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Loss of quantum coherence through scattering off virtual black holes
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In quantum gravity, fields may lose quantum coherence by scattering off vacuum fluctuations in which
virtual black hole pairs appear and disappear. Although it is not possible to properly compute the scattering off
such fluctuations, we argue that one can get useful qualitative results, which provide a guide to the possible
effects of such scattering, by considering a quantum field orCtineetric, which has the same topology as a
virtual black hole pair. We study a scalar field on the Lorent@ametric background, with the scalar field in
the analytically continued Euclidean vacuum state. We find that there are a finite number of particles at infinity
in this state, contrary to recent claims made by Yi. Thus, this state is not determined by data at infinity, and
there is loss of quantum coherence in this semiclassical calculg86656-282(197)01022-9

PACS numbds): 04.60.Gw, 04.62+v, 04.70.Dy

[. INTRODUCTION there is a very definite discontinuity when event horizons
form: the Euclidean topology of spacetime will change from
The possible loss of quantum coherence is one of the moshat of flat space, to something nontrivial. The change in
exciting topics in quantum gravity. Recent work Drbranes  topology will mean that any vector field that agrees with
has encouraged those that believe that the evaporation tifne translations at infinity, will necessarily have zeroes in
black holes is a unitary process without loss of quantumnthe interior of the spacetime. In turn, this will mean that one
coherence. It has been shown that collections of strings atannot foliate spacetime with a family of time surfaces. If
tached tdD-branes with the same mass and gauge charges ase tries, the surfaces will intersect at the zeroes of the vec-
nearly extreme black holes have a number of internal state®r field. One therefore cannot use the Hamiltonian to get a
that is the same function of the mass and gauge charges asitary evolution from an initial state to a final state. But if
eM4G whereA is the area of the horizon of the black hole the evolution is not unitary, there will be loss of quantum
[1-3]. They also seem to radiate various types of scalar pareoherence. An initial state that is a pure quantum state can
ticles[4,5] at the same rate as the corresponding black holegvolve to a quantum state that is mixed. Another way of
However, theD-brane calculations are valid only for weak saying this is that the superscattering operator that maps ini-
coupling, at which string loops can be neglected. But at thes#al density matrices to final density matrices will not factor-
weak couplings, th®-branes are definitely not black holes: ize into the product of ai$ matrix and its adjoinf6]. This
there are no horizons, and the topology of spacetime is thatill happen because the zeroes of the time translation vector
of flat space. One can foliate such a spacetime with a familyield indicate that there will be horizons in the Lorentzian
of nonintersecting surfaces of constant time. One can thesection. Quantum states on such a background are not com-
evolve forward in time with the Hamiltonian and get a uni- pletely determined by their asymptotic behavior, which is the
tary transformation from the initial state to the final state. Anecessary and sufficient condition for the superscattering op-
unitary transformation would be a one to one mapping fromerator to factorize.
the initial Hilbert space to the final Hilbert space. This would = One cannot just ignore topology and pretend one is in flat
imply that there was no loss of information or quantum co-space. The recent progress in duality in gravitational theories
herence. is based on nontrivial topology. One considers small pertur-
To get something that corresponds to a black hole, onéations about different vacuums of the product fokf
has to increase the string coupling constant until it becomex B, and shows that one gets equivalent Kaluza-Klein theo-
strong. This means that string loops can no longer be nerdes. But if one can have small perturbations about product
glected. However, it is argued that for gauge charges thanetrics, one should also consider larger fluctuations that
correspond to extreme, or near extreme black holes, the nunshange the topology from the product form. Indeed, such
ber of internal states will be protected by nonrenormalizatiomonproduct topologies are necessary to describe pair creation
theorems, and will remain the same. It is argued that there isr annihilation of solitons such as black holespsbranes.
no sign of a discontinuity as one increases the coupling, and It is often claimed that supergravity is just a low-energy
therefore that the evolution should remain unitary. Howeverapproximation to the fundamental theory, which is string
theory. However, the recent work on duality seems to be
telling us that string theoryp-branes, and supergravity are
*Electronic address: hawking@damtp.cam.ac.uk all on a similar footing. None of them is the whole picture;
Electronic address: sross@cosmic.physics.ucsh.edu instead, they are valid in different, but overlapping, regions.
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There may be some fundamental theory from which they camnitary scattering, which is produced by fluctuations that do
all be derived as different approximations. Or it may be thatot change the topology.

theoretical physics is similar to a manifold that can not be One can calculate scattering in an asymptotically Euclid-
covered by a single coordinate patch. Instead, we may hawan metric orS?x S?—{point;. One then weights with exp

to use a collection of apparently different theories that ard—1) and integrates over all asymptotically Euclidean met-
valid in different regions, but which agree on the overlaps/fics. This would give the full scattering with all quantum
After all, we know from Goedel's theorem that even arith- COrrections. However, one can neither calculate the scatter-

metic can not be reduced to a single set of axioms. Why"d in @ general metric, nor integrate over all metrics. In-
should theoretical physics be different? stead, whe}t we shall do in the next twq se_ctlons is point Qut
Even if there is a single formulation of the underlying SOMe qgalltanve features of the scattering in general metrics,
fundamental theory, we do not have it yet. What is caIIedf[hat indicate that quantum coherence is lost. We shall then
string theory has a good loop expansion, but it is only per_|IIustra_te the effects of Ioss_ of quantum coh_erence and obt_aln
turbation theory about some background, generally flafn estimate of their mazgnlttzjde by calculating the scattering
space, so it will break down when the fluctuations becomdn 2 specific metric or6"x S°—{point;, the C metric. It is
large enough to change the topology. Supergravity, on thgufflc_:len.t to show that guantum coherenc;e is lost in some
other hand, is better at dealing with topological fluctuationsMetrics in the path integral, because the integral over other
but it will probably diverge at some high number of loops. metrics cannot restore the quantum coherence lost in our
Such divergences do not mean that supergravity predicts irxamples.
finite answers. It is just that it cannot predict beyond a cer-
tain degree of accuracy. But in that, it is no different from
perturbative string theory. The string loop perturbation series
almost certainly does not converge, but is only an asymptotic We do not have much intuition for the behavior of Eu-
expansion. This means that higher order loop corrections gefidean Green functions or their effect on scattering. How-
smaller at first. But after a certain order, the loop correctiongver, if the Euclidean metric has a hypersurface orthogonal
will get bigger again. Thus at finite coupling, the string per-Killing vector, it can be analytically continued to a real
turbation series will have only limited accuracy. Lorentzian metric, in which it is much easier to see what is
We shall take the above as justification for discussing los®iappening. We shall therefore consider scattering in such
of quantum coherence in terms of general relativity or supermetrics.
gravity, rather tharD-branes and strings. One might expect The Lorentzian section of an asymptotically Euclidean
that loss of quantum coherence could occur not only in thenetric which has topologys®x S*—{point will contain a
evaporation of macroscopic black holes, but on a micropair of black holes that accelerate away from each other and
scopic level as well, because of topological fluctuations ingo off to infinity. One might think that this is not very physi-
the metric that can be interpreted as closed loops of virtuatal, but it is no different from a closed loop of a particle such
black holes[7]. Particles could fall into these virtual black as an electron. Closed particle loops are really defined in
holes, which would then radiate other particles. The emitteduclidean space. If one analytically continues them to
particles would be in a mixed quantum state because th®linkowski space, one gets a patrticle antiparticle pair accel-
presence of the black hole horizons will mean that a quantursrating away from each other. Any topologically nontrivial
state will not be determined completely by its behavior atasymptotically Euclidean metric will appear to have solitons
infinity. It is with such loss of coherence through scatteringaccelerating to infinity in the Lorentzian section, but this
off virtual black holes that this paper is concerned. Our pri-does not mean that there are actual black holes at infinity,
mary intention is not to provide a rigorous demonstrationany more than there are runaway electrons and positrons
that quantum coherence is lost, but rather to explore the efwith a virtual electron loop. One can regard the use of the
fects that will arise, assuming that the semiclassical calculatorentzian metric, with its black holes accelerating to infin-
tions are accurate, and it is lost. ity, as just a mathematical trick to evaluate the scattering on
In d dimensions, a single black hole has a Euclidean secthe Euclidean solution.
tion with topologyS®~2Xx R?. As has been seen in studies of  To understand the structure of these accelerating black
black hole pair creation, a real or virtual loop of black holeshole metrics, it is helpful to draw Penrose diagrams. Start
has Euclidean topologg®~2x S?—{point}, where the point with the Penrose diagram for Rindler space with the left and
has been sent to infinity by a conformal transformation. Forright acceleration horizond ;, andH,, and past and future
simplicity, we shall consided=4, but the treatment for null infinity T~ andZ™ (see Fig. 1 A uniformly accelerated
higherd would be similar. particle moves on a world line that goes outfoandZ* at
On the manifoldS?x S?—{pointt one should consider the points where they intersect the acceleration horizons.
Euclidean metrics that are asymptotic to flat space at infinityOne now replaces the accelerating particle and the similar
Such metrics can be interpreted as closed loops of virtuaccelerating particle on the other side with black holes. Thus,
black holes. Because they are off shell, they need not satisfyne replaces the regions of Rindler space to the right and left
any field equations. They will contribute to the path integral,of the accelerating world lines with intersecting black hole
just as off shell loops of particles contribute to the path in-horizons. It turns out that the two accelerating black holes
tegral and produce measurable effects. The effect that ware just the two sides of the same three-dimensional worm-
shall be concerned with for virtual black holes is loss ofhole, so one has to identify the two sides of the Penrose
guantum coherence. This is a distinctive feature of such todiagram, and the Penrose diagram will look similar to the
pological fluctuations that distinguishes them from ordinaryone in Fig. 2. At first sight it looks as if one has lost half of

II. LORENTZIAN SECTION
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Acceleration

# horizons N

FIG. 3. The structure of* in the conformal gaugél2). The
two points are where the black holes inters&ét, and their past
light cones are the acceleration horizons. Two of the cross
sections are pictured. The dashed lines represent the conical deficits

FIG. 1. The causal structure of Rindler space, with a pair ofin the metric(3); they are not part of *.
accelerating particles depicted.

metric that allows continuation to a Lorentzian metric will be

7~ andZ™, but that is because this Penrose diagram appliea boost Killing vector in the accelerating black hole metric
only on the axis. One can get a better idea of the causand it will have two fixed pointsy andr on Z*, lying on
structure near infinity from Fig. 3, in which a conformal generators. and\’, respectively. The past light cones @f
transformation has been used to make into a cylinder andr minus the generators and\’ form the acceleration
S?X R, with the null generators lying in thB! direction.  horizons. Thus one can see that nearly every null geodesic
The hypersurface orthogonal Killing vector of the Euclideanoutside the black hole horizons goes oufZto in the region
to the future of both acceleration horizons. The exceptions
are the null geodesics that are exactly in the boost direction,
which intersect the generatoksand\’. We shall ignorex
and\’ as a set of measure zero Bf, and a number of the
statements we shall make will be valid modulo this set of
measure zero.

Ill. QUANTUM STATE

The analytically continued Euclidean Green functions will
define a vacuum statf0)g which is the analogue of the
so-called Hartle-Hawking state3] for a static black hole.
The Euclidean quantum state can be characterized by saying
that positive frequency means positive frequency with re-
spect to the affine parameters on the horizons. In the accel-
erating black hole metrics there are two kinds of horizons,
black hole and acceleration. Each kind of horizon consists of
two intersecting null hypersurfaces, which we shall refer to
as left and right, as in Fig. 2. In choosing a Cauchy surface
for the spacetimémodulo a set of measure z¢rove break
the symmetry between left and right, and choose say the left
acceleration horizon and the right black hole horizon. The
quantum state defined by positive frequency with respect to

Tdentity the affine parameters on these horizons is the same as the
quantum state defined by the other choice of horizons.

FIG. 2. A Penrose diagram for th& metric, neglecting the axis Another Cauqhy surface in the futu@gain modulo a set
X= £,. The heavy dashed lines are singularities, and the surfsices Of measure zejds formed byZ™ and the future parts of the
are boundaries of the spacetime. A Cauchy surata the region ~ black hole horizondH, and Hy,, as in Fig. 4. There is a
outside the inner black hole horizons constructed from one blackatural notion of positive frequency db". On the black
hole horizon and one acceleration horizon is shown. hole horizons the concept of positive frequency is less well
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Z*, one has to trace out over all possibilities on the future
black hole horizons. This reduces the Euclidean quantum
state to what appears to be a mixed quantum state described
by a density matrix.

In a recent pair of papel®,10], Yi argued that the Eu-
clidean quantum state in the Ernst metric would contain no
radiation at infinity. The Ernst metric is similar to the metrics
we are considering. However, in the explicit calculation that
we carry out in theC metric, we find that there is indeed
radiation at infinity. What's wrong with Yi’'s argument? As
he was working with the Ernst metric, which is not asymp-
totically flat, he was not able to study the radiation at infinity
directly. He therefore assumed that if there was no radiation
on the acceleration horizon, there would be no radiation at
infinity. But if we evolve some state forward from one of the
acceleration horizons t6", part of the state can fall into the
future black hole horizon. Therefore, there can be a non-
trivial Bogoliubov transformation between the acceleration
horizon and infinity, and Yi’'s assumption is incorrect.

The Euclidean quantum stat@)g will be time symmet-
ric, and so will contain both incoming and outgoing radia-
tion. Unlike the Euclidean state for static black holes, there
Identify will not be radiation to infinity at a steady rate for an infinite
time. Instead, the radiation will be peaked around the points
g andr where the acceleration horizons intersg&ct. The
radiation will die off at early and late times and the total
energy radiated will be finite.

Is this the appropriate quantum state? In the case of a
static black hole, one usually imposes the boundary condi-

defined. One could use Rindler time, but in any case, whaion that there is no incoming radiation an. This means
one observes ofi* is independent of the choice of positive that one has to subtract the incoming radiation from the Eu-
frequency on the black hole horizons. clidean state to give what is called the Unruh state. This is
The quantum state of a field on this background metric Singular on the past horizon, but that does not matter, as one
will be determined by data on either of these Cauchy surhormally replaces this region of the metric with the metric of

faces. This means that the Hilbert spa¢ef quantum fields & collapsing body. The energy for the steady rate of outgoing
on this background metric will be isomorphic to the tensor'@diation comes from a slow decrease of the mass of the

Future Cauchy
—_

surface

FIG. 4. A Cauchy surfac& for the region outside the inner
black hole horizons constructed frof™ and the future halves of
the black hole horizons. The Rindlerian coordinates between
the acceleration and outer black hole horizons are also shown.

products of the Fock spaces on their components: black hole formed by the collapse. However, in the case of a
virtual black hole loop, there is no collapse process to re-
H=]—‘Hal®]-‘Hbr=]-‘I+®j-‘H;|®j-‘H; ) (1)  move the singularities on the past horizons of the black holes

or supply the energy of the outgoing radiation. Therefore, we

The vacuum state defined by the Euclidean Green functionghould study the Euclidean vacuum state, in which the en-
is the product of the vacuum states of the Fock spaces for tHafgy of the outgoing radiation is supplied by the incoming

left acceleration horizon and right black hole horizon; radiation onZ . _ _ _ _
Our view therefore is that integrating over gauge equiva-
|0)e=|0)_|O)n, - (2)  lent virtual black hole metrics will cause the amplitude to be

zero unless the energy of the outgoing particle or particles is

However, because of frequency mixing, the Euclidean quanmatched by particles with the same energy falling in. One
tum state will not be the product of the Fock vacuum statesnight object that one would never have exactly the combi-
onZ* and the future black hole horizons. Rather it will be anation of incoming particles that corresponded to the quan-
state containing pairs of particles. Both members of the paitum state obtained from the Euclidean green functions. How-
may go out taZ ", or both may fall into the holes, or one go ever, the Euclidean quantum state will appear to be a mixed
outtoZ" and one fall in. guantum state o~ which contains every possible combi-

Equation(1) shows that quantum field theory on an accel-nation of incoming particles. One can choose one of these
erating black hole background does not satisfy thecombinations as an initial pure quantum state that is incident
asymptotic completeness condition that the Hilbert space ofn the virtual black hole loop. The final quantum state will
the quantum fields on the background is isomorphic to théhen be that part of the Euclidean quantum stat& 6rthat
asymptotic Hilbert space of states @if. Asymptotic com- has the same energy, momentum, and angular momentum as
pleteness is the necessary and sufficient condition for scathe incoming state. Because of the trace over the future black
tering of quantum fields on the background to be unifély ~ hole horizon states, the final state Bh will be mixed. Such
Thus there will be loss of quantum coherence. What happeran evolution from pure to mixed states can be described by a
is that to calculate the probability of observing particles atsuperscattering operator $ rather thanSamatrix [6].
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The dominant contribution will presumably come from C metric also reduces to flat space if we set=r _=0. It
virtual black hole loops of Planck size. The cross section foreduces to a single static black hole if we Aet0 [13]. The
a low-energy particle to fall into a Planck size static blacklimit r, A<1 is referred to as the point-particle limit, as in
hole is very low unless the particle is spin 0 or 144]. In  this limit the black hole is small on the scale set by the
the case of spin 1/2, the probability of emission will be re-acceleration.
duced because the Fermi-Dirac fadtexp(@/T)+1] * tends The C metric was shown to be asymptotically flat[itd].
to 1 at low » while [exp@/T)—1]"* tends toT/w. This  This is a considerable advantage over, say, the Ernst metric,
suggests the effects of virtual black holes will be small ex-as it means we will have a well-defined notionZfand we
cept for scalar particles. In this paper we shall therefore do @an study the radiation at infinity directly. If we neglect the
scattering calculation for scalar particles in tBemetric.  axisx= &5, all observers will intersect the acceleration hori-
This does not really qualify as a virtual black hole metric, zon before reaching infinity, and the causal structure of the
because it has conical singularities on the axis, although ongolution is roughly speaking given by the Penrose diagram
can interpret these as cosmic strings. We studyGhmeetric  shown in Fig. 2. However, the metric is not spherically sym-
because it has the same topological structure as a virtuahetric, so this diagram is not a true picture of the whole
black hole pair, but it has the great advantage that one caspacetime. We will refer to the left and right acceleration
calculate the scattering, because the wave equation separathesrizons add,, andH,, and to the left and right outer black

hole horizons a#d,, andH,, . Further, the future and past

IV. C METRIC halves of each horizon will be denoted by superscripts
) o Hopefully the diagram clarifies the meaning of this notation.
The chargedC metric solution ig[12] We will only discuss the behavior at future null infinity.
CA-2(y -2 2 ~-1 2 As the metric is time symmetric, the discussion of past null
ds’=A"*(x=y) " G(y)dt*~ G (y)dy infinity will be identical. We can conformally compactify the
+ G Y(x)dx?+ G(x)d¢?], (3  C metric by using a conformal facté = A(x—y). The con-
formally rescaled metric is
where
ds?=02%ds?
G(&)=(1+r_AH(1-&—r AL , . , . , ,
=G(y)dt*—=G~ dy*+ G H(x)dx“+ G(x)do“.
AN E)(E B (E E)(E—E). (@) v Ay +E THIdHGIde o
The gauge potential is
Null infinity is the surfaceQ)=0, that is,x=y (more pre-
Ay=0(x—&3), 5 cisely, its maximal extension; the coordinate system of Eq.

(8) misses the generator on which the other black hole inter-

2_ . — .
whereqg“=r_r_. We definem=(r . +r_)/2. We constrain sectsZ* [14]). The induced metric o * is

the parameters so th&(¢) has four roots, which we label
by &,=<§&,<&3<¢,. To obtain the right signature, we restrict
X to é3=x<¢,, andy to —o<y<x. The inner black hole
horizon lies aty= ¢4, the outer black hole horizon gt &,,
and the acceleration horizon yat £5. The axisx= &, points
towards the other black hole, and the axis &3 points to-
wards infinity. Spatial infinity is ak=y= &3, null and time- a =a
like infinity at x=y+# &;. This metric describes a pair of op- n*=V3Q=2AG(y)dy . (10)
positely charged black holes accelerating away from each .
other, although the coordinate system used in @yonly e See that and ¢ are constant along the orbits of,
covers the neighborhood of one of the black holes. which are the generators 8f, so they are good coordinates

To avoid having a conical singularity between the two©On the manifold of orbits ofZ*. It is convenient to define

ds?=G(y)(dt?+de?). 9)

Note that, at null infinityt is a spatial coordinate. The nor-
maltoZ* is

black holes. we choose new coordinate®, n, where
dg |G'(£&)] IG'(&4)]
Az _ 4 _ 4
Ao= —— (6) 5= —dt, n=———¢, (13)
2 G (&) sing 2 2

(so Anp=2). We also make a further conformal rescaling

This implies that there will be a conical deficit alorgr &, with a conformal facto)’ = |G’ (£,)|sindl2GY4(y) . so that

with deficit angle
G'(&3)

52277( 1-
G' (&)

Physically, we imagine that this represents a cosmic string
mass per unit lengtly= 6/87 alongx= &;. At large spatial G ing d
distances, that is, asy— &3, the C metric(3) reduces to flat T= |G'(£)Isin J y _ (13)
space with conical deficif in accelerated coordinates. The 4A G(y)%?

) ds?=Q'?ds?=d§?+ sirod . (12)
: (7)

In this conformal gauge, an affine parameter along the gen-
grators ofZ* is
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It is also useful to define another coordinate tions, and henceR=0. The minimally coupled equation
above is therefore equivalent to the conformally invariant

dy equation] ¢— tR¢=0. But in solving this latter equation,
- j G(y)%¥?’ (14 \ve are free to make conformal transformations. In particular,

we can transform to the conformal gau@, in which this
which labels theg, 5 cross sections. The structure Bf in  €duation takes the form
the conformal gaugél?2) is depicted in Fig. 3. In this con- 1
formal gauge,Z" is divergence-free, and,» are coordi- 5 5 F— 5 [G(y)dyb]+ o G(X)dyb]+—— 3,0, b
nates on the manifold of generatorsZof, so we can see that  G(Y) ' =GPl + o x4 G(x) * o
7" has topologyS?x R. 1

We can obtain the Euclidean section of f@emetric by +—[a§G(x)—&§G(y)]$:O, (17)
settingt=i7 in Eq. (3). To make the Euclidean metric posi- 6
tive definite, we need to restrict the range yfto &<y _
<¢&,. There are then potentially conical singularitiesyat Where because of the conformal rescaliggy ¢/A(x—y).
=&, andy= &, which have to be eliminated. We can avoid 1hUS We see that if we use the ansatz
having a conical singularity gt= &5 by taking 7 to be peri- _ i etaime
odic with period ¢=Alx=y)e e v(y), (18)

then we get two second-order ordinary differential equations

Ar—p— am (15  (ODES for »(x) andy(y),
G'(a) 1 1
= 2 Z 2 _
In this paper, we assume the black holes are nonextreme, thai?tx[G(X)aXV(x)] G(x) m7w(x)+ 6 HG(x)+ D} v(x)=0
is, £&1<&,. We can then only avoid having a conical singu- (19

larity aty= &, by taking the two horizons to have the same
temperature, so that both conical singularities can be reand
moved by the same choice afr. This implies

1 5
§2—61=&4— &3. (16) Ay G(y)dyy(y)]+ cy” y(y)+

1
gﬁiG(YHD%(W:O,
(20)

The Euclidean section has topolo§§x S?—{pt}. This Eu-
clidean section can be used to study the pair creation of blackhereD is a separation constant, af{&) is given in Eq.
holes by breaking cosmic string45-17. However, we (4). Note that ¢ is a periodic coordinate with period
want to use it simply to determine the appropriate vacuun#tm/|G’(&4)|. Thusm=mgy|G’(£,4)|/2, wheremy is an inte-
state on the Lorentzian section. Since the black hole ander. We assume, without loss of generality, that it is positive.
acceleration horizon have the same temperature on the Eu- One way to rewrite these equations that offers some fur-
clidean section, the analytic continuation will give Green’sther insight is to define new coordinates
functions which are thermal with temperature8 With re-
spect to the time parametein the Lorentzian section. _ f ﬂ _ f ﬁ

The region of the spacetime outside the inner horizon of “ )Gy X G
the black holes is globally hyperbolic. Consider a Cauchy
surface for this region which is made up of one black holewhich have the advantage thag=G(y)dy,d,=G(x)dy.
horizon and one acceleration horiz¢say the left accelera- Note that the integral for in Eqg. (21) diverges as we ap-
tion horizon and the right black hole horizZems pictured in  proach a horizon, a&(y)—0 at the horizons. Thus; <
Fig. 2. As explained earlier, the Hilbert space is isomorphic<z<< only covers the region between two of the horizons;
to the tensor product of the Fock spaces on the two horizonsimilarly, §3<x<<§, is mapped to- o < y<<w. We can write
(1). Positive frequency on the Fock spaces is defined witlEgs.(19) and(20) as
respect to the affine parameter along the horizon. The state

(21)

we wish to study is the analytically continued Euclidean T v(x(x) = mMPr(X(x) + Ver(X) v(X(x))=0, (22
vacuum staté0)g given in Eq.(2).
In the next section, we will describe the solution of the F5y(y(2))+ 0?y(y(2))+Ver(2) ¥(y(2))=0. (23

scalar wave equation on tt@& metric background. We then

use this to calculate the Bogoliubov coefficients in the subThat is, Eq.(20) reduces to the one-dimensional wave equa-
sequent section. tion with effective potentiaV.4(z), which is given by

1
V. SCALAR WAVE EQUATION Vei(2)=G(y(2)) 60§G(y(z))+ D|. (24)

We consider a minimally coupled massless neutral scalar
field, so the wave equation is just¢=0. One of the great There is a similar expression f¥«( x). It is not possible to
advantages of considering ti@& metric is that this equation invert Eqg.(21) to obtainy(z) explicitly, but we can make
separates. It is easy to see this if we observe thatGhe some observations. Near the horizo@y)—0, and thus
metric is a solution of the vacuum Einstein-Maxwell equa-the effective potential becomes unimportant, 3dy)
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~e" 1% Similarly, nearx=&;,£,, v(x)~e*™. Obviously, , 1 ,. Dyt
for physically-interesting solutions, we must havéx) Bo=g(lta’)+——, (30
~e "Xl as y— o0,

We can rewrite the metri€3) in terms of these coordi- gg that
nates:

1 2 .
ds2=A-2<x—y>—2[G<y><dt2—dzz)+G<x><dx2+d<o2()2]é) §EG(H+D =~ (@-p}). (3D
where byx,y we meanx(x), y(z). This coordinate system We can now writez explicitly:
evidently only covers the region between two of the horizons . .

(or between the acceleration horizon and infipityhat is, ([ dy ¢ [1| a+y‘ Hl 1—y‘
there is a coordinate system such as this for each of the z= G(y) 2(a2_1){3 n a_g, n 1+§, '
diamond-shaped regions in the Penrose diagram in Fig. 2. (32)

We will therefore refer to these as the Rindlerian coordi-

nates. We can now define null coordinates =t=*z. Since
Z increases as we go from the acceleration horizon towar
the black hole horizon, the andv coordinates run as shown
in Fig. 4. Thus,u is a (nonaffing parameter alongi,, and
Hp, ,» while v is a(nonaffing parameter alongi;; andHy, .

As is usual for bifurcate Killing horizons, these parameters

are related to the affine parametéisv on the acceleration
horizon byu= 1/kIn|U|, v = — 1/kIn|V|, where k=G’ (&3)/2
is the common surface gravity of the two horizons.

These coordinates are useful for specifying boundary con-
ditions near the black hole and the acceleration horizons, and .

we will see later that we can easily write down explicit forms

for the positive-frequency wave functions on the horizons in

terms of them. However, as we cannot wiitg; explicitly as
a function ofz, we cannot solve the differential equations in
this form.

If we return to the initial formg19),(20) for the ODEs,

we find that they can be considerably simplified. In the sim-

plification, we will exploit the equal-temperature condition
(16), which imposes an additional symmetry on the form of
G(¢). If we make a coordinate transformation

o 2 [ _1 N 26
§—m§ 5(53 &) |, (26)

then

_ l// 2 2\ 2

G(&)——Z(S —a®)(§-1), 27

where

B 8 (64— &1) _1

g_r+r_A2(§3—§2)3' “Eg) VT2l
(28

Note thata>1, {,>0, and thatdz= d,. If §/ andx are
defined in terms of andx following Eq. (26), then the inner

black hole horizon is ag= — a, the outer black hole horizon
is aty=—1, and the acceleration horizon isyat 1, while
the range o is 1<x=<a. In terms of these coordinates,

1 “
#G(H)=- 7, 128~ 21+ a?)], (29

so it is convenient to define

We can now see clearly thatdiverges at the event horizons

d§7= —a,*= 1. We can further see that- —« as we approach

y=—a,1, the inner black hole and acceleration horizons,
andz—« as we approac&= —1, the outer black hole ho-
rizon. There is a similar explicit expression fgr and y—

—o0 as we approack=1 andy— as we approack= a.
The consideration of the forn22),(23) suggests a further
simplifying transformation. If we set

- <a+;() {mi2a(a?-1) f—1 gm/2(a2—1)’\ i
v(X)=e™n(x)=| —= — n(x)
a—X 1+x
(33
and
. . a+§/ —i{w/2a(a2—l)
yy)=e '*f(y)=| —=
a—y
19 —igw/Z(az—l)A i
— f(y), (34
1+y
then we can finally rewrite Eq$19),(20) as
[ (X2 =1) (X2 a?) 3;Nn(X) ]~ 2mZazn(X)
+2(X%— B3)n(x)=0, (35)
FHL(y* = 1) (y* =) a5t (y)]1+2i a5t (y)
+2(y?- o) t(y)=o0. (36)

This is the simplest form in which we can write these equa-
tions.

We have been able to simplify the form of the wave equa-
tion considerably. However, Eq$35),(36) still have five
regular singular points, &= +1,* a,%, so they cannot be
solved exactly. We will therefore need to use some further
simplifying assumption in solving the wave equation. There
is only one dimensionless parameter in the metricd, as
the equal-temperature condition fixesA as a function of
r .A. Therefore we are driven to consider the point-particle
limit r,A<1. In this limit, a~1+4r_A, and {~8r_A
~2(a—1). For reasons of convenience, we will use (
—1) as the small parameter.
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VI. BOGOLIUBOV TRANSFORMATIONS wherep,, are a set of modes with nonzero support Bn

Having laid the groundwork, we can now define andWhich are positive frequency with respect o anda,, ,a,,

evaluate the Bogoliubov coefficients. We can write the field@'e the corresponding annihilation and creation operators.
operatore in terms of annihilation and creation operators on | "€ modesj,, have nonzero support on the future black hole

the Hilbert spaces associated with the black hole and acceltorizon, andc,,,c,, are the corresponding annihilation and
eration horizons: creation operators. We will not bother to define these latter

modes, as their form is irrelevant to the calculation of par-
b b =B bt ticle production orZ ™.
¢=AX=Y) 2 | do(fimbeoim™* foimbaim Following [19], we choose the positive frequency modes
p, to have the form

+ f'Zl;lm glm—i_ f Zlmbﬂm)v (37) —iaT
wheref®,  f2,  are sets of positive frequency modes which Po= 2 m@sing, o6 00)6(5= m0)
have nonzero support on the black hole and acceleration ho- .
rizons respectivelyb®, b3 are the particle annihilation e "G’ (&)|
operators, an#”!, ,b2]  are the particle creation operators. INC=Y 30~ 60) (7= 10) (40
Here, positive frequency means with respect to the affine
parameterdJ,V on the horizons. onZ*, in the conformal gauge where the metric Bh has
Following [18], we see that a suitgble set of positive fre- the form (12). We define w=o|G’(£&,)|sing,/4A. Each
quency states on the black hole horizon is mode is thus nonzero on one generatorZof, labeled by
6. 710, and has frequenay with respect to the affine param-
b N eim"’v|m(x)[g;+e*”“”"g;], eter along that generator. The complete set of positive fre-

quency modes is given byHw <. They are normalized so
(38) that (p,.p.)=2wd(k—k’), where k is the three-
momentum, and points in the directiofiy, 7).
wherevy, is a solution of Eq(19) with D given by Sp=1 Since both sets of modes are complete bases for the space
+2I(1+1), andg;, are functions which are nonzero on the of solutions of the wave equation, we can write one in terms
future and past parts of the black hole horizon, respectivelyof the other. That is,
and which are positive frequency with respect to the Rindler
parameter, that igy, =e~'“Y. We know already that only a
discrete set of values fam are allowed, and we will see
below that the same is true for We wish to normalize the
modes so that €, ,f>,,, )= nmw S/ 8(w—w'), which
implies [N|?=1/(4m|w|A¢). Note that although the angd similarly for f2, . If we substitute these expansions

positive-frequency solutions are labeled by a frequeacy niq Eq.(37), and require consistency with E@9), then we
they do not have a single frequency with respecttoand  fing that

the solutions are still wholly positive frequency with respect
to U when w is negative. For this to be a complete set of b b —5 bt a a
positive-frequency solutions, we must allawto run over amzzlmj Ao’ (@, 1mbyim™ Buw imPoimt YewimPorim
—o<@w<o, One can write down a similar set of positive
frequency solutions on the acceleration horizon. +B_Zw,|mb‘j:’,|m).

In Appendix A, we consider Eq35) with (a—1)<1,
and we learn that, as we might have expected, there is @he quantitiesriwqmyﬂiwum,aiwqm,ﬁiwqm are called the
restriction on the form of the data on the black hole hOfiZO”-Bogoliubov coefficients. Since we know how the annihila-

If we write [ =1+ O(a—1), then the solutions,(x) will  tion and creation operators which were defined on the hori-
only be regular at both of the axes=¢£;,x=¢&, if lois an  zons act on|0)e, to determine how the annihilation and
integer and ;=mo, wherem, is the integer appearing im.  creation operators defined at infinity act tB)c, we just

In the point-particle limit, thex, ¢ section approaches spheri- need to compute these coefficients.

cal symmetry, sd, is the usual total angular momentum  The operator we are most interested in is the number op-

quantum number, whilen, is the angular momentum with eratorN,,=al a,,, which gives the number of particles in the
respect to the axis along which the black holes are accele;ﬁodep In the statg0)g
w* L]

ating.
We can also write the field operator in terms of modes L
which are positive frequency at infinity: <0|Nw|O>E:EImI’m’f do'de

wlm™ | 1— e—2’7Tw/K|1/2

fZ'Im:f d:') deo d770 (aZw’Impw_FlBZw’lmE)

+ terms involvingq,,), (41

(42

b b b bt
- X ’ "nerm! ’ nrem! +e
9=A0-Y) [ do g, dno (p,a.+poal BuawrimBuunm OPurnPunrm O)et )

0 , b
) @ N N W M
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where we have expandex), by Eqg.(42), and in the second plack hole horizon, whilef°,,  vanishes orH, . From the
line we have used the canonical commutation relations angiscussion of Eq(23), we recall that at the acceleration and

b g . .
the fact that,, |0)e=0, b7, |0)e=0. _ ~ black hole horizonsy(y)~e*'“% Using this and the form
bWe shoulg now calculate the Bogoliubov coefficients (3g) of the mOdewamvwe find that the boundary conditions

Bo,oimandg, . However, it_tgrns out to be quite d_iffi— on y(y) are
cult to calculate the latter coefficient. Therefore, we wish to
argue that_ it is suffici_ept to calcu!ate the. contribution from Y(y)=e 192+ Crel 2 (46)
the Bogoliubov coefficient associated with the black hole
horizonﬁzw,lm; the other contribution should be similar. _at the black hole horizoa— . and

We broke the symmetry between the left and right hori-
zons when we defined the Euclidean vacuum state, by defin- B ez
ing it to be the product of the vacua of the Fock spaces for v(y)=Cre (47)
the left acceleration horizon and right black hole horizon.
However, the vacuum state is in fact symmetric under left-at the acceleration horizon— —«, whereCr and Cy are
right interchange. That is, it is also equal to the product ofconstants which remain to be determined. In Appendix B, we
the vacua of the Fock spaces for the right acceleration horisolve Eq.(36) with these boundary conditions in the limit
zon and left black hole horizon. Take the vacuum stat€ on r+A<1, assumings~1, and find thaCr~ (a—1)***, and
and evolve it forward through the right Rindler diamond, that, forl,=0, |Ct|~(a—1)w/2. Because the transmission
from H,, andH,, to H; anngI . There will then be corre- factorCt is§ increasingly suppres_sed_ for increasingve will
lations betweerH;, and H_,, due to the correlations be- be mostly interested in the contribution from tle=0 mode,
tween the two halves of the black hole horizon in the Cauchy?S the other contributions will be smaller than the terms that
surfaceC. Further, there are no correlations betwég and W€ neglect in our approximate calculation of te-0 con-
H.,, because o, the state has no correlations between thé"ioution. , . . _ _
black hole and acceleration horizons. Since the state is left- | N€ Propagation fror ,; andH,, toZ" is also described
right symmetric, the correlations between the two halves of? APpendix B. This part of the calculation is substantially
the acceleration horizon in the Cauchy surfacean there- €aSier; itis very similar to solving the angular equatigp).
fore only give rise to correlations betweet; andH, and ' the conformal frame ere.re the metric has the fat8),
these correlations will be related to the ones coming from thé&he restriction off ,, to 7™ is
black hole horizon. Both sets of correlations give rise to
correlations betweefi™ and the future black hole horizons, 2NCGY(y)
which give the particle creation, so the particle creation due fz,,mlz+=
to the acceleration horizon should just be the image under |
the left-right interchange of the particle creation due to the
black hole horizon. This justifies our only calculating the
latter contribution.

We now calculated

1— e72ww'/K|l/2|Gl(§4)|sin6

x eIt 2eMee™ eIty (p)Nim(p). (48)

b

wow'lm*

The modew,, ’E),qw’q—w are In this expressionf,,.(p) is given by the definition at the

orthogonal, and end of Appendix B, and we have defined,(p) to be
’ nim(p) for p<1/2 (y<0) and e®™n,,(p) for p>1/2 (x
(PusPu) =208 (K—K") >0), wheren,(p) is the approximate solution of the angu-

lar equation given in Appendix A. Whenp—0,

2 , e~ flo(P), Mim(P)—1. Whenp—1, n,(p)—€'¢, some con-
= 8(170~ 1) 8(6p— bp) S(w—w"). stant phag]e. "

wsIndy Evaluating the inner product, we find that
(44)
N~ iw'tga—im
Thus, we can use E@41) to show L 2NCroc™ be w(:
wo'lm /27T|Gr(§4)||1_872ﬂ'w /K|l/2
—5 _ wSinﬁo -5 _ 2Aw ~b
Puain™ "7 Por L) = 1 P Farm) x [ dz gereere i ()n(p), (49
(45

To evaluate this inner product, we need to express both th¥eret=to corresponds t@= 6o, ¢ = ¢, corresponds to

c _ 112 ;
modes as functions on the same Cauchy surface. We do thjs 7o: @nd we have usedr=dz/G™%(y), which follows

b ing th qe®. f ds fromc to & from Egs.(14) and (21).

y évolving the mod&t ,, forwards from¢ 1o ¢. Note that apart from an overall phase, this expression de-

The propagation fron€ to C can be broken up into two pends only on the frequency, and not onéy, 5. This
stages: propagation through the right Rindler diamond, fronineans that the expression is boost invariant, that is, invariant
H, andHy, to H,, andHy,, and propagation through the under translations ir, as the orbits of the boosts are the
future diamond, fronH, andH_, to Z*. The initial data on  cross sections labeled by and thus these boosts preserve
H,, is just the restriction of Eq(38) to the past part of the the frequencyw with respect tar.
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We cannot evaluate the integral in Eg9), but we can tion to the region neaz=0, we can expand sizfin a power
still get some interesting physical information about the ra-geries, and we see that the integrand is most nearly constant

diation out of this expression. Becau§iy)—0 asz—  npearz=0 if ’'=—w, SO we expect that the Bogoliubov
-, coefficient will be peaked ab'=—w. This peak will be-
come narrower as—0, approaching & function in the
ﬂ: 1 .+  when z—s + (50) limit, but the amplitude tends to zero in this limit because of
dz g¥y) o the factor ofw in front of the integral, so this does not imply

infinite particle production.

and hence the'“" part of the integrand oscillates with an ~ The leading-order part of the total particle production
effective frequency which tends to infinity at larggh. Since  along the generator labeled I8y, 7, is given by integrating
the amplitude is bounded, the main contribution to the inte{,(a'zw,oo|2 over w and w’; we cannot do this integral, but
grand will come from the region near=0 where the inte- given the arguments above, it seems reasonable to expect the
grand oscillates slowly. answer to be finite. The integration over all generators,

The integral in Eq.(49) will give an answer which is which gives the total particle production, will not give rise to
peaked inw’ with some finite width, so the integration over any divergences either.
' of [B° 12 in Eq. (43 should give a finite answer. By
contrast, in the case of a static black hole, the analogous VII. DISCUSSION
formula for the Bogoliubov coefficient gives&function in
', so the expected number of particles is infiriiteat is, in
that case there is a steady flux of particles acfsk

Our calculation of the transmission factor in Appendix B
is only valid for|w’|<1, and we might expect that for suf-
ficiently largew’, the potential barrier would become unim-

In the first part of this paper, we argued that the scattering
off virtual black hole pairs, which could lead to loss of quan-
tum coherence in ordinary scattering processes, could be dis-
cussed in terms of a path integral over Euclidean metrics
with topologyS?x S?—{point}. In this approach, one consid-

N . L ers the scattering in each metric and performs a path integral
\F/)v(i)l{t%r:’szrinnaﬁlcgor }ér:eovxg\é;iv;:e’ Egc?;lT::o(;‘ fﬁﬂfggf over all such metrics_. Since we cam_ﬂot perform this pat.h
oo el 112 . integral, we then restricted the discussion to one such metric,
|1—e |~ Y% We also expect that it would be small at ang analytically continued the solution to a Lorentzian sec-
large positivew’, as the integrand in the integral in B49)  tjon to make the scattering easier to understand.
will then oscillate rapidly for all values of, making the We argued that the appropriate quantum state is the ana-
integral small. Thus, the main contribution to the integral|ytica||y continued Euclidean vacuum sta@g, and we ar-
overe' in Eq.(43) will come from small negative»’, where  gued that this state will contain a finite, nonzero number of
the calculation ofCy is valid. particles at infinity. It is well known that from the point of

We expect that the size of the contribution from egh  view of an observer comoving with the black holes, this state
will be primarily determined by the transmission factor, socorresponds to a thermal equilibrium between the black
we expect that the contribution froflg=my=0 will domi-  holes and a thermal bath of acceleration radiation. Thus, this
nate the summation ovérm in Eqg. (43). We now consider  state must be time-reversal invariant, which means that the
the form of this contribution in the point-particle limit, where particle content at past null infinity~ is the time reverse of
we can somewhat simplify the expressions and illustratghe particle content at future null infinitg ™. This implies
some of these remarks. Whea{1)<1, we haveG(y)  that no net energy is gained or lost by the black holes in this
~4p(1—p) on Z*, where p=(y—1)/(a—1). Further,z  scattering process, which is what we would expect for a
~3In(p/(1—p)), as O<p<1onZI™', so model of a virtual loop, and is in agreement with the fact that

the state is an equilibrium as seen by comoving observers.
The fact that there is a nonzero number of particle&*at
(51) implies that there is loss of quantum coherence in this semi-
classical calculation, as each particle detected at infinity can
be thought of as one member of a virtual pair, the other one
of which has fallen into the black hole, carrying away infor-
r ~sinte. (52) mation. Mpre_ f_ormally, there are correlations between mod_es
on future infinity and modes on the future black hole hori-
zon, and the information encoded in these correlations is lost
because we do not observe the state on the future black hole
horizon. This loss of quantum coherence is of the same char-

G(y)~

cosiz’

Thus,dr/dz=~coslz, and hence

Also, k~1, fo,(p)~1, andnyy(p)~1. Therefore

NC_ o' tga—imeg
Eﬁ oo™ — NCrwe™ ‘e . f dz d(e'ztwsine) acter as that observed in static black holes.
“e V2m|1—e 27 |12 In the second part of the paper, we proceeded to an ex-

(53 plicit calculation of the scattering in thé metric. Although

_ o _ _ the EuclideanC metric solution has topologyS?x S?
As we argued above, the main contribution to the mtegratlon_{point}, it is not usually thought of as describing a virtual

will comeirﬁom the region neaz=0, so the primary contri-  pack hole loop, as it is a solution of the field equations, and
bution to 8,0, @and hence to the number operator, will it has a conical singularity along one of the axes. However,
come from the part of the generator closest to the pointsve believe it is a reasonably good model for a virtual black
where the black holes interseft . If we restrict our atten- hole loop, and the wave equation separates in this back-
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ground, so it is relatively easy to study the scattering explic-Therefore, the appropriate solution of the hypergeometric
itly. The C metric is asymptotically flaf14], so it is also  equation(Al) is no(p)=F(lg+1,—1y;1+my;p), whereF
straightforward to study the radiation at infinity. One slightly is the hypergeometric series, B§a,b;c;p)—1 asp—0. If
surprising fact about the structure at infinity is that the affinewe analytically continue this solution to a neighborhood of

parameter along generators Bt is T, which is spacelike P=1, we find

between the black hole and acceleration horizons, while the

boost time coordinaté becomes a spacelike coordinate la- No(p) = I'(1+mg)I'(mo)
beling the generators af*. otP I'(mg—Ilg)I'(mg+1p+1)

It is also worth noting that the transmission fac®f )
~(a—1)?*1 This implies that the dominant contribution to XF(lo+1,=lo1=mgp;1-p)
the particle production is in the wave, as for static black T(1+my)T(—my)
holes, because of the high centrifugal potential barrier for Tyt I(=1y)
higher-spin modes. It also suggests that the scattering of 0 0
higher-spin fields off such virtual black hole loops will be X (Mo—lo, 1+ My+1g;1+my;1—p). (A2)
suppressed relative to that of scalar fields, as they cannot
radiate in thes wave. This is in agreement with the argu- The second term has the appropriate behavior gfos 1,
ments of{20,19. sincee X~ (1—p)¥? for p~1. Thus, the coefficient of the

The calculation we have actually been able to perform igirst term must vanish, which can only happemgf m, is a
rather limited; we considered only one specific, rather speciahon-negative integer. This is just the usual quantisation con-

metric, and we were only able to study the scattering on it ingition for angular momentum, arig is thus the total angular
a particular limit. However, the results we have obtainedmomentum quantum number.

give an estimate of the magnitude and nature of the effects of The next-order ternh, can similarly be fixed by requiring
virtual black hole loops, and they agree well with our generakhat the solutiom;(p) is regular ap=0,1. Unfortunately, it
expectations. is not possible to give a general formula fgr the equation
must be solved separately for ealghm,. We are particu-
ACKNOWLEDGMENTS larly interested in the casky=my=0, as we expect this
mode to make the dominant contribution to the particle pro-
ction onZ™*. In this caseny(p)=F(1,0;1;p)=1, while
e equation fon.(p) is

(1—p)MoF
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This equation has a solution which is regulapat0,1 only
if 1,=1/2; in this case, the solution is;(p)=—p/2+C,
whereC is a constant. One can similarly fix all the

APPENDIX A: THE ANGULAR QUANTIZATION
CONDITION

In the point-particle limit @—1)<<1, the deviations from
spherical symmetry in th&,¢ part of the metric become APPENDIX B: THE TRANSMISSION FACTOR
small, so we would expect that the dependencexaonill In Sec. Vi found that t ve th itive-f
reduce to the usual angular momentum modes, with quantum N Sec. Vi, we found that to evolve Ihe positive-frequency

numberd andm. Recall that because of the periodicity@f ~Modes fromC to C, we need to calculate the transmission
m=mp| G’ (£,)|/2=me[1+O(a—1)], wherem, is an inte- ~ factor Cy between the black hole and acceleration horizons.

That is, we need to solve E(6) with the boundary condi-
tions(46),(47), and findC+ . For convenience, we will repeat
those here. The equation is

ger. We also expanb=ly+1;(a—1)+---. The range ok
is 1<x=<a, so we define a new coordinafe= (X—1)/(a
—1). If we expandn(x) in powers ofa—1, N(x) = nym(p)

=ng(p) +(a@—21)ny(p)+---, then Eq.(35 can be sepa- FHL(Y2—1)(y2— a?) a5t () ]+ 2i wl a5 (y)
rated into a series of equations for these functions. The first A o
equation is +2(y?-p3)t(y)=0. (B1)

pLP(P~1)3pNo(P) ]~ ModpNo(P) ~lo(lot 1)No(p) :(2'1) In terms of the functiorf(y), the boundary conditions are

This equation is a hypergeometric equation. The possible f(y)=1+Cge?*? (B2
values ofly are restricted by requiring that the solution be-
have appropriately at the two polgs=0,1. As we said ear- near the black hole horizop=—1 and
lier, for the solution for¢ to be physically relevant, we must
haver(x)~e "Xl asy— +. That is, we require that(x), t(y)=cr (B3)
and henceg, does not blow up at the axes. Sineéx)
=e™n(x), the appropriate boundary conditions op,(p) near the acceleration horizgn=1.
are thatn,,(p)=1 asy— —, which corresponds tp=0, We can not solve this equation exactly, but #-1)
and n;(p)~e 2™ as y—oe, which corresponds tp=1. <1, then we can solve it approximately. First note that if
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y2—1 is O(1) (that is, if y is not close to=1), we can Now for 1<|q.|<(a—1)"*, both approximations are
neglect terms involvingr— 1 to approximate EqB1) as applicable, so we can use thg large-distance behavior
R L R L (B9),(B10) of the approximation foy near=1 as boundary
aL(y2—1)%0;F(y)1+2(y?— B3)T(y)=0. (B4  data for the approximatiofB5). If we pick the solutiorg(s)
be
In neglecting the term involving, we have made the further

2ssu:n§tiqn tgatw“:l; tha(t) is,tt_hatw ist_not_ll_?)rge.t Ihisth © F(c)F(b—a)/ . r(2-c)'(c—a)
quation is now a hypergeometric equation. To put it in the g(s)= R

> o~ - I'(c—a)l' I'(c)I'(2—c—
standard form, we setf(y)=2%1-y?) 3(a—1)3g(s), (c=a)T'(b)| (©T(2—c-a)

wheres=(y+1)/2,a=I+1. Then ol ot 4 o, Do)l (a—h)
XF(=2l, =212 mr—pvrr)

s(s—1)d2g(s)— 21(2s—1)d.g(s) + 21 (21 +1)g(s) =0,

(B5) | Cort ?(Z—C)I‘(C—b)

where we have useflp=1+2I(I+1). We usd rather than (€)I'(2=c—b)
l5 in the approximate equations in this section, because re- XF(0,1;2+2;s), (B11)
gardingl as an integer would introduce degeneracies in the

approximate eAquations which are not present in the exaghen the boundary conditions obtained from EB9) are
equation. Neay= =1, the solutions of Eq(B5) can be ex- automatically satisfied. We can analytically continue this so-
pressed in terms of hypergeometric series abpat=1. lution to a neighborhood o$=1; to satisfy the boundary
However, we cannot approximate E&1) by Eq.(B5) ina  conditions obtained from EqB10) in this neighborhood at
neighborhood of radiu®(«—1) aroundy=*1, which is  the same time, we must require

precisely where we wish to impose boundary conditions.

) (a_ 1)b—a2a—bsa—b

Therefore we need a separate approximation to cover F(C)F(b—a):F(c)F(a—b)/ I'(2-c)I'(c—b)
these neighborhoods. WhgA— 1~ (a—1), make a coordi- _ I'(c—a)T'(b) T'(c—b)I'(a)l * T'(c)I'(2—c—b)
nate transformatioy=+[1+(a—1)q.]. Then if we keep X(a—1)P-aga-b (B12)
just the leading terms, E¢B1) becomes

3q.[0:-(0=—1)dq, F(a=)] =i wdq, f—1(1+1)f=0, and
(B6)
1"(c)1"(a—b)(a_l)bfazafb
wheref(q.)=f(y). These are, once again, hypergeometric T(c—b)I'(a)
equations. The solution aboyt=—1 which satisfies the _ _ _
boundary conditioB2) is —F(C)F(b a)/ T(2—c)l'(c-a)

“Te—arm)| ' Forz-—c-a), B¥

f(g-)=F(a,b;2—c;q_)+Cr(—q-) "'
Solving these two equations f@g andCy, we find

XF(b+c—1la+c—1;c;q_), (B7)
and the solution aboug=1 which satisfies the boundary it 5-48
condition (B3) is Cr=-e 1— 82 (B14
f(a.)=CrF(abicia.), B8)
whereF is the hypergeometric functioa=1+1b=—1 and A
c=1-iw. Now analytically extend these solutions to large Cr=—¢€"+4Cr, (B1Y
g-: at largeq_, the solution(B7) becomes
where
F(c)l“(b—a)/ I'2-—c)I'(c—a) a
f(-)==—— R 4 (—a-)
I'(c a)I‘(b)\ I'ic)I'(2—c—a) o I'(2—¢c)I'(c—hb)
el = —— (B16)
,F©r@-b) +F(2—C)I‘(c—b)> [(c)T'(2—c—b)
— R P
I'(c—b)I'(a)\ I['(c)T'(2—c—b) and
X(—q-)7° (B9)
, , a—1\2"°T(b—a)I'(a)['(c—b)
while at largeq, , the solution(B8) becomes o= 5 Fa—b)T (b (c=a)" (B17)
I'(c)I'(b—a) Ca I'(c)I'(a—h)
f(q+)=CTm(—q+) +CTm gr?ct)ilfjhat these coefficients satigfpr|2+|Cg|?=1, as they

X(—q.) " (B10) After some manipulation, we find



4i
S 21+1

a—1

8

)2|+1

T(1+] i) (L+]+i
( “) i)z “) inhro.

(B18)

i+

2

Also, 6~(a—1)?"1, so the denominator i€t can be ig-
nored for this leading-order calculation. For laigeve thus
find

. a—1 21+1
Cy~2e'(0+ 72 T) sinhmrw, (B19)
while for [,=0, we find
) a—1
CT~e'<ﬁ+”’2><T) . (B20)
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These results are valid for(-1)<1 and|w|<1.

We have found the value df(y) at the acceleration ho-
rizon y=1. The region betweem,,H. , andZ* is the
region betweery=1 andy=x; to evolvef(y) through this
region, we just need to find the form 6(9) bet\Neen§/=1

andy= «, which will also be the solution of*. Now, the
approximation(B8) is valid throughout this region, so the
result is simply that ort ™",

f(y)=Ctf1,(p)=CF(a,b;c;p), (B21)

where a,b,c are as in Eq.(B8). Note thatx=y implies
g.=p. Forly=0, the leading-order part of this solution is
fou(P)~1, just as fomy(p).
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