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Black holes with unusual topology
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Einstein’s equations with a negative cosmological constant admit solutions which are asymptotically anti—de
Sitter space. Matter fields in anti—de Sitter space can be in stable equilibrium even if the potential energy is
unbounded from below, violating the weak energy condition. Hence there is no fundamental reason that black
hole horizons should have a spherical topology. In anti—de Sitter space Einstein’s equations admit black hole
solutions where the horizon can be a Riemann surface with ggnd$e caseg=0 is the asymptotically
anti—de Sitter black hole first studied by Hawking and Page, which has a spherical topology. The genus one
black hole has a new free parameter entering the metric, the conformal class to which the torus belongs. The
genusg>1 black hole has no other free parameters apart from the mass and the charge. All such black holes
exhibit a natural temperature which is identified as the period of the Euclidean continuation and there is a mass
formula connecting the mass with the surface gravity and the horizon area of the black hole. The Euclidean
action and entropy are computed and used to argue that the mass spectrum of states is positive definite.
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. INTRODUCTION om  Ar?
ds’=—-Vdt?+V tdri+r2do?, V=C———- —
In general relativity it was widely believed that black
holes formed by gravitational collapse should have a spheri-
cal horizon[1]. In the stationary case this is ensured by
Hawking's theorenj2], under the assumption of asymptotic

flatness and positivity of matter energy. The “topological . . . .
censorship thgorem”)(/)f Friedmann Sc%)lleich and \%H]tig asymptotically de Sitter black hole, with positive mass and

another indication of the impossibility of nonspherical hori- spherlca! hqnzons. IC<0, the black hole mterpretatlon_of
zons. The theorem states that in a globally hyperbolic, ast_he_soluthn is lost unless_the _mass_parameter is negatlve. In
ymptotically flat spacetime, any two causal curves extendin@nti—de Sitter space the situation is just the opposite -+ 2
from past to future null infinity are homotopic. As pointed dl_mensmns there are _the recently discovered locally anti—de
out by Jacobson and Venkatarampdy, a black hole with a  Sitter black hole solutiong10], which have constant curva-
toroidal surface topology would provide a possible violationture everywhere, not just asymptotically at infinity, and the
of topological censorship, as a light ray from past infinity Bril's multi-black-hole solution[11]. The horizon of a (2
linking with the hole of the torus and then back to future +1)-dimensional spacetime is a closed line, which leaves
infinity would not be deformable to a light ray traveling from not much space for introducing a nontrivial topology. On the
past to future outside the black hole. Thus the hole musbther hand, there does not seem to exist a reasonable, higher
quickly close up, before a light ray can pass through. In factdimensional generalization of the Banados-Teitelboim-
as was shown by Shapiro, Teutolsky, and Winicfd, a  Zanelli (BTZ) black hole. The metrics recently found have
temporarily toroidal horizon can form in gravitational col- horizons with a spherical topology, but all the anti—de Sitter
lapse, in a way consistent with the theorems. For nonstatioreonserved charges are infin{t€2]. So, apparently, one had
ary black holes, and under the assumptions of asymptotito give up the condition of constant curvature. Planar and
flatness and the dominant energy condition for matter fieldsgylindrical black holes in anti—de Sitter space were indeed
Gannon6] proved that a smooth black hole must be either adiscovered by Lemof13,14], which upon compactification
two-sphere or a torus. All these results made essential use btcame toroidal. Open and closed black striridg are also
the condition of asymptotic flatness, which entails a vanishiikely to form topologically toroidal black holeldl6]. On the
ing cosmological constant. other hand, Aninneborget al. [17] presented a class of so-
Einstein's equations with cosmological terth admit Iutions in 3+ 1 dimensions, displaying the causal structure
black hole solutions which are asymptotic to either de Sittecharacteristic of black holes, and having constant negative
(A>0) or anti-de Sitter £<<0) space. These solutions curvature everywhere. Hence they were locally isometric to
have a spherical horizon and obey thermodynamics laws likanti—de Sitter space but, surprisingly, showed an event hori-
asymptotically flat black holels—9]. In de Sitter space, one zon with the topology of a Riemann surface with arbitrary
can find locally static solutions of the form genus. Finally, Manf18], and then Brill[11], introduced a
class of black solutions admitting all the above horizon to-
pologies, which can have both positive or negative mass,
*Electronic address: vanzo@science.unitn.it which can be charged, and which have a curvature singular-

for any C, provided the two-dimensional line elemeaha?
has constant curvatuke=2C. Then forC>0 we have the

0556-2821/97/5@.0)/64759)/$10.00 56 6475 © 1997 The American Physical Society



6476 L. VANZO 56

ity in the origin.1 At the moment it was unclear whether 5 1 vV’
these topological black holes could result from gravitational Ri=—V*Ry=5VV'+ ——, Rj=Ry—(1V'+V)a;,
collapse but, since then, this question was also settled affir- )

matively [19]. So we finally have topologically nontrivial
black holes, alb?'t in ar_1t|—de Sitter space. where the calligraphic’®;; refers too;; . Now one verifies

Although antl—d_e Sltt_er space d_oe_s not seem to COMEimmediately that the function
spond to the world in which we live, its importance has been
noticed on many occasion®0-25. Two features seem K’
worth mentioning. First, anti—de Sitter and Weyl conformal V=k——+— ®)
gravity are the only types of gravity which have a consistent r/
interaction with massless higher spin fie[@§] and, second, ) ) ) ] ) )
consistent anti—de Sitter strings exist for aby: 26 (or D~ Makes the metric to satisfy Einstein’s equations with nega-
+10) [27], provided the cosmological term has the critical tive cosmological constanRap=Agay, A=—3/"2, for
value which is required by anomaly cancellation. any pair (<,k"). The surprising fact is that for this to be true,

In this paper we would like to investigate the thermody-the two-dimensional metrig;; must satisfy the equations for
namics properties of the topological black holes from thed constant curvature surface, which need not be a sphere,
point of view of the Euclidean formulatiotfor a detailed namely, R;;=xoj; and R=2x. Therefore if xk=—q*<0,
treatment of the Hamiltonian thermodynamics of asymptotithe two-manifoldS must be a surface with constant, negative
cally anti—de Sitter black holes sé28]). We point out that ~ curvature. If this surface is compact and orientable, then it
higher genus black holes are really “cosmological blackmust be a Riemann surface of gems1 for g*>0. If =0,
holes,” inasmuch as their size is the size of tfamti-de then the surface is a torus, age- =i/R gives a sphere of
Sitten) universe itself. Hence they could only exist during theradiusR. Actually, the parameteq is fictitious as long as
inflationary era, when the cosmological constant was nofonzero, since we can always rescgle, k', andoj; so as
small. The toroidal black hole, on the other hand, can exist irio achieve thag=1. Hence we take the metric of the un-

a virtually flat space, as the size is governed by the mass artharged, genug; black hole in the form
the conformal class of the torus, rather than by the cosmo-
logical constant.

In Sec. |, we begin by presenting the metric and discuss-
ing the relevant geometric features, including the asymptotic

2
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7 dt2+(—1—777+—) dr?

behavior at infinity. We shall not discuss entirely the causal +riodxdx, (4)
structure(it is presented in29]); nor will we become confi-
dent in how the black hole could result from gravitational where nowR;; = — o;; describes a Riemann surface with ge-

collapse of some topologically nontriviéle., nonspherical  nusg>1 and Euler numbey,=2—2g. In the genus-1 case,
matter configuratiorthis is explained if19]). In Sec. Il, we  we pick a complex number, with Im 7>0 (this is known as
define the mass and show it obeys a Smarr-like formula. Wéne Teichmiler complex parameter of the tonusSuch a
point out that, due to the asymptotic behavior of the metriccomplex number specifies a class of conformally equivalent
there is no other way to make finite the Hamiltonian thantori, two tori being equivalent if and only if the respective
subtracting a reference background in the same topologyeichmuler parameters are connected by a fractional linear
class of the actual sglution. The natural choice would seenransformation with integer coefficients. We shall write the
to be the solutions of Ainneborget al, to which the black flat metric of the torus in the form

hole approaches asymptotically, but a thermodynamics argu-

ment will favor a rather different choice. In Sec. Ill, we do?=g;;dx'dX =|7/2dx*+ dy?+ 2 Rerdxdy,  (5)
determine the off-shell Euclidean action and use it to evalu-

ate the entropy of the black hole. Some discrepancies regargshere the pair X,y) ranges over the closed unit square in

ing the mass spectrum will then be resolved. R2. The toroidal, uncharged black hole metric is now
In the following, we shall use the curvature conventions

of the Hawking-Ellis book[1] and employ Planck dimen- 7 r? , 2np 2\t )
sionless units. dSz:_(— + T dt*+| — -t 72) dr
Il. TOPOLOGICAL BLACK HOLES +r?(| 7]2dx?+dy?+ 2 Rerdxdy). (6)

The class of metrics to consider is .
Let 8(a,b)=1 for a=b and zero otherwise. From the

ds?=—Vdt+V idr?+r?e;dx'dx, (1)  Gauss-Bonnet theorem, the areao
where gy is the metric of a two-manifold5, which is not A=—2mx,+|Im78(g,1)=4m(g—1)+|Im7|8(g,1).
assumed to be a topological sphere, ahdf(r). The non- g 7)

vanishing components of the Ricci tensor are

The metric possesses an irremovable singularity=a, be-
cause the invariarR,;,.R2°°? blows up liker ~¢ nearr =0.
'Recently, the author also met the uncharged version of Mann'd herefore, in the following, we shall study the metric for
solution. r>0 only.
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We consider now whether the space represents a genuipint set of the time translation symmetry of the solution.

black hole. The standard procedure to analyze black holes iBhe horizon is thus a bifurcate Killing horizon. It has a sur-

to investigate the causal structure. In ge 1 case, the lapse face gravityx, for the genusg case, which can be computed

function of the metrid4) always has a real root at some. by standard means as

This is the solution of the cubic equation

r3—/?r—25/?%=0, and the character of the roots depends 3ri -2 3r,

on the sign of the discriminan= 7?/*—/%/27. If D>0 Ko~ r 7 KT (10

and >0, then
The surface gravity is non-negative and vanishes only for the

B 2132 N [27/%+2(D)V4'R g otreme solution, whem=—//3\/3 andr,=//\3. The
=329/ 7+ 2(D) R 2173 area section of the horizon is
is the only real root, and the singularity is spacelike and A=4mri(g—1)+48(g,)r%[Im], (11)

hidden inside an event horizon. >0 but <0, there is ) o

one negative real root, the lapse function is positive in thevhereris the Teichmiler parameter of the torus. The mass
ranger>0, andr=0 is a naked singularity. ID<0, the ©f the black hole is, unlike the geometry, a rather delicate
allowed range forp is —//3vV3<</I3v3. If >0, there Matter, and we shall discuss this question after having ana-

is one positive root which can be written as lyzed few asymptotics property of the metric.
To understand the geometrical origin of the gegusur-
2/ 3v3y faces, let us pause for a moment with the black hole and
r,=——cog6/3), cow= — (9)  consider the solution witly=0 and k= —g?, not normal-

ized to —1. The curvature tensor for this solution is
Rabed=—7 4 9acObd— Yaddbel, Which shows that the space
where 6 €[0,7/2], the other two roots being real and nega-is locally isometric to the universal covering of anti—de Sitter
tive. Again the singularity is spacelike and hiddenzK0,  space. The surprise comes when computing the curvature
there are two positive roots, andr_, withr,>r_, cor- tensor of the r=const surfaces. It is given by
responding to the choice&/3 and (+4)/3 in Eq. (9), Rijk|=—qz[a'ik(T“—a'”(rjk], and therefore it describes a
given #e[m/2,7], and one negative root. Again the greaterspace of constant, negative curvature again. Anti—de Sitter
root represents an event horizon, and the region in betwegADS) space is the maximally symmetric space which is ob-
the two positive roots resembles the Reissner-Nordsso-  tained by restricting the metric ds’=—dx?*—dv?
lution. In the region 6<r <r _ the lapse function is positive, +dy?+dz>+du? in R% with rectangular coordinates
and so the singularity is timelike armd=r_ represents an (x,v,y,z,u), to the hyperboloid
inner Cauchy horizon. The structure of this black hole is then
quite complex. As we shall segj,is related to the mass of —X2+y2+ 22+ uP—p?=—/2 (12
the black hole, and hence what we have here is a putative,
negative mass black hole with an acceptable causal structur&he cosmological constant figuring in Einstein’s equations is
the allowed range of “negative mass” beind>—//3v3. A=—3/"2. The topology of the space is that 8t xR?,
At last, =—//\/3 gives a naked singularity and the solu- but notice that each circke? +v?= 7* gives a closed timelike
tion has no black hole interpretation. It corresponds to théeurve in AdS space. Hence we pass to the covering by open-
extreme limit where the inner horizon has the same locatiofnd the circle into a real line. Given this, we note that by
as the outer horizom,_=r ., and it will play an important  fixing v®—u?=/2¢* to be greater than’?, i.e., £>1, the
role when developing the thermodynamics Euclidean theonthree remaining coordinates are made to range over hyper-
Finally, there is a case wherel=0, or /?=275?, for  bolic two-space, which we denote bi?. The orbits of con-
which again there is only one positive rootrat=67, the  stant¢ describe uniformly accelerated observers in anti—de
other two being equal but negative. The genus-1 case is sinitter space, and we shall see now that the remaihifig
pler, as the only positive root is at. = (27/2) 3, which carries a positive definite metric, is the acceleration
In all cases, the roat, makes the hypersurfacesr, an  horizon of such observers. To this aim, we make use of the
event horizon. The metric admits a Kruskal-like extension infollowing parametrization of the hyperboloid:
which ther =0 singularity is spacelikéas in the Schwarzs-

child solution, the reason being that the lapse function x=/\1+q *écoslp, (13
changes sign by crossing the horizon, except whetD, in

which case the singularity is timelike. Because of this fact, y=/1+q *£sinhpcos, (14
each future-directed null geodesic behind the horizon will

inevitably crash into the singularity at=0, and so it can z=/1+q 2&%sintpsing, (15
never reach infinity. A related fact is that the expansion of

eachr = const surface, with<r , , is negative and as such it u=q /¢ coshqt//), (16
is a closed trapped surface. The solution therefore represents

a black hole for ally>—//3v3, for g>1, or for all positive v=q /& sinhqt//), (17

nif g=1. The horizon has a portion to the future of the static
regionr>r, and a portion to the past. The two sheets in-and then set?=/2(q?+ ¢2). The induced metric takes the
tersect in a genug- Riemann surface, which is the fixed form
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r2

) -1 We shall now identify the mass of the black hole as the

dr?+r2do?, on-shell value of the Hamiltonian, with lapse function
(18) N=V and vanishing shift vectdi28,30—32. To this aim,
one puts a timelike boundary at the same largdr and uses
wheredo?=q~ [ dp?+ sintpdé?] is one of the many forms the Hamiltonian of general relativity in a manifold with
in which the metric of hyperbolic two-spa¢# is presented. boundary, taking care of all the boundary terms. At the end,
Setting as beforg?=1, the metric differs from Eq(4) by =~ one takes the limit aR goes to infinity. As thet=const
the absence of the crucial termy2x, but is otherwise iden- slices are orthogonal to the timelike boundary at large dis-
tical. As we shall see, thermodynamics arguments indicatéances which contains the Killing observers at “infinity,”
that this solution has positive mass, even in the absence difiere are no “corner” terms in the Hamiltoni83], and the
the 27/r term in the metric. The lapse function of the metric mass is
has a zero at_. =/, which makes the metric of the three-
surfacer=_r+ degenerate. Th_is s_urface is_ in fact a bifurca}te M=— i f \/V(G)—o)rz\/;dzx, (19)
event horizon, the future portion intersecting the past portion 8 Sy
in a transversé4?, which is the fixed point set of the time ) ] ] ]
translation symmetry. Although the metric displays the prop-WhereS, is a Riemann surface with gengs © is the trace
erties of a black hole, it is not in fact, as it represents thedf the extrinsic curvature o§; as embedded in &= const
portion of anti—de SittefADS) space which is causally ac- hypersurfacef), is the same quantity as 8; were embed-
cessible to a family of accelerated observers. This is not théed in the reference spacetime, and the liRiit  is under-
end of the story, a3-|2 is noncompact and we want a com- stood. The trac® can be CompUtEd as the covariant diver-
pact horizon. TheSO(2,3) symmetry group of AdS space gence of the normal vector field to the boundaryr aR,
contains arSO(1,2) subgroup acting on thesy,z) sector £*=VV&;, in the induced metric of the=const slices,
of the five coordinates. This symmetry leaves unaffected th8ap=0ap+ UaUp, whereu? is the future pointing normal. It
accelerated trajectories and only mixes the pointsHmh is
where it acts as a group of isometries. It is a well-known fact

r2
d32=—( —q2+/7 dt2+

that any Riemann surface with gengs-1 is the quotient 2 2y R? 2 R?
space ofH? by a discrete subgroup of isometriéughly 0=— -1-—+ S TRow T -1+ —
speaking, this is a subgroup whose elements can be labeled R R 7/ R /

by an integer, acting inH? without fixed points(including 27 1

infinity in H?, and so, for example, discrete translations are — (20)
forbidder) and properly discontinuouskthis means that the R? V—1+ R/ /2

translates of any compact set are disjgintehus we may
pick up such a discrete subgroup, shyand make the quo-  Similarly,
tient(i.e., the orbit spage This makes the horizon a compact

Riemann surface of gengs> 1. The genus-1 case apparently 2 RZ 27, 1
does not have such an interpretation; nevertheless, itcan also  @,=g . — 1+ —t——. (2))
be obtained identifying points in AdS spaf&7] and the R 2R gy R2/ /2

metric is Eq.(18) with g?=0. We shall call the resulting

spacetime the Riemann—anti-de SittBadS space, and we Therefore, asymptoticallN(® — ®)=2(7— 7,)R™2. One

conclude that this is the asymptotic region of the topologicakan repeat the calculation with the torus black hole metric,

black holes. finding again the same result. From E#9), in a condensed
notation for any genug, we obtain

Ill. MASS AND SIZE OF THE BLACK HOLES

nA
As is well known, there is a certain amount of freedom in -~ M=~ (7= 70) xg/2+ m5(9'1):(’7_ 70)(9—1)

defining the mass of the black hole, as this involves the sub- i
traction of a zero point of energy. Looking at the met(i8), 7| Im7|
it would seem natural to define the mass by taking RadS + A 5(9.1). (22)
space as a reference background, which4w®9, even if its
topology is not that of anti—-de Sitter space. However, forwWe see that even if the 1" in the lapse function$\ and
g>1 and for reasons to be explained below, we prefer taN, does not count asymptotically, the integration over the
take as a reference background a metric in the class given iypundary must involve a Riemann surface in the background
Eq. (4), with a “mass parameter’,. We shall also denote with the same genus of the actual solution. The topology of
all quantities referring to the background with a subscriptthe background must then be asymptoticélly Sy, with S,
“0.” The two values of 5, we will discuss are themy=0  carrying a constant negative curvature metsis required by
and n,= —//3vV3, which is the lowest possible value for the Einstein’'s equations This cannot be embedded in flat space
metric to admit a black hole interpretation= », being a (because then the curvature could not be negative every-
naked singularity. In the cage=1, the background will be where or in the anti—de Sitter slices, which have topology
the metric(6), but with ,=0, which again is the lowest RxS?. If the background is to be a static solution of Ein-
value for the metric to admit a black hole interpretation, stein’s equations, then presumably the md(it®) is the only
170<0 being a naked singularity. one available which has no curvature singularities, and the
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metric (4) with 79=—//3v2 is the only one which has no the universe. There is finally a case wheréby 0. The mass

black hole interpretation, although it has a naked singularityof the black hole is bounded by a number of ordeand the

The metric(4) makes sense even fgr<0 [19,34], but again  greater the mass the greater is the size, but this is always of

it has a curvature singularity in the origin. Tag=0 back-  order/. Hence there are no “small” topological,> 1 black

ground would seem preferable, as demanded by the topolodyles, except for large values of the cosmological constant.

of spacetime and by the absence of curvature singularitiesn fact, the minimum size is 2/v3 for D=0 and//v3 if

We shall argue differently, however, when discussing theD<O0. If the black hole can radiate away its mass without

Euclidean theory. changing the topology, then this would leave behind a cos-
In the following, it will be convenient to parametrize the mological horizon with finite size or a naked singularity. The

reference background by, rather thans,, ro being the toroidal black hole is more promising, as then

positive root of the cubic equatiar?—/%r—27,/%2=0. To  r.=(25/?)*3 As a function of the mass this is

the valueny,=0 corresponds then,=/ and to the critical

value 75o=—//3V3 corresponds the critical value _[87/*M 13

ro=r.=//\/3. This a double root of the lapse function, at f+= [Im7| ’

which the background surface gravity vanishes. Finally, the

toroidal background hag,=0 andry=0. and thus it depends on the conformal class of the torus. Now
If around the black hole there is a matter distribution withsmall black holes can exist with any mass and, within a

stress-energy tensdt,,, then one can obtain a mass formula given conformal class, they can exist for arbitrary large val-

(26)

along the lines of35], by integrating the Killing identity ues of /. If the cosmological constant, though exceedingly
small, is nevertheless finite, the toroidal black hole could
Va3V, K,=RyK® (23)  exist in a virtually flat space.

for the Killing field K2, over a spacelike hypersurfadg
which is asymptotically orthogonal to the trajectories of the
Killing observers at infinity and intersects the horizon in a  One approach to the thermodynamics of black holes is to
two-surfaceSy. To this we must subtract, in addition, the analyze the Euclidean action which one obtains under Wick
volume contribution of the background with the same genusotation to imaginary tim¢7]. The Euclidean black hole so-
(both the solution and the background have a divergenlution is obtained by rotating the time coordinate to imagi-
vacuum energy, becaude# 0). This has an horizon at=r nary values and exists as a Riemannian metrig for , . In
and a surface gravitysg. The mass formula reads the Euclidean section of the metric, the imaginary time plays
the role of an angular coordinate, where the rotation “axis”
_ KA Koo 3 3 is just the horizon. Therefore the metric will have a conic
“an am Am/%r? (ro=r3) singularity atr=r ., unless the imaginary time is identified
with the right periodicity, which is

IV. EUCLIDEAN FORMULATION

w/%r A7/ ?

2 4
Br= e =[1-00.D] 57— 7+ 30D 5
the third term being the difference of the volume vacuum (27)
energy in the solution and the background. The mass so de-
fined is also equal to the Abbott-Deser mass for asymptotiAn important exception to this is the critical solution with
cally AdS space$25], if only one repeats their analysis in n9=—//3vV3. This is the only solution for which the imagi-
the present case, and satisfies the first law for@nwhich ~ nary time can be identified with any period without losing

+ f (2T 2p— Tgap) K2uPd3x, (24)
3

in the vacuum reads the regularity of the metric. This fact will have important
consequences for the Euclidean theory. Unlike the asymp-
kdA totically AdS black hole studied if8,9], the period has no
dM= 87 29 maximum value and is never zero; so the solution exists for

any 8. . However,B,>2m/ corresponds to negative en-
The knowledge of the mass allows one to obtain some resu@rgy states, if the prescription,=0 is adopted. The tem-
about the size of the topological black holes. The radius operature of the genug-black holes is therefore, fg>1 and
the black hole as seen from the outside static region is thg=1, respectively,
value,r, of the real positive root of the lapse. This depends
on a single parametey, which we showed is related to the
black hole mass. The scale of the solution is determined by
the cosmological constant or by (present estimates would
put a value for” not less than 18—10°® cm, which is about  The quantum origin of this temperature is hidden here by our
the size of the observable univeysBor g>1, according to  choice of units. The identification of the period in imaginary
Eq. (8), the black hole can have any size for masses greataime (a classical conceptith the inverse temperature of the
than ~/\/27 and grows liker ,~M%3 for M/>1. This  equilibrium state has no classical analogue since the required
seems to be the less interesting case for large values of Wick rotation is reallyt— —i# 3. ThatT is a temperature
The degenerate caseD=0 is a black hole with can also be seen from the fact that one can construct the
r,=6n~M~/, and the size of the black hole is the size of analogue of the Hartle-Hawking quantum state as well as the

3r2 -2 3r
T:B_l + +

CTanA T am 28
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analogue of the Unruh stafeork in preparation To define  pute the difference of the Euclidean action of the actual so-
the former, one imposes the boundary condition that the inlution with that of flat space, the four-sphere or the four-
going and outgoing fluxes of radiation, from and to timelike dimensional hyperbolic space, respectively, these spaces
infinity, be equal. Both states have a temperature which i®eing the Euclidean sections of the Lorentzian metrics. In
zero at infinity due to infinite redshift. However, zero restflat space, the Euclidean action comes entirely from the dif-
mass particles escape to infinity arranged in a thermal fluterence in the surface terms, the four-sphere has no bound-
with the temperaturd’, but their “angular distribution” is ary, and the action is already finite without subtractions
governed by the eigenfuctions of the Laplace operator on §7,36]. In hyperbolic four-space the surface integral of the
Riemann surface rather than by the spherical harmonics. solution cancels the surface integral of the background and
The mass of the black hole as a function of the temperathe action comes again from the difference in four-volumes
ture is an important thermodynamics input. It can be ob{8].
tained from the mass formula by expressingin terms ofT In the present case, we have apparently no other choice
using Eq.(28), which gives, forg>1 andg=1, respectively, than comparing the Euclidean action of the black hole with
that of another solution in the same topological cléss,

_277/2T 1 /1 3 _477/2T same Euler numbgrThis is because with no other topology
+=73 * + s v R T will the metric cancel the divergences coming from the sur-

(299  face and volume terms in the action, without fine-tuning the
. . . _ parameters. For example, choosing anti—de Sitter space re-
For g>1, the mass is a rather complicated function of thisquires fine-tuning of the cosmological constant of the back-

temperature: ground to achieve cancellation of the leading divergences.
3 43 Another choice could be taking a background in the same
M= (9—1)4m"/"T ( 1+ 3 )(2 topology class but with a metric chosen by hand to cancel
27 A4/ ?T? divergences. In general, however, this will not be a solution
of Euclidean Einstein’s equations, the procedure appears a
_ 3 ) /1+ 3’ ) — o(g—1) little bit arbitrary, and, moreover, the mass was defined rela-
2m2/?T? am?/2T2) 0 tive to a specific background.

Therefore we shall compute the difference between the
(g—1). (30) Euclidean action of the black hole and that of a background
in the same topology class, and for off-shell values of the
inverse black hole’'s temperature. To agree with the mass
definition, therny parameter of the background will be either
zero or—//3vV3. In doing so, one encounters a conical sin-
gularity in the solutions as well as the background, except in
the second case. We notice that such a singularity in the

=~z tm

This mass is an increasing function ®f with a largeT
behaviorM ~ T2, in the full range B<T<~ and the zero
temperature state is a black hole with mass
M= —(#59+/13V3)(g—1). The mass then increases until

the temperature reaches the vallie 1/27/, at which the background would persist even for on-shell valuesgofs

mass isM = — 7o(g—1). The first prescriptiono=0 gives o patural period of the background is different fram .
then a massless black hole at finite temperature, at the end ¢f, compuyte the effect of the conical singularity one cuts, out
a continuous spectrum of negative energy states, and the S&f e manifold, a small disk around the horiz6n the Eu-

ond prescriptipn gives a contin_uous po_sitive mass spectrunyigean black hole this is an axis of rotatjoat r =¢, and
althou_gh at this stage the terminology is conventional. Howsp ., computes separately the action in the volume frem
ever, it would seem natural to the “ground state™ the statey, g ‘and the disk. The contribution of the disk is given,
with zero temperature. F@=1 the mass is as is well knowr{37-39, by the Gauss-Bonnet theorem and

8772/4 IS
57 T2, (31)

M=|Im 7|

1 A
. y e Ie- | RVgd'=2—(8.—B), (33
Hence the stability conditioaM/dT>0 is fulfilled in every & B+

case. We shall now compute the off-shell Euclidean action of , )
the black hole, where A is the area of the event horizon. The background

contributes the same quantity or zero, depending on whether
1 . 1 5 ro=/, for the choiceny=0, orry=r.=//v3 for the choice
T jM(R—ZA)\/ﬁd Sy LMK Jhax, no=—/13V3. In the former caseA,=4m/%(g—1) takes
(32 the place ofA and Bo=2w/ the place of3, . Finally, the
conic contribution of the toroidal background vanishes, too.
where g M = Stx S, is the boundary of the solution identi- Since for both metriclR=4A, the volume’s difference in
fied with periodB+ B, at some fixed =R, which will be  the action of the two metrics is
taken to infinity at the end, arid is the trace of the extrinsic
curvature of the boundary. The Euclidean action so defined BA
is a divergent function of the boundary location, and there- 8mw/?
fore it will be necessary to subtract from it the Euclidean
action of a chosen background. For black holes which arevhere A=4m(g—1)+ 8(g,1)|Im 7 andR, is the radial co-
asymptotically flat, de Sitter or anti—de Sitter, one can comordinate of the boundary in the background metric. This

3. .3_p3
(R®*=r3+r3—R}),
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must be matched tR by requiring the two metrics to agree

Am2/4T?
asymptotically, which givesfor the torus iszy=0) Y57

27 39

I=—]|Im7]|

The T behavior is exactly—T? for the torus and-T? as-
ymptotically for higher genus, as for a massless boson gas in
. NP ) two spatial dimensions. In the tree approximation one iden-
up to terms of higher order iR™". Finally there is the sur- ifjes | = —Inz(g), the partition function of the black hole

face contribution, which involves the asymptotic of the ex-36] The density of states is the inverse Laplace transform of
trinsic curvatures in the fornfthis is the integrand of the the partition function

boundary term in Eq(32), after subtractioh

Z(B)e”EdB. (40)

By 1
p( )_277_' ReB—c

0 2

\VA 2V V.
Sl _pefsfo, "0
R 2) R<R0+ )

2V
RZNK—R3NK o= RZ(—+
(349 For large energy the integral is dominated by the srgall-

. limit of the partition function, which is of order
whereN=V and Ny= V, are the lapse functions of the P . ’ .
black hole and the background, respectively. Using theeXp( CA™), C>0. Then the integrand has a saddle point at

matching condition one finds this to vanish at infinity, and
therefore the surface term also vanishes. Finally, we elimi-
nate » in favor of the mass and we obtain the following at which the second derivative of the logarithm of the inte-
off-shell Euclidean action, valid for any gengs[we recall  grand is positive. The path of steepest descent is then parallel
the ?ronecker symbob(a,b)=1 if a=b and zero other- to the imaginary axis and the integral gives

wise]:

B=(2CI/E)Y® (41)

p(E)=exp(C,E®3), C;>0, (42)
Ao

A
| = m(ﬁ—,&rﬁ[l—é(ro.rc)] 4—Bo(ﬂo_,3)

ﬁA(rg—fi)+ﬂ
87w/ %r? 2

for some computable new consta®i. For genus 1 the re-
sult is exact, but in every case the exponent is preciaély
This growth ofp(E) with E makes evident the existence of
the partition function from the point of view of the “sum
over states.” The stability of the canonical ensemble is

Notice that the conic contribution of the background is ab-Proved in[29], using the method of the reduced action, and
sent if ro=r.=//v3, which corresponds to the zero tem- iS indicated by the positivity of the specific heat. _
perature state, or what is considered a “negative mass” so- Adopting InZ(8)=—1 as the partition function, whereis

lution in [19,29]. Using the mass formula Eq4), one can the off-shell Euclidean action, allows one to evaluate the
write the action in the form expectation value of the energy in the canonical ensemble.

(39

This is
A A
I=,8M—Z+[1—5(r0,rc)]j. (36) (E)=—dgInZ=M, (43
From this formula it would seem that a mass shift, thoughas was to be expected, and the entropy is
moving the negative energy states to positive values, would A
leave unaffected the entropy. This is wrong, because shifting S=——ar3(g—1)[1-8(rg.re)], (44)

M by no=—/13vV3 removes at the same time the conic sin- 4

gularity in the background, and consequently affects the en-

S - . where A=r?|Im4 in the g=1 case. One can also derive
tropy. The on-shell action ib evaluated ag=p., that is, these results from the on-shell Euclidean action, if only one

Ao takes the derivative of E438) or Eq.(39) with respect torl.

BLA(rg—r3) B.iM
4Bo '

_|._
8w/ °r? 2
(37

As a function of the black hole’s temperature and gor 1,
this is,

I=[1—08(rg.r¢)] (Bo—B+)+

I_|\/| 473/*T%(g—1) . 3 ®

“o1 27 |"TNiT e
(9-Vrg(ro 2a/\_, Ao
+ 2/ 7_ EO T +[1_5(r0,rc)]Z,

(39

whereM is given by Eq.(30), and for the torus is

V. DISCUSSION

From Egs.(43) and (44) it is clear how to proceed. First
we naotice that the entropy is exactly one-quarter the area of
the event horizon in the genus-1 black hole, and the Hamil-
tonian mass is always positive and equal to the mean energy
in the canonical ensemble. This is satisfactory and we shall
not discuss this case any more.

For the higher genus black holes, on the other hand, we
have the choices,=/#r., which_ means the reference
background is thep=0 solution of Aminneborget al, or
ro=r.=//y3, which is the zero temperature state corre-
sponding to a naked singularity. We shall now discuss these
two cases in order. The former choice was usedi2i@] to



6482 L. VANZO 56

define what is meant by the mass of the black holes. Wehe nonextreme solutiorigQ].) The third law of thermody-
stress that the prescriptions by which one defines the Hamikhamics is thus perfectly consistent with the third law of black
tonian mass and the Euclidean action should be the sambple mechanics, according to which extreme solutions are
otherwise, one runs into inconsistencies and, moreover, orf@rbidden. This is a satisfactory result, and we look now to
cannot compare the twesee[32] for a discussion of this the entropy of the black hole.
relation between Hamiltonian mass and Euclidean agtion Making the choiceny=—//3v3, which is equivalent to
Doing this consistently, we see from E®O) that there is a fo=r¢, the unwanted negative term in the entropy formula
continuum of negative energy states in the rangedisappears, leaving a positive definite entropy equal to one-
—/13y3<M <0 (with positive specific heat, neverthelgss guarter the area of the event horlzon, in agreement p2h .
and the entropy picks up a topological contribution in the(Which, howe\{er, has a p_artly negative mass .sp.ecij‘rum since
higher genus black holes. The disaster is that the entrop{f€ 7= 0 solution was adjusted to zero mashis indicates
becomes negative precisely when the temperature falls beloflyiS not # that is related to the mass, but rathet 7,. As
the valueT,=1/27/, at which the black hole’s mass crossesdiscussed in the text, the reason for the disappearance of the
zero, becoming negative. A negative entropy does not makgnwantgd term is quite sn_Jthe. The reference extremg back-
sense, and so either one removes by hand the negative m&géund is the only solution, among the class considered,
spectrum or interprets the negative entropy as meaning th¥hose Euclidean section can be identified to any period in
negative energy states have an exponentially small probabilaginary time without losing the regularity of the metric. In
ity of order exp—3m(g—1)/|A[]. However, these putative f’i” other_bagkgrour_lds within the same t_opology class,_there
negative mass black holes are perfectly acceptable solutioni$, & conic singularity even on shell, which suddenly disap-
resembling much the Reissner-Nordstrsolution, and have Pears in the extreme limit. We conclude that the topological
positive specific heat as the mass ver§uselation is con- black holes, at least in semlcla§_3|cal quantum gravity, for_m a
cave upward everywhere. It seems rather arbitrary to cuf/ell-behaved sequence of positive mass solutions in anti—de
them off, and we think, indeed, that this would be wrong. Sitter gravity, with a stable thermodynamics. However, one
The second choice assigns zero mass to the critical sol$annot (_axclude the existence of to_pologlcal transitions be-
tion with 9= —//3\3, or re=r,, which is not in fact a tween different genus sectors. In this context, one may note

black hole(see[29] for the causal Penrose diagrarhook- that.the genus of the'black hole, or its conformal class in the
ing at the mass spectrum, E@0), we see it is positive for torp@al case, is at this level a free, nondynamlcal parameter.
T>0 and zero only aT = 0. Notice that they=0 solution of This is unsatlsf_actory, ar_1d a better origin shoul_d be sough_t.
Aminneborg etal. has now positve mass, equal to As AdS space is a possible ground state for string theory, it

/(g—1)/y27, but no curvature singularity at all. The near- is not unlikely that string theory and its relation to the math-
to-zero temperature solution is a near-to-extreme black holee,matlcs of Riemann surfaces could do better than we did.

which becomes a naked singularity B 0. (The extreme
Reissner-Nordstra solution, instead, is a black hole, but
one on the verge of developing a naked singularity. It is only The author acknowledge useful conversations with S. Zer-
as a result of quantum emission that is driven away towardbini, G. Cognola, and R. Parentani.
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