2

l 2 ~3!

makes the metric to satisfy Einstein’s equations with nega-
tive cosmological constant,Rab5Lgab , L523l 22, for
any pair (k,k8). The surprising fact is that for this to be true,
the two-dimensional metrics i j must satisfy the equations for
a constant curvature surface, which need not be a sphere,
namely,Ri j 5ks i j andR52k. Therefore if k52q2,0,
the two-manifoldS must be a surface with constant, negative
curvature. If this surface is compact and orientable, then it
must be a Riemann surface of genusg.1 for q2.0. If q50,
then the surface is a torus, andq56 i /R gives a sphere of
radiusR. Actually, the parameterq is fictitious as long as
nonzero, since we can always rescalet, r , k8, ands i j so as
to achieve thatq51. Hence we take the metric of the un-
charged, genus-g, black hole in the form

ds252S 212
2h

r
1

r 2

l 2Ddt21S 212
2h

r
1

r 2

l 2D 21

dr2

1r 2s i j dxidxj , ~4!

where nowRi j 52s i j describes a Riemann surface with ge-
nusg.1 and Euler numberxg5222g. In the genus-1 case,
we pick a complex numbert, with Im t.0 ~this is known as
the Teichmu¨ller complex parameter of the torus!. Such a
complex number specifies a class of conformally equivalent
tori, two tori being equivalent if and only if the respective
Teichmüller parameters are connected by a fractional linear
transformation with integer coefficients. We shall write the
flat metric of the torus in the form

ds25s i j dxidxj5utu2dx21dy212 Retdxdy, ~5!

where the pair (x,y) ranges over the closed unit square in
R2. The toroidal, uncharged black hole metric is now

ds252S 2
2h

r
1

r 2

l 2Ddt21S 2
2h

r
1

r 2

l 2D 21

dr2

1r 2~ utu2dx21dy212 Retdxdy!. ~6!

Let d(a,b)51 for a5b and zero otherwise. From the
Gauss-Bonnet theorem, the area ofS is

A522pxg1uImtud~g,1!54p~g21!1uImtud~g,1!.
~7!

The metric possesses an irremovable singularity atr 50, be-
cause the invariantRabcdR

abcd blows up liker 26 nearr 50.
Therefore, in the following, we shall study the metric for
r .0 only.

1Recently, the author also met the uncharged version of Mann’s
solution.
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We consider now whether the space represents a genuine
black hole. The standard procedure to analyze black holes is
to investigate the causal structure. In theg.1 case, the lapse
function of the metric~4! always has a real root at somer 1 .
This is the solution of the cubic equation
r 32l 2r 22hl 250, and the character of the roots depends
on the sign of the discriminant,D5h2l 42l 6/27. If D.0
andh.0, then

r 15
21/3l 2

3@2hl 212~D!1/2#1/31
@2hl 212~D!1/2#1/3

21/3 ~8!

is the only real root, and the singularity is spacelike and
hidden inside an event horizon. IfD.0 but h,0, there is
one negative real root, the lapse function is positive in the
range r .0, and r 50 is a naked singularity. IfD,0, the
allowed range forh is 2l /3)<h<l /3). If h.0, there
is one positive root which can be written as

r 15
2l

)
cos~u/3!, cosu5

3)h

l
, ~9!

whereuP@0,p/2#, the other two roots being real and nega-
tive. Again the singularity is spacelike and hidden. Ifh,0,
there are two positive rootsr 1 and r 2 , with r 1.r 2 , cor-
responding to the choicesu/3 and (u14p)/3 in Eq. ~9!,
given uP@p/2,p#, and one negative root. Again the greater
root represents an event horizon, and the region in between
the two positive roots resembles the Reissner-Nordstro¨m so-
lution. In the region 0,r ,r 2 the lapse function is positive,
and so the singularity is timelike andr 5r 2 represents an
inner Cauchy horizon. The structure of this black hole is then
quite complex. As we shall see,h is related to the mass of
the black hole, and hence what we have here is a putative,
negative mass black hole with an acceptable causal structure,
the allowed range of ‘‘negative mass’’ beingM.2l /3).
At last, h52l /A3 gives a naked singularity and the solu-
tion has no black hole interpretation. It corresponds to the
extreme limit where the inner horizon has the same location
as the outer horizon,r 25r 1 , and it will play an important
role when developing the thermodynamics Euclidean theory.
Finally, there is a case wherebyD50, or l 2527h2, for
which again there is only one positive root atr 156h, the
other two being equal but negative. The genus-1 case is sim-
pler, as the only positive root is atr 15(2hl 2)1/3.

In all cases, the rootr 1 makes the hypersurfacesr 5r 1 an
event horizon. The metric admits a Kruskal-like extension in
which ther 50 singularity is spacelike~as in the Schwarzs-
child solution!, the reason being that the lapse function
changes sign by crossing the horizon, except whenh,0, in
which case the singularity is timelike. Because of this fact,
each future-directed null geodesic behind the horizon will
inevitably crash into the singularity atr 50, and so it can
never reach infinity. A related fact is that the expansion of
eachr 5const surface, withr ,r 1 , is negative and as such it
is a closed trapped surface. The solution therefore represents
a black hole for allh.2l /3), for g.1, or for all positive
h if g51. The horizon has a portion to the future of the static
region r .r 1 and a portion to the past. The two sheets in-
tersect in a genus-g Riemann surface, which is the fixed

point set of the time translation symmetry of the solution.
The horizon is thus a bifurcate Killing horizon. It has a sur-
face gravitykg for the genus-g case, which can be computed
by standard means as

kg5
3r 1

2 2l 2

2r 1l 2 , k15
3r 1

2l 2 . ~10!

The surface gravity is non-negative and vanishes only for the
extreme solution, whenh52l /3A3 and r 15l /A3. The
area section of the horizon is

A54pr 1
2 ~g21!1d~g,1!r 1

2 uImtu, ~11!

wheret is the Teichmu¨ller parameter of the torus. The mass
of the black hole is, unlike the geometry, a rather delicate
matter, and we shall discuss this question after having ana-
lyzed few asymptotics property of the metric.

To understand the geometrical origin of the genus-g sur-
faces, let us pause for a moment with the black hole and
consider the solution withh50 andk52q2, not normal-
ized to 21. The curvature tensor for this solution is
Rabcd52l 22@gacgbd2gadgbc#, which shows that the space
is locally isometric to the universal covering of anti–de Sitter
space. The surprise comes when computing the curvature
tensor of the r 5const surfaces. It is given by
Ri jkl 52q2@s iks j l 2s i l s jk#, and therefore it describes a
space of constant, negative curvature again. Anti–de Sitter
~ADS! space is the maximally symmetric space which is ob-
tained by restricting the metric ds252dx22dv2

1dy21dz21du2 in R5, with rectangular coordinates
(x,v,y,z,u), to the hyperboloid

2x21y21z21u22v252l 2. ~12!

The cosmological constant figuring in Einstein’s equations is
L523l 22. The topology of the space is that ofS13R3,
but notice that each circlex21v25t2 gives a closed timelike
curve in AdS space. Hence we pass to the covering by open-
ing the circle into a real line. Given this, we note that by
fixing v22u25l 2j2 to be greater thanl 2, i.e., j2.1, the
three remaining coordinates are made to range over hyper-
bolic two-space, which we denote byH2. The orbits of con-
stantj describe uniformly accelerated observers in anti–de
Sitter space, and we shall see now that the remainingH2,
which carries a positive definite metric, is the acceleration
horizon of such observers. To this aim, we make use of the
following parametrization of the hyperboloid:

x5l A11q22j2coshr, ~13!

y5l A11q22j2sinhrcosu, ~14!

z5l A11q22j2sinhrsinu, ~15!

u5q21l j cosh~qt/l !, ~16!

v5q21l j sinh~qt/l !, ~17!

and then setr 25l 2(q21j2). The induced metric takes the
form
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ds252S 2q21
r 2

l 2Ddt21S 2q21
r 2

l 2D 21

dr21r 2ds2,

~18!

whereds25q22@dr21sinh2rdu2# is one of the many forms
in which the metric of hyperbolic two-spaceH2 is presented.
Setting as beforeq251, the metric differs from Eq.~4! by
the absence of the crucial term 2h/r , but is otherwise iden-
tical. As we shall see, thermodynamics arguments indicate
that this solution has positive mass, even in the absence of
the 2h/r term in the metric. The lapse function of the metric
has a zero atr 15l , which makes the metric of the three-
surfacer 5r 1 degenerate. This surface is in fact a bifurcate
event horizon, the future portion intersecting the past portion
in a transverseH2, which is the fixed point set of the time
translation symmetry. Although the metric displays the prop-
erties of a black hole, it is not in fact, as it represents the
portion of anti–de Sitter~ADS! space which is causally ac-
cessible to a family of accelerated observers. This is not the
end of the story, asH2 is noncompact and we want a com-
pact horizon. TheSO(2,3) symmetry group of AdS space
contains anSO(1,2) subgroup acting on the (x,y,z) sector
of the five coordinates. This symmetry leaves unaffected the
accelerated trajectories and only mixes the points inH2,
where it acts as a group of isometries. It is a well-known fact
that any Riemann surface with genusg.1 is the quotient
space ofH2 by a discrete subgroup of isometries~roughly
speaking, this is a subgroup whose elements can be labeled
by an integer!, acting inH2 without fixed points~including
infinity in H2, and so, for example, discrete translations are
forbidden! and properly discontinuously~this means that the
translates of any compact set are disjoints!. Thus we may
pick up such a discrete subgroup, say,G, and make the quo-
tient ~i.e., the orbit space!. This makes the horizon a compact
Riemann surface of genusg.1. The genus-1 case apparently
does not have such an interpretation; nevertheless, it can also
be obtained identifying points in AdS space@17# and the
metric is Eq.~18! with q250. We shall call the resulting
spacetime the Riemann–anti-de Sitter~RadS! space, and we
conclude that this is the asymptotic region of the topological
black holes.

III. MASS AND SIZE OF THE BLACK HOLES

As is well known, there is a certain amount of freedom in
defining the mass of the black hole, as this involves the sub-
traction of a zero point of energy. Looking at the metric~18!,
it would seem natural to define the mass by taking RadS
space as a reference background, which hash50, even if its
topology is not that of anti–de Sitter space. However, for
g.1 and for reasons to be explained below, we prefer to
take as a reference background a metric in the class given by
Eq. ~4!, with a ‘‘mass parameter’’h0 . We shall also denote
all quantities referring to the background with a subscript
‘‘0.’’ The two values of h0 we will discuss are thenh050
andh052l /3), which is the lowest possible value for the
metric to admit a black hole interpretation,h<h0 being a
naked singularity. In the caseg51, the background will be
the metric ~6!, but with h050, which again is the lowest
value for the metric to admit a black hole interpretation,
h0,0 being a naked singularity.

We shall now identify the mass of the black hole as the
on-shell value of the Hamiltonian, with lapse function
N5AV and vanishing shift vector@28,30–32#. To this aim,
one puts a timelike boundary at the same larger 5R and uses
the Hamiltonian of general relativity in a manifold with
boundary, taking care of all the boundary terms. At the end,
one takes the limit asR goes to infinity. As thet5const
slices are orthogonal to the timelike boundary at large dis-
tances which contains the Killing observers at ‘‘infinity,’’
there are no ‘‘corner’’ terms in the Hamiltonian@33#, and the
mass is

M52
1

8p E
Sg

AV~Q2Q0!r 2Asd2x, ~19!

whereSg is a Riemann surface with genusg, Q is the trace
of the extrinsic curvature ofSg as embedded in at5const
hypersurface,Q0 is the same quantity as ifSg were embed-
ded in the reference spacetime, and the limitR→` is under-
stood. The traceQ can be computed as the covariant diver-
gence of the normal vector field to the boundary atr 5R,
ja5AVd1

a , in the induced metric of thet5const slices,
hab5gab1uaub , whereua is the future pointing normal. It
is

Q5
2

R
A212

2h

R
1

R2

l 2
.R→`

2

R
A211

R2

l 2

1
2h

R2

1

A211 R2/l 2
. ~20!

Similarly,

Q0.R→`

2

R
A211

R2

l 2
1

2h0

R2

1

A211 R2/l 2
. ~21!

Therefore, asymptotically,N(Q2Q0).2(h2h0)R22. One
can repeat the calculation with the torus black hole metric,
finding again the same result. From Eq.~19!, in a condensed
notation for any genusg, we obtain

M52~h2h0!xg/21
hA

4pr 1
2 d~g,1!5~h2h0!~g21!

1
huImtu

4p
d~g,1!. ~22!

We see that even if the ‘‘21’’ in the lapse functionsN and
N0 does not count asymptotically, the integration over the
boundary must involve a Riemann surface in the background
with the same genus of the actual solution. The topology of
the background must then be asymptoticallyR3Sg , with Sg
carrying a constant negative curvature metric~as required by
Einstein’s equations!. This cannot be embedded in flat space
~because then the curvature could not be negative every-
where! or in the anti–de Sitter slices, which have topology
R3S2. If the background is to be a static solution of Ein-
stein’s equations, then presumably the metric~18! is the only
one available which has no curvature singularities, and the
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metric ~4! with h052l /3& is the only one which has no
black hole interpretation, although it has a naked singularity.
The metric~4! makes sense even forh,0 @19,34#, but again
it has a curvature singularity in the origin. Theh050 back-
ground would seem preferable, as demanded by the topology
of spacetime and by the absence of curvature singularities.
We shall argue differently, however, when discussing the
Euclidean theory.

In the following, it will be convenient to parametrize the
reference background byr 0 rather thanh0 , r 0 being the
positive root of the cubic equationr 32l 2r 22h0l 250. To
the valueh050 corresponds thenr 05l and to the critical
value h052l /3) corresponds the critical value
r 0[r c5l /A3. This a double root of the lapse function, at
which the background surface gravity vanishes. Finally, the
toroidal background hash050 andr 050.

If around the black hole there is a matter distribution with
stress-energy tensorTab , then one can obtain a mass formula
along the lines of@35#, by integrating the Killing identity

¹a¹bKa5RbcK
c ~23!

for the Killing field Ka, over a spacelike hypersurfaceS,
which is asymptotically orthogonal to the trajectories of the
Killing observers at infinity and intersects the horizon in a
two-surfaceSg . To this we must subtract, in addition, the
volume contribution of the background with the same genus
~both the solution and the background have a divergent
vacuum energy, becauseLÞ0!. This has an horizon atr 5r 0
and a surface gravity,k0 . The mass formula reads

M5
kA

4p
2

k0A0

4p
1

A

4pl 2r 1
2 ~r 0

32r 1
3 !

1E
S
~2Tab2Tgab!K

aubd3x, ~24!

the third term being the difference of the volume vacuum
energy in the solution and the background. The mass so de-
fined is also equal to the Abbott-Deser mass for asymptoti-
cally AdS spaces@25#, if only one repeats their analysis in
the present case, and satisfies the first law for anyg, which
in the vacuum reads

dM5
kdA

8p
. ~25!

The knowledge of the mass allows one to obtain some result
about the size of the topological black holes. The radius of
the black hole as seen from the outside static region is the
value,r 1 of the real positive root of the lapse. This depends
on a single parameterh, which we showed is related to the
black hole mass. The scale of the solution is determined by
the cosmological constant or byl ~present estimates would
put a value forl not less than 1027– 1028 cm, which is about
the size of the observable universe!. For g.1, according to
Eq. ~8!, the black hole can have any size for masses greater
than l /A27 and grows liker 1;M1/3 for M l @1. This
seems to be the less interesting case for large values ofl .
The degenerate caseD50 is a black hole with
r 156h;M;l , and the size of the black hole is the size of

the universe. There is finally a case wherebyD,0. The mass
of the black hole is bounded by a number of orderl , and the
greater the mass the greater is the size, but this is always of
orderl . Hence there are no ‘‘small’’ topological,g.1 black
holes, except for large values of the cosmological constant.
In fact, the minimum size is 2l /) for D>0 and l /) if
D,0. If the black hole can radiate away its mass without
changing the topology, then this would leave behind a cos-
mological horizon with finite size or a naked singularity. The
toroidal black hole is more promising, as then
r 15(2hl 2)1/3. As a function of the mass this is

r 15S 8pl 2M

uImtu D 1/3

, ~26!

and thus it depends on the conformal class of the torus. Now
small black holes can exist with any mass and, within a
given conformal class, they can exist for arbitrary large val-
ues of l . If the cosmological constant, though exceedingly
small, is nevertheless finite, the toroidal black hole could
exist in a virtually flat space.

IV. EUCLIDEAN FORMULATION

One approach to the thermodynamics of black holes is to
analyze the Euclidean action which one obtains under Wick
rotation to imaginary time@7#. The Euclidean black hole so-
lution is obtained by rotating the time coordinate to imagi-
nary values and exists as a Riemannian metric forr .r 1 . In
the Euclidean section of the metric, the imaginary time plays
the role of an angular coordinate, where the rotation ‘‘axis’’
is just the horizon. Therefore the metric will have a conic
singularity atr 5r 1 , unless the imaginary time is identified
with the right periodicity, which is

b15
2p

k
5@12d~g,1!#

4pl 2r 1

3r 1
2 2l 2 1d~g,1!

4pl 2

3r 1
.

~27!

An important exception to this is the critical solution with
h052l /3). This is the only solution for which the imagi-
nary time can be identified with any period without losing
the regularity of the metric. This fact will have important
consequences for the Euclidean theory. Unlike the asymp-
totically AdS black hole studied in@8,9#, the period has no
maximum value and is never zero; so the solution exists for
any b1 . However,b1.2pl corresponds to negative en-
ergy states, if the prescriptionh050 is adopted. The tem-
perature of the genus-g black holes is therefore, forg.1 and
g51, respectively,

T5b1
215

3r 1
2 2l 2

4pl 2r 1
, T5

3r 1

4pl 2 . ~28!

The quantum origin of this temperature is hidden here by our
choice of units. The identification of the period in imaginary
time ~a classical concept! with the inverse temperature of the
equilibrium state has no classical analogue since the required
Wick rotation is reallyt→2 i\b. That T is a temperature
can also be seen from the fact that one can construct the
analogue of the Hartle-Hawking quantum state as well as the
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analogue of the Unruh state~work in preparation!. To define
the former, one imposes the boundary condition that the in-
going and outgoing fluxes of radiation, from and to timelike
infinity, be equal. Both states have a temperature which is
zero at infinity due to infinite redshift. However, zero rest
mass particles escape to infinity arranged in a thermal flux
with the temperatureT, but their ‘‘angular distribution’’ is
governed by the eigenfuctions of the Laplace operator on a
Riemann surface rather than by the spherical harmonics.

The mass of the black hole as a function of the tempera-
ture is an important thermodynamics input. It can be ob-
tained from the mass formula by expressingr 1 in terms ofT
using Eq.~28!, which gives, forg.1 andg51, respectively,

r 15
2pl 2T

3 F11A11
3

4p2l 2T2G , r 15
4pl 2T

3
.

~29!

For g.1, the mass is a rather complicated function of this
temperature:

M5
~g21!4p3l 4T3

27 S 11A11
3

4p2l 2T2D S 2

2
3

2p2l 2T2 12A11
3

4p2l 2T2D 2h0~g21!

>2S l

3)
1h0D ~g21!. ~30!

This mass is an increasing function ofT, with a large-T
behaviorM;T3, in the full range 0<T<` and the zero
temperature state is a black hole with mass
M52(h01l /3))(g21). The mass then increases until
the temperature reaches the valueT51/2pl , at which the
mass isM52h0(g21). The first prescriptionh050 gives
then a massless black hole at finite temperature, at the end of
a continuous spectrum of negative energy states, and the sec-
ond prescription gives a continuous positive mass spectrum,
although at this stage the terminology is conventional. How-
ever, it would seem natural to the ‘‘ground state’’ the state
with zero temperature. Forg51 the mass is

M5uIm tu
8p2l 4

27
T3. ~31!

Hence the stability condition]M /]T.0 is fulfilled in every
case. We shall now compute the off-shell Euclidean action of
the black hole,

I 52
1

16p E
M

~R22L!Agd4x2
1

8p E
]M

KAhd3x,

~32!

where]M5S13Sg is the boundary of the solution identi-
fied with periodbÞb1 at some fixedr 5R, which will be
taken to infinity at the end, andK is the trace of the extrinsic
curvature of the boundary. The Euclidean action so defined
is a divergent function of the boundary location, and there-
fore it will be necessary to subtract from it the Euclidean
action of a chosen background. For black holes which are
asymptotically flat, de Sitter or anti–de Sitter, one can com-

pute the difference of the Euclidean action of the actual so-
lution with that of flat space, the four-sphere or the four-
dimensional hyperbolic space, respectively, these spaces
being the Euclidean sections of the Lorentzian metrics. In
flat space, the Euclidean action comes entirely from the dif-
ference in the surface terms, the four-sphere has no bound-
ary, and the action is already finite without subtractions
@7,36#. In hyperbolic four-space the surface integral of the
solution cancels the surface integral of the background and
the action comes again from the difference in four-volumes
@8#.

In the present case, we have apparently no other choice
than comparing the Euclidean action of the black hole with
that of another solution in the same topological class~i.e,
same Euler number!. This is because with no other topology
will the metric cancel the divergences coming from the sur-
face and volume terms in the action, without fine-tuning the
parameters. For example, choosing anti–de Sitter space re-
quires fine-tuning of the cosmological constant of the back-
ground to achieve cancellation of the leading divergences.
Another choice could be taking a background in the same
topology class but with a metric chosen by hand to cancel
divergences. In general, however, this will not be a solution
of Euclidean Einstein’s equations, the procedure appears a
little bit arbitrary, and, moreover, the mass was defined rela-
tive to a specific background.

Therefore we shall compute the difference between the
Euclidean action of the black hole and that of a background
in the same topology class, and for off-shell values of the
inverse black hole’s temperature. To agree with the mass
definition, theh0 parameter of the background will be either
zero or2l /3). In doing so, one encounters a conical sin-
gularity in the solutions as well as the background, except in
the second case. We notice that such a singularity in the
background would persist even for on-shell values ofb, as
the natural period of the background is different fromb1 .
To compute the effect of the conical singularity one cuts, out
of the manifold, a small disk around the horizon~in the Eu-
clidean black hole this is an axis of rotation! at r 5«, and
then computes separately the action in the volume fromr 5«
to r 5R, and the disk. The contribution of the disk is given,
as is well known@37–39#, by the Gauss-Bonnet theorem and
is

1

16p E RAgd4x5
A

4b1
~b12b!, ~33!

whereA is the area of the event horizon. The background
contributes the same quantity or zero, depending on whether
r 05l , for the choiceh050, or r 05r c5l /) for the choice
h052l /3). In the former case,A054pl 2(g21) takes
the place ofA andb052pl the place ofb1 . Finally, the
conic contribution of the toroidal background vanishes, too.
Since for both metricsR54L, the volume’s difference in
the action of the two metrics is

bA
8pl 2 ~R32r 1

3 1r 0
32R0

3!,

whereA54p(g21)1d(g,1)uIm tu andR0 is the radial co-
ordinate of the boundary in the background metric. This
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must be matched toR by requiring the two metrics to agree
asymptotically, which gives~for the torus ish050!

R05R2
~h2h0!l 2

3R2 1O~R23!

up to terms of higher order inR21. Finally there is the sur-
face contribution, which involves the asymptotic of the ex-
trinsic curvatures in the form@this is the integrand of the
boundary term in Eq.~32!, after subtraction#

R2NK2R0
2N0K05R2S 2V

R
1

V8

2 D2R0
2S 2V0

R0
1

V08

2 D ,

~34!

whereN5AV and N05AV0 are the lapse functions of the
black hole and the background, respectively. Using the
matching condition one finds this to vanish at infinity, and
therefore the surface term also vanishes. Finally, we elimi-
nate h in favor of the mass and we obtain the following
off-shell Euclidean action, valid for any genusg @we recall
the Kronecker symbold(a,b)51 if a5b and zero other-
wise#:

I 5
A

4b1
~b2b1!1@12d~r 0 ,r c!#

A0

4b0
~b02b!

1
bA~r 0

32r 1
3 !

8pl 2r 1
2 1

bM

2
. ~35!

Notice that the conic contribution of the background is ab-
sent if r 05r c5l /), which corresponds to the zero tem-
perature state, or what is considered a ‘‘negative mass’’ so-
lution in @19,29#. Using the mass formula Eq.~24!, one can
write the action in the form

I 5bM2
A

4
1@12d~r 0 ,r c!#

A0

4
. ~36!

From this formula it would seem that a mass shift, though
moving the negative energy states to positive values, would
leave unaffected the entropy. This is wrong, because shifting
M by h052l /3) removes at the same time the conic sin-
gularity in the background, and consequently affects the en-
tropy. The on-shell action isI evaluated atb5b1 , that is,

I 5@12d~r 0 ,r c!#
A0

4b0
~b02b1!1

b1A~r 0
32r 1

3 !

8pl 2r 1
2 1

b1M

2
.

~37!

As a function of the black hole’s temperature and forg.1,
this is,

I 5
M

2T
2

4p3l 4T2~g21!

27 F11A11
3

4p2l 2T2G3

1
~g21!r 0

2

2l
S r 0

l
2

2pl

b0
DT211@12d~r 0 ,r c!#

A0

4
,

~38!

whereM is given by Eq.~30!, and for the torus is

I 52uImtu
4p2l 4T2

27
. ~39!

The T behavior is exactly2T2 for the torus and2T2 as-
ymptotically for higher genus, as for a massless boson gas in
two spatial dimensions. In the tree approximation one iden-
tifies I 52 lnZ(b), the partition function of the black hole
@36#. The density of states is the inverse Laplace transform of
the partition function

r~E!5
1

2p i EReb5c
Z~b!ebEdb. ~40!

For large energy the integral is dominated by the small-b
limit of the partition function, which is of order
exp(2Cb22), C.0. Then the integrand has a saddle point at

b.~2C/E!1/3, ~41!

at which the second derivative of the logarithm of the inte-
grand is positive. The path of steepest descent is then parallel
to the imaginary axis and the integral gives

r~E!.exp~C1E2/3!, C1.0, ~42!

for some computable new constantC1 . For genus 1 the re-
sult is exact, but in every case the exponent is preciselyA/4.
This growth ofr(E) with E makes evident the existence of
the partition function from the point of view of the ‘‘sum
over states.’’ The stability of the canonical ensemble is
proved in@29#, using the method of the reduced action, and
is indicated by the positivity of the specific heat.

Adopting lnZ(b)52I as the partition function, whereI is
the off-shell Euclidean action, allows one to evaluate the
expectation value of the energy in the canonical ensemble.
This is

^E&52]blnZ5M , ~43!

as was to be expected, and the entropy is

S5
A

4
2pr 0

2~g21!@12d~r 0 ,r c!#, ~44!

where A5r 1
2 uImtu in the g51 case. One can also derive

these results from the on-shell Euclidean action, if only one
takes the derivative of Eq.~38! or Eq.~39! with respect toT.

V. DISCUSSION

From Eqs.~43! and ~44! it is clear how to proceed. First
we notice that the entropy is exactly one-quarter the area of
the event horizon in the genus-1 black hole, and the Hamil-
tonian mass is always positive and equal to the mean energy
in the canonical ensemble. This is satisfactory and we shall
not discuss this case any more.

For the higher genus black holes, on the other hand, we
have the choicesr 05l Þr c , which means the reference
background is theh50 solution of Åminneborget al., or
r 05r c5l /A3, which is the zero temperature state corre-
sponding to a naked singularity. We shall now discuss these
two cases in order. The former choice was used in@29# to
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define what is meant by the mass of the black holes. We
stress that the prescriptions by which one defines the Hamil-
tonian mass and the Euclidean action should be the same;
otherwise, one runs into inconsistencies and, moreover, one
cannot compare the two~see @32# for a discussion of this
relation between Hamiltonian mass and Euclidean action!.
Doing this consistently, we see from Eq.~30! that there is a
continuum of negative energy states in the range
2l /3A3<M,0 ~with positive specific heat, nevertheless!,
and the entropy picks up a topological contribution in the
higher genus black holes. The disaster is that the entropy
becomes negative precisely when the temperature falls below
the valueT051/2pl , at which the black hole’s mass crosses
zero, becoming negative. A negative entropy does not make
sense, and so either one removes by hand the negative mass
spectrum or interprets the negative entropy as meaning that
negative energy states have an exponentially small probabil-
ity of order exp@23p(g21)/uLu#. However, these putative
negative mass black holes are perfectly acceptable solutions,
resembling much the Reissner-Nordstro¨m solution, and have
positive specific heat as the mass versusT relation is con-
cave upward everywhere. It seems rather arbitrary to cut
them off, and we think, indeed, that this would be wrong.

The second choice assigns zero mass to the critical solu-
tion with h052l /3A3, or r 05r c , which is not in fact a
black hole~see@29# for the causal Penrose diagram!. Look-
ing at the mass spectrum, Eq.~30!, we see it is positive for
T.0 and zero only atT50. Notice that theh50 solution of
Åminneborg et al. has now positive mass, equal to
l (g21)/A27, but no curvature singularity at all. The near-
to-zero temperature solution is a near-to-extreme black hole,
which becomes a naked singularity atT50. ~The extreme
Reissner-Nordstro¨m solution, instead, is a black hole, but
one on the verge of developing a naked singularity. It is only
as a result of quantum emission that is driven away towards

the nonextreme solutions@40#.! The third law of thermody-
namics is thus perfectly consistent with the third law of black
hole mechanics, according to which extreme solutions are
forbidden. This is a satisfactory result, and we look now to
the entropy of the black hole.

Making the choiceh052l /3), which is equivalent to
r 05r c , the unwanted negative term in the entropy formula
disappears, leaving a positive definite entropy equal to one-
quarter the area of the event horizon, in agreement with@29#
~which, however, has a partly negative mass spectrum since
theh50 solution was adjusted to zero mass!. This indicates
it is not h that is related to the mass, but ratherh1h0 . As
discussed in the text, the reason for the disappearance of the
unwanted term is quite subtle. The reference extreme back-
ground is the only solution, among the class considered,
whose Euclidean section can be identified to any period in
imaginary time without losing the regularity of the metric. In
all other backgrounds within the same topology class, there
is a conic singularity even on shell, which suddenly disap-
pears in the extreme limit. We conclude that the topological
black holes, at least in semiclassical quantum gravity, form a
well-behaved sequence of positive mass solutions in anti–de
Sitter gravity, with a stable thermodynamics. However, one
cannot exclude the existence of topological transitions be-
tween different genus sectors. In this context, one may note
that the genus of the black hole, or its conformal class in the
toroidal case, is at this level a free, nondynamical parameter.
This is unsatisfactory, and a better origin should be sought.
As AdS space is a possible ground state for string theory, it
is not unlikely that string theory and its relation to the math-
ematics of Riemann surfaces could do better than we did.
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