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“Faster than light” photons in dilaton black hole spacetimes
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We investigate the phenomenon of “faster than light” photons in a family of dilaton black hole spacetimes.
For radially directed photons, we find that their light-cone condition is modified even though the spacetimes
are spherically symmetric. They also satisfy the “horizon theorem” and the “polarization sum rule” of Shore.
For orbital photons, the dilatonic effect on the modification of the light-cone condition can become more
dominant than the electromagnetic and the gravitational ones as the orbit gets closer to the event horizon in the
extremal or near-extremal cas¢S0556-282(97)08320-3

PACS numbds): 04.62:+v, 04.50+h, 04.70.Dy

[. INTRODUCTION of photons in these rather different black hole spacetimes.
In the next section we consider the effective action of
In 1980, Drummond and Hathrdl] discovered that pho- dilaton gravity which includes one-loop quantum effects
tons may propagate faster than the “speed of lightin ~ from matter. Using the geometric optics approximation, we
curved spacetimes if QED one-loop quantum effects arélerive the equation of photon propagation. In Sec. lll, the
taken into account. For instance, they found that in apropagations of photons in different dilaton black hole
Schwarzschild black hole spacetime, an orbital photon is suspacetimes, parametrized by the dilaton coupling constant
perluminal in one polarization and subluminal in the other.are studied. The light-cone condition of the specific cases of
This in fact gives a gravitational analogue to the phenomradial and orbital photons is considered in more details in
enon of electromagnetic birefringen¢2]. Because of the Secs. IV and V, respectively. Conclusions and discussions
one-loop vacuum polarization, the photon exists part of theare presented in Sec. VI.
time as a virtuale® e~ pair. This introduces a size on the
phOtOﬂ of the order of the Compton Wavelength of the elec- II. PHOTON PROPAGATION IN DILATON GRAVITY
tron \.=1/m, wherem is the mass of the electrdihere we
use the notatior =c=e,=1). After acquiring a size, the ~ We shall be using the action for dilaton gravity,
motion of the photon could thus be altered by the tidal ef-
fects of the_spacetime curvature. As discussed in R@f S:f d4x\/—_g[R—2(V¢)2—e*2£‘¢F2], 2.1)
however, this change of speed does not necessarily imply
any violation of causality. R
In the past few years, the study of this phenomenon hawhere ¢ is the dilaton field anda is the dilaton coupling.
been extended by Daniels and Shore to Reissner-NordstroThe one-loop quantum effects from matter are summarized
(RN) [3] and Kerr[4] black hole spacetimes. Two general in the effective action3]
features, called the “horizon theorem” and the “polarization
sum rule,” emerge from these consideratigf$ First, the 1 Y ey
horizon theorem states that the velocity of radial photons Sl:?f d4x\/—_g[aRFM,,FM +bR,,,F*F";
remains equal t@ at the event horizon. In fact it has been
found that in spherically symmetric spacetimes like the +CR,o FHFITHA(V F#)(VF7)]
Schwarzschild and RN ones, the velocity of radial photons

does not change at all. Second, the polarization sum rule 1 4 ~ P
states that the polarization averaged velocity shift is propor- + ﬁ d*xV=glz(F R+ YR, R FAF,
tional to the matter energy-momentum tensor. Therefore ve-

locity shifts of the two polarizations are equal and opposite (2.2

in Ricci flat spacetimes.

In this work we would like to study this phenomenon in Wherea, b, ¢, d, z, andy are constants. For QED correc-

dilaton black hole spacetimes. Dilaton gravity arises from{onS:

low-energy effective string actions. The corresponding black 13

hole solutiong 6,7] exhibit quite different causal structures a= B N c= il

from the usual RN solutions. For example, the inner horizon 36 907 = 907’

is a spacelike surface of singularity in the dilaton case versus

a regular surface in the usual one. Therefore it would be d_2_a __a_z _ 14a® 23
interesting to see if there is any peculiarity in the propagation T157 T 9 YT 45 23

where « is the fine structure constant andis the electron
*Electronic address: htcho@mail.tku.edu.tw mass. Here we are effectively making a local expansion in
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56 “FASTER THAN LIGHT” PHOTONS IN DILATION ... 6417

powers ofR/m? and aF?/m* whereR andF are generic curvature and field strength, and are retaining only the leading order
terms.
We derive the equation of motion for the electromagnetic field by taking the variation

5(S+Sy)

. 1 1 1
SA 0=V (e R FaVM(RF’“’)— ﬁbvg( RUF Y —RME %) — ﬁcVH(RWMF“)

14

1 2
oSOV = VAV FY) — —2(F7F, ¥ F4 2R Y F)

2
~ YRRV RO AR Y T FRORIY F ) =0, (2.9

Next we write

Fo=Futi., (2.5

WhereF_W is the background electromagnetic field aﬁg is the photon field. To obtain the equation of motion for the

photon, we put Eq(2.5) into Eqg.(2.4) and take the part linear iﬁ,w. In addition, we assume that typical variations of the
background electromagnetic, gravitational, and dilatonic fields, characterized by thé& saeemuch smaller than that of the
photon field, that is,

L>A, (2.6
where\ is the photon wavelength. Then derivatives IRE andVR can be neglected as comparethB. Hence, from Eq.

(2.4) we have

- 1 - A
v, - —m aQHR(V,§0) beza“’(RWV 7ROV, )= et Re, (V,§7)
L 4ROV, - YRy ) - 2B ETE, e 2F R,
+2m2 ( o - o p.)_m4z ( or¥ u + otV u )

——yeza‘/’( F'F,V, o+ FrF, v 7+ FRoF 7V E, ) =0. 2.7

agT agT

Without quantum correctiony] f’” 0. ThusV f’” is at least of first ordeforder of @ in QED) in perturbation. Since we

are considering only first order effects, we should consistently neglect terms in the above equatﬁpf\/\ﬂﬂwhlch are of
second order or higher, giving

N 1 R 1 - R 4
v fur— ﬁbeza“’(R“”V(,fM v)— ﬁce26‘</>wam(vaf”) - ﬁzeza’/’F“”FmVﬂf‘”

2 e
—Fyeza"’(FWFMV#f””rF'”F”VM o) =0. (2.9

Actually, to neglect terms containiri@ﬁ“”, we need to have a bound on this derivative. A sufficient condition is that
AS ), 2.9

where\ . is the electron Compton wavelength.
To study the propagation of the photon, we use the geometric optics approxirf&liam which one writes

f=f

nv 3%

el?, (2.10

where ¢ is a rapidly varying phase anfi,, a slowly varying amplitude. The momentum of the photon is givenkhy
=V, 0 and the amplitude can be written as

fﬂvzkﬂav_kvapv (211)
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wherea,, is the polarization vector satisfying the condition
k,a*=0. (2.12

In this geometric optics approximation, the equation of motion becomes

1 1 2
K=~ DRI, T, ")~ — @R, (K, 1)

4 - __ 2 —
_ ¢ v oT_ ___\ p2a¢ o vT o v —
m4ze2"" FArF K, f m4yea (FHF K, 7+ FHF 7k, f,)=0

1 - 2 -
=k2a’— o be??Rr7k,(k,a"—k"a,) — — ce&?R*, k k7a”
m m

8 - 2 . -
- ermFWFMkMkUaT— Fyezf"d’[|:W|:[,T|<M(kVaT— k'a")—F*F"k k,a,]=0. (2.13

In the next section, we shall study the propagation of photons in dilaton black hole spacetimes using these equations.

Ill. DILATON BLACK HOLE SPACETIMES 9= nabep.ael)b’ (3.9

One family of electrically charged dilaton black holes
[6,7] can be obtained from the action in EQ.1) with the

line element e,=diag\,1/\,R,R sing), (3.9
ds?=—N2dt?+ N 2dr?+ R%(d6+sirfad¢?), (3.1)

where 7, is the Minkowski metric, and

with the inverse
where

e, =diag 1/\ )\, 1/R,1/R sing). (3.10
P12 po\(1-adi+a’) . ,
= ( 1— %) (1_ T_) , (3.20  The vierbein components of the Riemann terRgy.q are
a2/(1+a? R d )\d)\ A 3.1)
r a“/(1+a“) o=l N 5= | =A, i
R=r(1—7> , 3.3 dri " dr
A dR)/d\
with r=r_ andr=r_ corresponding to the outer and inner Ro207= Rosos= 35| 57 || gr | =B (3.12
horizons, respectively., andr _ are related to the mad4
and char of the black hole b
R Y N2[d?R|  \[dR|[d\|
1-32 Ri217= Rizis= = & a2 “Rlar/\ar =C,
2GM=r, + ) (3.9 (3.13
1 A\?[dR\?
GQ* ryr- R =———(—) =D.
Yy (3.5 2823 p2 g2l dr
where G is the Newton’s constant. Moreover, the electric YSing the notationJgy= 638, 8,45 , etc., the Riemann ten-
and the dilaton fields are given by sor can be expressed more compactly as
_ 9 Rapca=AUgpUca+ B(UZRUSE+ USRULS
Foui=—, (3.9
01 42 +Ccuula+uBuld) +puZus,  (3.19
A o\ 2a%(1+a?) and the vierbein components of the background electric field
e2a¢:(1— T_) 37 is
To introduce a local set of orthonormal frames, we use the Fap= Q . udt. (3.15

vierbein fieldse,,* defined by 4ar
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In this local set of orthonormal frames, the equation of mo- Np= kaUab! (3.19
tion for photons in Eq(2.13 can be written as

sincel?, m?, andn? are independent and orthogonalkd

k2ab— ibezg“l’Rackc(kaab— kPa,) We also introduce the dependent vectors
2m?
2 ~ 8 -~ a T klm L2
_ _ZceZaqSRabcdkakcad_ _42e2a¢|:ab|:cdkakcad Pp= k Uab (k my k Ib): (3-20)
m m
2 agrgace b,d_ L d,by_ Facgbd 3 1
—ﬁye2 [F°F caka(k°a®—k"a®) — F*°F %k kqa,] qb:kauibzﬁ(klnb—ke’lb), (3.2
=0. (3.16
The independent components of the polarization vector can M= kaUab=—(k2nb— k3mg). (3.22
be projected out using the vectors,
l,=kUg5, (3.17  Contracting the equations of motion in E@.16 with 12,
a m?, andn?, respectively, we obtain equations for each inde-
my,=k2Ug;, (3.18  pendent component of the polarization vecidy

KX(a-v)— %beﬁaﬁ[m% B(m?+n?)+C(p?+q?)+Dr?](a-v)
m
2 .
— Eceza‘f’[A(I -v)(a-)+B(m-v)(a-m)+B(n-v)(a-n)+C(p-v)(a-p)+C(q-v)(a-q)+D(r-v)(a-r)]

8 Q 2 2
——zeza‘/’( ) (I-v)(a- I)——4ye2a¢( ) [1%(a-v)+(I-v)(a-1)]=0, (3.23
m?* 412

’7Tr

wherev?=12, m?, or n?. To show the peculiarities of the 1 i

propagation of photons in these situations we shall concen- {kz— —be[AI?+B(m*+n?) +C(p’+q°)]
trate on the cases of radially directed and orbital photons in 2m

the next two sections.

2 . 1\?
——ce®®| Bn*+C| —| n?
IV. RADIAL PHOTONS m K
2
. . 2 R
For radially directed photons, B —4ye2a‘/’( Q 2) Iz] (a-0)=0, 5
m 4arr
k?=k3=0; (4.1
wherev?=m? or n?,
then To have nontrivial solutions, we require

1 ~

12=(k',k%,0,0), 4.2 k?— Fber’W’[Aler B(m?+n?)+C(p2+qg?)]
m

m?=(0,0k°,0), (4.3 2 . 1\2

— —ce??| Bn?+C o n?

m

n2=(0,0,0k%). (4.4)
2 [ 0o\’

. N - —ye?as 12=0. (4.6)
Thus @-1) corresponds to the unphysical polarization. On m* 412

the other hand, the equations for the physical polarizations
(a-m) and @-n) in Eq. (3.23 are the same, To first order in perturbation, this gives



6420 H. T. CHO 56

KO 1 . V. ORBITAL PHOTONS
=1 = — 2a¢
KL 1 2m2(b+20)e (B+C) For orbital photons, take
1 a2 112 T
:1_F(b+zc)m k*=k“=0 and 6=§; (5.2
m a
r2 rt r—\ -1 then,
X r_4 1- T 1- T . (47) o o
I _(O!k 1010)1 (52)
Fora?=0, m2=(0,0k°,0), (5.3
0
% _1 9 n?=(k%,0,0k%). (5.4

Thus @-n) is the unphysical polarization. From E@®.23,
which is the case for Schwarzschild or RN black holes agher polarization @-1) and theé polarization @-m) satisfy
well as other spherically symmetric spacetini@s3], where the equations
the light-cone condition for radial photons is not modified.

For a2+0, the light-cone condition is modified in this dila- 1 ezg“” ) 5 o ) )
tonic case even though the spacetime is still spherically sym} K™~ o be”?[Al*+B(m"+n%)+Cq™+Dr?]
metric. For example, for QED quantum corrections

3\ 2 2
_ 18 2a  1lla —~ %cezf“f’ A+C k—o) 12— %ze?a"ﬁ Q 2) E
b+2C——ﬁ+W——W<O, (49) m k m 4r
. . . 4 [ ao)\?
the radial photons in fact propagate superluminally when — _ye2a¢( ) |2] (a-1)=0 (5.5
Sl m* 4rr?
At the event horizom=r
and
kO
- =1 (4.10 1 X
k k2 Fbe2a¢>[A|2+ B(m2+n?)+Cq?+Dr?]
m

which is in accordance with the “horizon theorem” proved )
by Shore[5], that the light-cone condition for radial photons , 2 2ad Q )
becomes?=0 at the event horizon. From E.7), we also Al—el A2 !
see that at the inner horizon=r_ the velocity shift di-
verges. This reflects the fact that the inner horizon for dilaton X(a-m)=0. (5.6)
black holes is actually a singular surface.

We can also consider the other theorem of Shblethe  For the polarizationsg-1) or (a-m) to be nonzero, we ob-
polarization sum rule. For radial photons, to first order intain the photon velocities for these two polarizations:
perturbation,

2

2 R 3
_ a¢ —
mzce2 B+D| —

0

1 . 1 .-
Rapk?kP=Al%2+B(m?+n?)+ C(p2+qg?)=2(B+C)(k})2. ~|  =1-—be®(A+B+C+D)-—ce**A+C)
(4-1 K r pol m
Using Egs.(4.11) and (4.7), we have, for the two polariza- 3 4 zez";‘ Q 2_ 2 ez";“ﬁ Q 2 5.7
tions, m* 4ar2 m* 4mr2] :
> k2= [ (K9)%+(khH?] KO 1 .. 1.
pol pol ~  =1-—be??(A+B+C+D)——;ce’**(B+D)
1 A k 6 pol m
=—(b+2c)e?®![2(B+C)(k})?)] 2
m? _ iyezéws Q (5.9
m* 4mr2) '

1 ~
= —(b+2c)e®?R k%, 4.1
m2( ) ab (412 Therefore, the light-cone condition is also modified for or-

bital photons, and the velocities of the photons for the two
which is just the “polarization sum rule” considered by polarizations are different, a phenomenon of gravitational bi-
Shore, modified to the dilaton case. refringence1].
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To see how the light-cone condition is modified, we shallTo compare the magnitudes of various terms, we define, fol-

examine more closely the RN case wi#if=0 and the
stringy case witha?=1. Fora?=0,

L P12
P P
r r
R=r, (5.10
with
2GM=r_ +r_, (5.11
GQ?
H—ur_. (5.12
Then
GQ?
A+B+C+D= 2 (5.13
2nr
3GM GQ?
A+C=-— +—, (5.14
rd ar?
B+D—3GM 6’ (5.15
r3 2t '
and
K b [ GQ? c SGM+GQ2
k3 am?\ 2714 m? r3 ar4
r pol
2 2
4z 2
-— Q Y Q , (5.16
m*\ 47r? m*\ 47r?
K b [ GQ? c[3GM GQ?
k39 am?\ 2714 m?\ 2 24rt
pol
2
1 Q
- — , 5.1
m4y<4wr2) (617

which are the same as the results[8]. For QED correc-
tions, Eqgs.(5.16 and(5.17) become

KO 1(a) 1\/GM 1((1 1) GQ?
— =1+ =Sl ===l =
k"‘rpol 30\ m/\m2)\ r3 /) 367\ m?)\4mrt
8a?\[ O \?
- — , 5.1
45(m“)(4wr2) >4
kO . 1/a\[ 1\/GM 17 (a\( 1
@ a0\ e/ ) T 180 7 |\ e
6 pol
GQ?\ 14 o? 2
o A s [T B (5.19
Agmr#) A5\ m?*)\ 47r2

lowing Daniels and Shorgs], the accretion limit charge
B /4WGM
QO_ 7 m.

(5.20

In terms ofQg,

Kl 10(a) 1 (2GM>3 5(Gm2)
Erpol‘”ﬁE(GM—m)zT ST
Q\?/2GM\| 2/ Q\?/2GM

(o—) (—r )‘ﬁ(o—o) (—r ” 520
& B lo(a) 1 <2GM)T 17(Gm2)
@ml—“ﬂ;mT BT
Q\?/2GM\ 7/ Q\?%/2GM
Xo—o> r )e(o—)( r ) 522

In the square brackets, the three terms represent, respec-
tively, the gravitational effect identical to the Schwarzschild
case, the indirect effect of the charge due to its modification
of the gravitational field, and the contribution of the electro-
magnetic field itself. The second term includes a factor

Gn?

=104 (5.23

so that it is much smaller than the third term. On the other
hand, for the gravitational contribution to be comparable to
the electromagnetic one, one must require

Q=Qo (5.29

for r=2GM. Then the first and the third terms are of the
same magnitude:

K° B 1O(a> 1 <2GM)3
@ Tt 2a0 7 GMmez T
r pol
2(Q)2(2GM
Xl_gQ_o r ), (5.29
e )
e 2407 (GMmL T
7 Q)Z 2GM>
X1+€Q_o ; (5.26

For 6 polarization, the velocity is always smaller thenFor
r polarization, the velocity could be larger tharif

2 Q)226M>0 r >2 Q
31Q,) " r ~° 2GM 3\Q,
which is again the same conclusion aq 3.

For comparison, we note that the extremal vaQug; for a
RN black hole is given by

2

. (527
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Qexi= V4TGM? (5.28 Q=Qo<Qext: (5.39
and where the extremal condition, =r_ now gives
Q  /Gm? (5.29 Qexi= V8TGM?, (5.40
Qex “ Hence,Q< Q. implies that
Hence, for the gravitational effect to be of significance, the GO?
charge of the black hole must be much smaller than the ex- GM> Q (5.41)

tremal value, that is,

Q=0Qp<Qex- (5.30

However, if Q=Qq Qg, the electromagnetic term domi-

nates. Then Eq45.21) and(5.22 become

S I ]
K, o 3007 (GMmZ T ] 1Qo)
(5.3
oo, /z) ! /ZGM)“(S)Z
0 14407/ (GMm2 1] Qo)
(5.32

for r=2GM. The velocities for both polarizations are sub-
luminal but different from each other, and this is just the

phenomenon of electromagnetic birefringeh2é

Next we turn to the stringy cas&= 1, which we take as

a typical example for nonzera?. With a’=

=2GM, (5.33
=Q%/4mM; (5.39
then,
2
ez"’(A+B+C+D)=£, (5.35
2mrt
GQZ -1
82¢(A+C)=< M—m) F
QZ
12(GM)2+22(GM)< )
4ar
GQZ 2 r GQZ 2
_12(477r) * GM)(4wr) } (.39
e’?(B+D)
2\ —1 2
=(GM—GQ) (ig 12(GM)?— 14(GM)( Qr>
GQ?\2 r\(G
“tave) el (2or) |
1 GQ?
e2¢:G—M(GM— 4Wr). (5.39

First we assume that the charge

4ar

for r=2GM. In this approximation, we can expand the ex-
pressions in Eqg5.36 and(5.37),

3GM 5GQ?
20(A+C)=— = +8—?4+-.., (5.42

o

3GM  GQ?
2¥(B+D)= R R— (5.43

Keeping only leading terms in the expressions above, Egs.
(5.7) and(5.8) become

0 3GQ?| 4z/ GQ@?
=3 = RN resuIH— P —4<m)
r pol
Q |", 2y 6@ | Q | (5.44)
4rr? NAmrGM/\ 47r2) 7
k° GQ?
— = RN result+ — —Q>
3 m2\ 8mr4
0 pol
2
y[ GQ Q
_4(47-rrGM) 47Tr2> ' (5.49
For QED corrections,
kO RN " 10(a) 1 (ZGM)S
— resu E———
K%, o 240 7/ (GMm)2\ T
sz Q\?%/2GM
X2 Q) | 7T
Gm Q\*4/2GM\?2
+ = 3 Qo ; , (5.46
K° RN " 1O(a) 1 (2GM)3
— resu —|
K% 4 ool 240 7/ (GMm)2\ T

1/Gm?\ [ Q\?/2GM
17372 N, | T
7/Gm?\[ Q\*4/2GM\?
12 7a Q) | Ty
The extra terms are subleading with respect to the RN results

because they are proportional ®m?/a=10"*3. Therefore,
conclusions from the RN case will not be altered. The small-

(5.47
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ness of the dilatonic effects in this case can be understoodor QED corrections,

from the fact that for the dilaton black holes that we are
considering, the dilaton charge is given [

kO 1+(oz ( 1 \/2GM
1 Q? Wl I\ 22
- 2 - k ™)\ mer r
yp ﬁd S 8-GM" (5.48 r pol
13/2GM 1 2GM
Hence, forQ<Qe,= V87GM?, X| == +—1-
36 r 60 r
2
ext _
45\ g2 r r '
The dilatonic effect is therefore much smaller than the gravi-
tational effect.
On the other hand, iQR=Q, or D=M, the dilatonic KO a 1 2GM
effect should be of importance. Thus we shall now look at |3 =1+ —|| =
this extremal case, with 6 pol
Q=Qex= BTGMZ, (5.50 « 1_30(26“”)_%(3_ ZGM)
6 r 1 r
Remember that in the RN case, the electromagnetic effect
dominates over the gravitational one fQr=Q.>Q, and 7 a \/2GM 2GM
r=2GM, as in Eqs(5.31) and(5.32. — = _rr12 ; 1- ; . (558
With Eq. (5.50, Egs.(5.35 — (5.39 simplify to G

2GM . .
2¢’(A+B+C+D)— , (5.51) In most cases the last terms in the square brackets in Egs.
r (5.57 and(5.58, which come from the electromagnetic part,
still dominate because of the factor aff Gn?. However,
3 (ZGM) ( . 2GM) whenr=2GM, these terms vanish, and

e2¢(A+C)=—; (5.52
r

r r

kO
K2

(5.59

13 /a) 1
+ — )
144d T (GMm)2

(5.53

r pol

) 1 (2GM 2GM
e’’(B+D)=— - ,
2r2 r r

kO
e?t=1- ——. (5.59

14 10(“) ! (5.60
K3, 160\ 7/ (GMm)2’ '
pol
Then,

5 This indicates that the dilatonic effect in fact becomes the
2GM most dominant one at the event horizon, and the velocities of
r the photons there in both polarizations are superluminal.

There is a caveat here though. Fadt>0, the inner horizon
2GM 2GM is a singular surface, and in the extremal case the inner and
( )(1_ ) event horizons merge. As one approaches the event horizon,
which is now a singular surface, the curvature becomes very
( 2GM ) 2( 2G M) large. This would contradict our assumption that . Thus
1- )

kO
k3

b

T am?

+0(3
m?\ 2r?

1

r2

r pol

r r

1
87Gr?

the conclusion above can at best be taken only as an indica-
tion that the dilatonic effect would become more and more
(5.55 important for determining the light-cone condition of orbital
photons as one gets nearer to the event horizon in the ex-
b ( 1) 2GM\ 2 tremal or near-extremal cases.
=1-—/| —
4m?\ r? ( )

r r

VI. CONCLUSIONS AND DISCUSSIONS

We have investigated the phenomenon of “faster than
light” photons, which occurs due to the matter quantum cor-
rections to the photon propagator, in a family of dilaton
)(ZGM) (1_ ZGM)_ (556  black holes parametrized by?. Fora®=0, 1, and 3, we

r r have the usual RN, the strindy’], and the Kaluza-Klein

r

1) 2GM 2GM)
_2

I
3
=

BWGT
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black holeq 6], respectively. Dilaton black holes are particu- in the extremal case. When the orbital photon is very near to
lar examples of black holes with scalar hairs, and their sinthe event horizon as mentioned above, the curvature be-
gularity structures are also quite different. It is therefore in-comes so large that our approximation may no longer be
teresting to see if peculiar behaviors are present when thigalid. Hence, we have taken this result for the orbital pho-
phenomenon is considered in this case. tons only as an indication of the growing importance of the
Indeed we find that for radially directed photons, thedilatonic effect as one gets near to the event horizon.
light-cone condition is modified despite the fact that the It is therefore of interest to extend our investigation be-
spacetimes are spherically symmetric. This result is differenyond the assumed range above if, for example, one wants to
from the cases of Schwarzschild and RN black holes irconsider the extremal black holes more carefully. To relax
which the light-cone condition for radial photons is un- the condition\>\. requires the summation of terms like
changed. In this dilatonic case, the light-cone condition of2;(R/m?)(V'/m')F? in the effective action. As discussed in
the radial photons also satisfies the “horizon theorem” andRef. [3], this may be achieved by the new summation tech-
the “polarization sum rule” of Shor¢5]. nique of Barvinsky and Vilkovisky9]. Whereas to go be-
For orbital photons, we concentrate on the stringy caseyond the other constraitt>\, we need to push the formal-

a’=1, as a typical example for nonzesd. With the charge ism to the strong field regime and one must then use
Q=Qy<Q.x, WhereQ, is the accretion limit charge and nonperturbative approximations. For instance, one may try to
Qe the extremal charge, the pure gravitational effectconsider the light-cone condition of a massless fermion in
(Schwarzschild partis comparable to the electromagnetic the Gross-Neveu modglL0] in curved space by the 4/
one. The dilaton charge is much smaller than the mass, EGPproximation to extract nonperturbative effects.

(5.49, and so the dilatonic effect is negligible. On the other In Sec. V, we have concentrated on the dilaton black
hand, ifQ=Q.,, the electromagnetic effect will still domi- holes with a?=1 because this corresponds to the stringy
nate over the gravitational one, as in the RN case, so that thease, which is most interesting to us. Moreover, this case
velocities of the photons in both polarizations are sublumi-should be typical enough that similar results are expected for
nal. The only exception is that as one approaches the evegther nonzero values cd2. On the other hand, the low-
horizon, the dilatonic effect becomes more and more imporenergy effective action of string theories has introduced a
tant, even more so than the electromagnetic one, and thghole new set of black holegl1]. The ones that we have
velocities of the photons change to being superluminal. Thigonsidered here are the simplest. We can therefore extend
indicates that the dilatonic effect is crucial in determiningoyr consideration to, for instance, dyonic dilaton black holes
this “faster than light” phenomenon when the photon is nearg 12), black holes with axion§13], rotating dilaton black

the event .horizon in the extremal or near-extremal cases. holes[14], and even black holes with nontrivial dilaton po-
In arriving at the above results, we have taken the aptentials[15,16].

proximations
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