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Numerical relativity, applied to collisions of black holes, starts with initial data for black holes already in
each other’s strong field. For the initial data to be astrophysically meaningful, it must approximately represent
conditions that evolved from holes originally at large separation. The initial hypersurface data typically used
for computation is based on mathematically simplifying prescriptions, such as conformal flatness of the 3-
geometry and longitudinality of the extrinsic curvature. In the case of head-on collisions of equal-mass holes,
there is evidence that such prescriptions work reasonably well, but it is not clear why, or whether, this success
is more generally valid. Here we study these questions by considering the “particle limit” for head on
collisions of nonspinning holes, i.e., the limit of an extreme ratio of hole masses. The mass of the small hole
is considered to be a perturbation of the Schwarzschild spacetime of the larger hole, and Einstein’'s equations
are linearized in this perturbation and described by a single gauge-invariant spacetime fynfdioaach
multipole. The resulting quadrupole equations have been solved by numerical evolution for collisions starting
from various initial separations, and the evolution is studied on a sequence of hypersurfaces. In particular, we
extract hypersurface data, that ¢sand its time derivative, on surfaces of constant background Schwarzschild
time. These evolved data can then be compared with “prescribed” data, evolved data can be replaced by
prescribed data on any hypersurface and evolved further forward in time, a gauge-invariant measure of devia-
tion from conformal flatness can be evaluated, and other comparisons can be made. The main findings of this
study are(i) for holes of unequal mass the use of prescribed data on late hypersurfaces is not sucicetséul,
failure is likely due to the inability of the prescribed data to represent the near field of the smalldiihdiee
discrepancy in the extrinsic curvature is more important than in the 3-geometryivaride use of the more
general conformally flat longitudinal data does not notably improve this pidt86556-282(97)03320-1

PACS numbd(s): 04.70.Bw, 04.30.Db

I. INTRODUCTION AND BACKGROUND separation, it becomes impossible to make any clear state-
ments about the physical parameters of an individual hole.
The collision of black holes is of great interest as both In principle, one would like to avoid this difficulty by
astrophysics and as a strong-field gravitational interactiospecifying initial data on a hypersurface in the distant past
with no Newtonian analogue. Black hole collisions also maywhen the holes were separated by a distance many times the
provide the strongest, most observable, source of gravitdiorizon size. When the initial influence of each hole on the
tional radiation that can be detected by gravitational waveother becomes small, the uncertainties in the choice of initial
observatories now under constructiph]. The strong-field data become negligible. Unfortunately, it is not possible to
nature of the process means that the nonlinear character sfart the numerical evolution a long time before the collision.
Einstein’s theory plays a crucial role, so that estimates baseflinstein’s equations are a nonlinear hyperbolic system, and
on linearized theory are unreliable. For the last stage of codor such systems instabilities in numerical evolution seem to
lescence of two rotating holes in a decaying orbit, we havébe a generic feature. While it can be expected that some
only dimensional estimates. The timeliness of the problenprogress will be made in improving the codes and suppress-
has given rise to an effort to attack the problem by solvinging the instabilities, it is not likely that in the near future
Einstein’s equations numerically on supercompufeis these codes will be able to evolve initial data for more than a
The numerical solution starts with some “initial value” few dynamical times, the characteristic time scale for black
data, a solution of a subset of Einstein’s equations on ahole processeground 10° sec for a solar mass holéeThis
initial hypersurface, and then evolves this solution forward inlimitation precludes starting the dynamics with the holes at
time. The specification of the initial data is tantamount tolarge distances and means that the initial data must be given
specifying what problem it is that the computer will be solv- on a hypersurface on which the hole-hole interactions are
ing, and so the initial data must encode the physical paramalready strong. If the resulting numerical evolutions are to be
eters(mass, spin, location, momentiiraf the colliding ob-  astrophysically meaningful, it is crucial to have a way of
jects. These physical parameters are meaningful and wetlonnecting data on this “late” hypersurface to an astrophysi-
understood for isolated holes, but become increasingly amzal precursor configuration with the holes interacting weakly.
biguous as the initial separation between the holes decreasés,other words, to understand the meaning of initial data on a
and the field of each hole has a strong effect on the spacetinitate” hypersurface, we must know where that data came
geometry of the other. Ultimately, at sufficiently small initial from. One approach to providing this connection is to use
approximations such as higher-order post-Newtonian meth-
ods in order to understand the evolution of the system from
*Electronic address: lousto@mail.physics.utah.edu an early stage to a stage at which the holes are interacting
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with intermediate strength. Such an approach may turn out tdom in initial data and the standard choices made for reduc-
be sufficient if the numerical evolutions can be stabilized foring that freedom. We go on to explain the particular physi-
a relatively long time. cally motivated choice that we make for arriving at a

There is reason to hope that it might be possible to givelefinitive prescription of initial data. In Sec. Ill, we start by
initial data at late times, with relatively little difficulty. The €Xxplaining our numerical method for evolving. The
reason is based on the success of a “two-phase” approximgicheme for solving the linear hyperbolic equation obeyed by
tion method used by Abrahams and Co@ and further yis straightforwgrd. The onI_y issue that desce_rve; at_tention is
investigated by Baker and [#]. These studies dealt with the the source term in the equation fgrin the particle limit, the
head-on(zero angular momentuncollisions of two equal- small .hole |s_treated as a point particle, and this particle is
mass nonrotating holes. Data were specified on a very la@SSociated with a stress energy source that enters élggia-
hypersurface, simply by using a “standard” initial value so- tion as th_e derivative of aﬁfun_ctlon of radial posmon. We
lution formally representing equal-mass holes moving to_desprlbe in Sec. Il how the singular source is handled. Nu-
wards each other. This standard solution contained a pararfR€rical results are presented and compared in Sec. lll B. In
eterP which, in the case of an isolated hole, agreed with the>€C: [V We discuss the results and their meaning.
momentum of the hole. On the very late hypersurface the

separation and momentum were set at the values dictated by Il. MATHEMATICAL FORMULATION
Newtonian g_ra\_/ity theory _if the holes had sta_\rt_e_d infall from A. Moncrief-Zerilli formalism
some large initial separation. The standard initial value data ] ] ) ]

mation methoyl The radiated energy found by this approxi- background, due to the particle, in the notati(_)n of_Regge and
mation could be compared with the “correct” radiated en- Wheeler(RW) [7]. The symmetry of the straight-line infall
ergy, since numerical relativity results were available forOf the particle means that there will be no odd parity pertur-
such collisions. The approximation method agreed with nuPations. For the even parity perturbations the general form of
merical relativity to rather good accuracy. This is somewhath€ line element, with perturbations of a specific multipole
a surprise since the “standard” numerical relativity initial index/’, is

data should be very different from the *“correct” evolved _

data. The implicatioyn of this agreement is that results for ds?=ds5+(1—2M/r)(HpY o)dt?+(1—2M/r)

%riz\glt?jt;(zgal radiation might not be sensitive to all details of X (H5Y ;o) dr2+12(K7Y ,o+ G d2Y ;41 36%)d 6
We explore this question in the present paper by compar- +r2(sir? K'Y ,o+G” sin 6 cos 09Y ,o/36)dp?

ing prescriptions for imposing data on hypersurfaces with the y y
“correct” data evolved from an earlier configuration. In or- +2H1Y odtdr+2ho(9Y o/ 96)dtde

der to do this, of_course, we need the _ability to evolve a +2h{(aY/0/aa)drd0. 2.1)
solution for a relatively long time, something that cannot yet

be done with the nonlinear Einstein equations. We choosgiereds? is the unperturbed line element for a Schwarzschild

therefore to use the particle approximation, the apprOXima'spacetime of masM whereH(, H{ Hg h() h{ K’
t;:)n |nhwh|ch the mfashm oft?nehoflour holehs is much Em?ller and G’ are functions ofr,t, and Y ,4(6) are them=0
than the mas#4 of the other hole. We then treat the low- spherical harmonics. For simplicity, from here on we shall

mass hole as a particle of negligible size, and we tne/df drop the/ index on perturbation functions.

as an expansion parameter. By doing first-order perturbation tpere are two closely related formalisms available for de-

theory with this parameter, our evolution equations becomeyining the evolution of the perturbations in terms of a
linear, so that a stable numerical scheme is straightforward tQingIe wave function and a single wave equation. The

develop. . method due to Moncrief[6] uses only information

In an egrller papefs)] (p_aper ) we deveI(_)ped_ the basic (H,,h1,K,G) about the 3-geometry of &= const hypersur-
mathematics of the particle limit approximation and of ¢;ce and is gauge invariant, i.e., independent of the choice of
evolving data that was initially stationary. In that paper, 5 se and shift, and of diffeomorphisms on the hypersurface.
Laplace transform methods were used. The method for th‘?he second method, due to Zeri[B], relies on a specific

present results is a direct numerical solution of the partiabauge the gauge choice introduced by Regge and Wheeler
differential equations in radius and tingafter multipole de- [7], in 'vvhich he, hy, andG are set to zero.

composition. We have compared results of the two com- As in paper | we shall use the Moncrief formalism. The

ple_tely different methOdS’ and found agreement Withi,n thé\oncrief wave functiony, in terms of the perturbations in
estimated numerical accuracy, thereby adding conﬂdenCﬁ:1e RW notation. is

that there are no mistakes in our numerical methods.

The paper is organized as follows. In Sec. Il we give the r r—2M
mathematical formulation of the problem. We base this for- PrO=177 K+ 5 3m {Ho—rdK/ar}
mulation on the gauge-invariant Moncrigh] approach to
perturbations, so that the variahlewe use is invariant with (r—=2m) .,
respect to perturbative changes in slicing. We need only +tam (79GIar—2hy), (2.2

specify the slicing to zero order in the perturbation, and to
that order we take our hypersurfaces to be slices of constamthere we have used Zerilli's normalization fgr and his
Schwarzschild time. In Sec. Il we discuss in detail the freenotation
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A=(/+2)(/—1)I2. (2.3 TH=(mo /U UHFUYS[r —r,(1) ]85 Q]/r%, (2.5

For simplicity, we shall occasionally present some equationg,here U* is the particle 4-velocity. The two-dimensional

restricted to the RW gauge. Since the Moncrief wave funCyeyta functions?[Q] gives the angular location of the par-
tion is gauge invariant, this gauge restriction allows simplic-tj-je trajectory

ity of presentation, with no other consequences. In this
gauge, we omit th& andh; terms in Eq.(2.2).

The basic wave equation for an infalling particle is given 0= Y, m(0,0)Y 7 0p, dp)
in paper | as Z.m
(72 (92 _ Z
ALY Y Y. T & YolON@AT D 28

Here r*=r+2M In(r/l2M—1) is the Regge-Wheel€ef7]  with the last expression applying for infall along the positive
“tortoise” coordinate andV, is the Zerilli potential(given,  z axis. The time-dependent location of the particlét) fol-
e.g., in paper)l For a point particle of proper mass,, the lows from the geodesic equation and, for a particle starting
stress energy is given by from rest att=0, r=rg, is the inverse of

t(r 2M [ r r,\2 r
Wrp) @M o (T |5 e,
2M ro \2M/\2M o
ro |2 /1 2M . Iro 4
X m —?arca r_— n

1+ —
o

4M)

1= (1=4MIr)(r /2M) + 241 —=2M/r o\r yl2M 11, /1

p (rp/2M)—1
(2.7)
|
From the particle stress energy in EQ.5), the source V2p=-1 5Kin”, (2.1
termS,(r,t) on the right-hand side dR.4) is given in paper
I as whereV? is the Laplacian taken with respect to the flat back-
ground, and wher&;; is the extrinsic curvature.
SAr )= 2(1-2M/r)« —r2(1—2M/r)i For a constant slice of the unperturbed Schwarzschild
A r(N+1)(Ar+3M) 2u° spacetime, the extrinsic curvature vanishes. It follows that
Ki; is perturbative, and hence the right-hand side of Eqg.
r(n+1)—M

(2.17) is a higher-order perturbation, which, in our first-order

2u° perturbation calculation, we can ignore. We denote coordi-
nates in the conformally related flat space with bars, such as

]5[r—rp(t)]}, (2.9  I.z, and we note thatb must be a harmonic function of

X&'[r—rp(t)]+

3MU°r (1-2M/r)?

AT +3M these coordinates. We make two different choicesifolhe

first is the solution discussed by Brill and Lindqui%0], and
where which we will call a BL-type solution. This solution follows
if we treat 2b as if it were the Newtonian potential of two

k=8mMo\(2/ +1)/4. (2.9  points, one of mass and one of mass, . If the first mass

_ _ ’ _ is located at the origin of the flat coordinates and the second
The total radiated energy after a givepper/ mode is s at (flat) coordinate positiorz=z,, then the BL solution

y takes the form
1 (/+2)!

= Y
energy= 64 (/—=2)] Jto(l//) dt. (2.10 0 :1+M_+ _mpli
BL 2r  [re—zye)]

(2.12

B. Hypersurface data for ¢ Though the origin and the pointe,=z,e, are coordinate

We choose our data, on a hypersurface of condtatd  singularities, they are not geometric singularities. Near these
correspond to the choice usually made for work in numericatoordinate points the divergence of the conformal factor
relativity. The data, for both the initial 3-geometry and ex- means that the “points” are, in fact, asymptotically flat re-
trinsic curvature, are based on the work of York and Pirargions, and so the geometry given by Eg.12 is actually
[9]. This approach takes the 3-geometry of the initial hyperthat of three asymptotically flat spaces connected by two
surface to be given bgg?=d*doi,,. The conformal factor throats. For our purposes here, we take as the “particle
& must, in vacuum, satisfy the equation limit” the limit that m,<M.
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The BL solution is the only choice that was considered inthem with the Hamiltonian constraint, in the RW gauge, as
paper |. A second initial conformal factor that can be con-given by Zerilli[13], and in paper |, for a particle of proper
sidered is that which is “reflection symmetric,” in the sense massmy:
that there are only two asymptotically flat regions, and they
are isometric to each other. The method of constructing such
solutions was given by Misndid 1], and requires that “im-
age” points be used in the conformal space in such a way

2M\ #°K 5M\ 10K Z(/+1)
B e T or T Tz (KEH)

that the geometry is symmetric with respect to inversion 1 2M| 1 dH;

through a sphere about each of the point singularities. Here p(Hm K= 1= == o e

we make the solution symmetric only for a sphere about the ‘

origin. The singularity atre,=z,e,, in the limit, will be _ gam 2/+1 Uo(l—ﬂ)ié[r—r ]
taken to have a zero-size inversion sphere aroufttiét par- -~ oo v r)r? p-

ticle limit) and the images inside it will be meaninglegsl- 21
ternatively one can construct a solution reflection symmetric (218
for two spheres, and subsequently take the limit; the result i

th which the right-hand side comes directly from the stress
the same.The conformal factor, for this “Misner” case, is g y

energy expressiof.5).
For the choice of a conformally flat 3-geometry we have
(2.13 H,=K and Eq.(2.18 becomes a differential equation fir.

M N m,/2 Mimagd2
2r |re—zpe,|  [re—Zimag&l A particular solution of this equation, well behaved at infin-

D pjs=1+

It is straightforward to verify that this Misner solution is Iy, Is

symmetric_for inversion about=M/2 lf the parameters ’ yp. om. 1 (z_p/r_)/, r_>z_p
Mimage @Nd Zimage aré chosen to b@y,qe= M,M/(22,) and K partic— P _
Z—image:(M/Z)Z/Zp' 2/7+1 \1+M/2r (r/zp)(/“), r<z,

For either the BL form or the Misner form the line ele- (2.19
ment for the 3-geometry can now be written

This solution, in fact, corresponds precisely the BL solution

o o 4 of Eq. (2.12. FOr Zipage<M/2 andr>M/2, a homogeneous
do?=|1+M/2r +/_;2 a ()P (cos 6) solution well behaved at infinity is
X (dr 2+7r2dQ?), (2.19 K homog_ Am [ 2Mipagel T Z_ir’n_age ‘ (2.20
2/7+1\ 1+M/2r r ' ’

with dQ2=d#?+ sir? ad¢?. The requirement thab be har-
monic means that @, must have the form If we takeznage= (M/2)%/z, and Miyage= MM/(22,), then
a,r “+b,r ~(“*1). We must now put the metric into a form the homogeneous solution can be considered to be the solu-
for comparison with the Schwarzschild metric. To do this wetion due to an “image” mass, inside the horizon at
introduce a Schwarzschild-like radial coordinateelated t0 1 =2z,,qe, and it is straightforward to verify that with these
the flat space coordinateby choices of zjjage @Nd Miyaqe the Misner solution is
o o KMis= K partic; Khomog There are, of course, other possibili-
r=(Jr+\r—2m)%4, r=r(1+M/2r)%. (215 ties. We could, for instance, consider, with the same choices
Of Zimage ANd Minage, the combinatiork @M= K Paric— g homog
For this solutiorK and s would vanish on the horizon. This
Yroperty turns out to be preserved by evolution as is made
clear in the discussion belojgee Eq(2.72)].
By using Eq.(2.15 and integrating across the singularity

This is only one of many possibilities for such a transforma-
tion, but it is the simplest for computation, and has been ver
convenient for perturbation analydi&2]. This transforma-
tion puts Eq.(2.14 into the form

om T in Eq. (2.18 atr=r,=z,[1+M/(2z,)]?, we find that
do?=|1+ ——F— >  F,(r)P,(cosh)
1+M/(2r) -6z "7 d AK,rEdK/dr|r=r;—dK/dr|r=r;
2
X m_’_erQZ), (216) — _8mm \/(2/‘4‘ 1)/477
Pz Va2 1-2MmIr,

where we have kept only terms first ordernm, and, as in ~
paper |, have introduced the notationZ,(r) = —8mm, V(2//+1)/47Tuo_ (2.21)
=(2r/imgp)a,(r). M

The perturbations, in the RW notation, can now be written
The 4-velocity componeritl® is given by
2mp/r_ £ 4 01
=1 ONo a1 (2.17) Uoz\/l—ZM/r0
1-2M/r, "’

K= H2
(2.22

with h;=G=0. These perturbations of the initial hypersur-
face turn out to be in the RW gauge, and so we can comparand so it follows from Eq(2.21) that
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n—m / % 1-2Ml/rg
PO N, 1-2M/r,

1+\/1 2M \/1—2M/r0 -
Crp ) Vi-2Miry (223

o

Note that the relationship of the mass parametgrand the
particle massn, is the same for the Misner case as for the
BL case, and hence the same as in paper |. This must be true,
of course, since the symmetrizing image term addition in Eq.
(2.20 has no discontinuity at=r ,.

The initial hypersurface, on which the particle and the
hypersurface data are stationary, is always denotetHiy.

On hypersurfaces with>0 we shall limit our choice of o the hypersurface, and for the hypersurface value of the
prescribed data to conformally flat 3-geometries. The choicg,ringic curvature we follow the prescription of Bowen and

of conformal flatness is not, however, preserved by evoluyqr [14]. In that prescription one chooses a slicing such
tion. This means that the 3-geometry on CONStAMPErSUr-  at the trace! of the extrinsic curvature vanishes, and one

faces will in general not be conformally flat. On such a hy- | . L
persurface, we will have numerical values only for a singleg;jf'nes a quantitK;; , related to the extrinsic curvaturg;

function, the Moncrief functions. It turns out that we can
testy for underlying conformal flatness. The combination of Ki; =¢72kij , (2.27
metric perturbations

FIG. 1. Geometry in the conformally related flat space.

The curvature measutg; is considered to be a tensor in the

2
leon=Ho—K+— | 1— ﬂ) ( h, — r—arG) conformally related flat space; its indices are raised and low-
r 2 ered with the flat 3-metricy**. The momentum constraint
oM r2 turns out to be equivalent to the requirement gt van-
—2(1— - 3r(h1— ?arG> (2.29 ish outside the sources, which we take to be points in the

conformally flat 3-geometry. The Bowen-York prescription

is gauge invariant, and clearly vanishes for a 3-geometry thdPr initial data is thatk;; be “longitudinal,” i.e., derivable
is in conformally flat form, withh;=0, G=0 andH,=K.  from a vectorW; according to

[See EQq.(2.1).] The computation of this gauge-invariant A AA aoa fatd ok

quantity from (r) is most easily described in the RW Kij = ViWj+ VW= (2/3) yi ViW" (2.28

gauge, where,; reduces tdH,— K. From Eq.(2.2) in the

RW gauge, and from Ed2.18, which is already in the RW
gauge, it follows thatfor r#r )

Our choice to describe a moving hole is a solution closely
related to those used in most numerical relativity simula-
tions. To describe these solutions we use the geometry of the

6M2+3MAT + A (A +1)r2 oM\ Ay conforma}lly_ related flat space plctqred in Elg. 1. The sym-
= o metry axis is taken to be the coordinate axis and the per-

r

(2.25  turbative particle is located atz,. The vectors andp are
the displacementén the flat spaceto a field point, respec-

From this result folK, and from Eq(2.2) in the RW gauge, tively, from the coordinate origin and from the location of

r’(nr+3M) r

one findsH to be (for r#r ) the moving “particle.” The unit vectom, defined to be
5 ) oo 5 Zﬂﬁr is the direction to the field point from the moving
__ OM7HOAMTT+3NMI T+ N (A + D)1 particle. In terms of the notation in this figure, we define two

2 r2(Ar+3M)? solutions of the momentum constraifitK'/=0. The first,

i ; : sebasic
3M2—=\MTr + Ar2 which we shall call the basic solutid®®® is

_ 2
oAt (2. (220

a~ 3
Kibjasmzﬁz[Pinj + Pjni - ( ,yﬂat_ ninj)Pknk]. (229)

The difference between the expressions in E26) and

(2.29 gives|con, the gauge-invariant measure of the devia-Thjs is a longitudinal solution that corresponds to the vector
tion of the 3-geometry from conformal flatness.

~ ) 1
. basic_ _ ) pk
C. Hypersurface data for ¢ Wi 4#7P|+ n;Pny]. (2.30

The integration of the wave equati¢2.4), to evolve for- - . .
ward in time from at = const hypersurface, requires that we The parameteP is the momentum of a moving hole in the
specify bothy and ¢ at the hypersurface. In paper | our conformally related flat space. For our partickejs related
initial hypersurface was one of time symmetry, and so welo the true 3-momentunii.e., the spatial part of the 4-
had =0 initially. We now take the particles to be moving momentum p by |P|=®2?|p|. Here ® is the conformal
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factor and, to lowest order, has the formM/2r, as in Eq. The parameteP is taken to represent thgerturbative
(2.16). In our head-on collision the only nonvanishing com- momentum of the particle. We take our asymptotically flat
ponent of momentum is the radial component, and so weoordinate system to be one in which there is no net momen-

have tum. This means that the large “background” hole must
. have momentum which is in some sense equal in magnitude
P=|P|=®2p'/\J1-2M/r, (2.3)  to the momentum of the particle. If we take the origin of our

coordinate system, in the conformally flat space, to(ine
with p=moU" the usual contravariant radial component of some sengeat the center of mass, then the coordinate singu-
the 4-momentum in the Schwarzschild background coorditarity representing the background hole is at a coordinate
nates. Th|S relationship can be Veriﬁed by USing the eXtrinSinistancez_bh: — (mp/M)Z_p from the origin_ We can get the
curvature given by Eq(2.29 in the momentum constraint contribution to the extrinsic curvature from the background
Ry=87T, and taking the right-hand side to be the stresshole by reversing the sign ¢f in the expressions above and
energy of a radially moving particle. by substitutingzy, in place ofz,. But z,, is a first order
The “basic” solution in Eq.(2.29 is the simplest solu- quantity, and soZ,;)" terms can be kept only whem=0.
tion of the momentum constraints. It is straightforward, grom Egs.(2.36—(2.39 we see that this means that only
though tedious, to decompose the conformal extrinsic curvay— 1 terms can be kept. But thé=1 even parity terms
ture into spheri.cal harrr_]onics. To express the results W@ave no physical content, and are not coupled to gravita-
adopt the following notation, analogous to that of Regge angional radiation. In treating the perturbative extrinsic curva-
Wheeler[7] for the metric perturbations: ture, therefore, we consider only the contributions from the
particle.
= 2 A/(?Z,J)Y/o, (2.32 To use _the above results in calc_:ulations, we must relate
/=12, the extrinsic curvature to the Moncrief wave functignit is
useful to have at hand the relations between the extrinsic
v o curvature and the metric perturbations. This is found by con-
K 0—/:1,2“”B/(r,zp)aY/olﬁa, 233 sidering at=const slice of the perturbed spacetime. It is
straightforward to calculate the extrinsic curvature of this
A slice in terms of the perturbations of the spacetime metric. In

K

_ 2 g IR 2 n2
Koo=T1 L, [KATZ0)Y 0+ G(1;25) Y 101 9767], the RW notationbut not the RW gaugethe results are
2.3 :
(234 A=®[(1—-2M/r)"¥2H - F (1-2M/r) " V?H,
k¢¢=72 sir? 0/ > [KAr:Z,)Y 10 +(1-2M/r)"YAM/r?)H,], (2.40
=1.2,...
R — 14 "R, —
+cot 0G,(F12) 7Y 10196]. (2.3 B=32®"[Hy+ho—h;=2ho/r], (2.4
Other components vanish due to the azimuthal symmetry. —®8 (1—2M 1/zﬂ_ 11— 2M/r)- YK
For the expansion of the basic extrinsic curvature, the K ( r) r 2( r) '
explicit expressions for the coefficient functions are (2.42
. 4w | P P° :
basic_ |41 =—(1-2M/r)"Yqh,— i r2G , 2.4
AY 57T Zrﬁ)q (1+1)(1+2) G=—7( ) MIho- 312G, (243
I ,(1—6) where a prime indicates a derivative with respeat tmd an
S TR ReTenea b (238 overdot with respect to. .
To find the initial value ofy, we use the prescription
Bt}asic: 2;1:1 ;T)q|1(| +2) (2|I__21) _q2(2||_+63) | given by Abrahams and Pridd5], and we write
: (2:37 Y= 0{59;j .99}, (2.49
in which Q represents a Moncrief combinatip®] of pertur-
ghasic_ 4 L)q'l(Hl) 5l _q2(| —6) bations of the metricsg;; and of ther derivative of 5g;; .
4 2/+1\2r? 21-1 21+3) The initial value ofy is then the initial value of
(2.38 )
g=—20{(1-2M/r)¥25K;; ,[(1—2M/r)Y2sK 1"}
jobasic_ 47 i—z) |1[_ (1-8) qu2(|—6) - (2.45
2/+1 \2r 2l-1 21+3 By comparing Egs(2.21) and(2.32—(2.35 we find that
(239 the substitutions needed are
Here q=z,/r<1, and forq>1, the above expressions are (1—2M/1) " H,— ® ~2A(JrTor)2T—2MIr,
valid if /" is replaced throughout by /'~ 1 everywhere on (2.48

the right-hand side, except in the normalization constant

Vaml(2/+1). K—® 2K(r/r)2J1—2M/r, (2.47)
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G—®2G(r/r)>y1-2M/r, (2.48 - — 5 ~

( WFZ A, (NY 0, W(,=Z B,(r)dY /6.
h,—® " 2B(drlar)y1—2M/r. (2.49 (2.52

With these substitutions made in E@.2) we get a specific The nontrivial momentum constraints, equivalent to tide

expression fory, as a function of, on the hypersurface. An andtr components of the Einstein equations, then constitute

independent derivation of the result starts with the exprestW0_second-order differential equations fak,(r) and
B,(r). A particular solution to the momentum constraints is,

sion
of course, given by the fundamental solution in E2.29).
r—2Mm This solution corresponds to th&' multipoles

. r . . .
(r,t)y= K+ {H,—roK/ar}
Ar+3M e[ AT P AT
AP = iy nc s
’ 2/+14r | 2/-1

N+1
L HD6e=0) e

where overdots indicaté/Jt. With Eqgs.(2.40—(2.43, the 2/+3
right-hand side of Eq(2.50 can be reexpressed in terms of ) )
A,B,K,G. We have checked that the result is identical to that BbeS Ty = [ 47 P [(8—/) ,_, (/=6) o

(T=2W). 25670 — 20 2
+m(r 0G/ar — l)v ( 5@

, (2.53

found from Eqs.(2.49—(2.49, i.e., 2/+14|2/-14 2/+3
(2.59
W(rt)=— 2 Vl—2|\/;/r 26+ V1= 2M/r —4(\+1)  The above expressions are valid only fp=z,/r<1. For
(AN D)r (2N +6M/r) g>1 the replacement — —/—1 must be made inside the
square brackets.
(T B)+ M 1 N \/%(r_ZA) One finds that there are only two solutions well behaved
r\Ji1—2m/r r at infinity, and that all solutions are well behaved at the

horizon. There are then two well-behaved homogeneous so-
_ lutions of the momentum constraints that can be added to the
+ft9T(f_2A)H : (2.51)  particular solution of Eqs(2.53 and(2.54).
A homogeneous longitudinal solution to the momentum
o ) . constraints can be found directly from the differential equa-
In describing the general choice @f on a constant  {ons Alternatively one can construct those from known so-
hypersurface, it is useful to review the equivalent questionsions. One such solution is an “image solution,” the basic
for . If we restrict our choice to a conformally flat 3- | tion given in Eq.(2.30, but with z, replaced by the
geometry, then the Hamiltonian constraint, and the Consnai%cationz_im <M/2, so that the positipon of the=z,,
of conformal flatness, reduces the specification of the initiakjy o jarity s inside the horizon of the background hgﬁg
geometry, for each mu.ltipole, to a single ordinary differential o choicezimage=(M/2)/z_p is made, then the singularity is
equation, Eq(2.18, with Ho=K. The only choice to be o «image” of the particle under inversion through the
made is the constant, specifying how much of the physicallysonerical surface at=M/2.] The image solution is, then, the

well-behaved homogeneous soluti¢h20 is to be added to following simple modification of Eq(2.53 and (2.54:
a particular solution; specifying this constant is equivalent to

choosing between, for example, the nonsymmetBcill- o Aw P [/(/+7)

Lindquist solution of Eq.(2.12 and the reflection symmet- ATr)= 7 1d 271 Uimage

ric (Misnen solution of Eq.(2.13. If, on the other hand, we : )

do not restrict ourselves to a conformally flat 3-geometry, we (/+1)(6—/) i1

have a functional degree of freedom in the initial geometry. ~ 2/+3  Yimage (2.59
(Equivalently, in the RW gauge we have the freedom to ’

specify H,— K for each multipole. Whether or not we re- ' 47 P[(8-/) (/—6)

strict ourselves to a conformally flat 3-geometry, the Mon- B™M991)= /-———— [ qﬂn;é; —qﬁn;ée
crief wave functiony, defined in Eq(2.2), is fixed once the 2/+14[2/-1 2/+3
3-geometry is specified. Furthermoig, is totally gauge in- (2.56
variant., Here Gimage= Zimage/ T @nd is always less than unity forout-

For ¢ the situation is closely parallel. Analogous to the side the horizon(i.e., 7>M/2). Similarly, we can find the
condition on 3-geometry—that it be conformally flat—we multipole decomposition of the corresponding extrinsic cur-
now have the special condition that the extrinsic curvature bgature, simply by replacing by Gimagein Egs.(2.36—(2.39.
purely “longitudinal,” i.e., derivable from a potential ac- A second longitudinal solution can be constructed from
cording to Eqs(2.27) and(2.28. For our axisymmetric in- the “o” solution given by Bowen and York14,16 and
fall, the mathematical problem of finding th#&; potential, elsewhere:
for each multipole, is the problem of finding the two compo-
nentsW;—andW,. These can be expanded in multipoles and o 3 flat k
Written ;s 0 p p Kij—W[Pinj‘i‘Pjni+(’yija_5ninj)P nk]. (257)
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The equivalemgfvi vector is between those evolved data and the data given by some pre-
scription for assigning hypersurface data to represent the fall-
A~y 1 ‘ ing particle.
Wi'=- ﬁ[Pi_?’niP Nl (2.58 It should be understood that in making this comparison

(i.e., evolved data vs prescribed dathere are no issues of

This solution has been of interest in connection with inver-“choice” involving the slicing of spacetime. The Moncrief
sion symmetry, but we use it here with no prejudice aboutvave variabley is invariant with respect to perturbative
symmetry of the solution under inversion. To make the sochanges in slicingas well as shifts and diffeomorphignso
lution of Egs.(2.57) and(2.58 a homogeneous solution we that our comparison of evolvedl and prescribeds involves
need only place the=0 singularity inside the horizon, say, no gauge-related ambiguities.
on thez axis atz,<M/2.

The multipole decomposition of the solution, in the

. ) D. Choice of hypersurface data
notation of Eqs(2.32—(2.395 is P

In our discussion above of initial data we found the fol-
. 47 P S lowing: (i) If we restrict ourselves to conformally flat data,
Ar= 57519532 A7+D)(7+2)q, 7, (259 we must choose a single constant, for each multipole, to
' specify our solution fory; if we do not restrict outselves to
a7 P conforma_llly_flat dat_a, there is__an unconstr_ained func_tion of
BS=— \/m? J(/+ 2)q§*1, (2.60 for e_ach_ |n|t|§1|.r_nult|po!e qup. (i) If we restrict our choice to.
‘ longitudinal initial extrinsic curvature, then we must specify
two constants for each multipole, in order to fix the initjgl
Go= 4m iﬂ /q/—l, (2.61) if we do not restrict ourselves to initial longitudinal extrinsic
' 2/+12r “ curvature, then there is an unconstrained functiom dér
each multipole ofys (in our case of axially symmetric colli-

ICa: _ Am P /(//+ 1)q/7l (2 62 Sion).
4 2/+12r %" a ' Our goal below will be to see whether there is a simple
p

o o physical choice that can be made for the prescribed hyper-
whereq,=z,/r and is always less than unity foroutside  surface data that agrees well with the data evolved from
the horizon. For ther solution, the multipole decomposition t=0. We shall try to reach that goal by restricting our pre-
of the W; vector, in the notation of Eq2.52), is scription to conformally flat, longitudinalCFL) data. The

question we shall be asking, therefore, is whether there exists
a choice of constants specifying the CFL solution for the

_ [ 47 P
[ — N 2 /-1
A= 2/+14r 3 /(7+Da, 5 (2,63 particle on a hypersurface so that it agrees well with an
evolved solution. Such a choice of constants could be deter-

L 47 Pa S mined by looking for some kind of “best fit” of the CFL
BJ(r)= >/714r2 4 Pl (2.64  solution to the evolved solution, but of much greater interest

is a physically based prescription for the choice of constants

The general longitudinal solution for the extrinsic curva- Which can be used as a best guess of appropriate initial data
ture, for each multipole, is a superposition of three contribuWhen an evolved solution is not available.
tions: (i) the particular solution given by Eq&2.36—(2.39, The rule we shall use for the specification of the GFls
(i) the homogeneous “image” solution corresponding tobaseq on a simple physmal conS|derat|9n. We fix the con-
Egs. (2.59 and (2.56), for some /-dependent choice of Stantin the CFL solution fory by_ dem_andlng that the v_alue
Z_imagea multiplied by an arbitrary,-dependent constant, and of Y at t_h(_a_honzon be “frozen,” ie., f_|x§d at the value it has
(iii) the homogeneous &’ solution in Egs. (2.57)—(2.64), on t_he initial hypefsurfacda:_ 0. This is m_accordan_cc_e with
for some/-dependent choice of,, multiplied by an arbi- the ]dea_ of dynamics freezing at the horizon, but it is better
trary, /-dependent constant. One is led to ask what thdO View it as a consequence of the wave equatid), and
“proper” choice is for the general longitudinal solution. A its horizon limit atr*— —oco. The initial data at=0 are a
somewhat broader question is whether the initial data shoul@mooth function of near the horizon, and hengebecomes
be chosen to be longitudinal. constant ag* — —oo. But the potential decreases g/

In the initial data solutions generated for use in numericalnd can be ignored near the horizon, andyseconst is a
relativity, the choice has often been made to take the solutiostatic solution of the wave equation. The valuegoht the
to be inversion symmetrigl7]. (That solution turns out not, horizon will therefore be unchanging in time. We shall see,
in fact, to be longitudinal. The criterion used in numerical in the numerical results presented below, that the evolved
relativity has been definiteness and the simple-to-implemerdata demonstrate this freezing.
inner boundary condition provided by inversion symmetry. Itis straightforward to use this condition of freezing at the
Here our criterion shall be quite different: We study whathorizon to fix the constant multiplier of the homogeneous
choice of hypersurface data is the best representation of theolution in Eq.(2.20, and the consequence is interesting. If
solution that evolves from an earlier astrophysical configuwe start with a BL solutiorfi.e., the solution in Eq(2.19
ration. More specifically, we can start a particle falling from with the particle position az_pzr_o], then the “horizon fro-
some large radiusy, and numerically evolve) to a hyper-  zen” solution, on a later hypersurface, turns out to be a su-
surface at some later time. We can then study the agreemeperposition of the following simple solution§) the BL so-
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lution corresponding to the particle at its correct positi_gn with the initial data given by Eq2.67). It is simple to show
at time t, (i) a solution for a particle inside the horizon that the solution to this problem is

located atzipage= (M/2)?/z,, so that when added to the BL

solution the total value ofs vanishes at the horizon, afiil ) _ =~ * ~

a solution corresponding{to azparticle at the image location of/ =2+ b cosht/aM)e’ "M +[(C—Vo(2M)Za)costit/2M)
the original positionz=(M/2)“/r,. The magnitude of the o~ %M

mass parameter for this last imgge giveg at the horizon +Vo(2M)ale ' 279
equal to the frozen value.

The way in which we fix the constants fd; is a more We can now take the time derivative of this near-horizon
complicated, less elegant, implementation of the same basgglution, evaluate it on the hypersurface at timend find
physical idea of looking at the nature of solutions of Eq.

(2.4), near the horizons. At=0 our initial data are taken to

i f the f ' = . *
be stationary, and of the form o= (BIAM)sinh(t/4M e /4M

y=a+bricri+ .- . (2.69 +[T—Vo(2M)Za]sinh(t/2M)e” M. (2.7

Sincer is related tor* by This result can be compared with the Taylor expansion

_ * . . aroundr =M/2 of the “basic,” “image,” and “«" longitu-
r=M/2+Me V2™ /A  \e~1gM /M (g3 /4M)y dinal solutions, and the two constants fixing the solution
(2.66 thereby determined.
From Eq.(2.70 it can be immediately seen thatdoes
not depend on time. This is equivalent to the condition of
“freezing” on the horizon. The amplitud&’ by which we

it follows that our initial solution has the horizon limit

S hal*AM | = A I2M o
y=a+be” "ice” T, =0 (2.67  have to multiply the homogeneous solutith20) is
In the horizon limit, the potentia&V -, in Eq. (2.4), takes the
form
—omy(rg) (z,)'*t
I homod Zp) = () <r=p) [1+Thomod o) ]—1,
\Vj :er*/ZMV +O(er*/M) Vo= 4)\2+4}\+3 o ° (272
/ 0 © 0 (20 +3)aM%e’
(2.68

) o ) wherel',omod o) represents the arbitrariness in choosing the
In the horizon limit we are, then, solvmg the problem data on the initial hypersurfacazol For instance,
[homodT0) =0, 1, and—1 represents, respectively, BL, Mis-
" ner, and antisymmetric data.
n —e™ My =0, 26 The .amphtude o]‘ the “image” term in the extrinsic cur-
2 g of (269 ature is the following:

495 %q, 1 [6l(41+1)] 16my(ro)(21+1)g? _
rimage=A—1{ ViR { T Vi “[41[1—rhom04ro>]sm(t/4M>
1+ T homod Fo) 1(5—1—312—413=21%)
L1+ QE|1]1()(|2+|+1) sm(t/2M)H, 2.73
where
4 l-1.1—-1
A= qSMg“ 53 [—(51+1)(21+3)+(1—6)(21 +1)¢2], (2.74

Zimage= (M12)°/z;, 45=M1(22;), andq,=M/(2ry).
Finally, the amplitude of ther term in the extrinsic curvaturesee Eq.(2.57] is
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—(I+7)(51+1) (21+1)(2612+261—27) , (1-6)(5I+4) ,
-1 @-D@2+3 BT 53 B

FC,:Al[Zq%'l[

5(1-2) (1-6)
211 213

., 16ma(ro)[ 1~ Tnomod 7o) 1(2 +1)q5 gyt

P sin(t/4M)

4my(ro)[ 1+ homod Fo) 105 Mas"*

10%+91+8 (1-6)(21+1)
I+ 1) (12+1+1)P B

2
=1 7 243 @

sin(t/2Mm )} , (2.75

wherez, = (M/2)%/r,. at a given value of andr* a measure of the solution error
Note that this choice of the amplitudes we assign to thevaries ash?. This method has proven to be easy to imple-

homogeneous solutions fixes all three constants in the gemaent and quite accurate.

eral solution, but this is not the only way we can fix them. To derive our difference scheme we start by integrating

We could have chosen, for instance, matching the behavidgq. (2.4) over the cell of our numerical grid shown in Fig. 2.

of the evolvedy for larger. This, however, leads to a less We use the notation

successful approximation.

u+h v+h
ff dAszce”dtdr*zf duf dv. (3.0
. RESULTS u—h v—h

A. Numerical method

In this section we describe the algorithm used to integra’téo"DpIIEEOI to the derivative terms in Eq2.4) this gives

the wave equatior(2.4) numerically. While the left-hand

side of the equation is straightforward to integrate, the source . %

given by Eq.(2.8) contains terms with a Dirac’'$ and its f f dAL= ddnr 0 7 i}

derivative. Since we have not found in the literature a dis-

cussion of the numerical treatment of such sources, we shall _ J J dA{— 49,0, = — 4 Y(t+h,r*)
describe the method in some detail. v

We have found it convenient to use a numerical scheme * * *
with step sizesAt=1/2Ar*=h, and with a staggered grid. Y= =gt ) =yt =h)].
As Fig. 2 shows, this method connects points along lines of (3.2
constant “retarded time’u=t—r* and “advanced time”
v=t+r*. On this grid we have implemented a finite differ- Note that this result is exact: it contains no truncation errors.
ence algorithm for evolvings with errors of ordeh?; that is, We next consider the integration of the potential term
over the cell. If the cell is one with no source term contribu-
tion, then we can use

f f dA{=Vy}=—hZ[V(r*)g(t+h,r*)+V(r*)

X p(t—h, 1)+ V(r* +h)g(t,r* +h)
FV(r* —h)g(t,r* —h)]+O(h%).
(3.3

Theh? order error in a generic cell is equivalent to an overall
0O(h?) error in .

The result in Eq(3.3 assumes tha# is smooth in the
grid cell. It cannot be applied to those cells through which
the particle world line passes, singes discontinuous across
the world line. For such cells we first obtain the coordinates
(r7,ty) of the point where the particle enters the cell and
(r¥ ,t,) where the particle leaves {see Fig. 2. Next, we

FIG. 2. A cell of the computational grid containing a segment ofdivide the total area of the cell t#) into four subareas
the particle world line. Grid nodes are shown coordinatized withdefined as followsA; is the part of the area of the rhomb
t,r* labels, and with values of the null coordinatest—r* and belowt=t;, A3 is the part of the area of the rhomb over
v=t+r*. The areash;—A, are used as weights in the numerical t=t,, A; is the remaining area to the left of the particle’s
algorithm. trajectory, andA, is the remaining area to the right.
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The integral of theV term over the area of the cell is containing the world line, Eq.3.2), Eq.(3.4), Eq.(3.6), and
approximated by the sum of this function evaluated on theEg. (3.7) are used. In summary, the evolution algorithm we
corners of the cell multiplied by the corresponding subareaise is
A; . This gives us

Pp(t+hr*)=—y(t—h,r*)+[(t,r* +h)+ (t,r* —h)]

— — * * h2
f f dA{=V¢}==V(r=)[(t+h,r*)Ag+ (t,r* +h)A, wl1- 7V(r*) ’ 3.8
+ l//(t,r* - h)Al+ l//(t_ h,r*)Az].
(3.4 for cells not crossed by the particle, and
. . . . V() '
The truncation error in each such cell is of ordaF), just Y(t+h,r*)y=—y(t—h,r*)| 1+ 7 (A,—A3)
enough to have quadratic convergence, since only one cell L :
with the particle has to be evaluated per time step. [ V() l
For cells through which the world line passes, the integral +y(t,r*+h)|1— 7 (As+A3)
of the source term in Eq2.8) must be evaluated. As a con- - ;
venience in discussing the numerical approximation of this [ V(r*) ]
term Eq.(2.8), we introduce the notation HY(trt =) 1= —— (A1t Ag)
S=G(t,r)dr—rp(t)J+F(t,nNd'[r—ry(t)]. (3.5 1
2 f f SdA, (3.9

The integration over the cell, when done with due regard to
the boundary terms generated by @#igr —r(t)], gives

(L] G0 F(t,r)
ff SdA_zftldt 1-2M/r (1) ﬁr(l—ZM/r)
F(ty,rp(ty)

2oy TR

N F(tz,rp(t2))
TT[1-2MIry(t)]°

for the cells that the particle does cross.
The above equations cannot, however, be used to initiate
the evolution off the first hypersurface.tlf denotes the time
r=r () at which we have the initial data, we lack the values
#(to—h) necessary to apply the evolution algorithm. We
can, however, use a Taylor expansion to write

P(to—h,r*)=(to+h,r*)—2hah(ty,r*)+0(h3).
(3.10

The right-hand side can be used in placeigf,—h,r*) in
the application of the algorithm to evolve off the first hyper-
surface. It is important to note that this substitution is valid
only if «(t,r*) is not singular betweert=t;—h and
?=to—h. This requires that the particle world line not cross
the vertical line atr* betweent=ty,—h andt=ty+h. In
setting up the computational grid, we have been careful al-
ways to avoid such a crossing.

The numerical method used here, evolving initial data for
a partial differential equation on a staggered grid, has little in
common with the transform method used in paper I, in which
we studied only momentarily stationary initial conditions. A
comparison of the two methodm the case of momentarily
stationary initial datpprovided a powerful check of both
methods as well as insights into the relative efficiency and
accuracy of the methods. The agreement of the two ap-
proaches turned out to be excellent. For the goal of produc-

[1=r5(t)] Y (3.6

The [dt integral in the first term can be performed to any
precision sincé andG are known functions. For our goal of
guadratic convergence, a trapezoidal approximation for th
integration is adequate. In the second term the ufperer)
sign is for particles entering the cell from the rigleft) or,
equivalently, forry >r* (ry <r*). In the same way, in the
third term the uppetlower) sign is for particles leaving the
cell to the right(left) or, equivalentlyr% >r* (r5<r*).

When the form ofF andG, given in Eq.(2.8), is used in
Eq. (3.6) the result is

F(t,l'p(t)) _ Kfal(l’p—ZM) B
[1-2M/r (D12 (AT 1)(A1,+3M)’ O Ji—2Miro,

G(t,ry(1)) ( F(t,r) )

1—2M/r(t) ~I\ T oM ing an evolved waveform, the numerical evolution method
P r=rp® was found to be faster to a transform method by orders of
K651(1—2M/rp) magnitude and to give more accurate results.

3[3MZ—4AAXMr,—N(A+1)r2

(A+D)rp(Arp+3M) B. Numerical results
—6M(1— fg)rp], In this section we present computed results for the infall
of a particle, starting from rest at initial coordinate position
'r’;(t)z - egl\/ZM/rp—ZM/ro. (3.7 ro. The particle trajectory is a radial geodesic as described

by Eq.(2.7). By “t=0,” we shall always mean the hyper-
Our numerical scheme, for cells through which the par-surface at which the particle was at rest. We shall consider
ticle world line does not pass, is to solve fg(t,r*), using two values ofr/2M: both 15 and 1.5. The former is a start-
Eqg. (3.2 and Eq.(3.39) in the integral of Eq(2.4). For cells ing point where the influence of the background hole is rea-
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” t rp=7'27‘/P=o,31 0.8 \ ‘ : e

. r,=10.9 2 ¢ P=0.17 A

40 rp=l3 3 (P_O 10 06 — frozen-matched

20 Ip =14. 6“. (Pz 0.05 . -——- Z;(S)Tvz(;?n\:atched
S Nl

4 8 12 16

(2M/m,) E,
o
»~

FIG. 3. Hypersurfaces of constanin the Schwarzschild space-
time. The trajectory is shown of a particle starting from rest at
positionr4/2M =15, and falling inward on a radial geodesic. Also
shown are hypersurfaces of constant tim¢/2i1 = 20, 40, 60, and 02 -
80. The hypersurfaces are labeled with the valug of the particle
positionr,, and of momentum parameter Thet/2M =20 hyper-
surface, for example, can also be referred to asRhm,=0.05
hypersurface, the,/2M =14.6 hypersurface, or thE;ﬁ/ZM =17.2 0.0

hypersurface S I¥: -1.3 -0.8 -0.3 0.2 0.7
) I, /(2M)

sonably weak.(The gravitational redshift, for example, is
around only 3%. This represents, then, an astrophysical

starting pOInt_ for _Wh'Ch a Newtonian qescr'pt'on WOUld be agiven for several types of prescribed hypersurface data. Radiated
good approximation. The second chorgg2M =1.5iS nota  gnergy computed is always the energy radiated starting from the

reasonable astrophysical starting point, but complements thgne of the hypersurface on which data is prescribed. See text for
first choice ofry, magnifies certain effects, and is useful for getails.

exploration and illustration. _

We will be interested in Cauchy data, bathand ¢, on
subsequent=const hypersurfacegWe repeat here an im-
portant feature of the formalism: The gauge-invariant in-
formation ¢ and ¢ is unaffected by a change in slicing.
When we say, therefore, ta= const hypersurface, we mean - ; T - s
onl t=constyto 2e10 order in the ;Pticle masEhere are [14] solution, the simplest longitudinal solution, arii)
sev{eral ways in which we can spé)cify which later slice We“horizon matched” data, the longitudinal solution with the
are considering(i) We could specify the Schwarzschild co- fo_rm of ¢ (more *specifically, the first and second _derivatives
ordinate timet for this hypersurface(ii) We could specify \r/]wth reslpegtt tor*) matched to the evolved solution at the
the location of the infalling particle corresponding to tie orizon fimit. . . .
for this purpose we use the notation (or r*, the r* We first present comparisons of radiated energy. In Fig. 4
equivalent. Note thatr, is related to theIB positign’ parameter we show the quadrupole energy radiated during the infall
z_pby rpzz._p(1+ M/ZZSZ. (iil) We could specify the param- of the particle fromry= 1_.5(2M). On the orig?nalt=0 hy—
eterP describing the particle’s momentum at ime(This is persurface, the form af is taken to be the Misner solution.

the P parameter that enters into the Bowen-York description(-Slnce the pamcle 's momentarily stationany &0, we have
of extrinsic curvature; see the discussion in Sec. Il relatin =0 on th_|s hypersurface, o_f cour);é_?he plot shows the_
this parameter to the particle’s 4-momentum compongAts. energy rad@ted*fron;l the particle for_ times after the particle
picture of a sliced Schwarzschild spacetime, illustrating thdS &t @ locationr™=ry, . These energies are computed from
particle trajectory and the labeling of the spacetime, is show’€ solution that evolves from the data on the constant time
in Fig. 3. hypersurface labeled; . The “true” data are the data that

In our results the crucial concept is the difference betweer@volved from thet=0 original hypersurface on which the
“evolved” data and “prescribed” data. By “evolved” val- Particle was momentarily stationary. The energy computed
ues of and » we shall mean the values that are found onl” this way is the “true” total quadrupole energy emitted
some hypersurface after numerical evolution forward in timeduring _|2faII2 from 15(M), and has the value
from thet=0 original hypersurface. By “prescribed data” (8.1X10"*)mg/(2M). _
we shall mean data that are chosen according to one of the The plot shows the energy generated when the (ireg
prescriptions of Sec. Il. Prescribed data, for our purposegvolved ¢ andy, on a hypersurface, are replaced with pre-
here, are always chosen from the set of possibilities that w&cribed data appropriate on that hypersurface for the position
describe as conformally flat, longitudinal. This means tha@nd momentum of the geodesically falling particle. To find
the 3-geometry is conformally flat, and the extrinsic curva-the points for the dotted curve, for example, on each hyper-
ture is “longitudinal,” in the sense defined by Yofk 8]. surface, position and momentum of the infalling particle
For ¢, specific choices that we have described in Sec. Iwere calculated and used to generate Misner datg,fand
include (i) BL data, the simplest choice faf, (i) Misner  Bowen-York data fory, on that hypersurface. These pre-
data, data that are symmetric with respect to reflection undescribed data were then numerically evolved forward in time,
T—(M/2)?/r in the conformally related flat space, afii) and the resulting radiation to a distant observer was com-

FIG. 4. Radiated energy, for infall fromy=1.5(2M). Energy is
shown as a function of thq*; label of a hypersurface and results are

“frozen” data, the conformally flat solution of the Hamil-
tonian constraint that has the value iyt the horizon fixed
to be the horizon value on the original<0) hypersurface.
Prescribed choices fap include (i) the basic Bowen-York
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r,=1.5(2M) r,=15(2M)
0.015 : : ‘
frozen-matched
evolved—matched
---- —-evol
0.010 0.10 frozen-evolved
[y o
£ @
8 2
0.005 | 0.05 |
0.000 L - . . . .
25 -15 -0.5 0.5 0.00 5 s 13 17
r, /(2M)

r*, /(2M)

FIG. 5. Radiated energy, for infall fromy=1.5(2M). Energy is FIG. 6. Radiated energy, for infall fromy=15(2M). Energy is

shown as a function of the; label of a hypersurface. On that gpq\yn a5 a function of the!, label of a hypersurface and results are
hypersurface the true, i.e., evolved, data fohave been retained, given for several types of prescribed hypersurface data. The com-
but frozen prescribed data fgr have been substituted for the true pyted energy is always the energy radiated starting from the time of

. the hypersurface on which data are prescribed. See text for details.

puted. This radiated energy is presented as a function of the,o\w the form of the true quadrupoegenerated by a par-
hypersurface labely; . Similarly, the solid curve shows the tjcje falling from rest atro=15(2M), with Misner data ini-
result of replacing the true hypersurface data with frozeqia”y specified. The figure shows the manner in whigfn*)
data fory and horizon-matched data fgr. The energies of evolves from its initial Misner form at=0. As the particle
the dashed curve are the result of replacing ¢hdata with  moves inward, the simple prescribed form of a single peak
horizon-matched data, and retaining the trudata. evolves into more complex shapes. Figure 8 shows that on
These results show that the “frozen-matched” prescrip-late hypersurfaces, after the particle,tat100, r;~0 has
tion are in slightly better agreement with the correct radiateghassed through the region in which the Zerilli potential is
energy than are the other choices. The choice of frozenstrong, ¢ clearly contains the shape of in- and outgoing
matched conditions is also more justifiable, since it is basedvaves with the profile of quasinormal ringing.
on a physical consideration. Throughout the remainder of the Figures 9—11 compare the trgeon a hypersurface with
paper, we shall consider the frozen-matched choice as therescribed horizon frozen data on the same hypersurface. It

best in the set of conformally flat, longitudinal possibilities. should be noted that the magnitude of the discontinuity in the
In Fig. 4, what is more important than the comparison of

prescriptions for hypersurface data is the fact that none of r=15(2M)
them is very good. Figure 5 gives some insight into the de- ‘ ‘
tails of the failure. Here, for infall fronry=1.5(2M), the 281 \
data foris on each hypersurface are replaced by frozen data | \ — :}:;26 i:;g:g
the true data for/ (i.e., the data evolved from=0) are l - 211968
retained. It is important and interesting that the replacemen 20 | l; == r=00,1-995
of the ¢ data introduces a much smaller error than the re- ‘3{ L
placement ofy. This is a similar conclusion that one finds in & 161 1; 3‘: ] ’
the results of Bakeet al. [19] in a rather different context. £ | I
The previous energy results, of course, are for infall from = ‘H{ ;
an astrophysically unreasonable initial radius. In Fig. 6, en- 44| }H:\ \\
ergy results are shown for infall fromy=15(2M), in which ;Ij o \
case the true total quadrupole radiated is 04 | ‘\.‘ \\\\
1.64x 10" ?m2/(2M). Results are shown for three choices of JAA S e e
prescribed hypersurface data. Again we see that the agree %0 [T oeoaeo e EEE e T
ment with the true energy is reasonably good if the fitee, oa - ‘ ‘ ‘ ‘
evolved data for ¢ are retained. For the other cases the -0 10 30 50 70 90 110

agreement is good only if the data is replaced on a hypersur-
face well before the particle reaches the peak of the potential FIG. 7. The true quadrupoke(r*) for infall from ro=15(2M),
V , at around 1.55(®1). i.e., ¢ computed by numerical evolution from the initial hypersur-

We ask next what the appearance of hypersurface data iface. Curves are shown for several hypersurfaces labeledrjith
and how the true and prescribed forms differ. In Fig. 7 wethe value of the particle’s* location on each hypersurface.



6452 CARLOS O. LOUSTO AND RICHARD H. PRICE 56

r=15(2M) r,=15(2M), r,=2.0(2M), P=1.27(m,), t=96.9(2M)
2.0 T T T T
32t 1
r"p=—10 ,1=109.7
15 L 1 =-50,1=149.6 wsl T
evolved
10t 20r
€ €
E ERR
05 -
i ‘» 08 L B
1 R
0.0 r‘\ i S A
/\/ N\ 02t I\
05 ‘ ‘ ‘ ‘ ‘ ‘ 04 ‘ ‘ ‘
-80 -40 0 40 80 120 160 -20.0 20.0 60.0 100.0
r/(2M) r/2M)
FIG. 8. The true quadrupokg(r*) for infall from ry=15(2M), FIG. 10. For infall fromr,=15(2M), the evolved data are com-

shown on late hypersurfaces. Fo2M=109.7 the shape of/ pared with the frozen prescribed datat/@M = 96.9.

shows outgoing quasinormal radiation; f62M = 149.6 both ingo-

ing and outgoing quasinormal oscillations are evident. The differences in the evolved and prescribed formgof

suggest that at late times the formybfs not conformally flat

r derivative of ¢ is related, through the Hamiltonian con- initial data. This is explicitly demonstrated and quantified in

straint, to the mass of the particle. It must, therefore, be th&igs. 14 and 15, in which the gauge-invariant index of con-

same for the pairs of curves in these figures and for all form$ormality, developed in Sec. Il B, is plotted. The traveling

of ¢ satisfying the Hamiltonian constraint. Results are showrbumps, with the appearance of radiation, confirm that the

for several different hypersurfaces, and the meaning is cleawave content of the true initial data is associated with its

The prescribed never contains the complexity of shape thatfailure to be conformally flat.

indicates the presence of radiation. We next look at results fors. Figures 16, 17, and 18
In Fig. 12, ¢ is shown for Misner prescribed data on a compare the trugi.e., evolved form of the quadrupola

sequence of hypersurfaces, this time for infall fromyith the horizon matched prescription, for infall from rest

ro=1.5(2M). In Fig. 13 the frozen prescribefl solution is  (and Misner dataat t=0, ro/2M=15. As would be ex-

shown on the same hypersurfaces. The comparison of trEécted, the difference between the evolved and the pre-

two figures shows the difference induced by the freezing okcriped forms grows with time.

the value ofy at the horizon. The same comparison of true and horizon-matchpeis
given in Figs. 19 and 20, this time for infall from
50 fo=15(2M), 1,=12.0(2M), P=0.14(m,), t=52.2(2M) ro/2M=1.5(2M). In all the comparisons of, the horizon
r=15(2M), r=1.16(2M), P=5.0(m,}, t=100.2(2M)
— evolved
26 - ‘ frozen
18 4 evolved
€
< 20
} =
12 | 1 g
‘;v 14
06 08 | 0 |
02 L /}
%00 . " \ e
r*/2M) |
400 Mzd 0 60.0 100.0
FIG. 9. The comparison of true and prescribed quadrupdte e ' r2M) ’

infall from ry=15(2M). The form of the true dat&(r*) for infall
from Misner data on the original hypersurface is compared with the FIG. 11. For infall fromry=15(2M), the evolved data are com-
frozen prescribed data on the hypersurface/2il =52.2. pared with the frozen prescribed datat/@M = 100.2.
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r,=1.5(2M), Misner

25 i 1 A
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r=134 N I
S et \ ;!
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e e S : / — -0.05 1 I | |
0.0 ‘ ‘ 215.0 15.0 45.0 75.0 105.0
-10 -5 0 5 r*/(2M)

r/(2M)
) ) . FIG. 14. The index of conformalityl o for infall from
FIG. 12. Misner prescribed data for infall from=21.5(2M), | —15(2M) with Misner initial data. The index, for quadrupole
shown on a sequence of hypersurfaces. perturbations, is equivalent td,—K in the RW gauge, and is a
gauge-invariant measure of the extent to which the hypersurface

matched choice was made for the prescribed data. The spé=geometry fails to be conformally flasee text The index is

cific choice, however, makes little difference in the compari-given, as a function of*, for several different hypersurfaces. The

sons. In Fig. 21 a comparison of the trq-lteand two prescrip- noisy nature of the curves is caused by the need to take second

tions is given for infall fromry,/2M =1.5. (Infall from the differences of numerical results to compuig.

small radius magnifies differences of evolution and prescrip-

tion) The difference between the basic Bowen-Ydti4] ~ curve, labeledt=0.0, shows the “true” waveform, the

prescription forg and the horizon matched prescription is Waveform generated by evolution of the original, momen-

small, while the difference between either of them and thdarily stationary data at=0. This true waveform is com-

correct data fory is very large. The horizon-matched pre- pared with the waveforms evolved from prescribed data
S . i ahaei~n placed on later hypersurfaces. The figures show that pre-

scription is a slightly better approximation than the “basic” P'™

onep ghty PP scribed data on thg2M = 63.9 hypersurface leads to an out-

Another way of looking at the difference between the truegOing waveform in reasonably good agreement with the true

data and prescribed data is to investigate the effect the dhu_yaveform. For prescribed data oM = 93.6 (with the par-

ference has on outgoing radiation. Figures 22, 23, and 24cle atrg/2M=3.91, orr,/2M=3.15, however, large dif-
show the waveformthat is, ¢(t) at larger] generated by ferences are evident between waveform and the true wave-

different types of prescribed data. In each case, the solifP™™- The disagreement is less severe when the evolved data
for ¢ is retained.

r,=1.5(2M), Frozen

r,=15(2M), I=2
25 : 0.20 — ‘ .
r=150 L ~\ —— r 75 =85 |
r=134 P —— r'=75, =85
---- =12 s L1 r.=5.6, =90 |
20| ——-1=1.06 ' o "o r=32 =95
» Lo ——- r"=-0.5,1=100
b
0.10 ‘J '
J15} I
£ b
g 5 0051 | !
> = [ I
;o
1.0 | ) o
/ 0.00 pmel i /]
i ST
/ ,
05 | A
. S —0.05 |
P S
_47,7,7_1/—;,?:?«/?// ey
0.0 L 1 ~0.10 L I I I L I I
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FIG. 13. Frozen prescribed data for infall frorg=1.5(2M), FIG. 15. The index of conformalityl . for infall from

shown on a sequence of hypersurfaces. ro=15(2M), shown on late hypersurfaces.
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r,=15(2M), r,=12.0(2M), P=0.14(m,), t=52.2(2M) r,=15(2M), r,=1.16(2M), P=5.0(m;), t=100.2(2M)
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FIG. 18. Forro/2M =15, the true(i.e., evolved form of 4/;

FIG. 16. Forry/2M =15, the true(i.e., evolved form of 1//
compared with the horizon-matched prescribed form ¢of for

compared with the horizon-matched prescribed form yof for
t/12M =52.2.
t/2M =100.2.
An analogous comparison of waveforms is shown in Fig.
25 for infall fromry/2M =1.5. Here the effect of prescribed r form of the data, and evolve the results. The resulting
data on the phase of the wave is much more evident than ienergies are shown in Fig. 26. These results, like those in
paper |, show that the close-limit calculations of energy are
of limited usefulness.

thery/2M =15 case.
In the work of Abrahams and Codl8], one of the moti-
vations for the present work, the “close limit” was used to
evolve prescribed data. This technique,15 is applicable IV. DISCUSSION AND CONCLUSIONS
to a hypersurface at a time late enough that the colliding ) ) ) )
bodies can be considered to be inside a single nearly spheri- The numerical results of the previous section give a range
cal horizon. In this technique one uses only the largets of comparisons between astrophysically evolved, and “pre-
found to be surprisingly successful in dealing with head orl€SSon to be learned from these resullts is that for the particle
collisions of equal mass holes. We saw in paper |, howeverimit the standard prescriptions for hypersurface data are not

that for very unequal mass holes the close limit is valid only2dequate for describing an astrophysical strong gravitational

at extremely small separations. For comparison, we have agield. For a particle falling fronto=15(2M), for example,
plied the close limit to the present problem. On a sequence " approximation for the radiation using prescribed data on a

hypersurfaces we replace the hypersurface data by the largt® hypersurface seriously overestimates the radiated en-

of the initial data of the colliding bodies. This technique wasScribed” hypersurface datéor quadrupole modegThe first

o r,=15(2M), r,=2.0(2M), P=1.27(m,), t=96.9(2M) r,=1.5(2M), r.=1.34(2M)
X : . . .
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FIG. 17. Forro/2M=15, the true(i.e., evolved form of l/f
compared with the horizon-matched prescribed formyof for

t/2M =96.9.

r*/(2M)

rp/2M =134

FIG. 19. Forro/2M=1.5, the true(i.e., evolved form of 1//
compared with the horizon-matched prescribed form yof for
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r=1.5(2M), r =1.21(2M) r,=15(2M), r,, =1000(2M), I=2, (frozen-matched)
1.0 T T T .
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FIG. 22. The quadrupole waveform(t) at r/2M=1000 for
infall from ry/2M =15. Three curves are shown corresponding to
the true waveform(data prescribed &2M=0) and to the wave-
forms generated when frozep data and horizon-matched data
. . . are imposed on later hypersurfaces.
ergy. Figure 6 shows that prescribed data for the particle at
r,=3.6M (equivalent ta;/2M = 1.6) give a radiated energy scribed data we use here and that used by Abrahams and
too large by a factor of 10. Even for a hypersurface with theCook. In particular, they used fully symmetrized data,
particle in the marginally strong field a,=5.7M (equiva-  whereas our preferred choice of prescribed data is data that
lent torE/ZM =3.4) the energy is overestimated by a factor are conformally flat, longitudinal data that are frozen and
of 2. matched at the horizon. This is surely not the origin of the
This is in marked contrast to the results of Abrahams andlifferent conclusions. For one thing switching from symme-
Cook[3] for the head-on collision of equal-mass holes. Theytrized hypersurface data to antisymmetrized, in numerical
prescribed standard data on a late-time hypersurface aneélativity computations, makes only a minor difference in the
found predictions of energy in excellent agreement with preresults. More important, the work of Baker and Li does not
dictions from numerical relativity. Baker and [4], looking  use symmetrized data, and the study by Badeal. [19]
further into this problem, found that the predicted energyfinds excellent results when symmetrized data are replaced
was remarkably insensitive to the choice of hypersurfaceby unsymmetrized approximate data. As a further check of
Good predictions could be made with data specified on hythis point, we have redone several of our computations using
persurfaces over a fairly wide range of times. There are cersymmetrized prescribed data and, as expected, found only

tain technical differences between the nature of the pre-

FIG. 20. Forry/2M=1.5, the true(i.e., evolved form of zp
compared with the horizon-matched prescribed formyof for
r/2M=1.21.

obs’

r,=15(2M), r,,.=1000(2M), I=2, (evolved-matched)

ry=1.5(2M), r.=1.06(2M) : 17‘6 o5 P
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r*/(2M) FIG. 23. The quadrupole waveform(t) at r/2M=1000 for

infall from ry/2M =15. Three curves are shown corresponding to
the true waveform(data prescribed &2M=0) and to the wave-
forms generated when horizon-matchidata are imposed on later
hypersurfaces and the true, i.e., evolved, valueg afe retained.

FIG. 21. Forro/2M=1.5, the true, i.e., evolved, form fo
compared with the horizon-matched prescribed forng:oéind with
the Bowen-York form.
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r,=15(2M), r_,.=1000(2M), I=2, (frozen-evolved) r=15
—— =176,10.0, P=00 \
- ",=12.6 ,1=63.9, P=0.19 \ [ —— close—slow approximation|
0.50 r'=3.91,1=93.6, P=0.73 \
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FIG. 24. The quadrupole waveform(t) at r/2M =1000 for
infall from ro/2M =15. Three curves are shown corresponding to  FIG. 26. Radiated energy for infall fromy=15(2M) computed
the true waveform{prescribed data af2M =0) and to the wave- Wwith the close limit. On every hypersurface close-limit data were
forms generated when frozehdata are imposed on later hypersur- substituted and evolved. The computed energy is plotted as a func-

faces and the true, i.e., evolved, values/oére retained. tion of the hypersurface parameter on which the close-limit data
were substituted.

minor differences from the results for other prescriptions.

The crucial difference between the failure of prescribedquasinormal ringingmore or less coincides with the disap-
data here, and its success in the previous studies, must lie gearance of the individual throats inside a single connected
the difference between the head-on collision of equal-masRorizon. For a hypersurface corresponding to both throats
throats, and of a large-mass throat with a small-ntégar-  inside a single horizon, it is plausibi@nd is found to be
ticle”) one. It is not difficult to see why this should be. It is valid by the success of the calculatipribat details of the
the same reason the “close-limit” approximation is not suc-geometry near the throats is not important since they cannot
cessful in the collision of very unequal massgee Fig. 26 influence the region exterior to the horizon. For a collision of
and paper ). For the collision of equal masses, a commonhigh- and low-mass throats the situation is very different.
horizon engulfs both colliding throats as they begin to getStrong radiation is generated when the particle is near a co-
into each other’s strong field influence. The generation of theyrdinate distance=1.5(2M), near the peak of the Zerilli
large-amplitude gravitational wavesge., the excitation of potential. For outt= const slicing this corresponds to a hy-

persurface for which there is no common horizon, i.e., where
ro=1.5(2M), 1,,,=500(2M), I=2, (frozen-evolved) the particle is still well outside the horizon of the background
‘ ‘ ‘ hole. For this slicing, in fact, the particelwaysstays out-
\ side the background horizon, and the details of its local field
I are always in causal connection with infinity. The fault
o1 L \, \ i would not seem to be in the slicing. ¥& const slicing was
/ g ,’\ and by Baker and Lj4], and is an obviously natural slicing
A /\ for the particle infall problem.
0.0 —\ Vo \ [ N We conclude from these considerations that the fault lies

0.2

the choice in the method used by Abrahams and &k

y,(t)/m,

in the nature of the prescribed data we have been using, i.e.,

the standard choice of conformally flat longitudinal hyper-

; surface data. As shown in the figures of the previous section,
1 there is a dramatic difference between the true hypersurface

| 7= 081,100 data on a late hypersurface and prescribed data. There are

;Lo 218851 two strong reasons to suspect that the most important differ-
‘ ‘ ‘ ence between true hypersurface data and any of the pre-

%5 505 515 525 535 scribed data is the difference i First, our argument above
viem) suggests that the failure of prescribed data in the particle

FIG. 25. The quadrupole waveform(t) at r/2M=1000 for  limit lies in the failure to describe fields near the particle. In
infall from ro/2M =1.5. The solid curve shows the “true” wave- Fi9S. 17-21, we see that there(& least visually a large
form evolved directly from the initial data &2M =0. The dashed dlfferenpe bet\/\(een the true and the prgscrlbed data C|03? to
curve gives the waveform generated when prescribed(Hat&on- the partlcle. This difference can be ascribed to the constraints
frozen data for , and evolved data fors are placed on a late ©On conformally flat longitudinal data. The sharp variations in
hypersurface. Y(r*) are, intuitively, features that should couple strongly to
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radiation. The inability of the prescribed data to model thesesuccessfully for unequal-mass head-on collisions as for the
features must be viewed as potentially important. The seconequal-mass case. At some ratio of masses of the colliding
reason for focusing attention ap is that the hypersurface holes the use of prescribed data on a late-time hypersurface
data fory appear to be much more important than thatgor will start to give a S|gn|f|cant'0verest|mate of the radiated
This was the conclusion in the study by Baleral.[19]. In  €nergy. We have, so far, studied only the quadrupole pertur-
that work, which used colliding throats and no stress energypations. Higher multipole moments are less important astro-
Einstein’s equations were linearized in the momentum of th@hysically, and are not likely to lead to very different con-
throats and a clear identification could be made of how mucl§!usions. o _ . .
of the radiated energy could be ascribed to the initial 3- The head-on collision, of course, is neither astrophysi-
geometry, how much to the momentum, i.e., the initial ex-cally plausible nor an interesting source of outgoing radia-
trinsic curvature, and how much to the interaction of the twoion. The interesting case is the last stage in the orbital decay
It was found that except for extremely small initial momen- ofa bmary pair of holes. For this one would like to start wlth
tum the radiation was almost completely due to the extrinsi@strophysically reasonable data on a “as late as possible”
curvature. This was called “momentum dominance” by hypersurface. An understanding of how to do this _fqr the
Baker et al. Here we cannot make such a clear distinction.nead-on case is a necessary stapd perhaps a sufficient
Because of the moving particle source, treated as a stre§§9 towards an understanding of the more general problem.
energy contribution, we cannot ascribe the radiation to th&/Vith that motivation, we shall, in a subsequent paper, inves-
two kinds of initial data information. Nevertheless, the en-tigate whatcanbe done to provide good late-time data. We
ergy results in our Figs. 4—6 show that some other form ofhall, in partlcqlar,_ abandon the tradltlonal choice of confor-
“momentum dominance” applies to the particle infall; the mally flat, longitudinal t;iat_a, and, mst_ead, shall focus on data
energy radiated is much more sensitive to the details of thé1at give a good description of the field near the particle.
extrinsic curvature than to the details of the 3-geometry.

The insights provided by the particle limit have helped to
clarify what is needed in the way of hypersurface data for
numerical evolution. A direct consequence of the present This work was partially supported by the National Sci-
study is the realization that prescribed data will not work asence Foundation under Grant No. PHY9507719
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