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We simulate the formation of cosmic strings at the zeros of a complex Gaussian field with a power spectrum
P(k)}kn, specifically addressing the issue of the fraction of length in infinite strings. We make two improve-
ments over previous simulations: we include a nonzero random background field in our box to simulate the
effect of long-wavelength modes, and we examine the effects of smoothing the field on small scales. The
inclusion of the background field significantly reduces the fraction of length in infinite strings forn,22. Our
results are consistent with the possibility that infinite strings disappear at somen5nc in the range
23<nc,22.2, although we cannot rule outnc523, in which case infinite strings would disappear only at
the point where the mean string density goes to zero. We present an analytic argument which suggests the latter
case. Smoothing on small scales eliminates closed loops on the order of the lattice cell size and leads to a
‘‘lattice-free’’ estimate of the infinite string fraction. As expected, this fraction depends on the type of window
function used for smoothing.@S0556-2821~97!04214-8#

PACS number~s!: 98.80.Cq, 11.27.1d

I. INTRODUCTION

Cosmic strings are effectively one-dimensional topologi-
cal defects which may form at a phase transition in the early
universe~see Ref.@1# for a review!. Although much of the
early interest in cosmic strings has centered on the possibility
that they might have served as seeds for the formation of
large-scale structure, cosmic strings are interesting physical
objects in any case, and they have analogues in the study of
condensed matter@2#.

Any investigation of the evolution and cosmological con-
sequences of cosmic strings must begin with the study of the
initial cosmic string configuration, a study which was first
undertaken by Vachaspati and Vilenkin@3#, and reexamined
by many others@4–9#. Although subsequent cosmic string
evolution will erase many of the details of the initial configu-
ration, one fundamental property of the initial conditions is
crucial to the subsequent evolution: the existence of infinite
strings. Without the existence of infinite strings, the cosmic
strings produced at the phase transition may all decay via
gravitational radiation long before they can have any inter-
esting cosmological effects. Vachaspati and Vilenkin found
in their simulation that roughly 80% of the string was in the
form of infinite strings@3#. Using a very different type of
simulation for the string formation process, Borrill@8#
claimed that this fraction was, in fact, zero, while Robinson
and Yates@9#, in a study of the dependence of this fraction
on the power spectrum of the initial field, argued that for
power spectra of the formP(k)}kn, the infinite string frac-
tion f ` drops to zero forn<22. In fact, this result is not
obvious from their simulations; it is based on fittingf ` to an
analytic function forn.22.

In this paper, we extend the simulations of Robinson and
Yates in two ways. First, we include the effects of long-
wavelength modes which are absent from earlier simulations.
Second, we examine the effect of smoothing the initial field

to remove lattice effects. We find that the former change has
a dramatic effect onf ` , sharply reducingf` for n,22.
Smoothing also affectsf` , leading to ‘‘lattice-free’’ esti-
mates of the fraction in infinite strings. In the next section we
present our numerical results, and in Sec. III we discuss
briefly our main conclusions.

II. NUMERICAL SIMULATIONS

With one exception@8#, simulations of cosmic string for-
mation typically make use of a lattice. A value of the field
f associated with the string is assigned to each of the cells of
the lattice, and the location of the cosmic string is then iden-
tified with edges of the lattice around which the field winds
through 360°. The original simulations of Vachaspati and
Vilenkin @3# were performed on a cubic lattice with no cor-
relations between values of the field in different cells. Sub-
sequent researchers investigated changing the probability of
string formation by ‘‘biasing’’ the distribution of the values
of the field @5–7#, by allowing the field to be divided into
domains of variable size@6#, or by allowing long-range cor-
relations between the field values@9#. All simulations on a
cubic lattice suffer from the problem that an ambiguity exists
with regard to the string assignments at the vertices of the
cubes; this problem can be eliminated by going to more ex-
otic lattices, such as the tetrakaidekahedral lattice, for which
only four edges meet at every vertex@4,7#.

In this paper, we simulate the formation of cosmic strings
using a cubic lattice and a complex Gaussian fieldf with
long-range correlations, where the strings are taken to lie
along the zeros off. A Gaussian field is completely charac-
terized by its power spectrum, defined by

P~k!5E d3reik•r^f~x!f~x1r !&. ~1!

PHYSICAL REVIEW D 15 JULY 1997VOLUME 56, NUMBER 2

560556-2821/97/56~2!/647~6!/$10.00 647 © 1997 The American Physical Society



We takef to have a power-law power spectrum

P~k!}kn. ~2!

Models of this sort were first examined by Vishniac, Olive,
and Seckel@10#, who proposed that cosmic strings with
n523 could be produced due to quantum fluctuations of the
field f during inflation. Vishniacet al.showed that the mean
string length per unit volume,L/V, is given by@10#

L/V5
1

3p
^k2&, ~3!

where

^k2&5

E P~k!k4dk

E P~k!k2dk

. ~4!

Note that some sort of smoothing or cutoff is required for
convergence at largek, but this is provided automatically by
the lattice cutoff in numerical simulations. Asn→23, Eq.
~3! givesL/V→0; this result is confirmed by our numerical
simulations. Physically, what happens is that within arbi-
trarily large regions of space the fieldf has Re(f).0 ~for
example!. An expression similar to Eq.~3! is also given in
Ref. @9#.

In our model, we assign values off to the sites on a cubic
periodic lattice, and the string is assumed to lie along the
location of the zeros of this complex field. This model, as we
have described it, is identical to that of Ref.@9#, but we make
two improvements in the model, both of which have to do
with the limitations in dynamic range inherent in such a
simulation.

Consider first the largest scales. Because our simulation
volume is finite, the simulation loses power on all scales
larger than the box size, a problem which was noted by Rob-
inson and Yates@9#. In the simulations, this corresponds to
the fact that the mean value off averaged over the entire
box is zero. This problem can be resolved by adding a ran-
dom uniform background fieldfb to every cell in the box;
this field represents the contribution to the field value from
all Fourier modes which are larger than the box size. The
variance offb can be determined from Eq.~2!, and in our
simulations it is chosen to have a Gaussian distribution with
this variance.

Our second addition to the simulation involves the behav-
ior of the field on small scales. The use of a lattice to simu-
late string formation is obviously unphysical, and numerical
simulations clearly show thatf ` depends on the lattice being
used.~Compare, e.g., the results of Ref.@3# for a cubic lattice
with those of@4# and@7# for a tetrakaidekahedral lattice.! On
the other hand, we do expect the fieldf to be correlated on
the smallest scales, leading to some sort of domain structure.
We resolve this problem by smoothing the field on a scale
larger than the cell size to eliminate lattice effects.

Our simulations were performed on a cubic lattice of size
1283. A Gaussian, complex-valued random fieldf having
the power-law power spectrum given in Eq.~2! was set down
on the lattice. The strings were identified as vortices of the
field f. In tracing a closed path around the four cells bound-

ing each edge of the lattice, the field was assumed to change
values by moving in the shorter of the two possible direc-
tions in the complex plane. A cosmic string was then placed
along an edge if the field traced out a 360° circle in the
complex plane as a path was traced around the four cells
bounding that edge. We define an infinite string as one which
crosses all the way from one end of the box to the other in at
least one of the three directions. Note that this definition
differs from that used by Robinson and Yates@9#, who used
a cutoff in the string length.

Consider first the simplest case, for which we have no
smoothing, and the mean field value is set to zero. This cor-
responds exactly to the simulations of Ref.@9#. To find the
value of f ` and its variance, we performed 32 simulations
for each value ofn, grouped into eight groups of four simu-
lations. Within each group of four, we derived an average
value for f` by dividing the combined length of infinite
strings in all four simulations by the total length of string in
that group. This procedure corresponds to considering each
of the four simulations in a group as sampling a different
region of space. We then averagedf ` for the eight groups of
simulations to derive a final meanf ` and variance.~Note
that in deriving Figs. 3–5, we used four groups of four simu-
lations rather than eight.!

In Fig. 1~a!, we present our results for no smoothing with
zero mean field.~All error bars are 1s.! These results agree
closely with those of Ref.@9#, as they should. This indicates
that f ` is relatively insensitive to the exact definition of in-
finite string, since this is the only difference between our
simulations and those of Ref.@9#.

Now we repeat the simulations, but add a random uniform
background fieldfb to the entire box. This background field
has a Gaussian distribution with a variance which can be
determined, in principle, from Eq.~2!. In practice, we use a
simpler method: We embed our simulation volume in a
larger 1283 box with the same power spectrum, in which our
entire simulation volume occupies a single cell of the larger
box. The mean fieldfb in the simulation volume is then
simply the value off in a single~randomly chosen! cell of
the larger box. Note that this method still causes a loss of
power at the largest scales~i.e., Fourier modes with wave-
lengths longer than the size of the larger box!, but it provides
an effective dynamic range of 1282516 384, which repre-
sents a considerable improvement over the zero mean field
case.

In Fig. 1~b!, we show our results for this case. The great-
est difference between Figs. 1~a! and 1~b! occurs for
n<22: The addition of the background field produces a
larger variance between runs, and it reducesf` sharply. The
graph in Fig. 1~b! is consistent with the suggestion of Ref.
@9# that f ` goes to zero whenn is less than some critical
valuenc , wherenc.23; i.e., the average string density is
still nonzero when the infinite strings disappear. In Ref.@9#,
it was claimed thatnc522, but this is inconsistent with our
results. If we exclude points for whichf` is more than 3s
from zero, then we findnc,22.2. Although our results are
consistent with the possibility thatnc.23, they do not rule
out the possibility thatnc523 ~i.e., the infinite strings do
not disappear until all the strings disappear!.

In Fig. 2, we plot the total length in closed loops and
infinite strings as a function ofn with the inclusion of the
background field.@All of the results presented in this paper,
with the exception of Fig. 1~a!, include this background
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field.# Although the length in infinite strings is significantly
reduced below that obtained without a background field~e.g.,
see@9#!, we cannot tell with certainty at which value ofn the
infinite strings disappear.

In Fig. 3, we show the size distribution of closed loops for
two representative cases (n50 and n522.8) when the
background field is included. In both cases,N( l ) follows a
power law in l , but the slope changes noticeably withn.
Fitting the points with 10< l<100, we find that

N~ l !} l22.6260.01 ~n50!, ~5!

N~ l !} l22.3560.04 ~n522.8!. ~6!

These fits are shown as dashed lines in Fig. 3. Neither of
these is consistent with the frequently assumed@3,4,9# be-
haviorN( l )} l22.5, but even the original (n50) simulations
of Vachaspati and Vilenkin@3# found thatN( l )} l22.660.1.

Now consider the effect of smoothing thef field on small
scales. For a window functionW(r ), the smoothed field
fs(x) is the convolution off(x) with W(r ):

fs~x!5E d3rf~x1r !W~r !. ~7!

The effect of smoothing is to reduce the magnitude of the
small-scale fluctuations by averaging them out over the win-
dow function. We calculatef ` when f is smoothed with
three different window functions: the spherical Gaussian
window function,

W~r !5exp~2r 2/2r 0
2!, ~8!

the spherical tophat

W~r !51 ~r,r 0!,

W~r !50 ~r.r 0!, ~9!

and a sharp cutoff ink space, which corresponds, in physical
space, to the smoothing

W~r !5
sin~r /r 0!

~r /r 0!
3 2

cos~r /r 0!

~r /r 0!
2 , ~10!

where we then normalize each window function to give
*W(r )d3r51.

FIG. 1. The fraction of total string length in the form of infinite
strings, f ` , as a function ofn, whereP(k)}kn, andP(k) is the
power spectrum of the complex Gaussian field which gives rise to
the strings, where~a! the field in the box is forced to have zero
mean, and~b! a background nonzero mean field is added to the box
to simulate the effects of long-wavelength modes.

FIG. 2. The total lengthL in closed loops~open squares! and
infinite strings~crosses! as a function ofn, whereP(k)}kn, and
P(k) is the power spectrum of the complex Gaussian field which
gives rise to the strings. A background nonzero mean field is added
to the box to simulate the effect of long-wavelength modes.
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We now examine the variation off ` with r 0. We consider
only the casen50 because it resembles the most likely sce-
nario for string formation~i.e., no long-range correlations in
thef field!, and for the range ofn values we have examined,
it has the most short-range power and should therefore show
the largest sensitivity to smoothing. Our results are shown in
Fig. 4~a! for the spherical Gaussian, in Fig. 4~b! for the
spherical tophat, and in Fig. 4~c! for the sharp cutoff ink
space.

Note thatr 0 represents something different for each of our
three window functions, and so it is meaningless to compare
f ` for the same value ofr 0 in each figure. However, the
important point is whether there exists a range of values of
r 0 for a given window function which produces a relatively
constant set of values forf` . For the case of Gaussian

FIG. 3. The number of loopsN with a given lengthl for ~a!
n50 and ~b! n522.8, whereP(k)}kn, and P(k) is the power
spectrum of the complex Gaussian field which gives rise to the
strings. A background nonzero mean field is added to the box to
simulate the effect of long-wavelength modes. The dashed line is
the best-fit power law in each case. The logarithm is to base 10.

FIG. 4. The fraction of total string length in the form of infinite
strings, f ` , as a function of smoothing lengthr 0 for ~a! Gaussian
smoothing,~b! spherical tophat smoothing,~c! a sharpk-space cut-
off, where the power-law index isn50 ~no field correlations!, and
a background nonzero mean field is added to the box to simulate the
effect of long-wavelength modes.

650 56ROBERT J. SCHERRER AND ALEXANDER VILENKIN



smoothing,f ` decreases withr 0 but eventually ‘‘plateaus’’
for r 0>1.5, suggesting that the value off` in this region is
the ‘‘true’’ value of f` for Gaussian smoothing. Averaging
f ` for 1.5<r 0<2.5, we obtainf `50.7160.01. Asr 0 is in-
creased, the size of the smoothing volume grows compared
to the size of the box, and we see larger fluctuations from
one run to the next. However, the rms fluctuations inf `

remain within 10% of our mean value (f `50.71) over the
entire range ofr 0 values we have examined (r 0<10). An
average of f ` over the range 1.5<r 0<10 gives
f`50.7260.04.
For spherical tophat smoothing, we again see thatf ` de-

creases withr 0, but no obvious plateau is visible in Fig. 2~b!.
In fact, tophat smoothing fails to eliminate lattice effects. If
we substitute the smoothed version of the power spectrum
into Eq. ~4!, we find that for the spherical tophat window
function with n50, the integral in the numerator in Eq.~4!
fails to converge atk→`, indicating that it is the cubic lat-
tice, rather than the spherical tophat, which provides the cut-
off in this case. This is confirmed by the loop distribution for
the spherical cutoff; unlike our other two window functions,
the spherical tophat produces a loop distribution which re-
tains a large number of loops with size of order the cell size.

The sharpk-space cutoff shows qualitatively similar be-
havior to the Gaussian window function. The value off `

decreases slightly as a function ofr 0, and reaches a plateau
for r 0>1. Averaging f ` for 1<r 0<3 and 1<r 0<10, we
get f `50.8260.01 andf `50.8560.05, respectively.

In Fig. 5, we demonstrate the effect of smoothing on the
size distribution of the loops, by showingN( l ) for the closed
loops with Gaussian smoothing andr 053. Note that
smoothing does not eliminate the closed loops smaller than
the size of the window function; rather, it reduces the num-
ber of loops to a constant as a function ofl for small l . Of
course, the total length in closed loops is then dominated by

loops with size near the point at which the power-law behav-
ior begins~in this case,l'30).

III. DISCUSSION

Our results are consistent with the possibility that a tran-
sition occurs in the string network at some valuen5nc , with
23<nc,22.2; whenn,nc the infinite strings disappear
from the network, leaving only closed loops. Robinson and
Yates@9# argued thatnc522, but this value is not consistent
with our results. Furthermore, we cannot rule out the possi-
bility that nc523, i.e., that the infinite strings do not disap-
pear until the mean string density goes to zero.

In fact, the following argument suggests that infinite
strings should not disappear forn.23. The real and imagi-
nary parts off are independent Gaussian fields, and the
zeros of each of these fields form a set of two-dimensional
surfaces. Consider first the surfaces defined by Re(f)50.
Since the volumes of space occupied by the regions with
positive and negative Re(f) are equal, we expect both re-
gions to percolate to an infinite distance. Hence, the bound-
aries dividing these regions should contain at least some in-
finite surfaces. This argument holds for both the surfaces
defined by Re(f)50 and Im(f)50. The intersection of
these two sets of surfaces gives us the location of the cosmic
strings. Since infinite surfaces must exist in both sets of sur-
faces, it appears that there must also be infinite cosmic
strings. Note that it is possible to imagine rather arcane dis-
tributions of the fields which violate this argument. For ex-
ample, the regions with Re(f).0 and Re(f),0 could be
nested inside of each other in larger and large finite volumes,
producing a fractal distribution with arbitrarily large but fi-
nite surfaces of Re(f)50. However, it seems unlikely that a
Gaussian field could lead to such a distribution. The crucial
point in this argument is the fact that the distribution is sym-
metric with respect to positive and negative values of
Re(f) and Im(f); if we relax this assumption and ‘‘bias’’
the distribution, the argument no longer holds. In fact, infi-
nite strings are observed to disappear in simulations with
such a ‘‘bias’’ @5–7#.

The aim of our simulations with a smoothed fieldf was
to obtain a lattice-independent estimate off ` . We consid-
ered only the white noise spectrum,n50, and found
f `'0.7 for spherical Gaussian smoothing andf`'0.8 for a
sharp cutoff ink space. These values are comparable to those
obtained in earlier lattice simulations without smoothing
@3,4#. The variation off ` for different choices of smoothing
is not surprising, since, for example, the total string density
L/V in Eqs. ~3! and ~4! clearly depends on the short-
wavelength behavior of the spectrumP(k) ~which is affected
by the smoothing!. This variation is again comparable to the
variation between the values off ` in simulations without
smoothing on different types of lattice@3,4,7#.

We find no evidence supporting the hypothesis of Borrill
@8# that the presence of infinite strings is due entirely to the
lattice and that they should disappear in lattice-free simula-
tions. The smoothing length we used was sufficiently large to
ensure that the loops making the largest contribution to the
total string length had sizes much greater than the lattice
cutoff, so that the lattice effects were minimal. Still, we
found a substantial fraction of the total length to be in infinite

FIG. 5. The number of loopsN with a given lengthl for a field
with n50 ~no field correlations! smoothed with a Gaussian window
function with smoothing lengthr 053. A background nonzero mean
field is added to the box to simulate the effect of long-wavelength
modes. The logarithm is to base 10.
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strings. We believe that this disagreement with Borrill’s re-
sults may be due to the much smaller dynamic range in Bor-
rill’s simulations. On the other hand, our method for simu-
lating cosmic string formation is very different from that
used by Borrill, and so we would not necessarily expect the
results to be the same.

We are currently investigating the formation of domain
walls and monopoles with correlated fields. Given that a par-
allel literature on this subject exists in condensed matter
physics@11#, these results may have applications beyond the
purely cosmological. It is conceivable, for example, that the
decline of the infinite string density with the decrease of the
spectral indexn can be tested experimentally. What one
needs is a condensed matter system~such as liquid4He! in
which linear defects are formed at a second-order phase tran-
sition. Defect formation can then be observed by a rapid
temperature~or pressure! quench from above to below the
transition point@12,13#. Near the critical temperatureTc , the
order parameter develops long-range fluctuations. At
T5Tc , the fluctuation spectrum is a power law of the form

~2! with n5221h, where the critical exponenth is typi-
cally a small number,h&0.05@14# (h'0.05 for 4He!. If the
system is allowed to equilibrate very close to the critical
point and is then rapidly quenched to subcritical tempera-
tures, one can expect the length in infinite strings to be sup-
pressed compared to a quench from a temperature well above
Tc ~where the fluctuation spectrum is close ton50). Our
Fig. 2 suggests a suppression roughly by an order of magni-
tude, while the value ofnc522 conjectured by Robertson
and Yates@9# would give a much more dramatic suppression.
It should be noted that a realistic quench is a rather compli-
cated process, and its outcome can depend on a variety of
physical effects~for a recent discussion see@12,15#!.
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