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In quantum gravity, fields may lose quantum coherence by scattering off vacuum fluctuations in which
virtual black hole pairs appear and disappear. Although it is not possible to properly compute the scattering off
such fluctuations, we argue that one can get useful qualitative results, which provide a guide to the possible
effects of such scattering, by considering a quantum field on theC metric, which has the same topology as a
virtual black hole pair. We study a scalar field on the LorentzianC metric background, with the scalar field in
the analytically continued Euclidean vacuum state. We find that there are a finite number of particles at infinity
in this state, contrary to recent claims made by Yi. Thus, this state is not determined by data at infinity, and
there is loss of quantum coherence in this semiclassical calculation.@S0556-2821~97!01022-9#
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I. INTRODUCTION

The possible loss of quantum coherence is one of the most
exciting topics in quantum gravity. Recent work onD-branes
has encouraged those that believe that the evaporation of
black holes is a unitary process without loss of quantum
coherence. It has been shown that collections of strings at-
tached toD-branes with the same mass and gauge charges as
nearly extreme black holes have a number of internal states
that is the same function of the mass and gauge charges as
eA/4G, whereA is the area of the horizon of the black hole
@1–3#. They also seem to radiate various types of scalar par-
ticles @4,5# at the same rate as the corresponding black holes.
However, theD-brane calculations are valid only for weak
coupling, at which string loops can be neglected. But at these
weak couplings, theD-branes are definitely not black holes:
there are no horizons, and the topology of spacetime is that
of flat space. One can foliate such a spacetime with a family
of nonintersecting surfaces of constant time. One can then
evolve forward in time with the Hamiltonian and get a uni-
tary transformation from the initial state to the final state. A
unitary transformation would be a one to one mapping from
the initial Hilbert space to the final Hilbert space. This would
imply that there was no loss of information or quantum co-
herence.

To get something that corresponds to a black hole, one
has to increase the string coupling constant until it becomes
strong. This means that string loops can no longer be ne-
glected. However, it is argued that for gauge charges that
correspond to extreme, or near extreme black holes, the num-
ber of internal states will be protected by nonrenormalization
theorems, and will remain the same. It is argued that there is
no sign of a discontinuity as one increases the coupling, and
therefore that the evolution should remain unitary. However,

there is a very definite discontinuity when event horizons
form: the Euclidean topology of spacetime will change from
that of flat space, to something nontrivial. The change in
topology will mean that any vector field that agrees with
time translations at infinity, will necessarily have zeroes in
the interior of the spacetime. In turn, this will mean that one
cannot foliate spacetime with a family of time surfaces. If
one tries, the surfaces will intersect at the zeroes of the vec-
tor field. One therefore cannot use the Hamiltonian to get a
unitary evolution from an initial state to a final state. But if
the evolution is not unitary, there will be loss of quantum
coherence. An initial state that is a pure quantum state can
evolve to a quantum state that is mixed. Another way of
saying this is that the superscattering operator that maps ini-
tial density matrices to final density matrices will not factor-
ize into the product of anS matrix and its adjoint@6#. This
will happen because the zeroes of the time translation vector
field indicate that there will be horizons in the Lorentzian
section. Quantum states on such a background are not com-
pletely determined by their asymptotic behavior, which is the
necessary and sufficient condition for the superscattering op-
erator to factorize.

One cannot just ignore topology and pretend one is in flat
space. The recent progress in duality in gravitational theories
is based on nontrivial topology. One considers small pertur-
bations about different vacuums of the product formM4

3B, and shows that one gets equivalent Kaluza-Klein theo-
ries. But if one can have small perturbations about product
metrics, one should also consider larger fluctuations that
change the topology from the product form. Indeed, such
nonproduct topologies are necessary to describe pair creation
or annihilation of solitons such as black holes orp-branes.

It is often claimed that supergravity is just a low-energy
approximation to the fundamental theory, which is string
theory. However, the recent work on duality seems to be
telling us that string theory,p-branes, and supergravity are
all on a similar footing. None of them is the whole picture;
instead, they are valid in different, but overlapping, regions.
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There may be some fundamental theory from which they can
all be derived as different approximations. Or it may be that
theoretical physics is similar to a manifold that can not be
covered by a single coordinate patch. Instead, we may have
to use a collection of apparently different theories that are
valid in different regions, but which agree on the overlaps.
After all, we know from Goedel’s theorem that even arith-
metic can not be reduced to a single set of axioms. Why
should theoretical physics be different?

Even if there is a single formulation of the underlying
fundamental theory, we do not have it yet. What is called
string theory has a good loop expansion, but it is only per-
turbation theory about some background, generally flat
space, so it will break down when the fluctuations become
large enough to change the topology. Supergravity, on the
other hand, is better at dealing with topological fluctuations,
but it will probably diverge at some high number of loops.
Such divergences do not mean that supergravity predicts in-
finite answers. It is just that it cannot predict beyond a cer-
tain degree of accuracy. But in that, it is no different from
perturbative string theory. The string loop perturbation series
almost certainly does not converge, but is only an asymptotic
expansion. This means that higher order loop corrections get
smaller at first. But after a certain order, the loop corrections
will get bigger again. Thus at finite coupling, the string per-
turbation series will have only limited accuracy.

We shall take the above as justification for discussing loss
of quantum coherence in terms of general relativity or super-
gravity, rather thanD-branes and strings. One might expect
that loss of quantum coherence could occur not only in the
evaporation of macroscopic black holes, but on a micro-
scopic level as well, because of topological fluctuations in
the metric that can be interpreted as closed loops of virtual
black holes@7#. Particles could fall into these virtual black
holes, which would then radiate other particles. The emitted
particles would be in a mixed quantum state because the
presence of the black hole horizons will mean that a quantum
state will not be determined completely by its behavior at
infinity. It is with such loss of coherence through scattering
off virtual black holes that this paper is concerned. Our pri-
mary intention is not to provide a rigorous demonstration
that quantum coherence is lost, but rather to explore the ef-
fects that will arise, assuming that the semiclassical calcula-
tions are accurate, and it is lost.

In d dimensions, a single black hole has a Euclidean sec-
tion with topologySd223R2. As has been seen in studies of
black hole pair creation, a real or virtual loop of black holes
has Euclidean topologySd223S22$point%, where the point
has been sent to infinity by a conformal transformation. For
simplicity, we shall considerd54, but the treatment for
higherd would be similar.

On the manifoldS23S22$point% one should consider
Euclidean metrics that are asymptotic to flat space at infinity.
Such metrics can be interpreted as closed loops of virtual
black holes. Because they are off shell, they need not satisfy
any field equations. They will contribute to the path integral,
just as off shell loops of particles contribute to the path in-
tegral and produce measurable effects. The effect that we
shall be concerned with for virtual black holes is loss of
quantum coherence. This is a distinctive feature of such to-
pological fluctuations that distinguishes them from ordinary

unitary scattering, which is produced by fluctuations that do
not change the topology.

One can calculate scattering in an asymptotically Euclid-
ean metric onS23S22$point%. One then weights with exp
(2I) and integrates over all asymptotically Euclidean met-
rics. This would give the full scattering with all quantum
corrections. However, one can neither calculate the scatter-
ing in a general metric, nor integrate over all metrics. In-
stead, what we shall do in the next two sections is point out
some qualitative features of the scattering in general metrics,
that indicate that quantum coherence is lost. We shall then
illustrate the effects of loss of quantum coherence and obtain
an estimate of their magnitude by calculating the scattering
in a specific metric onS23S22$point%, the C metric. It is
sufficient to show that quantum coherence is lost in some
metrics in the path integral, because the integral over other
metrics cannot restore the quantum coherence lost in our
examples.

II. LORENTZIAN SECTION

We do not have much intuition for the behavior of Eu-
clidean Green functions or their effect on scattering. How-
ever, if the Euclidean metric has a hypersurface orthogonal
Killing vector, it can be analytically continued to a real
Lorentzian metric, in which it is much easier to see what is
happening. We shall therefore consider scattering in such
metrics.

The Lorentzian section of an asymptotically Euclidean
metric which has topologyS23S22$point% will contain a
pair of black holes that accelerate away from each other and
go off to infinity. One might think that this is not very physi-
cal, but it is no different from a closed loop of a particle such
as an electron. Closed particle loops are really defined in
Euclidean space. If one analytically continues them to
Minkowski space, one gets a particle antiparticle pair accel-
erating away from each other. Any topologically nontrivial
asymptotically Euclidean metric will appear to have solitons
accelerating to infinity in the Lorentzian section, but this
does not mean that there are actual black holes at infinity,
any more than there are runaway electrons and positrons
with a virtual electron loop. One can regard the use of the
Lorentzian metric, with its black holes accelerating to infin-
ity, as just a mathematical trick to evaluate the scattering on
the Euclidean solution.

To understand the structure of these accelerating black
hole metrics, it is helpful to draw Penrose diagrams. Start
with the Penrose diagram for Rindler space with the left and
right acceleration horizonsHal andHar and past and future
null infinity I2 andI` ~see Fig. 1!. A uniformly accelerated
particle moves on a world line that goes out toI2 andI` at
the points where they intersect the acceleration horizons.
One now replaces the accelerating particle and the similar
accelerating particle on the other side with black holes. Thus,
one replaces the regions of Rindler space to the right and left
of the accelerating world lines with intersecting black hole
horizons. It turns out that the two accelerating black holes
are just the two sides of the same three-dimensional worm-
hole, so one has to identify the two sides of the Penrose
diagram, and the Penrose diagram will look similar to the
one in Fig. 2. At first sight it looks as if one has lost half of
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I2 andI`, but that is because this Penrose diagram applies
only on the axis. One can get a better idea of the causal
structure near infinity from Fig. 3, in which a conformal
transformation has been used to makeI` into a cylinder
S23R1, with the null generators lying in theR1 direction.
The hypersurface orthogonal Killing vector of the Euclidean

metric that allows continuation to a Lorentzian metric will be
a boost Killing vector in the accelerating black hole metric
and it will have two fixed pointsq and r on I`, lying on
generatorsl andl8, respectively. The past light cones ofq
and r minus the generatorsl and l8 form the acceleration
horizons. Thus one can see that nearly every null geodesic
outside the black hole horizons goes out toI` in the region
to the future of both acceleration horizons. The exceptions
are the null geodesics that are exactly in the boost direction,
which intersect the generatorsl andl8. We shall ignorel
andl8 as a set of measure zero onI`, and a number of the
statements we shall make will be valid modulo this set of
measure zero.

III. QUANTUM STATE

The analytically continued Euclidean Green functions will
define a vacuum stateu0&E which is the analogue of the
so-called Hartle-Hawking state@8# for a static black hole.
The Euclidean quantum state can be characterized by saying
that positive frequency means positive frequency with re-
spect to the affine parameters on the horizons. In the accel-
erating black hole metrics there are two kinds of horizons,
black hole and acceleration. Each kind of horizon consists of
two intersecting null hypersurfaces, which we shall refer to
as left and right, as in Fig. 2. In choosing a Cauchy surface
for the spacetime~modulo a set of measure zero!, we break
the symmetry between left and right, and choose say the left
acceleration horizon and the right black hole horizon. The
quantum state defined by positive frequency with respect to
the affine parameters on these horizons is the same as the
quantum state defined by the other choice of horizons.

Another Cauchy surface in the future~again modulo a set
of measure zero! is formed byI` and the future parts of the
black hole horizonsHbl

1 and Hbr
1 , as in Fig. 4. There is a

natural notion of positive frequency onI`. On the black
hole horizons the concept of positive frequency is less well

FIG. 1. The causal structure of Rindler space, with a pair of
accelerating particles depicted.

FIG. 2. A Penrose diagram for theC metric, neglecting the axis
x5j3. The heavy dashed lines are singularities, and the surfacesI6

are boundaries of the spacetime. A Cauchy surfaceC for the region
outside the inner black hole horizons constructed from one black
hole horizon and one acceleration horizon is shown.

FIG. 3. The structure ofI` in the conformal gauge~12!. The
two points are where the black holes intersectI`, and their past
light cones are the acceleration horizons. Two of theu,h cross
sections are pictured. The dashed lines represent the conical deficits
in the metric~3!; they are not part ofI`.

56 6405LOSS OF QUANTUM COHERENCE THROUGH . . .



defined. One could use Rindler time, but in any case, what
one observes onI` is independent of the choice of positive
frequency on the black hole horizons.

The quantum state of a fieldf on this background metric
will be determined by data on either of these Cauchy sur-
faces. This means that the Hilbert spaceH of quantum fields
on this background metric will be isomorphic to the tensor
products of the Fock spaces on their components:

H5FHal
^FHbr

5FI1 ^FH
bl
1 ^FH

br
1 . ~1!

The vacuum state defined by the Euclidean Green functions
is the product of the vacuum states of the Fock spaces for the
left acceleration horizon and right black hole horizon;

u0&E5u0&Hal
u0&Hbr

. ~2!

However, because of frequency mixing, the Euclidean quan-
tum state will not be the product of the Fock vacuum states
on I` and the future black hole horizons. Rather it will be a
state containing pairs of particles. Both members of the pair
may go out toI`, or both may fall into the holes, or one go
out to I` and one fall in.

Equation~1! shows that quantum field theory on an accel-
erating black hole background does not satisfy the
asymptotic completeness condition that the Hilbert space of
the quantum fields on the background is isomorphic to the
asymptotic Hilbert space of states onI`. Asymptotic com-
pleteness is the necessary and sufficient condition for scat-
tering of quantum fields on the background to be unitary@6#.
Thus there will be loss of quantum coherence. What happens
is that to calculate the probability of observing particles at

I`, one has to trace out over all possibilities on the future
black hole horizons. This reduces the Euclidean quantum
state to what appears to be a mixed quantum state described
by a density matrix.

In a recent pair of papers@9,10#, Yi argued that the Eu-
clidean quantum state in the Ernst metric would contain no
radiation at infinity. The Ernst metric is similar to the metrics
we are considering. However, in the explicit calculation that
we carry out in theC metric, we find that there is indeed
radiation at infinity. What’s wrong with Yi’s argument? As
he was working with the Ernst metric, which is not asymp-
totically flat, he was not able to study the radiation at infinity
directly. He therefore assumed that if there was no radiation
on the acceleration horizon, there would be no radiation at
infinity. But if we evolve some state forward from one of the
acceleration horizons toI`, part of the state can fall into the
future black hole horizon. Therefore, there can be a non-
trivial Bogoliubov transformation between the acceleration
horizon and infinity, and Yi’s assumption is incorrect.

The Euclidean quantum stateu0&E will be time symmet-
ric, and so will contain both incoming and outgoing radia-
tion. Unlike the Euclidean state for static black holes, there
will not be radiation to infinity at a steady rate for an infinite
time. Instead, the radiation will be peaked around the points
q and r where the acceleration horizons intersectI`. The
radiation will die off at early and late times and the total
energy radiated will be finite.

Is this the appropriate quantum state? In the case of a
static black hole, one usually imposes the boundary condi-
tion that there is no incoming radiation onI2. This means
that one has to subtract the incoming radiation from the Eu-
clidean state to give what is called the Unruh state. This is
singular on the past horizon, but that does not matter, as one
normally replaces this region of the metric with the metric of
a collapsing body. The energy for the steady rate of outgoing
radiation comes from a slow decrease of the mass of the
black hole formed by the collapse. However, in the case of a
virtual black hole loop, there is no collapse process to re-
move the singularities on the past horizons of the black holes
or supply the energy of the outgoing radiation. Therefore, we
should study the Euclidean vacuum state, in which the en-
ergy of the outgoing radiation is supplied by the incoming
radiation onI2.

Our view therefore is that integrating over gauge equiva-
lent virtual black hole metrics will cause the amplitude to be
zero unless the energy of the outgoing particle or particles is
matched by particles with the same energy falling in. One
might object that one would never have exactly the combi-
nation of incoming particles that corresponded to the quan-
tum state obtained from the Euclidean green functions. How-
ever, the Euclidean quantum state will appear to be a mixed
quantum state onI2 which contains every possible combi-
nation of incoming particles. One can choose one of these
combinations as an initial pure quantum state that is incident
on the virtual black hole loop. The final quantum state will
then be that part of the Euclidean quantum state onI` that
has the same energy, momentum, and angular momentum as
the incoming state. Because of the trace over the future black
hole horizon states, the final state onI` will be mixed. Such
an evolution from pure to mixed states can be described by a
superscattering operator $ rather than anS matrix @6#.

FIG. 4. A Cauchy surfaceC̃ for the region outside the inner
black hole horizons constructed fromI` and the future halves of
the black hole horizons. The Rindlerian coordinatesu,v between
the acceleration and outer black hole horizons are also shown.
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The dominant contribution will presumably come from
virtual black hole loops of Planck size. The cross section for
a low-energy particle to fall into a Planck size static black
hole is very low unless the particle is spin 0 or 1/2@11#. In
the case of spin 1/2, the probability of emission will be re-
duced because the Fermi-Dirac factor@exp(v/T)11#21 tends
to 1 at low v while @exp(v/T)21#21 tends toT/v. This
suggests the effects of virtual black holes will be small ex-
cept for scalar particles. In this paper we shall therefore do a
scattering calculation for scalar particles in theC metric.
This does not really qualify as a virtual black hole metric,
because it has conical singularities on the axis, although one
can interpret these as cosmic strings. We study theC metric
because it has the same topological structure as a virtual
black hole pair, but it has the great advantage that one can
calculate the scattering, because the wave equation separates.

IV. C METRIC

The chargedC metric solution is@12#

ds25A22~x2y!22@G~y!dt22G21~y!dy2

1G21~x!dx21G~x!dw2#, ~3!

where

G~j!5~11r 2Aj!~12j22r 1Aj3!

52r 1r 2A2~j2j1!~j2j2!~j2j3!~j2j4!. ~4!

The gauge potential is

Aw5q~x2j3!, ~5!

whereq25r 1r 2 . We definem5(r 11r 2)/2. We constrain
the parameters so thatG(j) has four roots, which we label
by j1<j2,j3,j4. To obtain the right signature, we restrict
x to j3<x<j4, andy to 2`,y<x. The inner black hole
horizon lies aty5j1, the outer black hole horizon aty5j2,
and the acceleration horizon aty5j3. The axisx5j4 points
towards the other black hole, and the axisx5j3 points to-
wards infinity. Spatial infinity is atx5y5j3, null and time-
like infinity at x5yÞj3. This metric describes a pair of op-
positely charged black holes accelerating away from each
other, although the coordinate system used in Eq.~3! only
covers the neighborhood of one of the black holes.

To avoid having a conical singularity between the two
black holes, we choose

Dw5
4p

uG8~j4!u
. ~6!

This implies that there will be a conical deficit alongx5j3,
with deficit angle

d52pS 12UG8~j3!

G8~j4!
U D . ~7!

Physically, we imagine that this represents a cosmic string of
mass per unit lengthm5d/8p alongx5j3. At large spatial
distances, that is, asx,y→j3, theC metric ~3! reduces to flat
space with conical deficitd in accelerated coordinates. The

C metric also reduces to flat space if we setr 15r 250. It
reduces to a single static black hole if we setA50 @13#. The
limit r 1A!1 is referred to as the point-particle limit, as in
this limit the black hole is small on the scale set by the
acceleration.

TheC metric was shown to be asymptotically flat in@14#.
This is a considerable advantage over, say, the Ernst metric,
as it means we will have a well-defined notion ofI, and we
can study the radiation at infinity directly. If we neglect the
axis x5j3, all observers will intersect the acceleration hori-
zon before reaching infinity, and the causal structure of the
solution is roughly speaking given by the Penrose diagram
shown in Fig. 2. However, the metric is not spherically sym-
metric, so this diagram is not a true picture of the whole
spacetime. We will refer to the left and right acceleration
horizons asHal andHar , and to the left and right outer black
hole horizons asHbl and Hbr . Further, the future and past
halves of each horizon will be denoted by superscripts6.
Hopefully the diagram clarifies the meaning of this notation.

We will only discuss the behavior at future null infinity.
As the metric is time symmetric, the discussion of past null
infinity will be identical. We can conformally compactify the
C metric by using a conformal factorV5A(x2y). The con-
formally rescaled metric is

d̃s25V2ds2

5G~y!dt22G21~y!dy21G21~x!dx21G~x!dw2.

~8!

Null infinity is the surfaceV50, that is,x5y ~more pre-
cisely, its maximal extension; the coordinate system of Eq.
~8! misses the generator on which the other black hole inter-
sectsI` @14#!. The induced metric onI` is

d̃sI
25G~y!~dt21dw2!. ~9!

Note that, at null infinity,t is a spatial coordinate. The nor-
mal to I` is

na5¹̃aV52AG~y!]y . ~10!

We see thatt and w are constant along the orbits ofna,
which are the generators ofI`, so they are good coordinates
on the manifold of orbits ofI`. It is convenient to define
new coordinatesu,h, where

du

sinu
5

uG8~j4!u
2

dt, h5
uG8~j4!u

2
w, ~11!

~so Dh52p). We also make a further conformal rescaling
with a conformal factorV85uG8(j4)usinu/2G1/2(y), so that

ďsI
25V82d̃sI

25du21sin2udh2. ~12!

In this conformal gauge, an affine parameter along the gen-
erators ofI` is

r̃ 5
uG8~j4!usinu

4A E dy

G~y!3/2
. ~13!
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It is also useful to define another coordinate

r 5E dy

G~y!3/2
, ~14!

which labels theu,h cross sections. The structure ofI` in
the conformal gauge~12! is depicted in Fig. 3. In this con-
formal gauge,I` is divergence-free, andu,h are coordi-
nates on the manifold of generators ofI`, so we can see that
I` has topologyS23R.

We can obtain the Euclidean section of theC metric by
settingt5 i t in Eq. ~3!. To make the Euclidean metric posi-
tive definite, we need to restrict the range ofy to j2<y
<j3. There are then potentially conical singularities aty
5j2 andy5j3, which have to be eliminated. We can avoid
having a conical singularity aty5j3 by takingt to be peri-
odic with period

Dt5b5
4p

G8~j3!
. ~15!

In this paper, we assume the black holes are nonextreme, that
is, j1,j2. We can then only avoid having a conical singu-
larity at y5j2 by taking the two horizons to have the same
temperature, so that both conical singularities can be re-
moved by the same choice ofDt. This implies

j22j15j42j3 . ~16!

The Euclidean section has topologyS23S22$pt%. This Eu-
clidean section can be used to study the pair creation of black
holes by breaking cosmic strings@15–17#. However, we
want to use it simply to determine the appropriate vacuum
state on the Lorentzian section. Since the black hole and
acceleration horizon have the same temperature on the Eu-
clidean section, the analytic continuation will give Green’s
functions which are thermal with temperature 1/b with re-
spect to the time parametert in the Lorentzian section.

The region of the spacetime outside the inner horizon of
the black holes is globally hyperbolic. Consider a Cauchy
surface for this region which is made up of one black hole
horizon and one acceleration horizon~say the left accelera-
tion horizon and the right black hole horizon!, as pictured in
Fig. 2. As explained earlier, the Hilbert space is isomorphic
to the tensor product of the Fock spaces on the two horizons
~1!. Positive frequency on the Fock spaces is defined with
respect to the affine parameter along the horizon. The state
we wish to study is the analytically continued Euclidean
vacuum stateu0&E given in Eq.~2!.

In the next section, we will describe the solution of the
scalar wave equation on theC metric background. We then
use this to calculate the Bogoliubov coefficients in the sub-
sequent section.

V. SCALAR WAVE EQUATION

We consider a minimally coupled massless neutral scalar
field, so the wave equation is justhf50. One of the great
advantages of considering theC metric is that this equation
separates. It is easy to see this if we observe that theC
metric is a solution of the vacuum Einstein-Maxwell equa-

tions, and henceR50. The minimally coupled equation
above is therefore equivalent to the conformally invariant
equationhf2 1

6 Rf50. But in solving this latter equation,
we are free to make conformal transformations. In particular,
we can transform to the conformal gauge~8!, in which this
equation takes the form

1

G~y!
] t] tf̃2]y@G~y!]yf̃#1]x@G~x!]xf̃#1

1

G~x!
]w]wf̃

1
1

6
@]x

2G~x!2]y
2G~y!#f̃50, ~17!

where because of the conformal rescaling,f̃5f/A(x2y).
Thus we see that if we use the ansatz

f5A~x2y!eivteimwn~x!g~y!, ~18!

then we get two second-order ordinary differential equations
~ODEs! for n(x) andg(y),

]x@G~x!]xn~x!#2
1

G~x!
m2n~x!1F1

6
]x

2G~x!1DGn~x!50

~19!

and

]y@G~y!]yg~y!#1
1

G~y!
v2g~y!1F1

6
]y

2G~y!1DGg~y!50,

~20!

whereD is a separation constant, andG(j) is given in Eq.
~4!. Note that w is a periodic coordinate with period
4p/uG8(j4)u. Thusm5m0uG8(j4)u/2, wherem0 is an inte-
ger. We assume, without loss of generality, that it is positive.

One way to rewrite these equations that offers some fur-
ther insight is to define new coordinates

z5E dy

G~y!
, x5E dx

G~x!
, ~21!

which have the advantage that]z5G(y)]y ,]x5G(x)]x .
Note that the integral forz in Eq. ~21! diverges as we ap-
proach a horizon, asG(y)→0 at the horizons. Thus,2`
,z,` only covers the region between two of the horizons;
similarly, j3,x,j4 is mapped to2`,x,`. We can write
Eqs.~19! and ~20! as

]x
2n„x~x!…2m2n„x~x!…1Veff~x!n„x~x!…50, ~22!

]z
2g„y~z!…1v2g„y~z!…1Veff~z!g„y~z!…50. ~23!

That is, Eq.~20! reduces to the one-dimensional wave equa-
tion with effective potentialVeff(z), which is given by

Veff~z!5G„y~z!…F1

6
]y

2G„y~z!…1DG . ~24!

There is a similar expression forVeff(x). It is not possible to
invert Eq. ~21! to obtain y(z) explicitly, but we can make
some observations. Near the horizons,G(y)→0, and thus
the effective potential becomes unimportant, sog(y)
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;e6ivz. Similarly, nearx5j3 ,j4, n(x);e6mx. Obviously,
for physically-interesting solutions, we must haven(x)
;e2muxu asx→6`.

We can rewrite the metric~3! in terms of these coordi-
nates:

ds25A22~x2y!22@G~y!~dt22dz2!1G~x!~dx21dw2!#,
~25!

where byx,y we meanx(x), y(z). This coordinate system
evidently only covers the region between two of the horizons
~or between the acceleration horizon and infinity!. That is,
there is a coordinate system such as this for each of the
diamond-shaped regions in the Penrose diagram in Fig. 2.
We will therefore refer to these as the Rindlerian coordi-
nates. We can now define null coordinatesu,v5t6z. Since
z increases as we go from the acceleration horizon towards
the black hole horizon, theu andv coordinates run as shown
in Fig. 4. Thus,u is a ~nonaffine! parameter alongHar

6 and
Hbr

6 , while v is a ~nonaffine! parameter alongHal
6 andHbl

6 .
As is usual for bifurcate Killing horizons, these parameters
are related to the affine parametersU,V on the acceleration
horizon byu51/k lnuUu, v521/k lnuVu, wherek5G8(j3)/2
is the common surface gravity of the two horizons.

These coordinates are useful for specifying boundary con-
ditions near the black hole and the acceleration horizons, and
we will see later that we can easily write down explicit forms
for the positive-frequency wave functions on the horizons in
terms of them. However, as we cannot writeVeff explicitly as
a function ofz, we cannot solve the differential equations in
this form.

If we return to the initial forms~19!,~20! for the ODEs,
we find that they can be considerably simplified. In the sim-
plification, we will exploit the equal-temperature condition
~16!, which imposes an additional symmetry on the form of
G(j). If we make a coordinate transformation

ĵ5
2

~j32j2!Fj2
1

2
~j31j2!G , ~26!

then

G~j!52
c

z
~ ĵ22a2!~ ĵ221!, ~27!

where

z5
8

r 1r 2A2~j32j2!3
, a5

~j42j1!

~j32j2!
, c5

1

2
~j32j2!.

~28!

Note thata.1, z,c.0, and that]ĵ5c]j . If ŷ and x̂ are
defined in terms ofy andx following Eq. ~26!, then the inner
black hole horizon is atŷ52a, the outer black hole horizon
is at ŷ521, and the acceleration horizon is atŷ51, while
the range ofx̂ is 1< x̂<a. In terms of these coordinates,

]j
2G~j!52

1

zc
@12ĵ222~11a2!#, ~29!

so it is convenient to define

bD
2 5

1

6
~11a2!1

Dcz

2
, ~30!

so that

1

6
]j

2G~j!1D52
2

zc
~ ĵ22bD

2 !. ~31!

We can now writez explicitly:

z5E dy

G~y!
5

z

2~a221!
F 1

a
lnUa1 ŷ

a2 ŷ
U1 lnU12 ŷ

11 ŷ
UG .

~32!

We can now see clearly thatz diverges at the event horizons
ŷ52a,61. We can further see thatz→2` as we approach
ŷ52a,1, the inner black hole and acceleration horizons,
andz→` as we approachŷ521, the outer black hole ho-
rizon. There is a similar explicit expression forx, andx→
2` as we approachx̂51 andx→` as we approachx̂5a.
The consideration of the form~22!,~23! suggests a further
simplifying transformation. If we set

n̂~ x̂!5emxn̂~ x̂!5S a1 x̂

a2 x̂
D zm/2a~a221!S x̂21

11 x̂
D zm/2~a221!

n̂~ x̂!

~33!

and

ĝ~ ŷ!5e2 ivzf̂ ~ ŷ!5S a1 ŷ

a2 ŷ
D 2 i zv/2a~a221!

3S 12 ŷ

11 ŷ
D 2 i zv/2~a221!

f̂ ~ ŷ!, ~34!

then we can finally rewrite Eqs.~19!,~20! as

] x̂@~ x̂221!~ x̂22a2!] x̂n̂~ x̂!#22mz] x̂n̂~ x̂!

12~ x̂22bD
2 !n̂~ x̂!50, ~35!

] ŷ@~ ŷ221!~ ŷ22a2!] ŷ f̂ ~ ŷ!#12ivz] ŷ f̂ ~ ŷ!

12~ ŷ22bD
2 ! f̂ ~ ŷ!50. ~36!

This is the simplest form in which we can write these equa-
tions.

We have been able to simplify the form of the wave equa-
tion considerably. However, Eqs.~35!,~36! still have five
regular singular points, atĵ561,6a,`, so they cannot be
solved exactly. We will therefore need to use some further
simplifying assumption in solving the wave equation. There
is only one dimensionless parameter in the metric,r 1A, as
the equal-temperature condition fixesr 2A as a function of
r 1A. Therefore we are driven to consider the point-particle
limit r 1A!1. In this limit, a'114r 1A, and z'8r 1A
'2(a21). For reasons of convenience, we will use (a
21) as the small parameter.
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VI. BOGOLIUBOV TRANSFORMATIONS

Having laid the groundwork, we can now define and
evaluate the Bogoliubov coefficients. We can write the field
operatorf in terms of annihilation and creation operators on
the Hilbert spaces associated with the black hole and accel-
eration horizons:

f5A~x2y!S lmE dv~ f v lm
b bv lm

b 1 f̄ v lm
b bv lm

b†

1 f v lm
a bv lm

a 1 f̄ v lm
a bv lm

a† !, ~37!

wheref v lm
b , f v lm

a are sets of positive frequency modes which
have nonzero support on the black hole and acceleration ho-
rizons respectively,bv lm

b ,bv lm
a are the particle annihilation

operators, andbv lm
b† ,bv lm

a† are the particle creation operators.
Here, positive frequency means with respect to the affine
parametersU,V on the horizons.

Following @18#, we see that a suitable set of positive fre-
quency states on the black hole horizon is

f v lm
b 5

N

u12e22pv/ku1/2
eimwn lm~x!@gv

21e2pv/kgv
1#,

~38!

wheren lm is a solution of Eq.~19! with D given bybD51
12l ( l 11), andgv

6 are functions which are nonzero on the
future and past parts of the black hole horizon, respectively,
and which are positive frequency with respect to the Rindler
parameter, that is,gv

65e2 ivu. We know already that only a
discrete set of values form are allowed, and we will see
below that the same is true forl . We wish to normalize the
modes so that (f v lm

b , f v8 l 8m8
b )5dmm8d l l 8d(v2v8), which

implies uNu251/(4puvuDw). Note that although the
positive-frequency solutions are labeled by a frequencyv,
they do not have a single frequency with respect toU, and
the solutions are still wholly positive frequency with respect
to U when v is negative. For this to be a complete set of
positive-frequency solutions, we must allowv to run over
2`,v,`. One can write down a similar set of positive
frequency solutions on the acceleration horizon.

In Appendix A, we consider Eq.~35! with (a21)!1,
and we learn that, as we might have expected, there is a
restriction on the form of the data on the black hole horizon.
If we write l 5 l 01O(a21), then the solutionsn lm(x) will
only be regular at both of the axesx5j3 ,x5j4 if l 0 is an
integer andl 0>m0, wherem0 is the integer appearing inm.
In the point-particle limit, thex,w section approaches spheri-
cal symmetry, sol 0 is the usual total angular momentum
quantum number, whilem0 is the angular momentum with
respect to the axis along which the black holes are acceler-
ating.

We can also write the field operator in terms of modes
which are positive frequency at infinity:

f5A~x2y!E dv du0 dh0 ~pvav1 p̄vav
†

1qvcv1 q̄vcv
† !, ~39!

where pv are a set of modes with nonzero support onI1

which are positive frequency with respect tor̃ , andav ,av
†

are the corresponding annihilation and creation operators.
The modesqv have nonzero support on the future black hole
horizon, andcv ,cv

† are the corresponding annihilation and
creation operators. We will not bother to define these latter
modes, as their form is irrelevant to the calculation of par-
ticle production onI`.

Following @19#, we choose the positive frequency modes
pv to have the form

pv5
e2 i ṽ r̃

A2pṽsinu0

d~u2u0!d~h2h0!

5
e2 ivr uG8~j4!u

A2p4Av
d~u2u0!d~h2h0! ~40!

on I`, in the conformal gauge where the metric onI` has
the form ~12!. We define v5ṽuG8(j4)usinu0 /4A. Each
mode is thus nonzero on one generator ofI`, labeled by
u0 ,h0, and has frequencyṽ with respect to the affine param-
eter along that generator. The complete set of positive fre-
quency modes is given by 0<v,`. They are normalized so
that (pv ,pv8 )52ṽd3(kW2kW8), where kW is the three-
momentum, and points in the direction (u0 ,h0).

Since both sets of modes are complete bases for the space
of solutions of the wave equation, we can write one in terms
of the other. That is,

f v8 lm
b

5E dṽ du0 dh0 ~avv8 lm
b pv1bvv8 lm

b p̄v

1 terms involvingqv!, ~41!

and similarly for f v8 lm
a . If we substitute these expansions

into Eq.~37!, and require consistency with Eq.~39!, then we
find that

av5S lmE dv8~avv8 lm
b bv8 lm

b
1 b̄vv8 lm

b bv8 lm
b†

1avv8 lm
a bv8 lm

a

1 b̄vv8 lm
a bv8 lm

a†
!. ~42!

The quantitiesavv8 lm
b ,bvv8 lm

b ,avv8 lm
a ,bvv8 lm

a are called the
Bogoliubov coefficients. Since we know how the annihila-
tion and creation operators which were defined on the hori-
zons act onu0&E , to determine how the annihilation and
creation operators defined at infinity act onu0&E , we just
need to compute these coefficients.

The operator we are most interested in is the number op-
eratorNv5av

† av , which gives the number of particles in the
modepv . In the stateu0&E ,

^0uNvu0&E5S lml8m8E dv8dv9

3~bvv8 lm
b b̄vv9 l 8m8

b ^0ubv8 lm
b bv9 l 8m8

b† u0&E1••• !

5S lmE
2`

`

dv8~ ubvv8 lm
b u21ubvv8 lm

a u2!, ~43!
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where we have expandedav by Eq. ~42!, and in the second
line we have used the canonical commutation relations and
the fact thatbv8 lm

b u0&E50, bv8 lm
a u0&E50.

We should now calculate the Bogoliubov coefficients
bvv8 lm

b andbvv8 lm
a . However, it turns out to be quite diffi-

cult to calculate the latter coefficient. Therefore, we wish to
argue that it is sufficient to calculate the contribution from
the Bogoliubov coefficient associated with the black hole
horizonbvv8 lm

b ; the other contribution should be similar.
We broke the symmetry between the left and right hori-

zons when we defined the Euclidean vacuum state, by defin-
ing it to be the product of the vacua of the Fock spaces for
the left acceleration horizon and right black hole horizon.
However, the vacuum state is in fact symmetric under left-
right interchange. That is, it is also equal to the product of
the vacua of the Fock spaces for the right acceleration hori-
zon and left black hole horizon. Take the vacuum state onC
and evolve it forward through the right Rindler diamond,
from Hal

2 andHbr
2 to Har

1 andHbl
1 . There will then be corre-

lations betweenHbr
1 and Har

1 , due to the correlations be-
tween the two halves of the black hole horizon in the Cauchy
surfaceC. Further, there are no correlations betweenHbr

1 and
Hal

1 , because onC, the state has no correlations between the
black hole and acceleration horizons. Since the state is left-
right symmetric, the correlations between the two halves of
the acceleration horizon in the Cauchy surfaceC can there-
fore only give rise to correlations betweenHbl

1 andHal
1 , and

these correlations will be related to the ones coming from the
black hole horizon. Both sets of correlations give rise to
correlations betweenI` and the future black hole horizons,
which give the particle creation, so the particle creation due
to the acceleration horizon should just be the image under
the left-right interchange of the particle creation due to the
black hole horizon. This justifies our only calculating the
latter contribution.

We now calculatebvv8 lm
b . The modespv , p̄v ,qv , q̄v are

orthogonal, and

~pv ,pv8!52ṽd3~kW2kW8!

5
2

ṽsinu0

d~h02h08!d~u02u08!d~ṽ2ṽ8!.

~44!

Thus, we can use Eq.~41! to show

b̄vv8 lm
b

5
ṽsinu0

2
~pv , f̄ v8 lm

b
!5

2Av

uG8~j4!u
~pv , f̄ v8 lm

b
!.

~45!

To evaluate this inner product, we need to express both the
modes as functions on the same Cauchy surface. We do this
by evolving the modef̄ v8 lm

b forwards fromC to C̃.
The propagation fromC to C̃ can be broken up into two

stages: propagation through the right Rindler diamond, from
Hal

2 and Hbr
2 to Har

1 and Hbl
1 , and propagation through the

future diamond, fromHal
1 andHar

1 to I1. The initial data on
Hbr

2 is just the restriction of Eq.~38! to the past part of the

black hole horizon, whilef̄ v8 lm
b vanishes onHal

2 . From the
discussion of Eq.~23!, we recall that at the acceleration and
black hole horizons,g(y);e6 ivz. Using this and the form
~38! of the modef v8 lm

b , we find that the boundary conditions
on g(y) are

g~y!5e2 ivz1CReivz ~46!

at the black hole horizonz→`, and

g~y!5CTe2 ivz ~47!

at the acceleration horizonz→2`, whereCR and CT are
constants which remain to be determined. In Appendix B, we
solve Eq.~36! with these boundary conditions in the limit
r 1A!1, assumingv;1, and find thatCT;(a21)2l 11, and
that, for l 050, uCTu'(a21)v/2. Because the transmission
factorCT is increasingly suppressed for increasingl , we will
be mostly interested in the contribution from thel 050 mode,
as the other contributions will be smaller than the terms that
we neglect in our approximate calculation of thel 050 con-
tribution.

The propagation fromHal
1 andHar

1 to I1 is also described
in Appendix B. This part of the calculation is substantially
easier; it is very similar to solving the angular equation~35!.
In the conformal frame where the metric has the form~12!,
the restriction off v8 lm

b to I` is

f v8 lm
b uI`5

2NCTG1/2~y!

u12e22pv8/ku1/2uG8~j4!usinu

3e2 iv8~ t1z!eimwe2muzu f lv8~p! ñ lm~p!. ~48!

In this expression,f lv8(p) is given by the definition at the
end of Appendix B, and we have definedñ lm(p) to be
nlm(p) for p,1/2 (x,0) and e2mxnlm(p) for p.1/2 (x
.0), wherenlm(p) is the approximate solution of the angu-
lar equation given in Appendix A. Whenp→0,
f lv8(p), ñ lm(p)→1. Whenp→1, ñ lm(p)→ei%, some con-
stant phase.

Evaluating the inner product, we find that

b̄vv8 lm
b

52
2N̄C̄Tveiv8t0e2 imw0

A2puG8~j4!uu12e22pv8/ku1/2

3E dz eivreiv8ze2muzu f lv8~p! ñ lm~p!, ~49!

wheret5t0 corresponds tou5u0, w5w0 corresponds toh
5h0, and we have useddr5dz/G1/2(y), which follows
from Eqs.~14! and ~21!.

Note that apart from an overall phase, this expression de-
pends only on the frequencyv, and not onu0 ,h0. This
means that the expression is boost invariant, that is, invariant
under translations int, as the orbits of the boosts are the
cross sections labeled byr , and thus these boosts preserve
the frequencyv with respect tor .
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We cannot evaluate the integral in Eq.~49!, but we can
still get some interesting physical information about the ra-
diation out of this expression. BecauseG(y)→0 as z→
6`,

dr

dz
5

1

G1/2~y!
→6` when z→6`, ~50!

and hence theeivr part of the integrand oscillates with an
effective frequency which tends to infinity at largeuzu. Since
the amplitude is bounded, the main contribution to the inte-
grand will come from the region nearz50 where the inte-
grand oscillates slowly.

The integral in Eq.~49! will give an answer which is
peaked inv8 with some finite width, so the integration over
v8 of u b̄vv8 lm

b u2 in Eq. ~43! should give a finite answer. By
contrast, in the case of a static black hole, the analogous
formula for the Bogoliubov coefficient gives ad function in
v8, so the expected number of particles is infinite~that is, in
that case there is a steady flux of particles acrossI`).

Our calculation of the transmission factor in Appendix B
is only valid for uv8u<1, and we might expect that for suf-
ficiently largev8, the potential barrier would become unim-
portant, andCT;1. However, the Bogoliubov coefficient
will be small for large negativev8 because of the factor
u12e22pv8/ku21/2. We also expect that it would be small at
large positivev8, as the integrand in the integral in Eq.~49!
will then oscillate rapidly for all values ofz, making the
integral small. Thus, the main contribution to the integral
overv8 in Eq. ~43! will come from small negativev8, where
the calculation ofCT is valid.

We expect that the size of the contribution from eachl ,m
will be primarily determined by the transmission factor, so
we expect that the contribution froml 05m050 will domi-
nate the summation overl ,m in Eq. ~43!. We now consider
the form of this contribution in the point-particle limit, where
we can somewhat simplify the expressions and illustrate
some of these remarks. When (a21)!1, we haveG(y)
'4p(12p) on I`, where p5( ŷ21)/(a21). Further,z
' 1

2 ln„p/(12p)…, as 0<p<1 on I`, so

G~y!'
1

cosh2z
. ~51!

Thus,dr/dz'coshz, and hence

r'sinhz. ~52!

Also, k'1, f 0v(p)'1, and ñ00(p)'1. Therefore

b̄vv800
b '2

N̄C̄Tveiv8t0e2 imw0

A2pu12e22pv8u1/2E dz ei ~v8z1vsinhz!.

~53!

As we argued above, the main contribution to the integration
will come from the region nearz50, so the primary contri-
bution to b̄vv800

b , and hence to the number operator, will
come from the part of the generator closest to the points
where the black holes intersectI`. If we restrict our atten-

tion to the region nearz50, we can expand sinhz in a power
series, and we see that the integrand is most nearly constant
near z50 if v852v, so we expect that the Bogoliubov
coefficient will be peaked atv852v. This peak will be-
come narrower asv→0, approaching ad function in the
limit, but the amplitude tends to zero in this limit because of
the factor ofv in front of the integral, so this does not imply
infinite particle production.

The leading-order part of the total particle production
along the generator labeled byu0 ,h0 is given by integrating
ubvv800

b u2 over v and v8; we cannot do this integral, but
given the arguments above, it seems reasonable to expect the
answer to be finite. The integration over all generators,
which gives the total particle production, will not give rise to
any divergences either.

VII. DISCUSSION

In the first part of this paper, we argued that the scattering
off virtual black hole pairs, which could lead to loss of quan-
tum coherence in ordinary scattering processes, could be dis-
cussed in terms of a path integral over Euclidean metrics
with topologyS23S22$point%. In this approach, one consid-
ers the scattering in each metric and performs a path integral
over all such metrics. Since we cannot perform this path
integral, we then restricted the discussion to one such metric,
and analytically continued the solution to a Lorentzian sec-
tion to make the scattering easier to understand.

We argued that the appropriate quantum state is the ana-
lytically continued Euclidean vacuum stateu0&E , and we ar-
gued that this state will contain a finite, nonzero number of
particles at infinity. It is well known that from the point of
view of an observer comoving with the black holes, this state
corresponds to a thermal equilibrium between the black
holes and a thermal bath of acceleration radiation. Thus, this
state must be time-reversal invariant, which means that the
particle content at past null infinityI2 is the time reverse of
the particle content at future null infinityI`. This implies
that no net energy is gained or lost by the black holes in this
scattering process, which is what we would expect for a
model of a virtual loop, and is in agreement with the fact that
the state is an equilibrium as seen by comoving observers.

The fact that there is a nonzero number of particles atI`

implies that there is loss of quantum coherence in this semi-
classical calculation, as each particle detected at infinity can
be thought of as one member of a virtual pair, the other one
of which has fallen into the black hole, carrying away infor-
mation. More formally, there are correlations between modes
on future infinity and modes on the future black hole hori-
zon, and the information encoded in these correlations is lost
because we do not observe the state on the future black hole
horizon. This loss of quantum coherence is of the same char-
acter as that observed in static black holes.

In the second part of the paper, we proceeded to an ex-
plicit calculation of the scattering in theC metric. Although
the Euclidean C metric solution has topologyS23S2

2$point%, it is not usually thought of as describing a virtual
black hole loop, as it is a solution of the field equations, and
it has a conical singularity along one of the axes. However,
we believe it is a reasonably good model for a virtual black
hole loop, and the wave equation separates in this back-
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ground, so it is relatively easy to study the scattering explic-
itly. The C metric is asymptotically flat@14#, so it is also
straightforward to study the radiation at infinity. One slightly
surprising fact about the structure at infinity is that the affine
parameter along generators ofI` is r̃ , which is spacelike
between the black hole and acceleration horizons, while the
boost time coordinatet becomes a spacelike coordinate la-
beling the generators ofI`.

It is also worth noting that the transmission factorCT
;(a21)2l 11. This implies that the dominant contribution to
the particle production is in thes wave, as for static black
holes, because of the high centrifugal potential barrier for
higher-spin modes. It also suggests that the scattering of
higher-spin fields off such virtual black hole loops will be
suppressed relative to that of scalar fields, as they cannot
radiate in thes wave. This is in agreement with the argu-
ments of@20,19#.

The calculation we have actually been able to perform is
rather limited; we considered only one specific, rather special
metric, and we were only able to study the scattering on it in
a particular limit. However, the results we have obtained
give an estimate of the magnitude and nature of the effects of
virtual black hole loops, and they agree well with our general
expectations.
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APPENDIX A: THE ANGULAR QUANTIZATION
CONDITION

In the point-particle limit (a21)!1, the deviations from
spherical symmetry in thex,w part of the metric become
small, so we would expect that the dependence onx will
reduce to the usual angular momentum modes, with quantum
numbersl andm. Recall that because of the periodicity ofw,
m5m0uG8(j4)u/25m0@11O(a21)#, wherem0 is an inte-
ger. We also expandl 5 l 01 l 1(a21)1•••. The range ofx̂
is 1< x̂<a, so we define a new coordinatep5( x̂21)/(a
21). If we expandn̂( x̂) in powers ofa21, n̂( x̂)5nlm(p)
5n0(p)1(a21)n1(p)1•••, then Eq. ~35! can be sepa-
rated into a series of equations for these functions. The first
equation is

]p@p~p21!]pn0~p!#2m0]pn0~p!2 l 0~ l 011!n0~p!50.
~A1!

This equation is a hypergeometric equation. The possible
values ofl 0 are restricted by requiring that the solution be-
have appropriately at the two poles,p50,1. As we said ear-
lier, for the solution forf to be physically relevant, we must
haven(x);e2muxu asx→6`. That is, we require thatn(x),
and hencef, does not blow up at the axes. Sincen̂( x̂)
5emxn̂( x̂), the appropriate boundary conditions onnlm(p)
are thatnlm(p)51 asx→2`, which corresponds top50,
and nlm(p);e22mx as x→`, which corresponds top51.

Therefore, the appropriate solution of the hypergeometric
equation~A1! is n0(p)5F( l 011,2 l 0 ;11m0 ;p), whereF
is the hypergeometric series, asF(a,b;c;p)→1 asp→0. If
we analytically continue this solution to a neighborhood of
p51, we find

n0~p!5
G~11m0!G~m0!

G~m02 l 0!G~m01 l 011!

3F~ l 011,2 l 0,12m0 ;12p!

1
G~11m0!G~2m0!

G~ l 011!G~2 l 0!
~12p!m0F

3~m02 l 0,11m01 l 0 ;11m0 ;12p!. ~A2!

The second term has the appropriate behavior forp→1,
sincee2x'(12p)1/2 for p'1. Thus, the coefficient of the
first term must vanish, which can only happen ifl 02m0 is a
non-negative integer. This is just the usual quantisation con-
dition for angular momentum, andl 0 is thus the total angular
momentum quantum number.

The next-order terml 1 can similarly be fixed by requiring
that the solutionn1(p) is regular atp50,1. Unfortunately, it
is not possible to give a general formula forl 1; the equation
must be solved separately for eachl 0 ,m0. We are particu-
larly interested in the casel 05m050, as we expect this
mode to make the dominant contribution to the particle pro-
duction onI`. In this case,n0(p)5F(1,0;1;p)51, while
the equation forn1(p) is

]p@p~p21!]pn1~p!#5 l 12p. ~A3!

This equation has a solution which is regular atp50,1 only
if l 151/2; in this case, the solution isn1(p)52p/21C,
whereC is a constant. One can similarly fix all thel i .

APPENDIX B: THE TRANSMISSION FACTOR

In Sec. VI, we found that to evolve the positive-frequency
modes fromC to C̃, we need to calculate the transmission
factor CT between the black hole and acceleration horizons.
That is, we need to solve Eq.~36! with the boundary condi-
tions~46!,~47!, and findCT . For convenience, we will repeat
those here. The equation is

] ŷ@~ ŷ221!~ ŷ22a2!] ŷ f̂ ~ ŷ!#12ivz] ŷ f̂ ~ ŷ!

12~ ŷ22bD
2 ! f̂ ~ ŷ!50. ~B1!

In terms of the functionf̂ ( ŷ), the boundary conditions are

f̂ ~ ŷ!511CRe2ivz ~B2!

near the black hole horizonŷ521 and

f̂ ~ ŷ!5CT ~B3!

near the acceleration horizonŷ51.
We can not solve this equation exactly, but if (a21)

!1, then we can solve it approximately. First note that if
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ŷ221 is O(1) ~that is, if ŷ is not close to61), we can
neglect terms involvinga21 to approximate Eq.~B1! as

] ŷ@~ ŷ221!2] ŷ f̂ ~ ŷ!#12~ ŷ22bD
2 ! f̂ ~ ŷ!50. ~B4!

In neglecting the term involvingv, we have made the further
assumption thatuvu;1; that is, thatv is not large. This
equation is now a hypergeometric equation. To put it in the
standard form, we setf̂ ( ŷ)52a(12 ŷ2)2a(a21)ag(s),
wheres5( ŷ11)/2, a5 l 11. Then

s~s21!]s
2g~s!22l ~2s21!]sg~s!12l ~2l 11!g~s!50,

~B5!

where we have usedbD5112l ( l 11). We usel rather than
l 0 in the approximate equations in this section, because re-
garding l as an integer would introduce degeneracies in the
approximate equations which are not present in the exact
equation. Nearŷ561, the solutions of Eq.~B5! can be ex-
pressed in terms of hypergeometric series aboutŷ561.
However, we cannot approximate Eq.~B1! by Eq. ~B5! in a
neighborhood of radiusO(a21) aroundŷ561, which is
precisely where we wish to impose boundary conditions.

Therefore we need a separate approximation to cover
these neighborhoods. Whenŷ221;(a21), make a coordi-
nate transformationŷ56@11(a21)q6#. Then if we keep
just the leading terms, Eq.~B1! becomes

]q6
@q6~q621!]q6

f ~q6!#6 iv]q6
f 2 l ~ l 11! f 50,

~B6!

where f (q6)5 f̂ ( ŷ). These are, once again, hypergeometric
equations. The solution aboutŷ521 which satisfies the
boundary condition~B2! is

f ~q2!5F~a,b;22c;q2!1CR~2q2!2 iv

3F~b1c21,a1c21;c;q2!, ~B7!

and the solution aboutŷ51 which satisfies the boundary
condition ~B3! is

f ~q1!5CTF~a,b;c;q1!, ~B8!

whereF is the hypergeometric function,a5 l 11,b52 l and
c512 iv. Now analytically extend these solutions to large
q6 : at largeq2 , the solution~B7! becomes

f ~q2!5
G~c!G~b2a!

G~c2a!G~b!S CR1
G~22c!G~c2a!

G~c!G~22c2a! D ~2q2!2a

1
G~c!G~a2b!

G~c2b!G~a!S CR1
G~22c!G~c2b!

G~c!G~22c2b! D
3~2q2!2b, ~B9!

while at largeq1 , the solution~B8! becomes

f ~q1!5CT

G~c!G~b2a!

G~c2a!G~b!
~2q1!2a1CT

G~c!G~a2b!

G~c2b!G~a!

3~2q1!2b. ~B10!

Now for 1!uq6u!(a21)21, both approximations are
applicable, so we can use the large-distance behavior
~B9!,~B10! of the approximation forŷ near61 as boundary
data for the approximation~B5!. If we pick the solutiong(s)
to be

g~s!5
G~c!G~b2a!

G~c2a!G~b!S CR1
G~22c!G~c2a!

G~c!G~22c2a! D
3F~22l ,22l 21;22l ;s!1

G~c!G~a2b!

G~c2b!G~a!

3S CR1
G~22c!G~c2b!

G~c!G~22c2b! D ~a21!b2a2a2bsa2b

3F~0,1;2l 12;s!, ~B11!

then the boundary conditions obtained from Eq.~B9! are
automatically satisfied. We can analytically continue this so-
lution to a neighborhood ofs51; to satisfy the boundary
conditions obtained from Eq.~B10! in this neighborhood at
the same time, we must require

CT

G~c!G~b2a!

G~c2a!G~b!
5

G~c!G~a2b!

G~c2b!G~a!S CR1
G~22c!G~c2b!

G~c!G~22c2b! D
3~a21!b2a2a2b ~B12!

and

CT

G~c!G~a2b!

G~c2b!G~a!
~a21!b2a2a2b

5
G~c!G~b2a!

G~c2a!G~b!S CR1
G~22c!G~c2a!

G~c!G~22c2a! D . ~B13!

Solving these two equations forCR andCT , we find

CT52eiq
d2 d̄

12d2
~B14!

and

CR52eiq1dCT , ~B15!

where

eiq5
G~22c!G~c2b!

G~c!G~22c2b!
~B16!

and

d5S a21

2 D a2b G~b2a!G~a!G~c2b!

G~a2b!G~b!G~c2a!
. ~B17!

Note that these coefficients satisfyuCTu21uCRu251, as they
should.

After some manipulation, we find
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d2 d̄ 52
4i

2l 11S a21

8 D 2l 11

3
G~11 l 2 iv!G~11 l 1 iv!

GS l 1
1

2D 2 sinhpv. ~B18!

Also, d;(a21)2l 11, so the denominator inCT can be ig-
nored for this leading-order calculation. For largel , we thus
find

CT'2ei ~q1p/2!S a21

8 D 2l 11

sinhpv, ~B19!

while for l 050, we find

CT'ei ~q1p/2!S a21

2 Dv. ~B20!

These results are valid for (a21)!1 anduvu<1.

We have found the value off̂ ( ŷ) at the acceleration ho-

rizon ŷ51. The region betweenHal
1 ,Har

1 , and I1 is the

region betweenŷ51 and ŷ5 x̂; to evolve f̂ ( ŷ) through this

region, we just need to find the form off̂ ( ŷ) betweenŷ51

and ŷ5a, which will also be the solution onI`. Now, the
approximation~B8! is valid throughout this region, so the
result is simply that onI`,

f̂ ~ ŷ!5CTf lv~p!'CTF~a,b;c;p!, ~B21!

where a,b,c are as in Eq.~B8!. Note that x̂5 ŷ implies
q15p. For l 050, the leading-order part of this solution is
f 0v(p)'1, just as fornlm(p).
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