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We investigate the phenomenon of ‘‘faster than light’’ photons in a family of dilaton black hole spacetimes.
For radially directed photons, we find that their light-cone condition is modified even though the spacetimes
are spherically symmetric. They also satisfy the ‘‘horizon theorem’’ and the ‘‘polarization sum rule’’ of Shore.
For orbital photons, the dilatonic effect on the modification of the light-cone condition can become more
dominant than the electromagnetic and the gravitational ones as the orbit gets closer to the event horizon in the
extremal or near-extremal cases.@S0556-2821~97!08320-3#

PACS number~s!: 04.62.1v, 04.50.1h, 04.70.Dy

I. INTRODUCTION

In 1980, Drummond and Hathrell@1# discovered that pho-
tons may propagate faster than the ‘‘speed of light’’c in
curved spacetimes if QED one-loop quantum effects are
taken into account. For instance, they found that in a
Schwarzschild black hole spacetime, an orbital photon is su-
perluminal in one polarization and subluminal in the other.
This in fact gives a gravitational analogue to the phenom-
enon of electromagnetic birefringence@2#. Because of the
one-loop vacuum polarization, the photon exists part of the
time as a virtuale1e2 pair. This introduces a size on the
photon of the order of the Compton wavelength of the elec-
tron lc51/m, wherem is the mass of the electron~here we
use the notation\5c5e051). After acquiring a size, the
motion of the photon could thus be altered by the tidal ef-
fects of the spacetime curvature. As discussed in Ref.@1#
however, this change of speed does not necessarily imply
any violation of causality.

In the past few years, the study of this phenomenon has
been extended by Daniels and Shore to Reissner-Nordstro¨m
~RN! @3# and Kerr @4# black hole spacetimes. Two general
features, called the ‘‘horizon theorem’’ and the ‘‘polarization
sum rule,’’ emerge from these considerations@5#. First, the
horizon theorem states that the velocity of radial photons
remains equal toc at the event horizon. In fact it has been
found that in spherically symmetric spacetimes like the
Schwarzschild and RN ones, the velocity of radial photons
does not change at all. Second, the polarization sum rule
states that the polarization averaged velocity shift is propor-
tional to the matter energy-momentum tensor. Therefore ve-
locity shifts of the two polarizations are equal and opposite
in Ricci flat spacetimes.

In this work we would like to study this phenomenon in
dilaton black hole spacetimes. Dilaton gravity arises from
low-energy effective string actions. The corresponding black
hole solutions@6,7# exhibit quite different causal structures
from the usual RN solutions. For example, the inner horizon
is a spacelike surface of singularity in the dilaton case versus
a regular surface in the usual one. Therefore it would be
interesting to see if there is any peculiarity in the propagation

of photons in these rather different black hole spacetimes.
In the next section we consider the effective action of

dilaton gravity which includes one-loop quantum effects
from matter. Using the geometric optics approximation, we
derive the equation of photon propagation. In Sec. III, the
propagations of photons in different dilaton black hole
spacetimes, parametrized by the dilaton coupling constantâ,
are studied. The light-cone condition of the specific cases of
radial and orbital photons is considered in more details in
Secs. IV and V, respectively. Conclusions and discussions
are presented in Sec. VI.

II. PHOTON PROPAGATION IN DILATON GRAVITY

We shall be using the action for dilaton gravity,

S5E d4xA2g@R22~¹f!22e22âfF2#, ~2.1!

wheref is the dilaton field andâ is the dilaton coupling.
The one-loop quantum effects from matter are summarized
in the effective action@3#
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wherea, b, c, d, z, andy are constants. For QED correc-
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wherea is the fine structure constant andm is the electron
mass. Here we are effectively making a local expansion in*Electronic address: htcho@mail.tku.edu.tw
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powers ofR/m2 andaF2/m4 whereR andF are generic curvature and field strength, and are retaining only the leading order
terms.

We derive the equation of motion for the electromagnetic field by taking the variation
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Next we write

Fmn5 F̄mn1 f̂ mn , ~2.5!

where F̄mn is the background electromagnetic field andf̂ mn is the photon field. To obtain the equation of motion for the
photon, we put Eq.~2.5! into Eq. ~2.4! and take the part linear inf̂ mn . In addition, we assume that typical variations of the
background electromagnetic, gravitational, and dilatonic fields, characterized by the scaleL, are much smaller than that of the
photon field, that is,

L@l, ~2.6!

wherel is the photon wavelength. Then derivatives like¹ F̄ and¹R can be neglected as compared to¹ f̂ . Hence, from Eq.
~2.4! we have
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Without quantum corrections,¹m f̂ mn50. Thus¹m f̂ mn is at least of first order~order ofa in QED! in perturbation. Since we
are considering only first order effects, we should consistently neglect terms in the above equation with¹m f̂ mn which are of
second order or higher, giving
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Actually, to neglect terms containing¹m f̂ mn, we need to have a bound on this derivative. A sufficient condition is that

l@lc , ~2.9!

wherelc is the electron Compton wavelength.
To study the propagation of the photon, we use the geometric optics approximation@8#, in which one writes

f̂ mn5 f mneiu, ~2.10!

where u is a rapidly varying phase andf mn a slowly varying amplitude. The momentum of the photon is given bykm
5¹mu and the amplitude can be written as

f mn5kman2knam , ~2.11!
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wheream is the polarization vector satisfying the condition

kmam50. ~2.12!

In this geometric optics approximation, the equation of motion becomes
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In the next section, we shall study the propagation of photons in dilaton black hole spacetimes using these equations.

III. DILATON BLACK HOLE SPACETIMES

One family of electrically charged dilaton black holes
@6,7# can be obtained from the action in Eq.~2.1! with the
line element

ds252l2dt21l22dr21R2~du21sin2udf2!, ~3.1!

where

l5S 12
r 1

r D 1/2S 12
r 2
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with r 5r 1 and r 5r 2 corresponding to the outer and inner
horizons, respectively.r 1 and r 2 are related to the massM
and chargeQ of the black hole by
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where G is the Newton’s constant. Moreover, the electric
and the dilaton fields are given by
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To introduce a local set of orthonormal frames, we use the
vierbein fieldsem

a defined by
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wherehab is the Minkowski metric, and

em
a5diag~l,1/l,R,R sinu!, ~3.9!

with the inverse
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The vierbein components of the Riemann tensorRabcd are
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and the vierbein components of the background electric field
is

F̄ ab5
Q

4pr 2
Uab

01 . ~3.15!
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In this local set of orthonormal frames, the equation of mo-
tion for photons in Eq.~2.13! can be written as
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The independent components of the polarization vector can
be projected out using the vectors,
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since l a, ma, andna are independent and orthogonal toka.
We also introduce the dependent vectors
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Contracting the equations of motion in Eq.~3.16! with l a,
ma, andna, respectively, we obtain equations for each inde-
pendent component of the polarization vectoraa,
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where va5 l a, ma, or na. To show the peculiarities of the
propagation of photons in these situations we shall concen-
trate on the cases of radially directed and orbital photons in
the next two sections.

IV. RADIAL PHOTONS

For radially directed photons,
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then,
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Thus (a• l ) corresponds to the unphysical polarization. On
the other hand, the equations for the physical polarizations
(a•m) and (a•n) in Eq. ~3.23! are the same,
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whereva5ma or na.
To have nontrivial solutions, we require
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To first order in perturbation, this gives
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For â250,
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which is the case for Schwarzschild or RN black holes as
well as other spherically symmetric spacetimes@1,3#, where
the light-cone condition for radial photons is not modified.
For â2Þ0, the light-cone condition is modified in this dila-
tonic case even though the spacetime is still spherically sym-
metric. For example, for QED quantum corrections
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the radial photons in fact propagate superluminally whenr
.r 1 ,r 2 .

At the event horizonr 5r 1 ,

Uk0

k1U51, ~4.10!

which is in accordance with the ‘‘horizon theorem’’ proved
by Shore@5#, that the light-cone condition for radial photons
becomesk250 at the event horizon. From Eq.~4.7!, we also
see that at the inner horizonr 5r 2 the velocity shift di-
verges. This reflects the fact that the inner horizon for dilaton
black holes is actually a singular surface.

We can also consider the other theorem of Shore@5#, the
polarization sum rule. For radial photons, to first order in
perturbation,
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Using Eqs.~4.11! and ~4.7!, we have, for the two polariza-
tions,
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which is just the ‘‘polarization sum rule’’ considered by
Shore, modified to the dilaton case.

V. ORBITAL PHOTONS

For orbital photons, take

k15k250 and u5
p

2
; ~5.1!

then,
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Thus (a•n) is the unphysical polarization. From Eq.~3.23!,
the r polarization (a• l ) and theu polarization (a•m) satisfy
the equations
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For the polarizations (a• l ) or (a•m) to be nonzero, we ob-
tain the photon velocities for these two polarizations:
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be2âf~A1B1C1D !2

1

m2
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ye2âfS Q

4pr 2D 2

. ~5.8!

Therefore, the light-cone condition is also modified for or-
bital photons, and the velocities of the photons for the two
polarizations are different, a phenomenon of gravitational bi-
refringence@1#.
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To see how the light-cone condition is modified, we shall
examine more closely the RN case withâ250 and the
stringy case withâ251. For â250,
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which are the same as the results in@3#. For QED correc-
tions, Eqs.~5.16! and ~5.17! become
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To compare the magnitudes of various terms, we define, fol-
lowing Daniels and Shore@3#, the accretion limit charge
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Uk0

k3U
r pol

511
1

240S a

p D 1

~GMm!2S 2GM

r D 3F11
5

12S Gm2

a D
3S Q

Q0
D 2S 2GM

r D2
2

3S Q

Q0
D 2S 2GM

r D G , ~5.21!

Uk0

k3U
u pol

511
1

240S a

p D 1

~GMm!2S 2GM

r D 3F211
17

12S Gm2

a D
3S Q

Q0
D 2S 2GM

r D2
7

6S Q

Q0
D 2S 2GM

r D G . ~5.22!

In the square brackets, the three terms represent, respec-
tively, the gravitational effect identical to the Schwarzschild
case, the indirect effect of the charge due to its modification
of the gravitational field, and the contribution of the electro-
magnetic field itself. The second term includes a factor

Gm2

a
.10243, ~5.23!

so that it is much smaller than the third term. On the other
hand, for the gravitational contribution to be comparable to
the electromagnetic one, one must require

Q.Q0 ~5.24!

for r .2GM. Then the first and the third terms are of the
same magnitude:
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For u polarization, the velocity is always smaller thanc. For
r polarization, the velocity could be larger thanc if
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which is again the same conclusion as in@3#.
For comparison, we note that the extremal valueQext for a

RN black hole is given by
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Qext5A4pGM2 ~5.28!

and
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a
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Hence, for the gravitational effect to be of significance, the
charge of the black hole must be much smaller than the ex-
tremal value, that is,
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However, if Q.Qext@Q0, the electromagnetic term domi-
nates. Then Eqs.~5.21! and ~5.22! become
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for r .2GM. The velocities for both polarizations are sub-
luminal but different from each other, and this is just the
phenomenon of electromagnetic birefringence@2#.

Next we turn to the stringy caseâ251, which we take as
a typical example for nonzeroâ2. With â251,
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for r .2GM. In this approximation, we can expand the ex-
pressions in Eqs.~5.36! and ~5.37!,
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Keeping only leading terms in the expressions above, Eqs.
~5.7! and ~5.8! become
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4pr 2D 2

1
2y

m4S GQ2

4prGM D S Q

4pr 2D 2

, ~5.44!

Uk0

k3U
u pol

5 RN result2
c

m2S 3GQ2

8pr 4 D
1

y

m4S GQ2

4prGM D S Q

4pr 2D 2

. ~5.45!

For QED corrections,

Uk0

k3U
r pol

5 RN result1
1

240S a

p D 1

~GMm!2S 2GM

r D 3

3F1

4S Gm2

a D S Q

Q0
D 2S 2GM

r D
1

1

3S Gm2

a D S Q

Q0
D 4S 2GM

r D 2G , ~5.46!

Uk0

k3U
u pol

5 RN result1
1

240S a

p D 1

~GMm!2S 2GM

r D 3

3F2
1

4S Gm2

a D S Q

Q0
D 2S 2GM

r D
1

7

12S Gm2

a D S Q

Q0
D 4S 2GM

r D 2G . ~5.47!

The extra terms are subleading with respect to the RN results
because they are proportional toGm2/a.10243. Therefore,
conclusions from the RN case will not be altered. The small-
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ness of the dilatonic effects in this case can be understood
from the fact that for the dilaton black holes that we are
considering, the dilaton charge is given by@7#

D5
1

4p R
S
d2Sm ¹mf5

Q2

8pGM
. ~5.48!

Hence, forQ!Qext5A8pGM2,

D!
Qext

2

8pGM
5M . ~5.49!

The dilatonic effect is therefore much smaller than the gravi-
tational effect.

On the other hand, ifQ.Qext or D.M , the dilatonic
effect should be of importance. Thus we shall now look at
this extremal case, with

Q5Qext5A8pGM2. ~5.50!

Remember that in the RN case, the electromagnetic effect
dominates over the gravitational one forQ.Qext@Q0 and
r .2GM, as in Eqs.~5.31! and ~5.32!.

With Eq. ~5.50!, Eqs.~5.35! – ~5.38! simplify to

e2f~A1B1C1D !5
1

r 2S 2GM

r D 2

, ~5.51!

e2f~A1C!52
3

2r 2S 2GM

r D S 12
2GM

r D , ~5.52!

e2f~B1D !5
1

2r 2S 2GM

r D S 32
2GM

r D , ~5.53!

e2f512
2GM

r
. ~5.54!

Then,

Uk0

k3U
r pol

512
b

4m2S 1

r 2D S 2GM

r D 2

1
c

m2S 3

2r 2D S 2GM

r D S 12
2GM

r D
2

2

m4
~2z1y!S 1

8pGr2D S 2GM

r D 2S 12
2GM

r D ,

~5.55!

Uk0

k3U
u pol

512
b

4m2S 1

r 2D S 2GM

r D 2

2
c

m2S 1

2r 2D S 2GM

r D S 32
2GM

r D
2

y

m4S 1

8pGr2D S 2GM

r D 2S 12
2GM

r D . ~5.56!

For QED corrections,

Uk0

k3U
r pol

511S a

p D S 1

m2r 2D S 2GM

r D
3F 13

360S 2GM

r D1
1

60S 12
2GM

r D
2

1

45S a

Gm2D S 2GM

r D S 12
2GM

r D G , ~5.57!

Uk0

k3U
u pol

511S a

p D S 1

m2r 2D S 2GM

r D
3F 13

360S 2GM

r D2
1

180S 32
2GM

r D
2

7

180S a

Gm2D S 2GM

r D S 12
2GM

r D G . ~5.58!

In most cases the last terms in the square brackets in Eqs.
~5.57! and~5.58!, which come from the electromagnetic part,
still dominate because of the factor ofa/Gm2. However,
when r 52GM, these terms vanish, and

Uk0

k3U
r pol

511
13

1440S a

p D 1

~GMm!2
, ~5.59!

Uk0

k3U
u pol

511
1

160S a

p D 1

~GMm!2
. ~5.60!

This indicates that the dilatonic effect in fact becomes the
most dominant one at the event horizon, and the velocities of
the photons there in both polarizations are superluminal.
There is a caveat here though. Forâ2.0, the inner horizon
is a singular surface, and in the extremal case the inner and
event horizons merge. As one approaches the event horizon,
which is now a singular surface, the curvature becomes very
large. This would contradict our assumption thatL@l. Thus
the conclusion above can at best be taken only as an indica-
tion that the dilatonic effect would become more and more
important for determining the light-cone condition of orbital
photons as one gets nearer to the event horizon in the ex-
tremal or near-extremal cases.

VI. CONCLUSIONS AND DISCUSSIONS

We have investigated the phenomenon of ‘‘faster than
light’’ photons, which occurs due to the matter quantum cor-
rections to the photon propagator, in a family of dilaton
black holes parametrized byâ2. For â250, 1, and 3, we
have the usual RN, the stringy@7#, and the Kaluza-Klein
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black holes@6#, respectively. Dilaton black holes are particu-
lar examples of black holes with scalar hairs, and their sin-
gularity structures are also quite different. It is therefore in-
teresting to see if peculiar behaviors are present when this
phenomenon is considered in this case.

Indeed we find that for radially directed photons, the
light-cone condition is modified despite the fact that the
spacetimes are spherically symmetric. This result is different
from the cases of Schwarzschild and RN black holes in
which the light-cone condition for radial photons is un-
changed. In this dilatonic case, the light-cone condition of
the radial photons also satisfies the ‘‘horizon theorem’’ and
the ‘‘polarization sum rule’’ of Shore@5#.

For orbital photons, we concentrate on the stringy case,
â251, as a typical example for nonzeroâ2. With the charge
Q.Q0!Qext, whereQ0 is the accretion limit charge and
Qext the extremal charge, the pure gravitational effect
~Schwarzschild part! is comparable to the electromagnetic
one. The dilaton charge is much smaller than the mass, Eq.
~5.49!, and so the dilatonic effect is negligible. On the other
hand, ifQ.Qext, the electromagnetic effect will still domi-
nate over the gravitational one, as in the RN case, so that the
velocities of the photons in both polarizations are sublumi-
nal. The only exception is that as one approaches the event
horizon, the dilatonic effect becomes more and more impor-
tant, even more so than the electromagnetic one, and the
velocities of the photons change to being superluminal. This
indicates that the dilatonic effect is crucial in determining
this ‘‘faster than light’’ phenomenon when the photon is near
the event horizon in the extremal or near-extremal cases.

In arriving at the above results, we have taken the ap-
proximations

L@l@lc , ~6.1!

whereL represents the scale of the typical variation of the
background fields,l the photon wavelength, andlc the
Compton wavelength. Forâ2.0, the inner horizon becomes
singular. In addition, the inner and the event horizons merge

in the extremal case. When the orbital photon is very near to
the event horizon as mentioned above, the curvature be-
comes so large that our approximation may no longer be
valid. Hence, we have taken this result for the orbital pho-
tons only as an indication of the growing importance of the
dilatonic effect as one gets near to the event horizon.

It is therefore of interest to extend our investigation be-
yond the assumed range above if, for example, one wants to
consider the extremal black holes more carefully. To relax
the conditionl@lc requires the summation of terms like
( i(R/m2)(¹ i /mi)F2 in the effective action. As discussed in
Ref. @3#, this may be achieved by the new summation tech-
nique of Barvinsky and Vilkovisky@9#. Whereas to go be-
yond the other constraintL@l, we need to push the formal-
ism to the strong field regime and one must then use
nonperturbative approximations. For instance, one may try to
consider the light-cone condition of a massless fermion in
the Gross-Neveu model@10# in curved space by the 1/N
approximation to extract nonperturbative effects.

In Sec. V, we have concentrated on the dilaton black
holes with â251 because this corresponds to the stringy
case, which is most interesting to us. Moreover, this case
should be typical enough that similar results are expected for
other nonzero values ofâ2. On the other hand, the low-
energy effective action of string theories has introduced a
whole new set of black holes@11#. The ones that we have
considered here are the simplest. We can therefore extend
our consideration to, for instance, dyonic dilaton black holes
@6,12#, black holes with axions@13#, rotating dilaton black
holes@14#, and even black holes with nontrivial dilaton po-
tentials@15,16#.
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