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Inhomogeneous multidimensional cosmological models with a higher-dimensional space-time manifoldM
5M03) i 51

n Mi (n>1) are investigated under dimensional reduction toD0-dimensional effective models. In
the Einstein conformal frame, small excitations of the scale factors of the internal spaces near minima of an
effective potential can be observed as massive scalar fields in the external space-time. Parameters of models
that ensure minima of the effective potentials are obtained for particular cases and masses of gravitational
excitons are estimated.@S0556-2821~97!03622-9#

PACS number~s!: 04.50.1h, 98.80.Hw

I. INTRODUCTION

The large-scale dynamics of the observable part of our
present time Universe is well described by the Friedmann
model with the four-dimensional Friedmann-Robertson-
Walker ~FRW! metric. However, it is possible that space-
time at short~Planck! distances might have a dimensionality
of more than 4 and possess a rather complex topology@1#.
String theory@2# and its recent generalizations —p-brane,
M -, andF-theory @3,4# — widely use this concept and give
it a new foundation. The most consistent formulations of
these theories are possible in space-times with critical dimen-
sions Dc.4; for example, in string theory there areDc
526 or 10 for the bosonic and supersymmetric version, re-
spectively. Usually it is supposed that aD-dimensional
manifold M undergoes a ‘‘spontaneous compactification’’
@5–8# M→M43BD24, where M4 is the four-dimensional
external space-time andBD24 is a compact internal space.
So it is natural to consider cosmological consequences of
such compactifications. With this in mind, we shall investi-
gate multidimensional cosmological models~MCMs! with
the topology

M5M03M13•••3Mn , ~1.1!

whereM0 denotes theD0-dimensional~usuallyD054) ex-
ternal space-time andMi ( i 51, . . . ,n) are Di-dimensional
internal spaces. To make the internal dimensions unobserv-
able at the present time these internal spaces have to be com-
pact and reduced to scales near the Planck lengthLPl
;10233 cm, i.e., scale factorsai of the internal spaces
should be of orderLPl . In this case we cannot move in extra
dimensions and our space-time is apparently four dimen-
sional. There is no problem in constructing compact spaces
with a positive curvature@9,10#. ~For example, every Ein-
stein manifold with constant positive curvature is necessarily
compact@11#.! However, Ricci-flat spaces and negative cur-
vature spaces also can be compact. This can be achieved by
appropriate periodicity conditions for the coordinates@12#–
@16# or, equivalently, through the action of discrete groupsG

of isometries related to face pairings and to the manifold’s
topology. For example, three-dimensional spaces of constant
negative curvature are isometric to the open, simply con-
nected, infinite hyperbolic~Lobachevsky! spaceH3 @9,10#.
However, there exist also an infinite number of compact,
multiply connected, hyperbolic coset manifoldsH3/G, which
can be used for the construction of FRW metrics with nega-
tive curvature@12,14#. These manifolds are built from a fun-
damental polyhedron~FP! in H3 with faces pairwise identi-
fied. The FP determines a tessellation ofH3 into cells that
are replicas of the FP, through the action of the discrete
groupG of isometries@14#. The simplest example of Ricci-
flat compact spaces is given byD-dimensional tori TD

5RD/G. Thus internal spaces may have nontrivial global
topology, being compact~i.e., closed and bounded! for any
sign of spatial curvature.

In the cosmological context, internal spaces can be called
compactified when they are obtained by a compactification
@17# or factorization~‘‘wrapping’’ ! in the usual mathematical
understanding~e.g. by replacements of the typeRD→SD,
RD→RD/G, or HD→HD/G) with additional contraction of
the sizes to Planck scale. The physical constants that appear
in the effective four-dimensional theory after dimensional
reduction of an originally higher-dimensional model are the
result of integration over the extra dimensions. If the vol-
umes of the internal spaces would change, so would the ob-
served constants. Because of limitation on the variability of
these constants@18,19# the internal spaces are static or at
least slowly variable since the time of primordial nucleosyn-
thesis and, as we mentioned above, their sizes are of the
order of the Planck length. Obviously, such compactifica-
tions have to be stable against small fluctuations of the sizes
~the scale factorsai) of the internal spaces. This means that
the effective potential of the model obtained under dimen-
sional reduction to a four-dimensional effective theory
should have minima atai;LPl ( i 51, . . . ,n). Because of its
crucial role, the problem of stable compactification of extra
dimensions was studied intensively in a large number of pa-
pers,@20–36#. As result certain conditions were obtained that
ensure the stability of these compactifications. However, the
position of a system at a minimum of an effective potential
does not necessarily mean that extra dimensions are unob-
servable. As we shall show below, small excitations of a
system near a minimum can be observed as massive scalar
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fields in the external space-time. In solid-state physics, exci-
tations of electron subsystems in crystals are called excitons.
In our case the internal spaces are an analog of the electronic
subsystem and their excitations can be called gravitational
excitons. If masses of these excitations are much less than
the Planck massMPl;1025 g, they should be observable,
thus confirming the existence of extra dimensions. In the
opposite case of very heavy excitons with massesm;MPl it
is impossible to excite them at present time and extra dimen-
sions are unobservable in this way.

The paper is organized as follows. In Sec. II we describe
our model and obtain an effective theory in Brans-Dicke and
Einstein conformal frames. In Sec. III it is shown that small
excitations of the scale factors of the internal spaces near
minima of an effective potential in the Einstein frame have a
form of massive scalar fields in the external space-time. The
masses of such scalar fields are evaluated for particular
classes of effective potentials with minima in the case of
one-internal-space models~Sec. IV! and two-internal-space
models~Sec. V!. In Sec. VI we show that conditions for the
existence of stable configurations may be quite different for
these two types of models.

II. MODEL

We consider a cosmological model with the metric

g5g~0!1(
i 51

n

e2b i ~x!g~ i !, ~2.1!

which is defined on manifold~1.1! wherex are some coor-
dinates of theD0-dimensional manifoldM0 and

g~0!5gmn
~0!~x!dxm

^ dxn. ~2.2!

Let manifoldsMi be Di-dimensional Einstein spaces with
the metricg( i ), i.e.,

Rmn@g~ i !#5l igmn
~ i ! , m,n51, . . . ,Di ~2.3!

and

R@g~ i !#5l iDi[Ri . ~2.4!

In the case of constant curvature spaces parametersl i are
normalized asl i5ki(Di21) with ki561,0. We note that
each of the spacesMi can be split into a product of Einstein
spaces:Mi→)k51

ni M i
k @37#. HereMi

k are Einstein spaces of
dimensionsDi

k with the metric g(k)
( i ) : Rmn@g(k)

( i ) #5lk
i g(k)mn

( i )

(m,n51, . . . ,Di
k) andR@g(k)

( i ) #5lk
i Di

k . Such a splitting pro-
cedure is well defined providedMi

k are not Ricci flat@37,38#.
If Mi is a split space, then for curvature and dimension we
have, respectively@37#, R@g( i )#5(k51

ni R@g(k)
( i ) # and Di

5(k51
ni Di

k . Later on we shall not specify the structure of the
spacesMi . We require onlyMi to be compact spaces with
arbitrary sign of curvature.

With the total dimension D5( i 50
n Di , k2 a

D-dimensional gravitational constant,L a D-dimensional
cosmological constant, andSYGH the standard York-
Gibbons-Hawking boundary term@39,40#, we consider an
action of the form

S5
1

2k2EM
dDxAugu$R@g#22L%1Sadd1SYGH . ~2.5!

The additional potential term

Sadd52E
M

dDxAugur~x! ~2.6!

is not specified and left in its general form, taking into ac-
count the Casimir effect@20#, the Freund-Rubin monopole
ansatz@6#, a perfect fluid@41,42#, or other hypothetical po-
tentials@34,36#. In all these casesr depends on the external
coordinates through the scale factorsai(x)5eb i (x)

( i 51, . . . ,n) of the internal spaces. We did not include into
the action~2.5! a minimally coupled scalar field with poten-
tial U(c) because in this case there exist no solutions with
static internal spaces for scalar fieldsc depending on the
external coordinates@34#.

After dimensional reduction the action reads

S5
1

2k0
2EM0

dD0xAug~0!u)
i 51

n

eDib
i

3H R@g~0!#2Gi j g
~0!mn]mb i]nb j

1(
i 51

n

R@g~ i !#e22b i
22L22k2rJ , ~2.7!

where k0
25k2/m is the D0-dimensional gravitational con-

stant, m5) i 51
n m i5) i 51

n *Mi
dDiyAug( i )u, and Gi j 5Did i j

2DiD j ( i , j 51, . . . ,n) is the midisuperspace metric
@43,44#. Here the scale factorsb i of the internal spaces play
the role of scalar fields. Comparing this action with the tree-
level effective action for a bosonic string it can be easily
seen that the volume of the internal spacese22F

[) i 51
n eDib

i
plays the role of the dilaton field@37,44,45#. We

note that sometimes all scalar fields associated withb i are
called dilatons. Action~2.7! is written in the Brans-Dicke
frame. Conformal transformation to the Einstein frame

ĝmn
~0!5e2 4F/~D022!gmn

~0!5S )
i 51

n

eDib
i D 2/~D022!

gmn
~0! ~2.8!

yields

S5
1

2k0
2EM0

dD0xAuĝ~0!u$R̂@ ĝ~0!#2Ḡi j ĝ
~0!mn]mb i]nb j

22Ueff%. ~2.9!

The tensor components of the midsuperspace metric~target
space metric onRT

n) Ḡi j ( i , j 51, . . . ,n), its inverse metric

Ḡi j , and the effective potential are, respectively,

Ḡi j 5Did i j 1
1

D022
DiD j , ~2.10!

Ḡi j 5
d i j

Di
1

1

22D
, ~2.11!
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and

Ueff5S )
i 51

n

eDib
i D 2 2/~D022!F2

1

2(i 51

n

Rie
22b i

1L1k2rG .

~2.12!

We recall thatr depends on the scale factors of the internal
spaces:r5r(b1, . . . ,bn). Thus we are led to the action of a
self-gravitatings-model with flat target space (RT

n ,Ḡ) ~2.10!
and self-interaction described by the potential~2.12!.

Let us first consider the case of one internal spacen51.
Redefining the dilaton field as

w[6AD1~D22!

D022
b1, ~2.13!

we get, for the action and effective potential, respectively,

S5
1

2k0
2E dD0xAuĝ~0!u$R̂@ ĝ~0!#2ĝ~0!mn]mw]nw22Ueff%

~2.14!

and

Ueff5expF2wS D1

~D22!~D022! D
1/2G

3H 2
1

2
R1expF2wS D022

D1~D22! D 1/2G1L1k2r~w!J ,

~2.15!

where in expression~2.15! we use for definiteness the minus
sign in Eq.~2.13!.

Returning to the general casen.1, we transform the mid-
superspace metric~target space metric! ~2.10! by a regular
coordinate transformation

w5Qb, b5Q21w ~2.16!

to a pure Euclidean form

Ḡi j db i
^ db j5s i j dw i

^ dw j5(
i 51

n

dw i
^ dw i ,

Ḡ5Q8Q, s5diag~1111, . . . ,11!. ~2.17!

~The prime denotes the transposition.! An appropriate trans-
formationQ:b i°w j5Qi

jb i is given, e.g., by@43#

w152A(
i 51

n

Dib
i ,

w i5@Di 21 /S i 21S i #
1/2(

j 5 i

n

D j~b j2b i 21!, i 52, . . . ,n,

~2.18!

whereS i5( j 5 i
n D j ,

A56F 1

D8

D22

D022G 1/2

, ~2.19!

andD8:5( i 51
n Di . So we can write action~2.9! as

S5
1

2k0
2EM0

dD0xAuĝ~0!u$R̂@ ĝ~0!#2s ikĝ~0!mn

3]mw i]nwk22Ueff% ~2.20!

with the effective potential

Ueff5expS 2

A~D022! D w1

3S 2
1

2(i 51

n

Rie
22~Q21! i

kwk
1L1k2r D . ~2.21!

III. GRAVITATIONAL EXCITONS

Let us suppose that the effective potential~2.12! has
minima at pointsbW c5(bc

1 , . . . ,bc
n),

]Ueff

]b i U
bW c

50, c51, . . . ,m, ~3.1!

and that its Hessian

a~c!ik :5
]2Ueff

]b i]bkU
bW c

~3.2!

does not identically vanish at these points. For small fluctua-
tions h i :5b i2bc

i we have then, up to second order in the
Taylor expansion,

Ueff5Ueff~bW c!1
1

2 (
i ,k51

n

a~c!ikh ihk. ~3.3!

As a sufficient condition for the existence of minima atbW c
we choose in this paper the strong condition consisting in the
positivity of the quadratic form

h8Ach[ (
i ,k51

n

a~c!ikh ihk.0, ;h1, . . . ,hn, ~3.4!

with exception of the pointh15h25•••5hn50. It is clear
that for higher-order expansions of the effective potential
inequality~3.4! can be weaken to a non-negativity condition
h8Ach>0 with additional requirements on the multilinear
forms occurring in this case. We note that, according to the
Sylvester criterion, positivity of quadratic forms is ensured
by the positivity of the principal minors of the corresponding
matrix, in our case of the matrixAc :
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a~c!11.0, Ua~c!11 a~c!12

a~c!21 a~c!22
U.0, . . .

. . . , U a~c!11 ••• a~c!1n

a~c!21 ••• a~c!2n

••• ••• •••

a~c!n1 ••• a~c!nn

U5detAc.0. ~3.5!

Equation~3.1! and Hessian~3.2! are affected by the mid-
superspace coordinate transformation~2.16! as follows:

]Ueff

]w i UwW c
5

]Ueff

]bk U
bW c

~Q21!k
i50, wc5Qbc , ~3.6!

a~c!ik5
]2Ueff

]b i]bkUbW c
5

]w j

]b i

]2Ueff

]w j]w lU
wW c

]w l

]bk
[Qi

j ā ~c! j l Qk
l .

~3.7!

This means that matricesAc and Āc are congruent matrices
@46# Ac5Q8ĀcQ and hence their rank and signature coin-
cide.

Taking into account that transformation~2.16! holds also
for small fluctuations near the minima,

j5Qh, h5Q21j, j i :5w i2wc
i , ~3.8!

we conclude that the quadratic form~3.4! is invariant under
this transformation

h8Ach5~Q21j!8Q8ĀcQ~Q21j!5j8Ācj. ~3.9!

Together with the coinciding rank and signature of the con-
gruent matricesĀc andAc , this implies that the positivity of
the quadratic form~3.4! remains preserved and minima of
Ueff in the b representation correspond to minima ofUeff in
the w representation.

To get masses of excitations we need to diagonalize the
matrices Āc , keeping at the same time the kinetic term
ĝ(0)mn( i 51

n w ,m
i w ,n

i in its diagonal form. One immediately
checks that appropriate SO(n) rotationsSc : Sc85Sc

21 sat-
isfy these requirements

Āc5Sc8Mc
2Sc , Mc

25diag~m~c!1
2 ,m~c!2

2 , . . . ,m~c!n
2 !

~3.10!

and

ĝ~0!mn(
i 51

n

w ,m
i w ,n

i 5ĝ~0!mn(
i 51

n

f ,m
i f ,n

i , ~3.11!

where f5Scw. Introducing the corresponding transformed
fluctuation fieldsc5Scj, we also verify that

h8Ach5j8Ācj5c8Mc
2c. ~3.12!

It is clear from the Sylvester criterion that all diagonal ele-
ments of the matrixMc

2 should be positive. From relations

~2.17!, ~3.7!, and ~3.10! it follows that they are eigenvalues
of matrix Āc as well as matrixḠ21Ac .

So explicit calculations of the matricesSc and Mc
2 go

along standard lines@46# and give, e.g., in the case of two
internal spaces (n52),

Sc5S cosac 2sinac

sinac cosac
D ~3.13!

with the angle of rotation

tan2ac5
2 ā ~c!12

ā ~c!222 ā ~c!11

~3.14!

and

m~c!1,2
2 5

1

2
@Tr~Bc!6ATr2~Bc!24det~Bc!#, ~3.15!

where

Bc5 Āc or Bc5Ḡ21Ac . ~3.16!

It can be easily seen thatm(c)1
2 ,m(c)2

2 are positive because

ā (c)11, ā (c)22.0 and ā (c)11ā (c)22. ā (c)12
2 . So the action

functional~2.20! is equivalent to a family of action function-
als for small fluctuations of the scale factors of internal
spaces in the vicinity of the minima of the effective potential

S5
1

2k0
2EM0

dD0xAuĝ~0!u$R̂@ ĝ~0!#22L~c!eff%

1(
i 51

n
1

2EM0

dD0xAuĝ~0!u$2ĝ~0!mnc ,m
i c ,n

i 2m~c!i
2 c ic i%,

c51, . . . ,m, ~3.17!

whereL (c)eff :5Ueff(fW c) and the factorAm/k2 has been in-
cluded inc for convenience:Am/k2c→c.

Thus conformal excitations of the metric of the internal
spaces behave as massive scalar fields developing on the
background of the external space-time. By analogy with ex-
citons in solid-state physics, where they are excitations of the
electronic subsystem of a crystal, the excitations of the inter-
nal spaces may be called gravitational excitons.

To conclude this section we want to make a few remarks
concerning the form of the effective potential. From the
physical viewpoint it is clear that the effective potential
should provide the following conditions:

~ i! a~c!i5ebc
i
*LPl ,

~ ii ! m~c!i<MPl ,

~ iii ! L~c!eff→0. ~3.18!

Condition ~i! expresses the fact that the internal spaces
should be unobservable at the present time and stable against
quantum gravitational fluctuations. This condition ensures
the applicability of the classical gravitational equations near
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positions of minima of the effective potential. Condition~ii !
means that the curvature of the effective potential should be
less than a Planckian one. Of course, gravitational excitons
can be excited at the present time ifmi!MPl . Condition~iii !
reflects the fact that the cosmological constant at the present
time is very small: L<10254 cm22'102120LPl , where
LPl5LPl

22 . Thus, for simplicity, we can demand thatLeff

5Ueff(bW c)50. ~We used the abbreviationLeff :5L(c)eff .)
Strictly speaking, in the multi-minimum case (c.1) we can
demanda(c) i;LPl andL (c)eff50 only for one of the minima,
namely, the minimum that corresponds to the state of the
present Universe. For all other minima it may bea(c) i@LPl
and uL (c)effu@0.

It can be easily seen that the conditionsLeff50 and r
[0 are incompatible. In fact, the necessary extremum con-
dition for the potential~2.21! reads

B̃21
]Ueff

]w1
5(

j 51

n

r j~Q21! j
11

]r

]w1
1q1B̃21Ueff50,

B̃21
]Ueff

]w i
5(

j 51

n

r j~Q21! j
i1

]r

]w i
50, i 52, . . . ,n,

~3.19!

where r i :5Riexp@22(Q21)i
kw

k#, B̃:5expq1w
1, and q1

52/A(D022). For Ueffumin50 andr[0 this system has a
nontrivial solution if and only if det(Q21)50. However,
transformation~2.16! is regular. Thus there are no solutions
for Ueffumin50 andr[0 unless all internal spaces are Ricci-
flat. Moreover, as follows from potential~2.12!, the condi-
tions Ueffumin50 and]Ueff /]bi umin50 are compatible if and
only if

(
i 51

n

Rie
22bc

i
52@L1k2r~bW c!# ~3.20!

and

Rie
22bc

i
52k2

]r

]b i U
bW c

, i 51, . . . ,n. ~3.21!

If all internal spaces are Ricci-flat (Ri[0, i 51, . . . ,n) and
r[0, there are no extrema at all.

With UeffubWc
50 , ]Ueff /]bi ubWc

50, and Eq.~3.21!, the Hes-
sian ~3.2! of potential~2.12! reads

a~c!ik5 B̄k2F 2d ik

]r

]b iUbW c
1

]2r

]b i]bkU
bW c

G , ~3.22!

where B̄:5exp@2 2/(D022) ( i 51
n Dibc

i #. The effective po-

tential Ueff has minima atbW c if matrices a(c) ik satisfy the
Sylvester criterion~3.4!. Because ofB̄.0, it is sufficient to
check this criterion for the matrix elementshi j 5 B̄21ai j . For
example, in the two-internal-space case (n52) there will be
minima if

2
]r

]b iU
bW c

1
]2r

]b i2U
bW c

.0, i 51,2 ~3.23!

and

)
i 51

2 S 2
]r

]b iUbW c
1

]2r

]b i2U
bW c

D .S ]2r

]b1]b2U
bW c

D 2

. ~3.24!

Let us suppose a structure ofr

r5 (
a51

N

AaexpS (
k51

n

f a
kb

kD , ~3.25!

whereAa , f a
k are constants. This potential has very general

form and includes, for example, a Freund-Rubin monopole
ansatz@6#, crude approximations of the Casimir effect due to
nontrivial topology of the space-time@20,36# and multicom-
ponent perfect fluids@41,42#. In the former case~monopole!
the potentialr reads@25#

r5(
i 51

n
~ f i !

2

ai
2Di

5(
i 51

n

~ f i !
2e22Dib

i
, ~3.26!

where f i 5 const. So, for the matrixf i
k we have f i

k5
22Did ik , i ,k51, . . . ,n. In the case of the multicomponent
perfect fluid the energy density reads@41,42#

r5 (
a51

m

r~a!5 (
a51

m

AaexpS 2 (
k51

n

ak
~a!Dkb

kD , ~3.27!

where Aa are constants. This formula describes the
m-component perfect fluid with the equations of statePi

(a)

5(a i
(a)21)ra in the internal spaceMi ( i 51, . . . ,n). In the

external space each component corresponds to vacuuma0
(a)

50 (a51, . . . ,m). For this examplef a
k52ak

(a)Dk .
For potential~3.25! Eq. ~3.21! can be rewritten as

r k52k2(
a51

N

haf a
k , k51, . . . ,n, ~3.28!

wherer k :5Rkexp(22bc
k) andha :5Aaexp((k51

n fa
kbc

k). Now
the minimum conditions~3.23! and~3.24!, respectively, read

(
a51

N

haf a
k~ f a

k12!.0, k51,2 ~3.29!

and

)
k51

2 S (
a51

N

haf a
k~ f a

k12!D .S (
a51

N

haf a
1f a

2D 2

.

~3.30!

For example, for the monopole potential~3.26! we obtain the
extremum condition

Rkexp@2~Dk21!bc
k#52Dkk

2~ f k!
2, k51, . . . ,n.

~3.31!
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It follows from this expression that there exists an extremum
if sgnRk.0, k51, . . . ,n. Conditions ~3.29! and ~3.30!
show that this extremum is a minimum~for Dk.1).

IV. ONE INTERNAL SPACE

Here we consider the case of one internal space or, strictly
speaking, the case where all internal spaces have one com-
mon scale factor. In the case under consideration the action
and the effective potential are given by Eqs.~2.14! and
~2.15!, respectively. To get masses of the gravitational exci-
tons it is necessary to specify the potentialr. For this pur-
pose we consider four particular examples.

A. Pure geometrical potentialr[0

The necessary condition for the existence of an extremum
gives

R1

D1
e22bc5

2L

D22
, ~4.1!

where b:5b1. It follows from this expression that sgnL
5sgnR1. From the minimum condition

a115
]2Ueff

]b2 U
bc

52
2~D22!

D022
R1~e22bc!~D22!/~D022!.0

~4.2!

we see that bare cosmological constant and curvature of the
internal space should be negativeL,R1,0. The effective
cosmological constant is

Leff5
D022

2D1
R1~e22bc!~D22!/~D022! ~4.3!

and negative forR1,0. The mass squared of the exciton
reads

m252
4Leff

D022
5

2uR1u
D1

~e22bc!~D22!/~D022!. ~4.4!

If we assume, for example, that for a space-time configura-
tion M03M1 with four-dimensional external space-time
(D054) and compact internal factor spaceM15HD1/G with
constant negative curvatureR152D1(D121) there exists a
minimum of the effective potential atac5102LPl , then we
get m252(D121)1022(D112)MPl

2 and Leff52(D1

21)1022(D112)LPl . Thus, according to observational data
with uLeffu<102120LPl , there should be at leastD1559 and
the corresponding excitons would be extremely light par-
ticles with massesm<10260MPl;10255 g. If one uses a re-
duction of the effective cosmological constant holdingL
52R1 andR1 fixed whenD1→` ~this can be achieved by a
conformal transformationg(1)→D1

2g(1) with fixed k0
2

5k2/m), one getsac→LPl andLeff→0. But at the same time
the exciton mass vanishes (m→0) and the effective potential
degenerates into a step function with infinite height:Ueff→`
for a,1 and Ueff50 for a>1. Thus, in the limitD1→`
there is no minimum at all.

As it was shown in Sec. III, the effective cosmological
constant is not equal to zero ifr[0. To satisfy this condition
we should consider the caserÓ0.

B. Casimir potential r5Ce2Db

Because of a nontrivial topology of the space-time,
vacuum fluctuations of quantized fields result in a nonzero
energy density of the form@20,23,26,47,48#

r5Ce2Db, ~4.5!

whereC is a constant and its value depends strongly on the
topology of the model. For example, for fluctuations of sca-
lar fields the constantC was calculated to take the values
C528.04731026 if M05R3S3, M15S1 ~with eb0

a scale
factor of S3 and eb0

@eb1
) @23#; C521.097 if M0

5R3R2, M15S1 @47#; and C53.83431026 if M0

5R3S3, M15S3 ~with eb0
@eb1

) @23#.
From Eqs.~3.20! and ~3.21! ~for n51), i.e., conditions

]Ueff /]b umin50 andLeff50, we immediately derive

R1e22bc5
2D

D22
L ~4.6!

and

R1e~D22!bc5k2CD. ~4.7!

An extremum exists if sgnR15sgnL5sgnC. Expressions
~4.6! and ~4.7! provide fine-tuning for the parameters of the
model. Similar fine-tuning was obtained by different meth-
ods in papers@26# ~for one internal space! and @34# ~for n
identical internal spaces!. The second derivative and mass
squared read, respectively,

a115
]2Ueff

]b2 U
bc

5~D22!R1~e22bc!~D22!/~D022!, ~4.8!

m25
D022

D1
R1~e22bc!~D22!/~D022!. ~4.9!

Thus the internal space should have positive curvatureR1
.0 ~or for split spaceM1 the sum of the curvatures of the
constituent spacesM1

k should be positive!.
Let us consider a manifoldM with topology M

5R3S33S3, whereeb0
@eb1

. Then @23# C53.83431026

.0. As C,R1.0, the effective potential has a minimum
provided L.0. Normalizing k0

2 to unity, we getk25m,

where m52p (d11)/2/G„

1
2 (d11)… for the d-dimensional

sphere. For the model under consideration we obtainac
'1.531021LPl andm'2.123102MPl . Hence conditions~i!
and ~ii ! are not satisfied for this topology. For other topolo-
gies this problem needs a separate investigation.

C. Monopole potential r5f 2e22D1b

The monopole ansatz@6# consists in the proposal that an
antisymmetric tensor field of rankD1 is not equal to zero
only for components corresponding to the internal spaceM1.
The energy density of this field reads@24,25#
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r5 f 2e22D1b, ~4.10!

where f is an arbitrary constant~free parameter of the
model!. Equations~3.20!, ~3.21!, and ~3.31! yield the zero
extremum conditions

L5
D121

2D1
R1e22bc ~4.11!

and

R1

2D1k2f 2
5e22bc~D121!, ~4.12!

which show thatR1 ,L.0. The exciton mass squared reads

m25
2~D022!~D121!

D1~D22!
R1~e22bc!~D22!/~D022!.

~4.13!

Condition ~i! is satisfied if

f 2*R1/2k2D1 . ~4.14!

Let M1 be a three-dimensional sphere; thenR156 andk2

52p2. To get a minimum of the effective potential for a
scale factorac510LPl we should takef 2'53102. For this
value of ac and for D054 the mass squared ism2

5 16
5 31025!MPl

2 . Thus, all three conditions~i!–~iii ! are sat-
isfied.

D. Perfect-fluid potential r5Ae2aD1b

The one-component perfect-fluid potential reads@41,42#

r5Ae2aD1b, ~4.15!

where A is an arbitrary positive constant. It describes the
vacuum in the external space and a perfect fluid with the
equation of stateP5(a21)r in the internal spaceM1.
Physical values ofa are restricted to

0<a<2. ~4.16!

It is easy to see that the casea50 corresponds to the
vacuum in the spaceM1 and contributes to the bare cosmo-
logical constantL. Therefore, we shall not considera50
because in this case we return to Sec. IV A. The other lim-
iting case witha52 formally coincides here with the mono-
pole potential~4.10!.

For the perfect-fluid potential~4.15! a vanishing effective
cosmological constantLeff50 @Eq. ~3.20!# and extremum
condition ~3.21! yield

R1e~aD122!bc5k2aD1A ~4.17!

and

R1e22bc5
2aD1

aD122
L. ~4.18!

For the second derivative of the effective potential in the
minimum we obtain

a115
]2Ueff

]b2 U
bc

5~aD122!R1~e22bc!~D22!/~D022!.

~4.19!

Becausea,A.0, Eq. ~4.17! shows that the internal space
M1 should have a positive curvatureR1.0. From Eq.~4.19!
we see that there exists a minimum ifa.2/D1. The corre-
sponding mass squared of the exciton is given as

m25
~D022!~aD122!

D1~D22!
R1~e22bc!~D22!/~D022!.

~4.20!

For the critical value ofa at a52/D1 the model becomes
degenerateUeff[0.

As an illustration, letM1 be a three-dimensional sphere
and ac510LPl . This minimum can be achieved forA
5(ap2)21310aD122. Thus 3/2p2,A<53102 and 0,m2

< 16
5 31025 for 2/D1,a<2 and D054. We see that all

conditions~i!–~iii ! are satisfied here.
In this section we considered four simple examples of the

effective potential and showed that some of them satisfy con-
ditions ~i!–~iii !.

V. INTERNAL SPACES WITH TWO SCALE FACTORS

In this section we extend the consideration of possible
excitons from effective potentials satisfying conditions
~3.18! to internal spaces with two scale factors. We analyze
three potentials: the pure geometrical potential, the effective
potential of a perfect fluid, and the monopole potential. Sta-
bility considerations for Casimir-like potentials can be found
in our paper@36#.

A. Pure geometrical potentialUeff,0[Ueff „r[0…

In this case the condition for the existence of an extre-
mum ]Ueff,0 /]bk50 implies a fine-tuning

Rk

Dk
e22bc

k
5

2L

D22
, k51,2, ebc

k
5FRkDi

RiDk
G1/2

ebc
i

~5.1!

of the scale factors and sgnL5sgnRi . From the Hessian

a~c!ik[
]2Ueff,0

]b i]bk U
bW c

52
4Leff

D022F DiDk

D022
1d ikDkG

52
4L

D22F DiDk

D022
1d ikDkGexpF2

2

D022(i 51

2

Dibc
i G

~5.2!

we see that, according to the Sylvester criterion where
a(c)11.0, a(c)22.0, and a(c)11a(c)22.a(c)12

2 , there exist
massive excitons for this effective potential in the case of a
negative cosmological constantL,0 and negative scalar
curvaturesRk,0. The masses of the excitons are easy cal-
culated as eigenvalues of the matrixḠ21Ac @Eqs.~3.15! and
~3.16!#. Because of
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Ḡ21Ac5S a~c!11

D1
2

a~c!111a~c!12

D22

a~c!12

D1
2

a~c!221a~c!12

D22

a~c!12

D2
2

a~c!111a~c!12

D22

a~c!22

D2
2

a~c!221a~c!12

D22

D 52
4Leff

D022S 1 0

0 1D ~5.3!

they are given as

m1
25m2

252
4Leff

D022
52

4L

D22
expF2

2

D022(i 51

2

Dibc
i G

52UR1R2

D1D2
U1/2

~e2bc
1
!2D1 /~D022! 11~e2bc

2
!2D2 /~D022! 11

52UR1

D1
UFR2D1

R1D2
G2D2 /~D022!

~e22bc
1
!~D22!/~D022!, ~5.4!

where the last line follows immediately from the fine-tuning
condition ~5.1!. From Eq. ~5.4! we see that the exciton
massesm1 ,m2 of the two-scale-factor model are degenerate
and related to the corresponding effective cosmological con-
stant Leff in the same way as in the one-scale-factor case
~4.4!. As in the one-scale-factor model, for specific space
configurations the two-scale-factor model allows the exis-
tence of excitons satisfying physical conditions~3.18!.

Let us illustrate this situation with an extended version of
the example of Sec. IV A. Suppose thatD054; M1
5HD1/G1 ,R152D1(D121), D152, and a(c)15102LPl ;
M25HD2/G2 ,R252D2(D221). Mass formula~5.4!, ef-
fective cosmological constant and fine-tuning condition~5.1!
read, in this case,

m1
25m2

252~D221!2D2/231022~D214!MPl
2 ,

Leff52~D221!2D2/231022~D214!LPl ,

a~c!25~D221!1/2a~c!15~D221!1/2102LPl . ~5.5!

Thus conditions~3.18! are satisfied for internal spacesM2
with dimensionsD2>D2,crit540. Indeed, in the case ofD2

540 we have mi
2.23102120MPl

2 , Leff.2102120LPl ,
a(c)2.63102LPl and hence forD2.40 the relationsmi
!MPl , uLeffu,102120LPl , and a(c)i*LPl hold, as required
in conditions~3.18!.

B. Perfect fluid

For a multicomponent perfect fluid with energy density
~3.27! the effective potential reads

Ueff5S )
i 51

2

eDib
i D 22/~D022!F2

1

2(i 51

2

Rie
22b i

1L

1k2(
a51

m

AaexpS 2 (
k51

2

ak
~a!Dkb

kD G . ~5.6!

Following the same scheme as in the previous considerations
we first calculate the extremum condition, the Hessian, and
exciton masses in their general form and then analyze some
concrete subclasses of potentials.

For brevity we introduce the abbreviations

uk
~a! :5ak

~a!1

22(
i 51

2

a i
~a!Di

D22
, vk

~a! :5 h̃aak
~a! ,

ck :5
2LDk

D22
, ha :5k2Aae2a1

~a!D1bc
1
e2a2

~a!D2bc
2
.0,

h̃a :5haexpF2
2

D022(i 51

2

Dibc
i G . ~5.7!

The extremum condition and Hessian read then

]Ueff

]bk
50, k51,2,

I k :5ck1Dkk
2(

a51

m

Aauk
~a!e2a1

~a!D1bc
1
e2a2

~a!D2bc
2

2Rke
22bc

k
50, k51,2 ~5.8!

a~c!ik[
]2Ueff

]b i]bkU
bW c

52
4Leff

D022F DiDk

D022
1d ikDkG

1 (
a51

m

h̃aak
~a!Dk~a i

~a!Di22d ik! ~5.9!

and from the auxiliary matrix

@Ḡ21Ac# ik52
4Leff

D022
d ik1Jik ,

Jik:5 (
a51

m

vk
~a!~Dkui

~a!22d ik! ~5.10!

we calculate the exciton masses squared as
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m1,2
2 52

4Leff

D022
1

1

2
@Tr~J!6ATr2~J!24det~J!#.

~5.11!

From Eq.~5.8! we see that the extremum condition has the

form of a system of equations in variablesz15e2bc
1

andz25e2bc
2
,

I k5ck1Dkk
2(

a51

m

Aauk
~a!z

1
a1

~a!D1z
2
a2

~a!D22Rkzk
250, k51,2,

~5.12!

and for a given point p5$L,R1 ,R2 ,A1 , . . . ,
Am ,a1

(1) , . . . ,a2
(m)% in parameter spaceRpar

3(m11) positions of
extrema should be found as solutions of this system. In the
general case ofm.1 and a i

(a) real (a i
(a)PR) this can be

done most efficiently by numerical methods. Partially ana-
lytical methods can be applied, e.g., fora i

(a) rational (a i
(a)

PQ). In this case the representationa i
(a)Di5ni

(a)/di
(a) holds

with natural numeratorni
(a)PN and denominatordi

(a)PN1 ,
where ni

(a) ,di
(a) are relatively prime, andG (ni

(a) ,di
(a))51

~whereG denotes the greatest common denominator!. Intro-
ducing the least common multipleL of the denominatorsl
5L(d1

(1) , . . . ,d2
(m)) and the natural numbersq i

(a) :
5( l /di

(a)) ni
(a) one has a i

(a)Di5q i
(a)/ l . Equations ~5.12!

transform then to a system of polynomials

I k5ck1Dkk
2(

a51

m

Aauk
~a!y

1
q1

~a!

y
2
q2

~a!

2Rkyk
2l50, k51,2,

~5.13!

in the new variablesyk5zk
1/l , which can be analyzed by

algebraic methods~resultant techniques@49# and techniques
of algebraic geometry@50#! and for rational parameters by
methods of number theory@51#. So, for common roots of
equationsI 150 andI 250 the resultants@49# Ry1

@ I 1 ,I 2# and

Ry2
@ I 1 ,I 2# must necessarily vanish,

Ry1
@ I 1 ,I 2#5w~y2!50, Ry2

@ I 1 ,I 2#5w~y1!50,
~5.14!

and the analysis of Eqs.~5.12! can be reduced to an analysis
of the polynomialsw(y1),w(y2) of degree

deg@w~y1!#,deg@w~y2!#<@ l max
a

~a1
~a!D11a2

~a!D2,2!#2

~5.15!

in only one of the variablesy1 and y2, respectively. For
explicit considerations of extremum positions with the help
of algebraic methods in the case of Casimir-like potentials
we refer to@36#.

We now turn to the consideration of some concrete sub-
classes of perfect fluids.

1. m-component perfect fluid witha i
„a…5a „a…

In this case there exist no massive excitons for vanishing
effective cosmological constantsLeff50. Indeed,m1,2

2 .0
and Eq.~5.11! imply Tr(J).0 and det(J).0, which with

Jik5DkW122d ikW2 , W1 :5 (
a51

m

u~a!v ~a!,

W2 :5 (
a51

m

v ~a! ~5.16!

read Tr(J)5D8W124W2.0 and det(J)52W2(2W2

2D8W1).0. However, becausev (a)5 h̃aa (a).0 and hence
W2.0, this leads to a contradiction. Thus, for the existence
of massive excitonsm1,2

2 .0 the effective cosmological con-
stant must be negativeLeff,0.

2. One-component perfect fluid witha1Þa2

Again massive excitons are possible for negative effective
cosmological constantsLeff,0 only. Here, on the one hand,
we have in the case ofLeff50 det(J)522dv1v2(D0
22)/(D22).0, d:5D1a11D2a222, and henced,0.
On the other hand, from Tr(J).0 it follows that @a11a2
2(d12)/(D22)#d.0 and hence 0.(D022)(a11a2)
1D1a11D2a2. Becauseak.0 this is impossible.

3. One-component perfect fluid witha15a25a

For this subclass extremum conditions~5.8! can be con-
siderably simplified to yield

h5k2Ae2a~D1bc
1
1D2bc

2
!

5
1

~D022!a12S D22

Dk
Rke

22bc
k
22L D ~5.17!

and the same fine-tuning condition as in the case of a pure
geometrical potential

C̃5
R1

D1
e22bc

1
5

R2

D2
e22bc

2
. ~5.18!

An explicit estimation of exciton masses and effective cos-
mological constant can be easily done. Using Eqs.~5.7!,
~5.11!, and~5.16!, we rewrite the exciton masses squared as

S m1
2

m2
2D 5

1

D22H 24L1h@~D022!a12#

3F S D8a

0
D 22G J expF2

2

D022(i 51

2

Dibc
i G
~5.19!

and transform with Eq.~5.17! inequalitiesm1,2
2 .0 and h

.0 to the equivalent condition

2

D22
L,C̃,0. ~5.20!
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Hence stable space configurations with massive excitons are
only possible for internal spaces with negative curvature
Rk,0. ReparametrizingL according to Eq.~5.20! as

L5
D22

2
~C̃2t!, ~5.21!

with t.0 a new parameter, we get for exciton masses
squared and the effective cosmological constant

S m1
2

m2
2D 5F S D8at

0
D 22C̃GexpF2

2

D022(i 51

2

Dibc
i G ,

~5.22!

Leff52
D022

2 Ft ~D22!a

~D022!a12
2C̃G

3expF2
2

D022(i 51

2

Dibc
i G . ~5.23!

According to definition~5.21! and Eqs.~5.17! and~5.18!, the
parametert can be expressed in terms ofC̃ andRk as

t5k2A
~D022!a12

D22
uC̃uD8a/2)

k51

2 UDk

Rk
UDka/2.

~5.24!

A comparison of Eqs.~5.22! and ~5.23! with formula ~5.4!
shows that for

t!t0[uC̃uminS 2

D8a
,
~D022!a12

~D22!a D
we return to the pure geometrical potential considered in
Sec. V A. So physical conditions~3.18! are fulfilled for in-
ternal space configurations with sufficiently high dimensions
greater than some critical dimensionDcrit . From Eqs.~5.22!
and ~5.23! we see that, depending on the value oft, this
critical dimensionDcrit can only be larger than that for the
pure geometrical model. According to Eq.~5.24!, there exist
excitons for any positive and finite values of the fluid param-
eterA, but the largerA for fixed a, the larger would be the
critical dimensionDcrit . ~Here we take into account thatk2

5m and the volumem of the compact internal factor spaces
with constant negative curvature is finite.!

Comparing the results of this subsection with the results
of Sec. IV D, we see that there exists a different behavior of
the perfect fluid models in the case of vanishing effective
cosmological constantLeff50. For the one-scale-factor
model massive excitons are allowed forLeff50, whereas in
the two-scale-factor model they cannot occur. An explana-
tion of this situation will be given in Sec. VI.

C. Monopole potential r5(k51
2

„f k…

2e22Dkbk

For the monopole potential the extremum condition~3.1!
leads in the case of vanishing effective cosmological con-
stantLeff50 to a fine-tuning of the scale factors

Rk

2Dkk
2~ f k!

2
5e22bk~Dk21! ~5.25!

and

L5
1

2(
k51

2

Rke
22bk Dk21

Dk
, ~5.26!

so that, as for the one-scale-factor model, extrema are only
possible if and only ifRk.0 andL.0. Because the mono-
pole potential formally coincides with the potential of a per-
fect fluid with parametersak

(a)52dak , the exciton masses
are given by Eq.~5.11!

m1,2
2 5

1

2
@Tr~J!6ATr2~J!24det~J!#, ~5.27!

where in terms of abbreviations~5.7! matrix J reads

Jik54 h̃k~Dk21!Fd ik2
Dk

D22G . ~5.28!

One immediately verifies that Tr(J).0, det(J).0,
Tr2(J)24det(J)>0 for dimensionsD1.1 andD2.1, and
hence 0,m2

2< 1
2 Tr(J)<m1

2,Tr(J). This means that physi-

cal conditions~3.18! are satisfied if Tr(J)<MPl
2 and ebc

k

*LPl . Substituting

h̃k5
Rk

2Dk
e22bc

k
expF2

2

D022(i 51

2

Dibc
i G ~5.29!

into Eq. ~5.28!, we get the matrix trace as

Tr~J!5
2

D22F (
k51

2
~Dk21!

Dk
Rk~D222Dk!e

22bc
kG

3expF2
2

D022(i 51

2

Dibc
i G . ~5.30!

With this formula at hand we have, e.g., for an internal space
configuration M13M2 ,M15S3, a(c)1510LPl ; and M25
S5, a(c)25102LPl the estimate Tr(J)'56310214MPl

2 !MPl
2

and all conditions~i!–~iii ! of Eq. ~3.18! are satisfied.

VI. EXCITON MASSES AND SCALE FACTOR
CONSTRAINTS

In this section we derive a relation between the exciton
massesm(c)1 ,m(c)2 of a model with two independently vary-
ing scale factorsb1,b2 and the effective massm(c)0 of the
exciton that occurs under scale factor reduction, i.e., when
the scale factors of the model are connected by a constraint
b5b15b2. In order to simplify our calculation we intro-
duce the projection operatorP on the constraint subspace
RP

1 5$b̄5(b1,b2)ub12b25ā•b̄50, ā5(1,21)% of the
two-dimensional target spaceRT

2 of the s-model:

PRT
25RP

1 ,RT
2 . ~6.1!

Explicitly, this projection operator can be constructed from
the normalized base vectorē of the subspaceRP

1 . With ē
5(1/A2)(1

1) we have
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P5ē^ ē85
1

2S 1

1D ^~1 1!5
1

2S 1 1

1 1D , ~6.2!

P25P, andP ā50.
Let us now calculate the exciton massm(c)0 for the re-

duced model. For this purpose we introduce the exciton La-
grangian, written according to Sec. III in terms of the fluc-
tuation fieldsh̄5(h1,h2), whereh i[b i2bc

i :

Lexci52@ h̄ḠK̂ h̄1 h̄A~c!h̄ #. ~6.3!

K̂:5]Qmĝ(o)mn]W n denotes the pure kinetic operator. Under
scale factor reductionh̄5(h,h) this Lagrangian transforms
to

Lexci52@g1hK̂h1g~c!2h2#, ~6.4!

g1 :52ē8Ḡē5(
i , j

Ḡi j , g~c!2 :52ē8A~c! ē5(
i , j

A~c!i j ,

~6.5!

so that the substitutionh5g1
21/2c yields the effective one-

scale-factor LagrangianLexci52@cK̂c1cm(c)0
2 c# with

exciton massm(c)0
2 5g (c)2 /g1. Taking into account that

ē8A(c) ē5Tr@PA(c)# , A(c)5Q8Sc8M (c)
2 ScQ, and M (c)

2

5diag(m(c)1
2 ,m(c)2

2 ), the needed relation between the exci-
ton masses of the reduced and unreduced two-scale-factor
models is now easily established as

m~c!0
2 52g1

21Tr@QPQ8Sc
8M ~c!

2 Sc#. ~6.6!

With the use of

QPQ85
1

2
D8

D22

D022S 1 0

0 0D , g15D8
D22

D022
~6.7!

and the SO~2! rotation matrixSc from Eqs.~3.13! and~3.14!,
this formula can be considerably simplified to give the final
relation

m~c!0
2 5cos2~ac!m~c!1

2 1sin2~ac!m~c!2
2 . ~6.8!

In its compact form this mass formula implicitly reflects
the behavior of the effective potentialUeff in the vicinity
VbW c

,RT
2 of the extremum pointbW c . So the exciton masses

squaredm(c)1
2 ,m(c)2

2 describe the potential as a function over

the two-dimensionalbW c vicinity VbW c
, whereasm(c)0

2 charac-

terizes Ueff as a function over the line intervalVbW c
ùRP

1

only. A comparison of the minimum conditions of the unre-
duced and reduced two-scale-factor models

m~c!1,2
2 .0: a~c!11.0, a~c!22.0,

a~c!11a~c!22.~a~c!12!
2 ~6.9!

and

m~c!0
2 .0: ~a~c!111a~c!2212a~c!12!.0 ~6.10!

shows that stable configurations of reduced models with
m(c)0

2 .0 are not only possible for stable configurations of
the unreduced modelm(c)1

2 .0, m(c)2
2 .0, but even in cases

when the potentialUeff has a saddle point atbW c and the
unreduced model is unstable. For the masses we have in
these casesm(c)1

2 .0, m(c)2
2 ,0 or m(c)1

2 ,0, m(c)2
2 .0 and

massive excitons in the reduced model correspond to
exciton-tachyon configurations in the unreduced model.

VII. CONCLUSIONS

This paper was devoted to the problem of stable compac-
tification of internal spaces. This is one of the most important
problems in multidimensional cosmology because via stable
compactification of the internal dimensions near Planck
length we can explain unobservability of extra dimensions.
With the help of dimensional reduction we obtained an ef-
fective four-dimensional theory in Brans-Dicke and Einstein
frames. The Einstein frame was considered here as a physical
one @52#. In this frame we derived an effective potential. It
was shown that small excitations of the scale factors of in-
ternal spaces near minima of the effective potential take the
form of massive scalar particles~gravitational excitons! de-
veloping in the external space-time. Detection of these exci-
tations can prove the existence of extra dimensions. Particu-
lar examples of effective potentials were investigated in the
one- and two-internal-space cases. Parameters of the models
that ensure a minimum were obtained and masses of the
excitons were estimated. The solutions at the minima of the
potential are stable against small perturbations of the scale
factor~s! of the expanding external Universe@26#. We would
like to note that the problem of stable compactification in
MCMs with more than one internal scale factor was consid-
ered first for pure geometrical models in Refs.@28,29#. How-
ever, the analysis of the effective potential minima existence
was not complete there.

Our analysis shows that conditions for the existence of
stable configurations may be quite different for one- and
two-scale-factor models. For example, in the case of a one-
scale-factor model that is filled with a one-component per-
fect fluid stable compactifications are possible for vanishing
effective cosmological constantLeff50 and parametersa
from the restricted interval 2/D1,a<2 determining the
equation of state in the internal spaceP15(a21)r. In the
case of two-scale-factor models stable compactifications can
exist for negative effective cosmological constantsLeff,0
only, but for values of the parametera from the usual inter-
val 0<a<2 @here a determines the equations of state in
both internal spacesP15(a21)r and P25(a21)r]. At
first sight the difference in the behavior of these two models
looks a bit strange because the one-scale-factor model can be
obtained by reduction of the two-scale-factor model with the
help of the constraintb15b2[b. As it was shown in Sec.
VI, such a different behavior may take place because stable
configurations of reduced models are possible not only for
stable configurations of unreduced models, but even in cases
when the effective potentialUeff of the unreduced model has
a saddle point. In the case of our two-scale-factor model with
one-component perfect fluid we get such a saddle point for
configurations withLeff50 and 2/(D11D2),a<2.
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In the present paper we did not consider the case of de-
generate minima of the effective potential, for example, self-
interaction-type potentials or ‘‘sombrero-type’’ potentials. In
the former case one obtains massless fields with self-
interaction. In the latter case one gets massive fields together
with massless ones. Here massless particles can be under-
stood as the analog of Goldstone bosons. This type of the
potential was described in@33#.

Another possible generalization of our model consists in
the proposal that the additional potentialr may depend also

on the scale factor of the external space. It would allow, for
example, the consideration of a perfect fluid with arbitrary
equation of state in the external space.
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