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Propagation of light in a gravitational background
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We study the propagation of an electromagnetic field in a weak gravitational background generated by a
rotating mass. The solution of the Maxwell equations beyond the geometrical optics shows, together with the
well-known deflection and rotation of the polarization plane already present in the geometrical optics approxi-
mation, new classical dispersive effects. We analyze such effects at first order in the gravitational ¢nstant
In the case of an incoming wave with linear polarization they consist in the development of a component of
circular polarization, a breaking of the orthogonality of the electric and magnetic fields, and additional contri-
butions to the deflection of the beam and the rotation of the polarization Jl86856-282(97)06422-9

PACS numbd(s): 04.40.Nr

[. INTRODUCTION weak gravitational one. To simplify the physical interpreta-
tion we consider also a post-Newtonian approximation, ap-
Although the effects of a gravitational field on the propa-plicable to a gravitational field with a nonrelativistic source

gation of light have been studied for many years, they hav@nd a dynamics due mainly to its gravitational interaction
recently acquired a renewed significance. Usually, when wéb]- This is enough to give a reliable analysis of the gravita-
consider the propagation of electromagnetic fields, the intertional effects on electromagnetic waves for most of the sys-
action with matter dominates the interaction with gravitation.tems of astrophysical interest and to show several effects that
However, we can conceive astrophysical systems within ofe geometrical approach is unable to display.
near our observational possibilities where the gravitational In the following section we present a brief review of the
interaction is the main factor. This last situation can occur ifnMaxwell equations in a gravitational background, and in the
the surroundings of a neutron star or a black hole without afext one we develop the general formal solution for the per-
accretion disk, or in general when we have a gravitationafurbation in the weak gravitational field approximation. Sec-
lensing effect. In these systems the deflection of light givedion IV focuses on polarized incoming plane waves and out-
us information mainly on the mass distribution of the sourcelines the meaning of the different terms that appear in the
In addition to this, we could in principle obtain more detailed Solution. In Sec. V we construct the perturbative solution for
information by the study of other features of the outcoming® beam of light propagating in the gravitational field of a
light related to its wave character, such as the polarization ofotating mass and discuss its physical meaning, and in Sec.
the different images Of a given Object_ A po'arization_ VI we ShOW how this SO!Ution is §een in a |Oca||y |nert|al
dependent deflection of light or other changes induced by théame. Finally Sec. VIl gives a brief summary and discus-
gravitational field could give us interesting data on the anguSIOn.
lar momentum of the source of the gravitational lens. These
phenomena would be very relevant in astrophysics, because FREE MAXWELL EQUATIONS IN A GRAVITATIONAL

they could provide additional information on objects of the BACKGROUND
uppermost interest such as dwarf stars, neutron stars, galactic .
nuclei. or black holes. If there are no charges and currents present, the equations

As is already known, the equations for the electromag-for an electromagnetic field in a gravitational background
netic field in a gravitational background can be written in andescribed by the metrig,,, are[6]
analogous form to the Maxwell equations for a slow moving

anisotropic and inhomogeneous medium, where the anisot- HE'=0, @
ropy, the inhomogeneity, and the velocity of the “medium”
are related to features of the metric tengdf. The usual FuvptFoputFpu,=0, (2

approach to study the changes of the polarization along the
light path induced by the gravitational field is based on thewhereF ,, is the covariant electromagnetic field tensor and
approximation of the geometrical optif2,3]. A more com-  H**=—gg“*g"?F .z with g=det|g,,|. From now on the
plete analysis has been developed only for cases with ver§reek indices run from O to 3, whereas Latin indices run
simple metrics, for example, to study the scattering of arfrom 1 to 3. We use a system of units with the speed of light
electromagnetic field by a Schwarzschild black Hele c=1. Expressing the components f,, andH*" in terms

In this paper we implement a different approach, whichof the electromagnetic vector fields,
can be applied to a large variety of cases of phenomenologi-
cal relevance. Instead of simply considering the geometrical F.,—(EB), H*—(-D,H), 3)
optics approximation, we use the complete field equations
for the electromagnetic field in a background given by awith
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E,=F, D= _ggwgiﬁpaﬁ, (4)  systems in which the metric tensor is nearly equal to the
Minkowski metric. In this case we have

goo=—1-2¢, goi=hi, gj=6;(1-2¢), (14

K J-00;.0iF 2, (5

whereg;jy is the three-dimensionaBD) complete antisym-

-1 i—1
Bi=z&ijkFi. =3¢

metric tensor, Eqs(1) and(2) can be rewritten 9%=-1+2¢, ¢%=h;, g'=5;(1+2¢), (19
VXE+¢,B=0, V.B=0, (6)  with
VXH-9,D=0, V-D=0, (7) T t)
B(r,t)=— f d3r’
together with |r—r |
g Joj Tio(r" t
_\/_g%Hk_Eijk%Ekv (8) hi(r,t)=—4Gfd3r’|(—;|). (16)
r—r
ik . )
_ /—gg—Ek+ eijk%Hk' 9 T®andT? are the components of the energy-momentum
Yoo tensor, source of the gravitational field, which correspond to

the density of energy and linear momentum. The scalar and
vectorial potentialsp and h satisfy the harmonic condition
V-h+4d,4=0; i.e., we are working in the harmonic gauge.

At lower order |nr—|r| and using a coordinate system with
the origin at the energy center of the source, the gravitational
fields can be written

The nabla operator that appears in E@$.and(7) is defined
with respect to the coordinates of thg,, metric, V;
=g/ox" and (Vx)1=¢€*g/9x¥, and therefore these equa-
tions remain covariant under a general transformation of co
ordinates, although their form is not explicitly covariant.
We can still handle Eq4$8) and(9) so as to put them in a
more suggestive form: GM 2Gerji

Bi=e;H;+(GXE);, (10 A 17

Di=¢€;E;—(GxH); , (1D \where
with eijz—\/—_gg”ggol and Gj=—(ggos. These equa-

tions play the role of constitutive equations, and have the MEJ d3rTo0 JijEZJ d3rriTio, (18)
form of the usual ones for an anisotropic medium moving
with a low velocity in a flat space-timgs]. In this descrip-
tion the movement of the “medium” is given by thg”
components of the metric tensor, related to the angular mo
ment of the source of the gravitational field, and the remain;
ing components define the characteristics of the “medium”

A consistent expansion results from only considering the lin-
ear terms ing andh; , because the contributions of oragf
%an be neglected compared whh. This fact is easy to see
,from the following argument. The magnitudelofs of order

at rest. |h|~2GJ/r?~2MGu/r, whereJ is the magnitude of the
angular momentum, and and v are the mean radius and

Il. WEAK GRAVITATIONAL BACKGROUND: the mean velocity, respectively. Besides, the virial theorem
EFFECTIVE ELECTROMAGNETIC SOURCE states thatGM?%/r ~M v 2/2, which, together with the ex-

pression for the magnitude ofh|, implies that ¢

The covariant Maxwell equations are very difficult to — . .
q y o=(GM/r)?~z|h|v. Therefore,$? is of orderv/c with re-

solve in an arbitrary gravitational field and we thus have t
resort to numerical solutions except for very special casesPect tolh|. o o _
However, we can state a general solution if we consider a The characterization of the gravitational interaction on the
weak gravitational field. For the sake of simplicity we will €l€ctromagnetic field up to linear terms ¢ and h within
only develop here the first order approximation, which inthis family of coordinates is given by

fact is enough to show the most important effects due to the
wave character of the light. To do this we will assume the
metric to be close to the flat space-time omg,, such that
we can writeg,,,= 7,,+h,, with |h , |<1. The parameters

€j=(1-2¢)s;, Gj=h;, (19

and hence the Maxwell equations reduce to

that appear in the constitutive equations are now VXE+3doB=0 (20)
€= — (1+3) 7 00— 71 hoo— 7o, 12
i =~ (1 2) 7" 700~ 7" oo™ 7700 02 X [(1+26)B— (hXE)]—al(1— 26)E—(hxB)]=0,
Gi =~ 10i 00~ 70iNoo~ 700Noi - (13 @D
To be more specific we will consider the linear approxi- V.-B=0, (22

mation for the gravitational field in the post-Newtonian
framework and from here onwards we will use coordinate V- [(1-2¢)E—-(hXB)]=0, (23
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where the nabla operators are defined with respect to the near This approximation allows us to compute the gravitational
flat space-time metrig,,. Equations(20) and (23) come  contribution to the electromagnetic field using the formal
from a linearization on the field$ andh, and hence we can solution already known from classical electrodynamics. In
solve them perturbatively. Thus, we decompose the electriparticular, to study the evolution of an incoming electromag-

and magnetic fields according to netic field it is convenient to use retarded potentials, which
leads to
E=E@+E®, B=B?+BWY, (24)
(0) ©) are fi ; (1> s, Po(r' t=r=r’"])
whereE'"™ andB'”’ are fields with the form of a plane wave EY(r,t)=—V [ d°r —_—
but in terms of the post-Newtonian coordinates, which sat- Ir—r'|
is
Y —anl @3 Jg(r' t=[r—r’|) (31)
VXE©+5,B0=0, V.B©=0, (25) o) @F )
(0) _ (0) — EO) =
VXB (90E O, V E O (26) N 5 Jg(r!,t_lr_r/D
1 . . o BY(r,t)=vx | &' ————. (32)
The E® andB™ fields are the first order gravitational cor- [r—r’]
rections toE(®) andB(?, such thatE andB are solutions of
Egs.(20)—(23). Thus, they are given by IV. PROPAGATION OF AN INCOMING PLANE WAVE
VxEM+g,BY=0, V.BY=0, (27) In this section we will write in detail the propagation of

an incoming asymptotically plane wave with linear polariza-
VXBWY—goEM =47, V-EM=4mp,, (28) tion in interaction with a weak gravitational fields(h). To
simplify the expressions we suppose that the propagation
takes place in a region where there is no mass, soWtfgt
1 =0, and we assume that both and h potentials are time
pg:EV.(hx B+ 24E), (29) mdependen't.. Thus, given that the metric satisfies the har-
monic condition we also havé-h=0.
Let us consider the effect of a gravitational field on a
Jg=4i[V><(h><E(O)—2¢B(°))—a0(2¢>E<°>+h><B<°))] _ r:nonoc'hromaticj‘ light beam, with frequ?naé/anAd direction
7" £3. By introducing the orthogonal frame {, €5, €3) we can
(30 write a solution for Eqs(25) and (26) with linear polariza-

From the Maxwell equation€0)—(23) and the decompo- 10N as
sition (24) it is easy to show that this source satisfies a con-
tinuity equationbg+V'Jg=0. The structure of these last
equations is very interesting and suggestive. They are com- B(O)(r,t):|E|Rdézeiw[§3-(rfro)7t])_
pletely analogous to the Maxwell equations in a flat space-
time, but with sources that depend on the gravitational and From Egs.(29) and (30), the effective sources for the

with

E(O)(r;t):|E|Rq;1eiw[;3‘(r—fo)—t])’

the free electromagnetic fields. gravitational contribution to the electromagnetic field are
_|E| S 2 2 yalo[eg (r—rg)—t]
pg—ERe{(2V¢~81+Iwh-sl-i-VXh-sz)e H (33
E R R . - R oo
Jg=%Rd{[2(V¢—iwh)~83+4iw¢]81+[(—2v¢+iwh)-81]£3+(81~V)h}e"”[83'(r_r0)_t]). (34)

Hence from Eqs(393), (34), (31), and(32) we have the following expressions for the gravitational contributions to the electric
and magnetic fields, respectively:

|E| gloles (1 —ro)+lr=r’|=t] o . .
E<1>(r,t)=ER fd3r’ | | {e; (IwV'Xh)-g53+e; [0X(2h-g3—4¢)+iw2es-V' @]
r—r’

+eg iw[—4V ¢-8,—2(V'Xh)-£,]—V'(8,-V'Xh) =2V (g,-V')} }, (35)

and
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|w[83 r'—rg)+r=r'|-t]
B (r,t)= e{fd3 ' e {—&; (iwV'Xh)-g3+e, [wi(2h-g3—4p)+iw(es-V')(6p—2h-g3)]
r—r

+e3 iw[—4V ¢-8,+2(85-V')(h-83)]+ V' X(81-V)IN—2V"(£,-V' )} ;. (36)

In the above expressions we see that this contribution contains several terms. They are related to already known effects,
such as the gravitational light deflection and the rotation of the polarization plane, the Rytov effect, and they are also
responsible for new effects, which do not exist in the framework of the geometrical optics. All these effects will be analyzed
in detail in the following sections.

V. EFFECTS ON A BEAM OF LIGHT

To warrant the assumption that the electromagnetic field propagates in a region where there is no mass, we will consider
here a beam of light with an impact paramd®egreater than the radius of the beam, propagating in a gravitational field of a
rotating mass. The unperturbed electromagnetic field and its direction of propagation are the ones which have already been
defined above. The details of the computation of the integrals of(Bfsand(36) are discussed in the Appendix. The infinity
range ofpy andjy produces a divergent phase shift fremw to z. To prevent a permanent handling of this contribution we
refer the phase to a finite poirg§, where the phase is null & 0. The final expressions in terms of the gravitational potentials

are
) z " R z 1. " R R
E(r,t)=|E|RE(eX;{Iw(f (1—2¢+h‘83)d2,—t) £ (1—¢)+J dz'[—zsz (VXh)-g3t+ez [2Vh-g,+(V
7g —o0
xh)-§2]+2|—w ~V(e,-VXh)—2V(e;-V)p+e, (ég-V)z(%h.ég—qb)H) (37)
and
z - - ~ 1. ~ A
B(r,t)=|E|RE(eX[{Iw(f (1_2¢+h83)d2,_t) Eo (1+h83_3¢)+f dz' (_81 (Vxh)'83+83 [2V¢82

. o 1 .
(82 V)(h- 83)]+ VX(sl V)h—2V(e,-V)p+e, (83~V)2(§h~83—¢>H). (38

To avoid excessively large expressions we have left without developing the integmal¥\ncan also rewrite these solutions
directly in terms of the angular momentum and mass of the source of the gravitational feeld M, which perhaps allows

a more straightforward reading of the effect on the light beam. Defininge ; + ye,+ze 3 andr’ =xe,+ye,+2'£3, we have

. GM Jor 3i Js S ) -
E(r,t)=|E|e'“+ 1+— 81+G -t y—+—=(r'"=5y")+ ———|dZ' |e,
r w ] o 15 7 r
z JZ J-r’ MXx i J J-r Mx) |.
+G zf y—+— dz'+ — = < +3y—— —| |eay, (39)
o0 r r, r r r
and
Bt Bl | 1-a 2(J><r)-R+3|v| - ol B I o sl
(r,t)=[Ele 3 r |82 ERE 5 7 (r X°) P Z &1
z [J, (Ixr')-k My Jq Jor My |.
+G ZJ oc(rT?’_?)yT—’—rT?’ d — r_3_ Xr_5_r_3 €3(, (40)

where the phase of each field is
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z 2GM  2G(Ixr’)-k 3G| [z Jyy+Ix 1 z(Ixr)-k
oo [ 142 i[5 28] [* Tt dx L 200) K
Z r! r/3 e rl5 2 r5
5 fz S '+1|v|fz Y 4 (41)
—oX —0az = Z |.
y —ocr/7 2 e r/5

We can see that the electric and magnetic fields have a diftwhere R is the impact parameter of the beam. This result
ferent phase; this effect is analogous to the one that appeacsincides with the one directly obtained from the geometri-
when an electromagnetic field propagates in an inhomogezal optics for a beam propagating in the gravitational field of
neous mediuni5]. Despite this, the phase velocity is the a nonrotating mas7]. To analyze the effect of the angular

same up to ordex =27/ w for both fields: momentum in the deflection of the beam, we will use the
P frame defined by the tangehts the direction of propagation
Vo= (Qtt |IVa.| t=1+2¢—hs. (42 of the beam, the principal normalas the direction perpen-

dicular tot, in the osculator plane of the beam and orientated

This is the well-known result for the velocity of propagation inside, and the binormdl asb=tXn. Using this frame we
of an electromagnetic wave in a curved space-time. The pathave that the angular momentum contributes to the deflection
of the beam is a null geodesic; i.e., the interval between twalready discussed with an anglg (z),
points connected by a light signal is null.
To enlighten the physical meaning of the fields given by z 2GJ, z R22GJb
Egs.(39) and(40) it is convenient to discriminate the terms 0Jb(2)=f o 2apdST f PRECIPNPA
of orderw andw® from the ones of ordew 1. The first ones —=(R%+s%) —(R%+s%)

lead to well-known effects, already given by the geometrical 2GJ ;7 7R
optics in curved spaces, and will first be discussed. =—— b1+ 24 —3) , (47
The direction of propagatiofq of the wave is given by the R o

gradient of the phase, which up to ordet is and pulls the path out of the osculator plane, in the direction

~ [z d(—2¢+hy) . (2 d(—2¢+hy) of the binormal, by an anglé; (z),
k=81f sz/'f'szf a—dZ,
- h ’ 0, (2) fz 26, d ZGJ“/1+Z (49)
~ Z)= S= -1,
+83(1_2¢+h3) . (43) In *W(R2+SZ)3/2 R2 \ r

From here we see that the deflection of the beam dependghereld, is the component of the angular momentum in the
only on the scalar potentiab and the componertt; of the  direction ofn, andJy, is the component in the direction bf
vectorial potential in the direction of the nonperturbed elec+qr 72— « hoth angles take the valuesd/R? [8]. This effect
tromagnetic wave. In general the path is not a plane curvgs of orderJ,,/MR with respect to the deflection due to the
due to the contribution difi;. If we assume that thie; com-  mass. For example, in the case of a gravitational lens effect
ponent of the angular momentum of the source is null, weyroduced by a spherical distribution of madsintroduces a
have a plane curve with a deflecti¢ourvature of flection  small correction, which breaks the dominant radial symme-
given by try.

The most interesting consequence of the contributions
that involveh at zero order in\ is the Rytov effect, i.e., a
rotation of the plane of polarization of the incident beam in a
gravitational field of a rotating magg]. This effect can be
whereR?=x?+y?. Hence, forz= + this expression leads evaluated from Eqs(39) and (40) for a propagation from
to —o to z, and is characterized by the angle defined positive

from the normal to the binormal given by

2GMR ZGM/

z VA
GM(Z)=J’w(R2+SZ)3/2ds= R \1+F’ (44)

4MG
BM(OC)ZT, (45 GJ-r
(D)=~ —5 . (49)

which is exactly the value for the light deflection we can
obtain from the geometrical optics for a weak gravitationalTo make this effect clearer, we can consider two representa-
field [6]. From the deflection anglet4) we can compute the tjve cases, i.e., the angular momentum parallel or orthogonal
total deviation of the light beam as a function of to the direction of the beam. In the first case the Rytov angle
5 is GRH=—GJz/r3. It reaches its maximum values at
}, (46) +R/+/2 and becomes null at=0 andz= + . In the second
case the maximum value correspondszte0, and is given

+/1+
=1 1

z 2GMz
d(z)=J7x0(s)ds=
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by 6x(0)=—GJ,/R?, and from 0<z<« it develops the Another interesting feature of this solution is a different
same angle but with an opposite sign. Thus, the total rotatiophase shift to ordek for the electric and magnetic fields,
of the plane of polarization between~<z< is null. which produces a difference in the phase velocity of both

At first order in\ new effects appear related to the massfields. Using Eq.(41), the phase velocities for the electric
and the angular momentum of the source of the gravitationsdand magnetic fields are
field. From Egs(39) and (40), we see that the solution has

components perpendicular to the unperturbed fields, which ve=votAv,, vg=vgotAv_, (57)
have aw/2 phase with respect to these fields. Naming these
components according to with
3iG|E| (2 Jo Jr Xy 3G/ Jyy+dx 1(JIxr)-k
E{= f 2y——+——(r'?=5y*)+ M — |dZ, ] B B 2_g,2
T m( Y s r,7( y°) 5|92 Av. th = 5 = (r2—522)
(50)
5y +1My2—x2) (58)
3iG|E| [z J, Jr’ X Xy—+5
By= | |f —ox ko (2o M |z, [
w L r15 rr7 r15

(51)  This effect is analogous to the one that appears for an elec-
tromagnetic wave propagating in an inhomogeneous medium
fS]. In our case the velocities depend on the angular momen-
tum and mass of the gravitational source.

we can analyze the physical meaning of these contribution
by writing them as

E2=3 +3 = Bl=Y.-% (52) The\-dependent contributions to the phase have a disper-
Moo oA T : sive character, and remain non-null for the outcoming wave.
where In fact their value is
z _
2+=%(E§+ B2)=i %'E'f_w 2% Aao(z_ .)= iZ%[Zle(yz—sz)+2J2x(x2—3y2)
J-r’ Xy +RPM(*=y?)]. (59
+57(x2—y2)+2M —|dZ, (53
r r Thus Egs.(56) and (59) clearly show that the asymptotic
1 outcoming wave is not a plane wave. This is due to the
2—:—(Ei_3§) infinite range of the gravitational potentials. To close this
2 section we can mention an interesting consequence of this

, . dispersive behavior: a rainbow effect. The directions of the
—i 3G|E|fz {‘]’_r(52,2_r,2)_22_‘]3 dz. (54 outcoming electric and magnetic fields dependoras be-
2 —| 1’7 r's comes clear by computing the gradient of the phases.

The terms with opposite sign iB, andB, describe a gravi-
tationally induced circular polarization, whereas the equal
sign terms correspond to components that turn the electric In order to unveil the most interesting characteristics of
and magnetic fields in opposite directions, and thus break thihe solution encountered, we will write it in locally inertial
orthogonality of the unperturbed fields. coordinates. Up to first order i@ a general expression for a

The circular polarization only appears due to the angulatetradt”, is
momentum. It has a contribution from the component] of
parallel to the direction of propagation of the beam, which 1-¢ a a, ag
develops peak values of amplitudezat = /3/2R andz=0,

VI. SOLUTION IN LOCALLY INERTIAL COORDINATES

and a contribution from the orthogonal component, with th = “hitay +1t¢ +B Ty
maximum values aiz=*R/2. Both contributions nullify ¢ —hy+ay -B +1+¢ +6
WhenZ—>OC: —h3+a3 - ) +1+¢

S _()=0. (55) (60)

In contrast with the circular polarization, the orthogonal-Where @i, az, as, B, v, and § parametrize the Lorentz-
ity breaking component is generated by bdttand M and related fa_mlly of Ioc:_:llly inertial coordmat(_as in a given neigh-
survives even foz— . That is, borhood in space-time. lfix* are the differentials in the

general coordinate system aadk® are the corresponding
i4G|E| ) ) . ones in the locally coord@ate system, they are related by the
wR® [xJ1(x"=3y%) +yJo(3x"—y) tetrad such thatix“=t*dx* and 7,5=t%g,,,ts, With 7,4
the Minkowskian metric ¢ 1,1,1,2. From here the electro-
+MR2xy]. (56)  magnetic tensoF ,,,,

3 ()=
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0 _El _E2 _E3 kE=wh1 (68)
F = ST Bs —By (61) If we now transform to a locally inertial system, the differ-
o lE, —Bs O B, |’ ential of the phase becomes
B B, -B, 0 de=w[(1+hs— ¢—ag)dz —(1+hy—as— ¢)dt’

transforms into'lfaﬁ in the locally inertial coordinates ac-

cording to

Fop(XM+dxM) =t t7F, (X +dX®), (62

whereX* is the point around which we define the neighbor-
hood, where the locally inertial coordinates are given by

X*+dx*. Therefore, up to first order i6 the components

of F,p are
E;=E;+(h3—a3)By,
E,=E,+ BE;,
Eg=Eg+ yE+ (a1 —hy)By,
B,=B,—B,, (63
B,=(1+2¢)By— asky,

B3=B3+ 6B, + ayE;.

+(—a;—y)dx' +(—ap,— d)dy’]

+2wG

z ( Jo—Mx Q(xJz—le)x

(R2+52)3/2_“ (R2+32)5/2)d5d)(

—o0

+2wa

—o

2 [ —h—My (xJ—yd)y
(R2+52)3/2 e (R2+52)5/2

)dsdy.
(69)

So up to ordeh?, in this new system the wave propagates in
the directionk’ given by

K'=k—o[e1(@+7)+es(a+ 8) +ea(@s— )], (70)

with a velocity

_o(lthy—¢—ajz) (1+hg—¢—a3)
v'OC_ ’ - 2 2
K| V(1+hs—¢—a3)?+0(G?)
=1+0(G?). (73)

Here, both the magnetic and the electric fields are orthogonal

We can now analyze the structure of the electromagnetigy k-
field in the locally inertial system. From these equations and

Egs. (39) and (40) we can verify that the modulus of both

fields become equal, that is,

|E|=|B|=|E|(1- ¢+h3— as), (64)

k'-B'=k-B=0, (72)
k'-E'=k-E—wh;=0. (73)

Therefore, we see that up to order zero\irin the locally

where the parameter; expresses the modulus dependencenertial frame the electromagnetic field has the properties ex-

on boosts in the 5 direction.

pected for a plane wave. But when we analyze the terms of

Considering now the fields in the original frame, the con-order\ novel characteristics appear. The new terms are lin-

tribution of order\ ! to the phasep of the solution is

o= (65)

z 2GM  2G(Jxr’)-k
[ 1 20M _200%

)dz’—t .

2, r’ r

Here we see that the wave propagates in a diredtjagiven
by the gradient ofp,

- z [ Jo—MX XJo—yJ )X
k:slzewf ( . g% ? 2 )dz’
—w\ T r

- z [=J;—M xJ,—yJ
+8226wf — Y _ X% Z 1)y)dz’
- r r
- xJ,—yJ;+Mr?
+ 850 1+ZG# , (66)
r
and that the magnetic field is orthogonalkp
k-B=0, (67)

whereas the electric field satisfies

ear inG and so are unaffected by the change of coordinates.
In other words, they are the same in the original coordinates
and in the locally inertial ones. Thus, even in the local sys-
tem the presence of a gravitational field is apparent. The
most conspicuous phenomena that these terms generate have
already been discussed at the end of the preceding section.

VII. FINAL REMARKS

In this paper we have studied the effects of a gravitational
field on the propagation of light. For such purposes we have
developed a perturbative approach in powers of the gravita-
tional constantG. Although for the sake of simplicity we
have restricted here the exposition to a first ordeGinthe
formalism can be extended without difficulty to higher or-
ders. According to our approach the electromagnetic field in
a curved space-time is described by a dominant contribution,
solution of the Maxwell equations in a flat space-time, plus a
metric-dependent perturbation. This last component is also a
solution of the Maxwell equations in a flat space-time, but
now with sources that depend both on the dominant solution
and on the gravitational field. The perturbation can be com-
puted as a power expansion in the wavelength of the electro-
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magnetic field. It can be exactly evaluated for each order in The remaining effect at first order ik is the induced
G. The solution up tanth order inG is given by a polyno- circular polarization. It depends only on the angular momen-
mial of the same order iR. tum of the source of the gravitational field and is significant
At first order inG we not only recover the well-known in the proximity of this source. For example, in the equato-
results of the geometrical optics, but we also identify newrial plane we haveE.;|/|E|=GJ/2R3.
contributions, at first order i, which show that the gravi- These examples are only given to visualize the order of
tational field induces terms that change the polarization ofmagnitude of the different effects, but as is clear from Egs.
the light, as well as anomalous terms that break the orthogd53), (56), and(59) their spatial structure and values strongly
nality of the electric and magnetic fields. The first terms aredepend on the orientation of the fields and of the angular
due to the angular momentum of the source of the gravitamomentum of the source.
tional field, whereas the second ones depend both on the
angular momentum and the mass. In the particular case con- ACKNOWLEDGMENTS
sidered here, i.e., an incoming plane wave with linear polar- ) . . i
ization, both effects are present in the surroundings of the We would like to thank H. Casini for very interesting
rotating mass, but only the second one remains in th&liscussions. Th_ls Worl_< was reallzed_wnh_ a parﬂgl support
asymptotic outcoming wave. This somehow unexpected bdlom the Consejo Nacional de Investigaciones Cfevais y
havior is possible because the effective sources of the equaecnicas(CONICET), Argentina.
tions for the perturbations extend on the whole space.
Another consequence is the difference of phases to order APPENDIX

\ it he electic nd magnel, el eveloh Foriie o2 i the Eqs.(39 and @9 for 0 and Y e have to
magnitude and in direction. Although these velocities be_mtegrate expressions with the general form
come asymptotically equal, the phase shifts remain asymp- giolea-(r' —ro)+lr—r'|=t]

totically non-null and different. Thus, the gravitational inter- l(r’t):f f(r") d’r’, (A1)
action induces a dispersive behavior on the propagation of Ir—r’|

the electromagnetic field, which produces effects of the type ,

of an asymptotic rainbow, the smaller the impact paramete/nere thef (r) can be the functiong, d;¢, did; b, hi, dihy,
of the beam, the more noticeable the rainbow. Although ver' ¢id;hi, which are
small, these dispersive phenomena are interesting candidates

for providing additional information about the angular mo- b=— % :ZGXerr
mentum of the source of the gravitational lensing effect. x|’ k x| '

To appreciate the magnitude of the asymptotic gravita-
tional effects on the electromagnetic wave, we can consider GMxX 2GJ,;  2GX'XJy,
some simple configurations. From E6), if the unper- (9i¢=w, ding= PE -3 ME '

turbed electric or magnetic field has a radial direction, the
outcoming fields describe ellipses with the same ratio be-

tween the minor and the major axe$; &,/ wR3, which de- GMJ;; _QGMXin

pends only on the component of the angular momentum in hdjb= x| ° |x|® '

the osculator plane. The distinctive feature of this effect is

that both fields rotate in_opposite directions. In particular, for 2GxJy; 2GX XXy, ZGXiJkJ

a black hole with maximum angular momentum we have  g;djh,=—3 : 5 Z -3 s
GJ,/R2=1, with Rg the Schwarzschild radius, and thus this ] || x|

ratio is 4[Rs/R)?(1/wR). If the unperturbed fields have any 2GK 5]

other directions the contribution of the ma¥ésis non-null, _ 322X ke (A2)
and it acquires its maximum value when they form an angle [x|®

of 7r/4 with the radial direction. =0 and with this orien- ) ) _ )
tation for the electromagnetic fields, the ratio between thef © perform this type of integrals we can introduce spherical

axes of the ellipses is Rs/R)(1/wR). coordinates, such that
The gravitational rainbow can be computed from E&9). - - -

For a beam with the magnetic field in a radial direction the r=Xejtyep+zes, (A3)
contributionk, of order\ to the outcoming wave vector for , ) - A -

the electric field is I’ —r=psingcospe +,psindsinpe + pcosdes. (A4)

With this change of variables E¢A1) becomes
k 1ZG<MR Jo|e1+dne (74)
= | =" & Eo . - .
MR\ 12 T2 I(r,t)zf elolea (=10 =tf (1) hsingel P19 g nd Ad .

(A5)
The magnetic field has the same contribution but with oppo-

site sign. This difference between both wave vectors is &he integrand contains an oscillating factor [gxp(1
manifestation of the inhomogeneity of the gravitational back-+ cosd)]. The surfaces of constant phase determined by this
ground. factor are paraboloids given by the equation
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2n\ whereR=x?+y? and tan3)=—x/y. For a pointr’ inside
p= (1+co%) ’ (A6)  the nth paraboloid, the following relations are satisfied:
where\ =27/ w. ] 2n\ 2n\ n\
The characteristic lengths for the functiori¢r’) are sing= 1—cos'6< T(Z_T)<2 N
given by the impact paramet&, the Schwarzschild radius (A9)

Rs=2GM, and the angular-momentum-related length
GJ/R=(Rg/R)J/2M, while for the oscillating factor we

have the wavelengtih. We can develop an expansion of 2pRsindsin(¢— B)<4p /QR:A, [on\R, (A10)
f(r") around the axis of the paraboloids that gives an expan- P

sion of the solution in terms of powers &f To do this we
write 2pz(cosh+1)<4znn, (A11)

r'=r'—r+r=(psindcosp+x)e,+ (psingsing+y)e, and so ifA<R, we have

+(pcosh+2)es, A7
(p es (A7) 2p2(C0sH+ 1) + 2pRsinGsin( o — B) < 4(\JpNAR+ N\ 2)

and hence we have <R%+(z—p)?, (A12)

r'2=R2%+(z—p)2+2pz(cosh+ 1)+ 2pRsindsin( ¢ — B),
(A8)  which allows us to perform the expansion

N pr(COS9+ 1)+ pRsingsin(¢— B)
R2+(z—p)?

|1’ |P=[R*+(z—p)?+2pz(cosh+ 1)+2pRSinBSin(<p—,8)]b/2=[R2+(Z—p)2]b’2{1

- - 2
b 2)/pz(cose+1)+pRsmesm(<p—B)) L (A13)

2\ R+ (z-p)?

Using the expressions given by E@2) and the expansion Finally, a comment on the identification of the phases.
(A13) we can perform analytically all the integrations to the The total solution, for the electric field for example, is writ-
desired order in. ten E=E@+E®, whereE(® andE® are the unperturbed
In our case the sources of the Maxwell equations for theield and its correction, respectively. If we are analyzing the
perturbations have a very simple dependencevjmof the  component in the direction d&(?), the contribution ofE(®)
form in such a direction has the for&{")=G|E|(a+ib), with a

GevZ 2 V(uwA+B) | (A14) Egdvsrirt?:rl{ ggd so the total solutidsy in thee, direction can

were A and B are w-independent functions. The Maxwell o[3a- (F=to)—t] .
equations are linear differential equations, and so if we write E,=|Ele'“*s" (T~ H(1+Ga+iGb),  (Al6)

the solution as an expansion in powersef . i :
P P 0 which to first order inG can be expressed as

GEZ 0 V(S |+ Syt w 1S +w S+ 1), o
' ' (A15) E;=|E|(1+Ga)e'“lea (ro* 6ot (A17)

we can easily see th&, with n>1 vanishes identically; so This is the phase assignment in the perturbative results ob-
the solution up to ordeh is the exact one. The general tained to first order irG.

scheme to perform the integrals can be summarized in the Taking into account all the above considerations we ob-
following simple recipe: Expangt’|® following Eq. (A13),  tain the solutions given by Eq$39) and (40), which are
keep all the terms that contribute up to first ordemninand  exact in\ at first order inG. If we extend the computation to
then perform the integrations i@ and 6. The integration second order irG, we will also obtain contributions to the
over p can also be performed, but for the sake of simplicitysecond order in. In general, the contributions to ttreh

we sometimes leave it expressed in terms of an integral ovearder in\ (with n=0) are given by series i that begin

Z. with the nth order in this constant.
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