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Numerical relativity, applied to collisions of black holes, starts with initial data for black holes already in
each other’s strong field. For the initial data to be astrophysically meaningful, it must approximately represent
conditions that evolved from holes originally at large separation. The initial hypersurface data typically used
for computation is based on mathematically simplifying prescriptions, such as conformal flatness of the 3-
geometry and longitudinality of the extrinsic curvature. In the case of head-on collisions of equal-mass holes,
there is evidence that such prescriptions work reasonably well, but it is not clear why, or whether, this success
is more generally valid. Here we study these questions by considering the ‘‘particle limit’’ for head on
collisions of nonspinning holes, i.e., the limit of an extreme ratio of hole masses. The mass of the small hole
is considered to be a perturbation of the Schwarzschild spacetime of the larger hole, and Einstein’s equations
are linearized in this perturbation and described by a single gauge-invariant spacetime functionc for each
multipole. The resulting quadrupole equations have been solved by numerical evolution for collisions starting
from various initial separations, and the evolution is studied on a sequence of hypersurfaces. In particular, we
extract hypersurface data, that is,c and its time derivative, on surfaces of constant background Schwarzschild
time. These evolved data can then be compared with ‘‘prescribed’’ data, evolved data can be replaced by
prescribed data on any hypersurface and evolved further forward in time, a gauge-invariant measure of devia-
tion from conformal flatness can be evaluated, and other comparisons can be made. The main findings of this
study are~i! for holes of unequal mass the use of prescribed data on late hypersurfaces is not successful,~ii ! the
failure is likely due to the inability of the prescribed data to represent the near field of the smaller hole,~iii ! the
discrepancy in the extrinsic curvature is more important than in the 3-geometry, and~iv! the use of the more
general conformally flat longitudinal data does not notably improve this picture.@S0556-2821~97!03320-1#

PACS number~s!: 04.70.Bw, 04.30.Db

I. INTRODUCTION AND BACKGROUND

The collision of black holes is of great interest as both
astrophysics and as a strong-field gravitational interaction
with no Newtonian analogue. Black hole collisions also may
provide the strongest, most observable, source of gravita-
tional radiation that can be detected by gravitational wave
observatories now under construction@1#. The strong-field
nature of the process means that the nonlinear character of
Einstein’s theory plays a crucial role, so that estimates based
on linearized theory are unreliable. For the last stage of coa-
lescence of two rotating holes in a decaying orbit, we have
only dimensional estimates. The timeliness of the problem
has given rise to an effort to attack the problem by solving
Einstein’s equations numerically on supercomputers@2#.

The numerical solution starts with some ‘‘initial value’’
data, a solution of a subset of Einstein’s equations on an
initial hypersurface, and then evolves this solution forward in
time. The specification of the initial data is tantamount to
specifying what problem it is that the computer will be solv-
ing, and so the initial data must encode the physical param-
eters~mass, spin, location, momentum! of the colliding ob-
jects. These physical parameters are meaningful and well
understood for isolated holes, but become increasingly am-
biguous as the initial separation between the holes decreases,
and the field of each hole has a strong effect on the spacetime
geometry of the other. Ultimately, at sufficiently small initial

separation, it becomes impossible to make any clear state-
ments about the physical parameters of an individual hole.

In principle, one would like to avoid this difficulty by
specifying initial data on a hypersurface in the distant past
when the holes were separated by a distance many times the
horizon size. When the initial influence of each hole on the
other becomes small, the uncertainties in the choice of initial
data become negligible. Unfortunately, it is not possible to
start the numerical evolution a long time before the collision.
Einstein’s equations are a nonlinear hyperbolic system, and
for such systems instabilities in numerical evolution seem to
be a generic feature. While it can be expected that some
progress will be made in improving the codes and suppress-
ing the instabilities, it is not likely that in the near future
these codes will be able to evolve initial data for more than a
few dynamical times, the characteristic time scale for black
hole processes~around 1025 sec for a solar mass hole!. This
limitation precludes starting the dynamics with the holes at
large distances and means that the initial data must be given
on a hypersurface on which the hole-hole interactions are
already strong. If the resulting numerical evolutions are to be
astrophysically meaningful, it is crucial to have a way of
connecting data on this ‘‘late’’ hypersurface to an astrophysi-
cal precursor configuration with the holes interacting weakly.
In other words, to understand the meaning of initial data on a
‘‘late’’ hypersurface, we must know where that data came
from. One approach to providing this connection is to use
approximations such as higher-order post-Newtonian meth-
ods in order to understand the evolution of the system from
an early stage to a stage at which the holes are interacting*Electronic address: lousto@mail.physics.utah.edu
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with intermediate strength. Such an approach may turn out to
be sufficient if the numerical evolutions can be stabilized for
a relatively long time.

There is reason to hope that it might be possible to give
initial data at late times, with relatively little difficulty. The
reason is based on the success of a ‘‘two-phase’’ approxima-
tion method used by Abrahams and Cook@3# and further
investigated by Baker and Li@4#. These studies dealt with the
head-on~zero angular momentum! collisions of two equal-
mass nonrotating holes. Data were specified on a very late
hypersurface, simply by using a ‘‘standard’’ initial value so-
lution formally representing equal-mass holes moving to-
wards each other. This standard solution contained a param-
eterP which, in the case of an isolated hole, agreed with the
momentum of the hole. On the very late hypersurface the
separation and momentum were set at the values dictated by
Newtonian gravity theory if the holes had started infall from
some large initial separation. The standard initial value data
were evolved forward in time~with the use of an approxi-
mation method!. The radiated energy found by this approxi-
mation could be compared with the ‘‘correct’’ radiated en-
ergy, since numerical relativity results were available for
such collisions. The approximation method agreed with nu-
merical relativity to rather good accuracy. This is somewhat
a surprise since the ‘‘standard’’ numerical relativity initial
data should be very different from the ‘‘correct’’ evolved
data. The implication of this agreement is that results for
gravitational radiation might not be sensitive to all details of
initial data.

We explore this question in the present paper by compar-
ing prescriptions for imposing data on hypersurfaces with the
‘‘correct’’ data evolved from an earlier configuration. In or-
der to do this, of course, we need the ability to evolve a
solution for a relatively long time, something that cannot yet
be done with the nonlinear Einstein equations. We choose
therefore to use the particle approximation, the approxima-
tion in which the massm of one of our holes is much smaller
than the massM of the other hole. We then treat the low-
mass hole as a particle of negligible size, and we treatm/M
as an expansion parameter. By doing first-order perturbation
theory with this parameter, our evolution equations become
linear, so that a stable numerical scheme is straightforward to
develop.

In an earlier paper@5# ~paper I!, we developed the basic
mathematics of the particle limit approximation and of
evolving data that was initially stationary. In that paper,
Laplace transform methods were used. The method for the
present results is a direct numerical solution of the partial
differential equations in radius and time~after multipole de-
composition!. We have compared results of the two com-
pletely different methods, and found agreement within the
estimated numerical accuracy, thereby adding confidence
that there are no mistakes in our numerical methods.

The paper is organized as follows. In Sec. II we give the
mathematical formulation of the problem. We base this for-
mulation on the gauge-invariant Moncrief@6# approach to
perturbations, so that the variablec we use is invariant with
respect to perturbative changes in slicing. We need only
specify the slicing to zero order in the perturbation, and to
that order we take our hypersurfaces to be slices of constant
Schwarzschild time. In Sec. II we discuss in detail the free-

dom in initial data and the standard choices made for reduc-
ing that freedom. We go on to explain the particular physi-
cally motivated choice that we make for arriving at a
definitive prescription of initial data. In Sec. III, we start by
explaining our numerical method for evolvingc. The
scheme for solving the linear hyperbolic equation obeyed by
c is straightforward. The only issue that deserves attention is
the source term in the equation forc. In the particle limit, the
small hole is treated as a point particle, and this particle is
associated with a stress energy source that enters thec equa-
tion as the derivative of ad function of radial position. We
describe in Sec. III how the singular source is handled. Nu-
merical results are presented and compared in Sec. III B. In
Sec. IV we discuss the results and their meaning.

II. MATHEMATICAL FORMULATION

A. Moncrief-Zerilli formalism

We will describe the perturbations to the Schwarzschild
background, due to the particle, in the notation of Regge and
Wheeler~RW! @7#. The symmetry of the straight-line infall
of the particle means that there will be no odd parity pertur-
bations. For the even parity perturbations the general form of
the line element, with perturbations of a specific multipole
index l , is

ds25ds0
21~122M /r !~H0

l Yl 0!dt21~122M /r !21

3~H2
l Yl 0!dr21r 2~K l Yl 01Gl ]2Yl 0 /]u2!du2

1r 2~sin2 uK l Yl 01Gl sin u cosu]Yl 0 /]u!df2

12H1
l Yl 0dtdr12h0

l ~]Yl 0 /]u!dtdu

12h1
l ~]Yl 0 /]u!drdu. ~2.1!

Hereds0
2 is the unperturbed line element for a Schwarzschild

spacetime of massM , whereH0
l , H1

l , H2
l , h0

l , h1
l , K l ,

and Gl are functions ofr ,t, and Yl 0(u) are the m50
spherical harmonics. For simplicity, from here on we shall
drop thel index on perturbation functions.

There are two closely related formalisms available for de-
scribing the evolution of the perturbations in terms of a
single wave function and a single wave equation. The
method due to Moncrief @6# uses only information
(H2 ,h1 ,K,G) about the 3-geometry of at5const hypersur-
face, and is gauge invariant, i.e., independent of the choice of
lapse and shift, and of diffeomorphisms on the hypersurface.
The second method, due to Zerilli@8#, relies on a specific
gauge, the gauge choice introduced by Regge and Wheeler
@7#, in which h0 , h1 , andG are set to zero.

As in paper I we shall use the Moncrief formalism. The
Moncrief wave functionc, in terms of the perturbations in
the RW notation, is

c~r ,t !5
r

l11 FK1
r 22M

lr 13M
$H22r ]K/]r %G

1
~r 22M !

lr 13M
~r 2]G/]r 22h1!, ~2.2!

where we have used Zerilli’s normalization forc and his
notation
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l[~ l 12!~ l 21!/2. ~2.3!

For simplicity, we shall occasionally present some equations
restricted to the RW gauge. Since the Moncrief wave func-
tion is gauge invariant, this gauge restriction allows simplic-
ity of presentation, with no other consequences. In this
gauge, we omit theG andh1 terms in Eq.~2.2!.

The basic wave equation for an infalling particle is given
in paper I as

2
]2c

]t2 1
]2c

]r * 2 2Vl ~r !c5Sl ~r ,t !. ~2.4!

Here r * [r 12M ln(r/2M21) is the Regge-Wheeler@7#
‘‘tortoise’’ coordinate andVl is the Zerilli potential~given,
e.g., in paper I!. For a point particle of proper massm0 , the
stress energy is given by

Tmn5~m0 /U0!UmUnd@r 2r p~ t !#d2@V#/r 2, ~2.5!

where Um is the particle 4-velocity. The two-dimensional
delta functiond2@V# gives the angular location of the par-
ticle trajectory,

d2@V#5(
l ,m

Yl m~u,f!Yl m* ~up,fp!

5(
l

Yl 0~u!A~2l 11!/4p, ~2.6!

with the last expression applying for infall along the positive
z axis. The time-dependent location of the particler p(t) fol-
lows from the geodesic equation and, for a particle starting
from rest att50, r 5r 0 , is the inverse of

t~r p!

2M
5A12

2M

r 0
S r 0

2M D S r p

2M D 1/2A12
r p

r 0
1S 11

4M

r 0
D

3S r 0

2M D 3/2A12
2M

r 0
arctanFAr 0

r p
21G lnF12~124M /r 0!~r p/2M !12A122M /r 0Ar p/2MA12r p /r 0

~r p/2M !21 G .
~2.7!

From the particle stress energy in Eq.~2.5!, the source
termSl (r ,t) on the right-hand side of~2.4! is given in paper
I as

Sl ~r ,t !52
2~122M /r !k

r ~l11!~lr 13M ! F2r 2~122M /r !
1

2U0

3d8@r 2r p~ t !#1H r ~l11!2M

2U0

2
3MU0r ~122M /r !2

lr 13M J d@r 2r p~ t !#G , ~2.8!

where

k[8pm0A~2l 11!/4p. ~2.9!

The total radiated energy after a givent0 per l mode is

energy5
1

64p

~ l 12!!

~ l 22!! Et0

`

~ċ !2dt. ~2.10!

B. Hypersurface data for c

We choose our data, on a hypersurface of constantt, to
correspond to the choice usually made for work in numerical
relativity. The data, for both the initial 3-geometry and ex-
trinsic curvature, are based on the work of York and Piran
@9#. This approach takes the 3-geometry of the initial hyper-
surface to be given byds25F4dsflat

2 . The conformal factor
F must, in vacuum, satisfy the equation

¹2F52 1
8 F5Ki j K

i j , ~2.11!

where¹2 is the Laplacian taken with respect to the flat back-
ground, and whereKi j is the extrinsic curvature.

For a constantt slice of the unperturbed Schwarzschild
spacetime, the extrinsic curvature vanishes. It follows that
Ki j is perturbative, and hence the right-hand side of Eq.
~2.11! is a higher-order perturbation, which, in our first-order
perturbation calculation, we can ignore. We denote coordi-
nates in the conformally related flat space with bars, such as
r̄ ,z̄, and we note thatF must be a harmonic function of
these coordinates. We make two different choices forF. The
first is the solution discussed by Brill and Lindquist@10#, and
which we will call a BL-type solution. This solution follows
if we treat 2F as if it were the Newtonian potential of two
points, one of massM and one of massmp . If the first mass
is located at the origin of the flat coordinates and the second
is at ~flat! coordinate positionz̄5 z̄p , then the BL solution
takes the form

FBL511
M

2r̄
1

mp/2

u r̄er2 z̄pezu
. ~2.12!

Though the origin and the pointr̄er5 z̄pez are coordinate
singularities, they are not geometric singularities. Near these
coordinate points the divergence of the conformal factor
means that the ‘‘points’’ are, in fact, asymptotically flat re-
gions, and so the geometry given by Eq.~2.12! is actually
that of three asymptotically flat spaces connected by two
throats. For our purposes here, we take as the ‘‘particle
limit’’ the limit that mp!M .
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The BL solution is the only choice that was considered in
paper I. A second initial conformal factor that can be con-
sidered is that which is ‘‘reflection symmetric,’’ in the sense
that there are only two asymptotically flat regions, and they
are isometric to each other. The method of constructing such
solutions was given by Misner@11#, and requires that ‘‘im-
age’’ points be used in the conformal space in such a way
that the geometry is symmetric with respect to inversion
through a sphere about each of the point singularities. Here
we make the solution symmetric only for a sphere about the
origin. The singularity atr̄er5 z̄pez , in the limit, will be
taken to have a zero-size inversion sphere around it~the par-
ticle limit! and the images inside it will be meaningless.~Al-
ternatively one can construct a solution reflection symmetric
for two spheres, and subsequently take the limit; the result is
the same.! The conformal factor, for this ‘‘Misner’’ case, is

FMis511
M

2r̄
1

mp/2

u r̄er2 z̄pezu
1

mimage/2

u r̄er2 z̄imageezu
. ~2.13!

It is straightforward to verify that this Misner solution is
symmetric for inversion aboutr̄ 5M /2 if the parameters
mimage and z̄image are chosen to bemimage5mpM /(2z̄p) and
z̄image5(M /2)2/ z̄p .

For either the BL form or the Misner form the line ele-
ment for the 3-geometry can now be written

ds25F11M /2r̄ 1 (
l 50,1,2,...

a l ~ r̄ !Pl ~cosu!G4

3~dr̄ 21 r̄ 2dV2!, ~2.14!

with dV25du21sin2 udf2. The requirement thatF be har-
monic means that a l must have the form
al r̄ l 1bl r̄ 2(l 11). We must now put the metric into a form
for comparison with the Schwarzschild metric. To do this we
introduce a Schwarzschild-like radial coordinater related to
the flat space coordinater̄ by

r̄ 5~Ar 1Ar 22M !2/4, r 5 r̄ ~11M /2r̄ !2. ~2.15!

This is only one of many possibilities for such a transforma-
tion, but it is the simplest for computation, and has been very
convenient for perturbation analysis@12#. This transforma-
tion puts Eq.~2.14! into the form

ds25F11
2mp / r̄

11M /~2r̄ ! (
l 50,1,2,...

Fl ~ r̄ !Pl ~cosu!G
3S dr2

122M /r
1r 2dV2D , ~2.16!

where we have kept only terms first order inmp , and, as in
paper I, have introduced the notationFl ( r̄ )
5(2r̄ /mp)a l ( r̄ ).

The perturbations, in the RW notation, can now be written

K5H25
2mp / r̄

11M /2r̄
Fl ~ r̄ !A 4p

2l 11
, ~2.17!

with h15G50. These perturbations of the initial hypersur-
face turn out to be in the RW gauge, and so we can compare

them with the Hamiltonian constraint, in the RW gauge, as
given by Zerilli @13#, and in paper I, for a particle of proper
massm0 :

S 12
2M

r D ]2K

]r 2 1S 32
5M

r D 1

r

]K

]r
2

l ~ l 11!

2r 2 ~K1H2!

2
1

r 2 ~H22K !2S 12
2M

r D 1

r

]H2

]r

528pm0A2l 11

4p
U0S 12

2M

r D 1

r 2 d@r 2r p#,

~2.18!

in which the right-hand side comes directly from the stress
energy expression~2.5!.

For the choice of a conformally flat 3-geometry we have
H25K and Eq.~2.18! becomes a differential equation forK.
A particular solution of this equation, well behaved at infin-
ity, is

Kpartic5A 4p

2l 11 S 2mp / r̄

11M /2r̄ D H ~ z̄p / r̄ ! l , r̄ . z̄p ,

~ r̄ / z̄p!~ l 11!, r̄ , z̄p
.

~2.19!

This solution, in fact, corresponds precisely the BL solution
of Eq. ~2.12!. For z̄image,M /2 andr̄ .M /2, a homogeneous
solution well behaved at infinity is

Khomog5A 4p

2l 11 S 2mimage/ r̄

11M /2r̄ D S z̄image

r̄ D l

. ~2.20!

If we take z̄image5(M /2)2/ z̄p andmimage5mpM /(2z̄p), then
the homogeneous solution can be considered to be the solu-
tion due to an ‘‘image’’ mass, inside the horizon at
r̄ 5 z̄image, and it is straightforward to verify that with these
choices of z̄image and mimage the Misner solution is
KMis5Kpartic1Khomog. There are, of course, other possibili-
ties. We could, for instance, consider, with the same choices
of z̄image andmimage, the combinationKanti5Kpartic2Khomog.
For this solutionK andc would vanish on the horizon. This
property turns out to be preserved by evolution as is made
clear in the discussion below@see Eq.~2.72!#.

By using Eq.~2.15! and integrating across the singularity
in Eq. ~2.18! at r 5r p5 z̄p@11M /(2z̄p)#2, we find that

DK,r[dK/drur 5r
p
12dK/drur 5r

p
2

528pmp

A~2l 11!/4p

z̄ p
1/2r p

3/2A122M /r p

528pm0

A~2l 11!/4p

r p
2 U0. ~2.21!

The 4-velocity componentU0 is given by

U05
A122M /r 0

122M /r p
, ~2.22!

and so it follows from Eq.~2.21! that
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mp5m0AS z̄p

r p
D 122M /r 0

122M /r p

5
1

2
m0S 11A12

2M

r p
DA122M /r 0

122M /r p
. ~2.23!

Note that the relationship of the mass parametermp and the
particle massm0 is the same for the Misner case as for the
BL case, and hence the same as in paper I. This must be true,
of course, since the symmetrizing image term addition in Eq.
~2.20! has no discontinuity atr 5r p .

The initial hypersurface, on which the particle and the
hypersurface data are stationary, is always denoted byt50.
On hypersurfaces witht.0 we shall limit our choice of
prescribed data to conformally flat 3-geometries. The choice
of conformal flatness is not, however, preserved by evolu-
tion. This means that the 3-geometry on constantt hypersur-
faces will in general not be conformally flat. On such a hy-
persurface, we will have numerical values only for a single
function, the Moncrief functionc. It turns out that we can
testc for underlying conformal flatness. The combination of
metric perturbations

I conf[H22K1
2

r S 12
3M

r D S h12
r 2

2
] rGD

22S 12
2M

r D ] r S h12
r 2

2
] rGD ~2.24!

is gauge invariant, and clearly vanishes for a 3-geometry that
is in conformally flat form, withh150, G50 andH25K.
@See Eq.~2.1!.# The computation of this gauge-invariant
quantity from c(r ) is most easily described in the RW
gauge, whereI conf reduces toH22K. From Eq.~2.2! in the
RW gauge, and from Eq.~2.18!, which is already in the RW
gauge, it follows that~for rÞr p!

K5
6M213Mlr 1l~l11!r 2

r 2~lr 13M !
c1S 12

2M

r D ]c

]r
.

~2.25!

From this result forK, and from Eq.~2.2! in the RW gauge,
one findsH2 to be ~for rÞr p!

H252
9M319lM2r 13l2Mr 21l2~l11!r 3

r 2~lr 13M !2 c

1
3M22lMr 1lr 2

r ~lr 13M !
] rc1~r 22M !] r

2c. ~2.26!

The difference between the expressions in Eqs.~2.26! and
~2.25! gives I conf, the gauge-invariant measure of the devia-
tion of the 3-geometry from conformal flatness.

C. Hypersurface data for ċ

The integration of the wave equation~2.4!, to evolve for-
ward in time from at5const hypersurface, requires that we
specify bothc and ċ at the hypersurface. In paper I our
initial hypersurface was one of time symmetry, and so we
had ċ50 initially. We now take the particles to be moving

on the hypersurface, and for the hypersurface value of the
extrinsic curvature we follow the prescription of Bowen and
York @14#. In that prescription one chooses a slicing such
that the traceKi

i of the extrinsic curvature vanishes, and one
defines a quantityK̂ i j , related to the extrinsic curvatureKi j
by

Ki j 5F22K̂ i j , ~2.27!

The curvature measureK̂ i j is considered to be a tensor in the
conformally related flat space; its indices are raised and low-
ered with the flat 3-metricg i j

flat . The momentum constraint
turns out to be equivalent to the requirement that¹̂ i K̂

i j van-
ish outside the sources, which we take to be points in the
conformally flat 3-geometry. The Bowen-York prescription
for initial data is thatK̂ i j be ‘‘longitudinal,’’ i.e., derivable
from a vectorŴi according to

K̂ i j 5¹̂ i Ŵj1¹̂ j Ŵi2~2/3!g i j
flat¹̂kŴ

k. ~2.28!

Our choice to describe a moving hole is a solution closely
related to those used in most numerical relativity simula-
tions. To describe these solutions we use the geometry of the
conformally related flat space pictured in Fig. 1. The sym-
metry axis is taken to be thez̄ coordinate axis and the per-

turbative particle is located atz̄5 z̄p . The vectorsr̄W andr̄W are
the displacements~in the flat space! to a field point, respec-
tively, from the coordinate origin and from the location of
the moving ‘‘particle.’’ The unit vectornW , defined to be

r̄W /ur̄W u is the direction to the field point from the moving
particle. In terms of the notation in this figure, we define two
solutions of the momentum constraint¹̂ i K̂

i j 50. The first,
which we shall call the basic solutionK̂basic, is

K̂ i j
basic5

3

2r̄2 @Pinj1Pjni2~g i j
flat2ninj !P

knk#. ~2.29!

This is a longitudinal solution that corresponds to the vector

Ŵi
basic52

1

4r̄
@7Pi1ni P

knk#. ~2.30!

The parameterPW is the momentum of a moving hole in the

conformally related flat space. For our particle,PW is related
to the true 3-momentum~i.e., the spatial part of the 4-

momentum! pW by uPW u5F2upW u. Here F is the conformal

FIG. 1. Geometry in the conformally related flat space.
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factor and, to lowest order, has the form 11M /2r̄ , as in Eq.
~2.16!. In our head-on collision the only nonvanishing com-
ponent of momentum is the radial component, and so we
have

P[uPW u5F2pr /A122M /r , ~2.31!

with pr[m0Ur the usual contravariant radial component of
the 4-momentum in the Schwarzschild background coordi-
nates. This relationship can be verified by using the extrinsic
curvature given by Eq.~2.29! in the momentum constraint
Rtr58pTtr and taking the right-hand side to be the stress
energy of a radially moving particle.

The ‘‘basic’’ solution in Eq.~2.29! is the simplest solu-
tion of the momentum constraints. It is straightforward,
though tedious, to decompose the conformal extrinsic curva-
ture into spherical harmonics. To express the results we
adopt the following notation, analogous to that of Regge and
Wheeler@7# for the metric perturbations:

K̂ r̄ r̄ 5 (
l 51,2,...

Al ~ r̄ ; z̄p!Yl 0 , ~2.32!

K̂ r̄ u5 (
l 51,2,...

Bl ~ r̄ ; z̄p!]Yl 0 /]u, ~2.33!

K̂uu5 r̄ 2 (
l 51,2,...

@Kl ~ r̄ ; z̄p!Yl 01Gl ~ r̄ ; z̄p!]Yl 0 /]2u2#,

~2.34!

K̂ff5 r̄ 2 sin2 u (
l 51,2, . . .

@Kl ~ r̄ ; z̄p!Yl 0

1cot uGl ~ r̄ ; z̄p!]Yl 0 /]u#. ~2.35!

Other components vanish due to the azimuthal symmetry.
For the expansion of the basic extrinsic curvature, the

explicit expressions for the coefficient functions are

Al
basic5A 4p

2l 11 S P

2r̄ 2Dql 21~ l 11!~ l 12!

3F2
l

2l 21
1q2

~ l 26!

2l 13 G , ~2.36!

Bl
basic5A 4p

2l 11 S P

2r̄ Dql 21~ l 12!F ~ l 22!

2l 21
2q2

~ l 26!

2l 13 G ,
~2.37!

Gl
basic5A 4p

2l 11 S P

2r̄ 2Dql 21~ l 11!F 5l

2l 21
2q2

~ l 26!

2l 13 G ,
~2.38!

Kl
basic5A 4p

2l 11 S P

2r̄ 2Dql 21F2
~ l 28!

2l 21
1q2

~ l 26!

2l 13 G .
~2.39!

Here q[ z̄p / r̄ ,1, and forq.1, the above expressions are
valid if l is replaced throughout by2l 21 everywhere on
the right-hand side, except in the normalization constant
A4p/(2l 11).

The parameterP is taken to represent the~perturbative!
momentum of the particle. We take our asymptotically flat
coordinate system to be one in which there is no net momen-
tum. This means that the large ‘‘background’’ hole must
have momentum which is in some sense equal in magnitude
to the momentum of the particle. If we take the origin of our
coordinate system, in the conformally flat space, to be~in
some sense! at the center of mass, then the coordinate singu-
larity representing the background hole is at a coordinate
distancez̄bh52(mp /M ) z̄p from the origin. We can get the
contribution to the extrinsic curvature from the background
hole by reversing the sign ofP in the expressions above and
by substitutingz̄bh in place of z̄p . But zbh is a first order
quantity, and so (z̄bh)

n terms can be kept only whenn50.
From Eqs.~2.36!–~2.39! we see that this means that only
l 51 terms can be kept. But thel 51 even parity terms
have no physical content, and are not coupled to gravita-
tional radiation. In treating the perturbative extrinsic curva-
ture, therefore, we consider only the contributions from the
particle.

To use the above results in calculations, we must relate
the extrinsic curvature to the Moncrief wave functionc. It is
useful to have at hand the relations between the extrinsic
curvature and the metric perturbations. This is found by con-
sidering a t5const slice of the perturbed spacetime. It is
straightforward to calculate the extrinsic curvature of this
slice in terms of the perturbations of the spacetime metric. In
the RW notation~but not the RW gauge!, the results are

A5F6@~122M /r !11/2H182 1
2 ~122M /r !21/2Ḣ2

1~122M /r !21/2~M /r 2!H1#, ~2.40!

B5 1
2 F4@H11h082ḣ122h0 /r #, ~2.41!

K5F6F ~122M /r !1/2
H1

r
2 1

2 ~122M /r !21/2K̇ G ,
~2.42!

G5
F6

r 2 ~122M /r !21/2@h02 1
2 r 2Ġ#, ~2.43!

where a prime indicates a derivative with respect tor and an
overdot with respect tot.

To find the initial value ofċ, we use the prescription
given by Abrahams and Price@15#, and we write

c5Q$dgi j ,dgi j8 %, ~2.44!

in whichQ represents a Moncrief combination@6# of pertur-
bations of the metricdgi j and of ther derivative ofdgi j .
The initial value ofċ is then the initial value of

ċ522Q$~122M /r !1/2dKi j ,@~122M /r !1/2dKi j #8%.
~2.45!

By comparing Eqs.~2.21! and ~2.32!–~2.35! we find that
the substitutions needed are

~122M /r !21H2→F22A~] r̄ /]r !2A122M /r ,
~2.46!

K→F22K~ r̄ /r !2A122M /r , ~2.47!
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G→F22G~ r̄ /r !2A122M /r , ~2.48!

h1→F22B~] r̄ /]r !A122M /r . ~2.49!

With these substitutions made in Eq.~2.2! we get a specific
expression forċ, as a function ofr , on the hypersurface. An
independent derivation of the result starts with the expres-
sion

ċ~r ,t !5
r

l11 F K̇1
r 22M

lr 13M
$Ḣ22r ]K̇/]r %G

1
~r 22M !

lr 13M
~r 2]Ġ/]r 22ḣ1!, ~2.50!

where overdots indicate]/]t. With Eqs. ~2.40!–~2.43!, the
right-hand side of Eq.~2.50! can be reexpressed in terms of
A,B,K,G. We have checked that the result is identical to that
found from Eqs.~2.45!–~2.49!, i.e.,

ċ~r ,t !52
2r̄A122M /r

~l11!r 2 H r̄ 2G1
A122M /r

~2l16M /r ! F24~l11!

3~ r̄ B!1
M

r S 1

A122M /r
1Ar

r̄ D ~ r̄ 2A!

1 r̄ ] r̄ ~ r̄ 2A!G J . ~2.51!

In describing the general choice ofċ on a constantt
hypersurface, it is useful to review the equivalent question
for c. If we restrict our choice to a conformally flat 3-
geometry, then the Hamiltonian constraint, and the constraint
of conformal flatness, reduces the specification of the initial
geometry, for each multipole, to a single ordinary differential
equation, Eq.~2.18!, with H25K. The only choice to be
made is the constant, specifying how much of the physically
well-behaved homogeneous solution~2.20! is to be added to
a particular solution; specifying this constant is equivalent to
choosing between, for example, the nonsymmetric~Brill-
Lindquist! solution of Eq.~2.12! and the reflection symmet-
ric ~Misner! solution of Eq.~2.13!. If, on the other hand, we
do not restrict ourselves to a conformally flat 3-geometry, we
have a functional degree of freedom in the initial geometry.
~Equivalently, in the RW gauge we have the freedom to
specify H22K for each multipole.! Whether or not we re-
strict ourselves to a conformally flat 3-geometry, the Mon-
crief wave functionc, defined in Eq.~2.2!, is fixed once the
3-geometry is specified. Furthermore,c, is totally gauge in-
variant.

For ċ the situation is closely parallel. Analogous to the
condition on 3-geometry—that it be conformally flat—we
now have the special condition that the extrinsic curvature be
purely ‘‘longitudinal,’’ i.e., derivable from a potential ac-
cording to Eqs.~2.27! and ~2.28!. For our axisymmetric in-
fall, the mathematical problem of finding theŴi potential,
for each multipole, is the problem of finding the two compo-
nentsŴr̄ andŴu . These can be expanded in multipoles and
written as

Ŵr̄ 5(
l

Al ~ r̄ !Yl 0 , Ŵu5(
l

Bl ~ r̄ !]Yl 0 /]u.

~2.52!

The nontrivial momentum constraints, equivalent to thetu
and tr components of the Einstein equations, then constitute
two second-order differential equations forAl ( r̄ ) and
Bl ( r̄ ). A particular solution to the momentum constraints is,
of course, given by the fundamental solution in Eq.~2.29!.
This solution corresponds to theŴi multipoles

Al
basic~ r̄ !5A 4p

2l 11

P

4r̄ F l ~ l 17!

2l 21
ql 21

1
~ l 11!~62l !

2l 13
ql 11G , ~2.53!

Bl
basic~ r̄ !5A 4p

2l 11

P

4 F ~82l !

2l 21
ql 211

~ l 26!

2l 13
ql 11G .

~2.54!

The above expressions are valid only forq[ z̄p / r̄<1. For
q.1 the replacementl →2l 21 must be made inside the
square brackets.

One finds that there are only two solutions well behaved
at infinity, and that all solutions are well behaved at the
horizon. There are then two well-behaved homogeneous so-
lutions of the momentum constraints that can be added to the
particular solution of Eqs.~2.53! and ~2.54!.

A homogeneous longitudinal solution to the momentum
constraints can be found directly from the differential equa-
tions. Alternatively one can construct those from known so-
lutions. One such solution is an ‘‘image solution,’’ the basic
solution given in Eq.~2.30!, but with z̄p replaced by the
location z̄image,M /2, so that the position of thez̄5 z̄image
singularity is inside the horizon of the background hole.@If
the choicezimage5(M /2)/z̄p is made, then the singularity is
the ‘‘image’’ of the particle under inversion through the
spherical surface atr̄ 5M /2.# The image solution is, then, the
following simple modification of Eq.~2.53! and ~2.54!:

Al
image~ r̄ !5A 4p

2l 11

P

4r̄ F l ~ l 17!

2l 21
qimage

l 21

1
~ l 11!~62l !

2l 13
qimage

l 11 G , ~2.55!

Bl
image~ r̄ !5A 4p

2l 11

P

4 F ~82l !

2l 21
qimage

l 21 1
~ l 26!

2l 13
qimage

l 11 G .
~2.56!

Hereqimage[ z̄image/ r̄ and is always less than unity forr̄ out-
side the horizon~i.e., r̄ .M /2!. Similarly, we can find the
multipole decomposition of the corresponding extrinsic cur-
vature, simply by replacingq by qimagein Eqs.~2.36!–~2.39!.

A second longitudinal solution can be constructed from
the ‘‘a’’ solution given by Bowen and York@14,16# and
elsewhere:

K̂ i j
a 5

3

2r̄4 @Pinj1Pjni1~g i j
flat25ninj !P

knk#. ~2.57!
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The equivalentŴi vector is

Ŵi
a52

1

4r̄3 @Pi23ni P
knk#. ~2.58!

This solution has been of interest in connection with inver-
sion symmetry, but we use it here with no prejudice about
symmetry of the solution under inversion. To make the so-
lution of Eqs.~2.57! and ~2.58! a homogeneous solution we
need only place ther̄50 singularity inside the horizon, say,
on thez̄ axis atz̄a,M /2.

The multipole decomposition of thea solution, in the
notation of Eqs.~2.32!–~2.35! is

Al
a5A 4p

2l 11

P

2r̄ 4 l ~ l 11!~ l 12!qa
l 21, ~2.59!

Bl
a52A 4p

2l 11

P

2r̄ 3 l ~ l 12!qa
l 21, ~2.60!

Gl
a5A 4p

2l 11

P

2r̄ 4 l qa
l 21, ~2.61!

Kl
a52A 4p

2l 11

P

2r̄ 4 l ~ l 11!qa
l 21 , ~2.62!

whereqa[ z̄a / r̄ and is always less than unity forr̄ outside
the horizon. For thea solution, the multipole decomposition
of the Ŵi vector, in the notation of Eq.~2.52!, is

Al
a~ r̄ !52A 4p

2l 11

P

4r̄ 3 l ~ l 11!qa
l 21, ~2.63!

Bl
a~ r̄ !5A 4p

2l 11

Pa

4r̄ 2 l qa
l 21 . ~2.64!

The general longitudinal solution for the extrinsic curva-
ture, for each multipole, is a superposition of three contribu-
tions: ~i! the particular solution given by Eqs.~2.36!–~2.39!,
~ii ! the homogeneous ‘‘image’’ solution corresponding to
Eqs. ~2.55! and ~2.56!, for some l -dependent choice of
z̄image, multiplied by an arbitrary,l -dependent constant, and
~iii ! the homogeneous ‘‘a’’ solution in Eqs. ~2.57!–~2.64!,
for somel -dependent choice ofz̄a , multiplied by an arbi-
trary, l -dependent constant. One is led to ask what the
‘‘proper’’ choice is for the general longitudinal solution. A
somewhat broader question is whether the initial data should
be chosen to be longitudinal.

In the initial data solutions generated for use in numerical
relativity, the choice has often been made to take the solution
to be inversion symmetric@17#. ~That solution turns out not,
in fact, to be longitudinal.! The criterion used in numerical
relativity has been definiteness and the simple-to-implement
inner boundary condition provided by inversion symmetry.
Here our criterion shall be quite different: We study what
choice of hypersurface data is the best representation of the
solution that evolves from an earlier astrophysical configu-
ration. More specifically, we can start a particle falling from
some large radiusr 0 , and numerically evolvec to a hyper-
surface at some later time. We can then study the agreement

between those evolved data and the data given by some pre-
scription for assigning hypersurface data to represent the fall-
ing particle.

It should be understood that in making this comparison
~i.e., evolved data vs prescribed data! there are no issues of
‘‘choice’’ involving the slicing of spacetime. The Moncrief
wave variablec is invariant with respect to perturbative
changes in slicing~as well as shifts and diffeomorphism!, so
that our comparison of evolvedc and prescribedc involves
no gauge-related ambiguities.

D. Choice of hypersurface data

In our discussion above of initial data we found the fol-
lowing: ~i! If we restrict ourselves to conformally flat data,
we must choose a single constant, for each multipole, to
specify our solution forc; if we do not restrict outselves to
conformally flat data, there is an unconstrained function ofr
for each initial multipole ofc. ~ii ! If we restrict our choice to
longitudinal initial extrinsic curvature, then we must specify
two constants for each multipole, in order to fix the initialċ;
if we do not restrict ourselves to initial longitudinal extrinsic
curvature, then there is an unconstrained function ofr for
each multipole ofċ ~in our case of axially symmetric colli-
sion!.

Our goal below will be to see whether there is a simple
physical choice that can be made for the prescribed hyper-
surface data that agrees well with the data evolved from
t50. We shall try to reach that goal by restricting our pre-
scription to conformally flat, longitudinal~CFL! data. The
question we shall be asking, therefore, is whether there exists
a choice of constants specifying the CFL solution for the
particle on a hypersurface so that it agrees well with an
evolved solution. Such a choice of constants could be deter-
mined by looking for some kind of ‘‘best fit’’ of the CFL
solution to the evolved solution, but of much greater interest
is a physically based prescription for the choice of constants
which can be used as a best guess of appropriate initial data
when an evolved solution is not available.

The rule we shall use for the specification of the CFLc is
based on a simple physical consideration. We fix the con-
stant in the CFL solution forc by demanding that the value
of c at the horizon be ‘‘frozen,’’ i.e., fixed at the value it has
on the initial hypersurfacet50. This is in accordance with
the idea of dynamics freezing at the horizon, but it is better
to view it as a consequence of the wave equation~2.4!, and
its horizon limit atr *→2`. The initial data att50 are a
smooth function ofr̄ near the horizon, and hencec becomes
constant asr *→2`. But the potential decreases aser* /2M

and can be ignored near the horizon, and soc5const is a
static solution of the wave equation. The value ofc at the
horizon will therefore be unchanging in time. We shall see,
in the numerical results presented below, that the evolved
data demonstrate this freezing.

It is straightforward to use this condition of freezing at the
horizon to fix the constant multiplier of the homogeneous
solution in Eq.~2.20!, and the consequence is interesting. If
we start with a BL solution@i.e., the solution in Eq.~2.19!
with the particle position atz̄p5 r̄ 0#, then the ‘‘horizon fro-
zen’’ solution, on a later hypersurface, turns out to be a su-
perposition of the following simple solutions:~i! the BL so-
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lution corresponding to the particle at its correct positionz̄p
at time t, ~ii ! a solution for a particle inside the horizon
located atz̄image5(m/2)2/ z̄p , so that when added to the BL
solution the total value ofc vanishes at the horizon, and~iii !
a solution corresponding to a particle at the image location of
the original positionz̄5(M /2)2/ r̄ 0 . The magnitude of the
mass parameter for this last image gives ac at the horizon
equal to the frozen value.

The way in which we fix the constants forċ is a more
complicated, less elegant, implementation of the same basic
physical idea of looking at the nature of solutions of Eq.
~2.4!, near the horizons. Att50 our initial data are taken to
be stationary, and of the form

c5a1br̄1cr̄ 21••• . ~2.65!

Since r̄ is related tor * by

r̄ 5M /21Me21/2er* /4M1Me21er* /4M1O~e3r* /4M !,
~2.66!

it follows that our initial solution has the horizon limit

c5ã1b̃er* /4M1 c̃er* /2M, ċ50. ~2.67!

In the horizon limit, the potentialVl , in Eq. ~2.4!, takes the
form

Vl 5er* /2MV01O~er* /M !, V05
4l214l13

~2l13!4M2e
.

~2.68!

In the horizon limit we are, then, solving the problem

2
]2c

]t2 1
]2c

]r * 2 2er* /2MV0c50, ~2.69!

with the initial data given by Eq.~2.67!. It is simple to show
that the solution to this problem is

c5ã1b̃ cosh~ t/4M !er* /4M1@~ c̃2V0~2M !2ã!cosh~ t/2M !

1V0~2M !2ã#er* /2M. ~2.70!

We can now take the time derivative of this near-horizon
solution, evaluate it on the hypersurface at timet, and find

ċu t5~ b̃/4M !sinh~ t/4M !er* /4M

1@ c̃2V0~2M !2ã#sinh~ t/2M !er* /2M. ~2.71!

This result can be compared with the Taylor expansion
aroundr̄ 5M /2 of the ‘‘basic,’’ ‘‘image,’’ and ‘‘a’’ longitu-
dinal solutions, and the two constants fixing the solution
thereby determined.

From Eq.~2.70! it can be immediately seen thatã does
not depend on time. This is equivalent to the condition of
‘‘freezing’’ on the horizon. The amplitudeG by which we
have to multiply the homogeneous solution~2.20! is

Ghomog~ z̄p!5
m2~r 0!

m2~zp! S z̄p

r̄ 0
D l 11

@11Ghomog~r 0!#21,

~2.72!

whereGhomog(r 0) represents the arbitrariness in choosing the
data on the initial hypersurfacet50. For instance,
Ghomog(r 0)50, 1, and21 represents, respectively, BL, Mis-
ner, and antisymmetric data.

The amplitude of the ‘‘image’’ term in the extrinsic cur-
vature is the following:

G image5D21H 4q3
l 12q4

l 21

M2 F6l ~4l 11!

2l 13 G1
16mp~r 0!~2l 11!q4

2l

M2P F4l @12Ghomog~r 0!#sin~ t/4M !

1
@11Ghomog~r 0!#~52 l 23l 224l 322l 4!

~ l 11!~ l 21 l 11!
sin~ t/2M !G J , ~2.73!

where

D5
4q3

l 21q4
l 21

M2 S 2l

2l 13D @2~5l 11!~2l 13!1~ l 26!~2l 11!q3
2#, ~2.74!

z̄image5(M /2)2/ z̄p , q35M /(2z̄p), andq45M /(2r̄ 0).
Finally, the amplitude of thea term in the extrinsic curvature@see Eq.~2.57!# is
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Ga5D21H 2q3
2l 21F2~ l 17!~5l 11!

2l 21
1

~2l 11!~26l 2126l 227!

~2l 21!~2l 13!
q3

22
~ l 26!~5l 14!

2l 13
q3

4G
1

16m2~r 0!@12Ghomog~r 0!#~2l 11!q3
l 21q4

l 11

P F2
5~ l 22!

2l 21
1

~ l 26!

2l 13
q3

2Gsin~ t/4M !

1
4m2~r 0!@11Ghomog~r 0!#q3

l 21q4
l 11

l ~ l 11!~ l 21 l 11!P F2
10l 219l 18

2l 21
1

~ l 26!~2l 11!

2l 13
q3

2Gsin~ t/2M !J , ~2.75!

wherez̄a5(M /2)2/ r̄ 0 .
Note that this choice of the amplitudes we assign to the

homogeneous solutions fixes all three constants in the gen-
eral solution, but this is not the only way we can fix them.
We could have chosen, for instance, matching the behavior
of the evolvedc for large r . This, however, leads to a less
successful approximation.

III. RESULTS

A. Numerical method

In this section we describe the algorithm used to integrate
the wave equation~2.4! numerically. While the left-hand
side of the equation is straightforward to integrate, the source
given by Eq.~2.8! contains terms with a Dirac’sd and its
derivative. Since we have not found in the literature a dis-
cussion of the numerical treatment of such sources, we shall
describe the method in some detail.

We have found it convenient to use a numerical scheme
with step sizesDt51/2Dr * [h, and with a staggered grid.
As Fig. 2 shows, this method connects points along lines of
constant ‘‘retarded time’’u[t2r * and ‘‘advanced time’’
v[t1r * . On this grid we have implemented a finite differ-
ence algorithm for evolvingc with errors of orderh2; that is,

at a given value oft and r * a measure of the solution error
varies ash2. This method has proven to be easy to imple-
ment and quite accurate.

To derive our difference scheme we start by integrating
Eq. ~2.4! over the cell of our numerical grid shown in Fig. 2.
We use the notation

E E dA5E E celldtdr* 5E
u2h

u1h

duE
v2h

v1h

dv. ~3.1!

Applied to the derivative terms in Eq.~2.4! this gives

E E dA$2] t] tc1] r* ] r* c%

5E E dA$24]u]vc%524@c~ t1h,r * !

1c~ t2h,r * !2c~ t,r * 1h!2c~ t,r * 2h!#.

~3.2!

Note that this result is exact; it contains no truncation errors.
We next consider the integration of the potential term

over the cell. If the cell is one with no source term contribu-
tion, then we can use

E E dA$2Vc%52h2@V~r * !c~ t1h,r * !1V~r * !

3c~ t2h,r * !1V~r * 1h!c~ t,r * 1h!

1V~r * 2h!c~ t,r * 2h!#1O~h4!.

~3.3!

Theh4 order error in a generic cell is equivalent to an overall
O(h2) error in c.

The result in Eq.~3.3! assumes thatc is smooth in the
grid cell. It cannot be applied to those cells through which
the particle world line passes, sincec is discontinuous across
the world line. For such cells we first obtain the coordinates
(r 1* ,t1) of the point where the particle enters the cell and
(r 2* ,t2) where the particle leaves it~see Fig. 2!. Next, we
divide the total area of the cell (4h2) into four subareas
defined as follows:A2 is the part of the area of the rhomb
below t5t1 , A3 is the part of the area of the rhomb over
t5t2 , A1 is the remaining area to the left of the particle’s
trajectory, andA4 is the remaining area to the right.

FIG. 2. A cell of the computational grid containing a segment of
the particle world line. Grid nodes are shown coordinatized with
t,r * labels, and with values of the null coordinatesu[t2r * and
v[t1r * . The areasA1–A4 are used as weights in the numerical
algorithm.
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The integral of theVc term over the area of the cell is
approximated by the sum of this function evaluated on the
corners of the cell multiplied by the corresponding subarea
Ai . This gives us

E E dA$2Vc%52V~r * !@c~ t1h,r * !A31c~ t,r * 1h!A4

1c~ t,r * 2h!A11c~ t2h,r * !A2#.

~3.4!

The truncation error in each such cell is of order (h3), just
enough to have quadratic convergence, since only one cell
with the particle has to be evaluated per time step.

For cells through which the world line passes, the integral
of the source term in Eq.~2.8! must be evaluated. As a con-
venience in discussing the numerical approximation of this
term Eq.~2.8!, we introduce the notation

S5G~ t,r !d@r 2r p~ t !#1F~ t,r !d8@r 2r p~ t !#. ~3.5!

The integration over the cell, when done with due regard to
the boundary terms generated by thed8@r 2r p(t)#, gives

E E SdA52E
t1

t2
dtF G„t,r p~ t !…

122M /r p~ t !
2] r S F~ t,r !

122M /r D U
r 5r p~ t !

G
62

F„t1 ,r p~ t1!…

@122M /r p~ t1!#2 @17 ṙ p* ~ t1!#21

62
F„t2 ,r p~ t2!…

@122M /r p~ t2!#2 @16 ṙ p* ~ t2!#21. ~3.6!

The *dt integral in the first term can be performed to any
precision sinceF andG are known functions. For our goal of
quadratic convergence, a trapezoidal approximation for the
integration is adequate. In the second term the upper~lower!
sign is for particles entering the cell from the right~left! or,
equivalently, forr 1* .r * (r 1* ,r * ). In the same way, in the
third term the upper~lower! sign is for particles leaving the
cell to the right~left! or, equivalently,r 2* .r * (r 2* ,r * ).

When the form ofF andG, given in Eq.~2.8!, is used in
Eq. ~3.6! the result is

F„t,r p~ t !…

@122M /r p~ t !#2 5
ke0

21~r p22M !

~l11!~lr p13M !
, e0[A122M /r 0,

G„t,r p~ t !…

122M /r p~ t !
2] r S F~ t,r !

122M /r D U
r 5r p~ t !

5
ke0

21~122M /r p!

~l11!r p~lr p13M !2 @3M224lMr p2l~l11!r p
2

26M ~12e0
2!r p#,

ṙ p* ~ t !52e0
21A2M /r p22M /r 0. ~3.7!

Our numerical scheme, for cells through which the par-
ticle world line does not pass, is to solve forc(t,r * ), using
Eq. ~3.2! and Eq.~3.3! in the integral of Eq.~2.4!. For cells

containing the world line, Eq.~3.2!, Eq. ~3.4!, Eq. ~3.6!, and
Eq. ~3.7! are used. In summary, the evolution algorithm we
use is

c~ t1h,r * !52c~ t2h,r * !1@c~ t,r * 1h!1c~ t,r * 2h!#

3F12
h2

2
V~r * !G , ~3.8!

for cells not crossed by the particle, and

c~ t1h,r * !52c~ t2h,r * !F11
V~r * !

4
~A22A3!G

1c~ t,r * 1h!F12
V~r * !

4
~A41A3!G

1c~ t,r * 2h!F12
V~r * !

4
~A11A3!G

2
1

4 E E SdA, ~3.9!

for the cells that the particle does cross.
The above equations cannot, however, be used to initiate

the evolution off the first hypersurface. Ift0 denotes the time
at which we have the initial data, we lack the values
c(t02h) necessary to apply the evolution algorithm. We
can, however, use a Taylor expansion to write

c~ t02h,r * !5c~ t01h,r * !22h] tc~ t0 ,r * !1O~h3!.
~3.10!

The right-hand side can be used in place ofc(t02h,r * ) in
the application of the algorithm to evolve off the first hyper-
surface. It is important to note that this substitution is valid
only if c(t,r * ) is not singular betweent5t02h and
t5t02h. This requires that the particle world line not cross
the vertical line atr * betweent5t02h and t5t01h. In
setting up the computational grid, we have been careful al-
ways to avoid such a crossing.

The numerical method used here, evolving initial data for
a partial differential equation on a staggered grid, has little in
common with the transform method used in paper I, in which
we studied only momentarily stationary initial conditions. A
comparison of the two methods~in the case of momentarily
stationary initial data! provided a powerful check of both
methods as well as insights into the relative efficiency and
accuracy of the methods. The agreement of the two ap-
proaches turned out to be excellent. For the goal of produc-
ing an evolved waveform, the numerical evolution method
was found to be faster to a transform method by orders of
magnitude and to give more accurate results.

B. Numerical results

In this section we present computed results for the infall
of a particle, starting from rest at initial coordinate position
r 0 . The particle trajectory is a radial geodesic as described
by Eq. ~2.7!. By ‘‘ t50,’’ we shall always mean the hyper-
surface at which the particle was at rest. We shall consider
two values ofr 0/2M : both 15 and 1.5. The former is a start-
ing point where the influence of the background hole is rea-
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sonably weak.~The gravitational redshift, for example, is
around only 3%.! This represents, then, an astrophysical
starting point for which a Newtonian description would be a
good approximation. The second choicer 0/2M51.5 is not a
reasonable astrophysical starting point, but complements the
first choice ofr 0 , magnifies certain effects, and is useful for
exploration and illustration.

We will be interested in Cauchy data, bothc and ċ, on
subsequentt5const hypersurfaces.~We repeat here an im-
portant feature of the formalism: The gauge-invariant in-
formation c and ċ is unaffected by a change in slicing.
When we say, therefore, at5const hypersurface, we mean
only t5const to zero order in the particle mass.! There are
several ways in which we can specify which later slice we
are considering.~i! We could specify the Schwarzschild co-
ordinate timet for this hypersurface.~ii ! We could specify
the location of the infalling particle corresponding to timet;
for this purpose we use the notationr p ~or r p* , the r *
equivalent!. Note thatr p is related to the position parameter
z̄p by r p5 z̄p(11M /2z̄p)2. ~iii ! We could specify the param-
eterP describing the particle’s momentum at timet. ~This is
the P parameter that enters into the Bowen-York description
of extrinsic curvature; see the discussion in Sec. II relating
this parameter to the particle’s 4-momentum components.! A
picture of a sliced Schwarzschild spacetime, illustrating the
particle trajectory and the labeling of the spacetime, is shown
in Fig. 3.

In our results the crucial concept is the difference between
‘‘evolved’’ data and ‘‘prescribed’’ data. By ‘‘evolved’’ val-
ues ofc and ċ we shall mean the values that are found on
some hypersurface after numerical evolution forward in time
from the t50 original hypersurface. By ‘‘prescribed data’’
we shall mean data that are chosen according to one of the
prescriptions of Sec. II. Prescribed data, for our purposes
here, are always chosen from the set of possibilities that we
describe as conformally flat, longitudinal. This means that
the 3-geometry is conformally flat, and the extrinsic curva-
ture is ‘‘longitudinal,’’ in the sense defined by York@18#.
For c, specific choices that we have described in Sec. II
include ~i! BL data, the simplest choice forc, ~ii ! Misner
data, data that are symmetric with respect to reflection under
r̄→(M /2)2/ r̄ in the conformally related flat space, and~iii !

‘‘frozen’’ data, the conformally flat solution of the Hamil-
tonian constraint that has the value ofc at the horizon fixed
to be the horizon value on the original (t50) hypersurface.
Prescribed choices forċ include ~i! the basic Bowen-York
@14# solution, the simplest longitudinal solution, and~ii !
‘‘horizon matched’’ data, the longitudinal solution with the
form of ċ ~more specifically, the first and second derivatives
with respect tor * ! matched to the evolved solution at the
horizon limit.

We first present comparisons of radiated energy. In Fig. 4
we show the quadrupole energyE2 radiated during the infall
of the particle fromr 051.5(2M ). On the originalt50 hy-
persurface, the form ofc is taken to be the Misner solution.
~Since the particle is momentarily stationary att50, we have
ċ50 on this hypersurface, of course.! The plot shows the
energy radiated from the particle for times after the particle
is at a locationr * 5r p* . These energies are computed from
the solution that evolves from the data on the constant time
hypersurface labeledr p* . The ‘‘true’’ data are the data that
evolved from thet50 original hypersurface on which the
particle was momentarily stationary. The energy computed
in this way is the ‘‘true’’ total quadrupole energy emitted
during infall from 15(2M ), and has the value
(8.131023)m0

2/(2M ).
The plot shows the energy generated when the true~i.e.,

evolved! c and ċ, on a hypersurface, are replaced with pre-
scribed data appropriate on that hypersurface for the position
and momentum of the geodesically falling particle. To find
the points for the dotted curve, for example, on each hyper-
surface, position and momentum of the infalling particle
were calculated and used to generate Misner data forc, and
Bowen-York data forċ, on that hypersurface. These pre-
scribed data were then numerically evolved forward in time,
and the resulting radiation to a distant observer was com-

FIG. 3. Hypersurfaces of constantt in the Schwarzschild space-
time. The trajectory is shown of a particle starting from rest at
position r 0/2M515, and falling inward on a radial geodesic. Also
shown are hypersurfaces of constant time att/2M520, 40, 60, and
80. The hypersurfaces are labeled with the value oft, of the particle
positionr p , and of momentum parameterP. The t/2M520 hyper-
surface, for example, can also be referred to as theP/m050.05
hypersurface, ther p/2M514.6 hypersurface, or ther p* /2M517.2
hypersurface.

FIG. 4. Radiated energy, for infall fromr 051.5(2M ). Energy is
shown as a function of ther p* label of a hypersurface and results are
given for several types of prescribed hypersurface data. Radiated
energy computed is always the energy radiated starting from the
time of the hypersurface on which data is prescribed. See text for
details.
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puted. This radiated energy is presented as a function of the
hypersurface labelr p* . Similarly, the solid curve shows the
result of replacing the true hypersurface data with frozen
data forc and horizon-matched data forċ. The energies of
the dashed curve are the result of replacing theċ data with
horizon-matched data, and retaining the truec data.

These results show that the ‘‘frozen-matched’’ prescrip-
tion are in slightly better agreement with the correct radiated
energy than are the other choices. The choice of frozen-
matched conditions is also more justifiable, since it is based
on a physical consideration. Throughout the remainder of the
paper, we shall consider the frozen-matched choice as the
best in the set of conformally flat, longitudinal possibilities.

In Fig. 4, what is more important than the comparison of
prescriptions for hypersurface data is the fact that none of
them is very good. Figure 5 gives some insight into the de-
tails of the failure. Here, for infall fromr 051.5(2M ), the
data forc on each hypersurface are replaced by frozen data;
the true data forċ ~i.e., the data evolved fromt50! are
retained. It is important and interesting that the replacement
of the c data introduces a much smaller error than the re-
placement ofċ. This is a similar conclusion that one finds in
the results of Bakeret al. @19# in a rather different context.

The previous energy results, of course, are for infall from
an astrophysically unreasonable initial radius. In Fig. 6, en-
ergy results are shown for infall fromr 0515(2M ), in which
case the true total quadrupole radiated is
1.6431022m0

2/(2M ). Results are shown for three choices of
prescribed hypersurface data. Again we see that the agree-
ment with the true energy is reasonably good if the true~i.e.,
evolved! data for ċ are retained. For the other cases the
agreement is good only if the data is replaced on a hypersur-
face well before the particle reaches the peak of the potential
Vl at around 1.55(2M ).

We ask next what the appearance of hypersurface data is,
and how the true and prescribed forms differ. In Fig. 7 we

show the form of the true quadrupolec generated by a par-
ticle falling from rest atr 0515(2M ), with Misner data ini-
tially specified. The figure shows the manner in whichc(r * )
evolves from its initial Misner form att50. As the particle
moves inward, the simple prescribed form of a single peak
evolves into more complex shapes. Figure 8 shows that on
late hypersurfaces, after the particle, att'100, r p* '0 has
passed through the region in which the Zerilli potential is
strong, c clearly contains the shape of in- and outgoing
waves with the profile of quasinormal ringing.

Figures 9–11 compare the truec on a hypersurface with
prescribed horizon frozen data on the same hypersurface. It
should be noted that the magnitude of the discontinuity in the

FIG. 5. Radiated energy, for infall fromr 051.5(2M ). Energy is
shown as a function of ther p* label of a hypersurface. On that
hypersurface the true, i.e., evolved, data forċ have been retained,
but frozen prescribed data forc have been substituted for the true
c.

FIG. 6. Radiated energy, for infall fromr 0515(2M ). Energy is
shown as a function of ther p* label of a hypersurface and results are
given for several types of prescribed hypersurface data. The com-
puted energy is always the energy radiated starting from the time of
the hypersurface on which data are prescribed. See text for details.

FIG. 7. The true quadrupolec(r * ) for infall from r 0515(2M ),
i.e., c computed by numerical evolution from the initial hypersur-
face. Curves are shown for several hypersurfaces labeled withr p* ,
the value of the particle’sr * location on each hypersurface.
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r derivative of c is related, through the Hamiltonian con-
straint, to the mass of the particle. It must, therefore, be the
same for the pairs of curves in these figures and for all forms
of c satisfying the Hamiltonian constraint. Results are shown
for several different hypersurfaces, and the meaning is clear.
The prescribedc never contains the complexity of shape that
indicates the presence of radiation.

In Fig. 12, c is shown for Misner prescribed data on a
sequence of hypersurfaces, this time for infall from
r 051.5(2M ). In Fig. 13 the frozen prescribedc solution is
shown on the same hypersurfaces. The comparison of the
two figures shows the difference induced by the freezing of
the value ofc at the horizon.

The differences in the evolved and prescribed forms ofc
suggest that at late times the form ofc is not conformally flat
initial data. This is explicitly demonstrated and quantified in
Figs. 14 and 15, in which the gauge-invariant index of con-
formality, developed in Sec. II B, is plotted. The traveling
bumps, with the appearance of radiation, confirm that the
wave content of the true initial data is associated with its
failure to be conformally flat.

We next look at results forċ. Figures 16, 17, and 18
compare the true~i.e., evolved! form of the quadrupolarċ
with the horizon matched prescription, for infall from rest
~and Misner data! at t50, r 0/2M515. As would be ex-
pected, the difference between the evolved and the pre-
scribed forms grows with time.

The same comparison of true and horizon-matchedċ is
given in Figs. 19 and 20, this time for infall from
r 0/2M51.5(2M ). In all the comparisons ofċ, the horizon

FIG. 8. The true quadrupolec(r * ) for infall from r 0515(2M ),
shown on late hypersurfaces. Fort/2M5109.7 the shape ofc
shows outgoing quasinormal radiation; fort/2M5149.6 both ingo-
ing and outgoing quasinormal oscillations are evident.

FIG. 9. The comparison of true and prescribed quadrupolec for
infall from r 0515(2M ). The form of the true datac(r * ) for infall
from Misner data on the original hypersurface is compared with the
frozen prescribed data on the hypersurface att/2M552.2.

FIG. 10. For infall fromr 0515(2M ), the evolved data are com-
pared with the frozen prescribed data, att/2M596.9.

FIG. 11. For infall fromr 0515(2M ), the evolved data are com-
pared with the frozen prescribed data, att/2M5100.2.
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matched choice was made for the prescribed data. The spe-
cific choice, however, makes little difference in the compari-
sons. In Fig. 21 a comparison of the trueċ and two prescrip-
tions is given for infall fromr 0/2M51.5. ~Infall from the
small radius magnifies differences of evolution and prescrip-
tion.! The difference between the basic Bowen-York@14#
prescription forċ and the horizon matched prescription is
small, while the difference between either of them and the
correct data forċ is very large. The horizon-matched pre-
scription is a slightly better approximation than the ‘‘basic’’
one.

Another way of looking at the difference between the true
data and prescribed data is to investigate the effect the dif-
ference has on outgoing radiation. Figures 22, 23, and 24
show the waveforms@that is,c(t) at larger # generated by
different types of prescribed data. In each case, the solid

curve, labeledt50.0, shows the ‘‘true’’ waveform, the
waveform generated by evolution of the original, momen-
tarily stationary data att50. This true waveform is com-
pared with the waveforms evolved from prescribed data
placed on later hypersurfaces. The figures show that pre-
scribed data on thet/2M563.9 hypersurface leads to an out-
going waveform in reasonably good agreement with the true
waveform. For prescribed data ont/2M593.6 ~with the par-
ticle at r p* /2M53.91, orr p/2M53.15!, however, large dif-
ferences are evident between waveform and the true wave-
form. The disagreement is less severe when the evolved data
for ċ is retained.

FIG. 12. Misner prescribed data for infall fromr 051.5(2M ),
shown on a sequence of hypersurfaces.

FIG. 13. Frozen prescribed data for infall fromr 051.5(2M ),
shown on a sequence of hypersurfaces.

FIG. 14. The index of conformalityI conf for infall from
r 0515(2M ) with Misner initial data. The index, for quadrupole
perturbations, is equivalent toH22K in the RW gauge, and is a
gauge-invariant measure of the extent to which the hypersurface
3-geometry fails to be conformally flat~see text!. The index is
given, as a function ofr * , for several different hypersurfaces. The
noisy nature of the curves is caused by the need to take second
differences of numerical results to computeI conf .

FIG. 15. The index of conformalityI conf for infall from
r 0515(2M ), shown on late hypersurfaces.
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An analogous comparison of waveforms is shown in Fig.
25 for infall from r 0/2M51.5. Here the effect of prescribed
data on the phase of the wave is much more evident than in
the r 0/2M515 case.

In the work of Abrahams and Cook@3#, one of the moti-
vations for the present work, the ‘‘close limit’’ was used to
evolve prescribed data. This technique@12,15# is applicable
to a hypersurface at a time late enough that the colliding
bodies can be considered to be inside a single nearly spheri-
cal horizon. In this technique one uses only the large-r parts
of the initial data of the colliding bodies. This technique was
found to be surprisingly successful in dealing with head on
collisions of equal mass holes. We saw in paper I, however,
that for very unequal mass holes the close limit is valid only
at extremely small separations. For comparison, we have ap-
plied the close limit to the present problem. On a sequence of
hypersurfaces we replace the hypersurface data by the large-

r form of the data, and evolve the results. The resulting
energies are shown in Fig. 26. These results, like those in
paper I, show that the close-limit calculations of energy are
of limited usefulness.

IV. DISCUSSION AND CONCLUSIONS

The numerical results of the previous section give a range
of comparisons between astrophysically evolved, and ‘‘pre-
scribed’’ hypersurface data~for quadrupole modes.! The first
lesson to be learned from these results is that for the particle
limit the standard prescriptions for hypersurface data are not
adequate for describing an astrophysical strong gravitational
field. For a particle falling fromr 0515(2M ), for example,
an approximation for the radiation using prescribed data on a
late hypersurface seriously overestimates the radiated en-

FIG. 16. For r 0/2M515, the true~i.e., evolved! form of ċ
compared with the horizon-matched prescribed form ofċ, for
t/2M552.2.

FIG. 17. For r 0/2M515, the true~i.e., evolved! form of ċ
compared with the horizon-matched prescribed form ofċ, for
t/2M596.9.

FIG. 18. For r 0/2M515, the true~i.e., evolved! form of ċ
compared with the horizon-matched prescribed form ofċ, for
t/2M5100.2.

FIG. 19. For r 0/2M51.5, the true~i.e., evolved! form of ċ
compared with the horizon-matched prescribed form ofċ, for
r p/2M51.34.
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ergy. Figure 6 shows that prescribed data for the particle at
r p53.6M ~equivalent tor p* /2M51.6! give a radiated energy
too large by a factor of 10. Even for a hypersurface with the
particle in the marginally strong field atr p55.7M ~equiva-
lent to r p* /2M53.4! the energy is overestimated by a factor
of 2.

This is in marked contrast to the results of Abrahams and
Cook @3# for the head-on collision of equal-mass holes. They
prescribed standard data on a late-time hypersurface and
found predictions of energy in excellent agreement with pre-
dictions from numerical relativity. Baker and Li@4#, looking
further into this problem, found that the predicted energy
was remarkably insensitive to the choice of hypersurface.
Good predictions could be made with data specified on hy-
persurfaces over a fairly wide range of times. There are cer-
tain technical differences between the nature of the pre-

scribed data we use here and that used by Abrahams and
Cook. In particular, they used fully symmetrized data,
whereas our preferred choice of prescribed data is data that
are conformally flat, longitudinal data that are frozen and
matched at the horizon. This is surely not the origin of the
different conclusions. For one thing switching from symme-
trized hypersurface data to antisymmetrized, in numerical
relativity computations, makes only a minor difference in the
results. More important, the work of Baker and Li does not
use symmetrized data, and the study by Bakeret al. @19#
finds excellent results when symmetrized data are replaced
by unsymmetrized approximate data. As a further check of
this point, we have redone several of our computations using
symmetrized prescribed data and, as expected, found only

FIG. 20. For r 0/2M51.5, the true~i.e., evolved! form of ċ
compared with the horizon-matched prescribed form ofċ, for
r p/2M51.21.

FIG. 21. For r 0/2M51.5, the true, i.e., evolved, form ofċ
compared with the horizon-matched prescribed form ofċ, and with
the Bowen-York form.

FIG. 22. The quadrupole waveformc(t) at r /2M51000 for
infall from r 0/2M515. Three curves are shown corresponding to
the true waveform~data prescribed att/2M50! and to the wave-
forms generated when frozenc data and horizon-matchedċ data
are imposed on later hypersurfaces.

FIG. 23. The quadrupole waveformc(t) at r /2M51000 for
infall from r 0/2M515. Three curves are shown corresponding to
the true waveform~data prescribed att/2M50! and to the wave-
forms generated when horizon-matchedċ data are imposed on later
hypersurfaces and the true, i.e., evolved, values ofc are retained.
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minor differences from the results for other prescriptions.
The crucial difference between the failure of prescribed

data here, and its success in the previous studies, must lie in
the difference between the head-on collision of equal-mass
throats, and of a large-mass throat with a small-mass~‘‘par-
ticle’’ ! one. It is not difficult to see why this should be. It is
the same reason the ‘‘close-limit’’ approximation is not suc-
cessful in the collision of very unequal masses.~See Fig. 26
and paper I.! For the collision of equal masses, a common
horizon engulfs both colliding throats as they begin to get
into each other’s strong field influence. The generation of the
large-amplitude gravitational waves~i.e., the excitation of

quasinormal ringing! more or less coincides with the disap-
pearance of the individual throats inside a single connected
horizon. For a hypersurface corresponding to both throats
inside a single horizon, it is plausible~and is found to be
valid by the success of the calculations! that details of the
geometry near the throats is not important since they cannot
influence the region exterior to the horizon. For a collision of
high- and low-mass throats the situation is very different.
Strong radiation is generated when the particle is near a co-
ordinate distancer 51.5(2M ), near the peak of the Zerilli
potential. For ourt5const slicing this corresponds to a hy-
persurface for which there is no common horizon, i.e., where
the particle is still well outside the horizon of the background
hole. For this slicing, in fact, the particlealwaysstays out-
side the background horizon, and the details of its local field
are always in causal connection with infinity. The fault
would not seem to be in the slicing. At5const slicing was
the choice in the method used by Abrahams and Cook@3#
and by Baker and Li@4#, and is an obviously natural slicing
for the particle infall problem.

We conclude from these considerations that the fault lies
in the nature of the prescribed data we have been using, i.e.,
the standard choice of conformally flat longitudinal hyper-
surface data. As shown in the figures of the previous section,
there is a dramatic difference between the true hypersurface
data on a late hypersurface and prescribed data. There are
two strong reasons to suspect that the most important differ-
ence between true hypersurface data and any of the pre-
scribed data is the difference inċ. First, our argument above
suggests that the failure of prescribed data in the particle
limit lies in the failure to describe fields near the particle. In
Figs. 17–21, we see that there is~at least visually! a large
difference between the true and the prescribed data close to
the particle. This difference can be ascribed to the constraints
on conformally flat longitudinal data. The sharp variations in
ċ(r * ) are, intuitively, features that should couple strongly to

FIG. 24. The quadrupole waveformc(t) at r /2M51000 for
infall from r 0/2M515. Three curves are shown corresponding to
the true waveform~prescribed data att/2M50! and to the wave-
forms generated when frozenc data are imposed on later hypersur-
faces and the true, i.e., evolved, values ofċ are retained.

FIG. 25. The quadrupole waveformc(t) at r /2M51000 for
infall from r 0/2M51.5. The solid curve shows the ‘‘true’’ wave-
form evolved directly from the initial data att/2M50. The dashed
curve gives the waveform generated when prescribed data~horizon-
frozen data! for c, and evolved data forċ are placed on a late
hypersurface.

FIG. 26. Radiated energy for infall fromr 0515(2M ) computed
with the close limit. On every hypersurface close-limit data were
substituted and evolved. The computed energy is plotted as a func-
tion of the hypersurface parameter on which the close-limit data
were substituted.
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radiation. The inability of the prescribed data to model these
features must be viewed as potentially important. The second
reason for focusing attention onċ is that the hypersurface
data forċ appear to be much more important than that forc.
This was the conclusion in the study by Bakeret al. @19#. In
that work, which used colliding throats and no stress energy,
Einstein’s equations were linearized in the momentum of the
throats and a clear identification could be made of how much
of the radiated energy could be ascribed to the initial 3-
geometry, how much to the momentum, i.e., the initial ex-
trinsic curvature, and how much to the interaction of the two.
It was found that except for extremely small initial momen-
tum the radiation was almost completely due to the extrinsic
curvature. This was called ‘‘momentum dominance’’ by
Baker et al. Here we cannot make such a clear distinction.
Because of the moving particle source, treated as a stress
energy contribution, we cannot ascribe the radiation to the
two kinds of initial data information. Nevertheless, the en-
ergy results in our Figs. 4–6 show that some other form of
‘‘momentum dominance’’ applies to the particle infall; the
energy radiated is much more sensitive to the details of the
extrinsic curvature than to the details of the 3-geometry.

The insights provided by the particle limit have helped to
clarify what is needed in the way of hypersurface data for
numerical evolution. A direct consequence of the present
study is the realization that prescribed data will not work as

successfully for unequal-mass head-on collisions as for the
equal-mass case. At some ratio of masses of the colliding
holes the use of prescribed data on a late-time hypersurface
will start to give a significant overestimate of the radiated
energy. We have, so far, studied only the quadrupole pertur-
bations. Higher multipole moments are less important astro-
physically, and are not likely to lead to very different con-
clusions.

The head-on collision, of course, is neither astrophysi-
cally plausible nor an interesting source of outgoing radia-
tion. The interesting case is the last stage in the orbital decay
of a binary pair of holes. For this one would like to start with
astrophysically reasonable data on a ‘‘as late as possible’’
hypersurface. An understanding of how to do this for the
head-on case is a necessary step~and perhaps a sufficient
one! towards an understanding of the more general problem.
With that motivation, we shall, in a subsequent paper, inves-
tigate whatcan be done to provide good late-time data. We
shall, in particular, abandon the traditional choice of confor-
mally flat, longitudinal data, and, instead, shall focus on data
that give a good description of the field near the particle.
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