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We study the propagation of an electromagnetic field in a weak gravitational background generated by a
rotating mass. The solution of the Maxwell equations beyond the geometrical optics shows, together with the
well-known deflection and rotation of the polarization plane already present in the geometrical optics approxi-
mation, new classical dispersive effects. We analyze such effects at first order in the gravitational constantG.
In the case of an incoming wave with linear polarization they consist in the development of a component of
circular polarization, a breaking of the orthogonality of the electric and magnetic fields, and additional contri-
butions to the deflection of the beam and the rotation of the polarization plane.@S0556-2821~97!06422-9#

PACS number~s!: 04.40.Nr

I. INTRODUCTION

Although the effects of a gravitational field on the propa-
gation of light have been studied for many years, they have
recently acquired a renewed significance. Usually, when we
consider the propagation of electromagnetic fields, the inter-
action with matter dominates the interaction with gravitation.
However, we can conceive astrophysical systems within or
near our observational possibilities where the gravitational
interaction is the main factor. This last situation can occur in
the surroundings of a neutron star or a black hole without an
accretion disk, or in general when we have a gravitational
lensing effect. In these systems the deflection of light gives
us information mainly on the mass distribution of the source.
In addition to this, we could in principle obtain more detailed
information by the study of other features of the outcoming
light related to its wave character, such as the polarization of
the different images of a given object. A polarization-
dependent deflection of light or other changes induced by the
gravitational field could give us interesting data on the angu-
lar momentum of the source of the gravitational lens. These
phenomena would be very relevant in astrophysics, because
they could provide additional information on objects of the
uppermost interest such as dwarf stars, neutron stars, galactic
nuclei, or black holes.

As is already known, the equations for the electromag-
netic field in a gravitational background can be written in an
analogous form to the Maxwell equations for a slow moving
anisotropic and inhomogeneous medium, where the anisot-
ropy, the inhomogeneity, and the velocity of the ‘‘medium’’
are related to features of the metric tensor@1#. The usual
approach to study the changes of the polarization along the
light path induced by the gravitational field is based on the
approximation of the geometrical optics@2,3#. A more com-
plete analysis has been developed only for cases with very
simple metrics, for example, to study the scattering of an
electromagnetic field by a Schwarzschild black hole@4#.

In this paper we implement a different approach, which
can be applied to a large variety of cases of phenomenologi-
cal relevance. Instead of simply considering the geometrical
optics approximation, we use the complete field equations
for the electromagnetic field in a background given by a

weak gravitational one. To simplify the physical interpreta-
tion we consider also a post-Newtonian approximation, ap-
plicable to a gravitational field with a nonrelativistic source
and a dynamics due mainly to its gravitational interaction
@6#. This is enough to give a reliable analysis of the gravita-
tional effects on electromagnetic waves for most of the sys-
tems of astrophysical interest and to show several effects that
the geometrical approach is unable to display.

In the following section we present a brief review of the
Maxwell equations in a gravitational background, and in the
next one we develop the general formal solution for the per-
turbation in the weak gravitational field approximation. Sec-
tion IV focuses on polarized incoming plane waves and out-
lines the meaning of the different terms that appear in the
solution. In Sec. V we construct the perturbative solution for
a beam of light propagating in the gravitational field of a
rotating mass and discuss its physical meaning, and in Sec.
VI we show how this solution is seen in a locally inertial
frame. Finally Sec. VII gives a brief summary and discus-
sion.

II. FREE MAXWELL EQUATIONS IN A GRAVITATIONAL
BACKGROUND

If there are no charges and currents present, the equations
for an electromagnetic field in a gravitational background
described by the metricgmn are @6#

H ,n
mn50, ~1!

Fmn,r1Fnr,m1Frm,n50, ~2!

whereFmn is the covariant electromagnetic field tensor and
Hmn[A2ggmagnbFab with g[detigmni . From now on the
Greek indices run from 0 to 3, whereas Latin indices run
from 1 to 3. We use a system of units with the speed of light
c51. Expressing the components ofFmn andHmn in terms
of the electromagnetic vector fields,

Fmn→~E,B!, Hmn→~2D,H!, ~3!

with
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Ei[Fi0 , Di[A2gg0agibFab , ~4!

Bi[
1
2 « i jkF jk , Hi[ 1

2 « i jkA2ggj agkbFab, ~5!

where« i jk is the three-dimensional~3D! complete antisym-
metric tensor, Eqs.~1! and ~2! can be rewritten

¹3E1]0B50, ¹•B50, ~6!

¹3H2]0D50, ¹•D50, ~7!

together with

Bi52A2g
gik

g00
Hk2e i jk

g0 j

g00
Ek , ~8!

Di52A2g
gik

g00
Ek1e i jk

g0 j

g00
Hk . ~9!

The nabla operator that appears in Eqs.~6! and~7! is defined
with respect to the coordinates of thegmn metric, ¹ i
5]/]xi and (¹3) i j 5e i jk]/]xk, and therefore these equa-
tions remain covariant under a general transformation of co-
ordinates, although their form is not explicitly covariant.

We can still handle Eqs.~8! and~9! so as to put them in a
more suggestive form:

Bi5e i j H j1~G3E! i , ~10!

Di5e i j Ej2~G3H! i , ~11!

with e i j [2A2ggi j g00
21 and Gi[2g0ig00

21 . These equa-
tions play the role of constitutive equations, and have the
form of the usual ones for an anisotropic medium moving
with a low velocity in a flat space-time@5#. In this descrip-
tion the movement of the ‘‘medium’’ is given by theg0i

components of the metric tensor, related to the angular mo-
ment of the source of the gravitational field, and the remain-
ing components define the characteristics of the ‘‘medium’’
at rest.

III. WEAK GRAVITATIONAL BACKGROUND:
EFFECTIVE ELECTROMAGNETIC SOURCE

The covariant Maxwell equations are very difficult to
solve in an arbitrary gravitational field and we thus have to
resort to numerical solutions except for very special cases.
However, we can state a general solution if we consider a
weak gravitational field. For the sake of simplicity we will
only develop here the first order approximation, which in
fact is enough to show the most important effects due to the
wave character of the light. To do this we will assume the
metric to be close to the flat space-time onehmn , such that
we can writegmn5hmn1hmn with uhmnu!1. The parameters
that appear in the constitutive equations are now

e i j 52~11 1
2 !h i j h002h i j h002h00h

i j , ~12!

Gi52h0ih002h0ih002h00h0i . ~13!

To be more specific we will consider the linear approxi-
mation for the gravitational field in the post-Newtonian
framework and from here onwards we will use coordinate

systems in which the metric tensor is nearly equal to the
Minkowski metric. In this case we have

g0052122f, g0i5hi , gi j 5d i j ~122f!, ~14!

g0052112f, g0i5hi , gi j 5d i j ~112f!, ~15!

with

f~r ,t !52GE d3r 8
T00~r 8,t !

ur2r 8u
,

hi~r ,t !524GE d3r 8
Ti0~r 8,t !

ur2r 8u
. ~16!

T00 and Ti0 are the components of the energy-momentum
tensor, source of the gravitational field, which correspond to
the density of energy and linear momentum. The scalar and
vectorial potentialsf and h satisfy the harmonic condition
¹•h14]0f50; i.e., we are working in the harmonic gauge.
At lower order inr[ur u and using a coordinate system with
the origin at the energy center of the source, the gravitational
fields can be written

f52
GM

r
, hi52

2Gr jJji

r 3
, ~17!

where

M[E d3rT00, Ji j [2E d3rr iTj 0. ~18!

A consistent expansion results from only considering the lin-
ear terms inf andhi , because the contributions of orderf2

can be neglected compared withhi . This fact is easy to see
from the following argument. The magnitude ofh is of order
uhu;2GJ/r 2;2MG v̄ / r̄ , whereJ is the magnitude of the
angular momentum, andr̄ and v̄ are the mean radius and
the mean velocity, respectively. Besides, the virial theorem
states thatGM2/ r̄ ;M v̄ 2/2, which, together with the ex-
pression for the magnitude ofuhu, implies that f2

5(GM/r )2; 1
4 uhu v̄ . Therefore,f2 is of orderv/c with re-

spect touhu.
The characterization of the gravitational interaction on the

electromagnetic field up to linear terms inf and h within
this family of coordinates is given by

e i j 5~122f!d i j , Gi5hi , ~19!

and hence the Maxwell equations reduce to

¹3E1]0B50, ~20!

¹3@~112f!B2~h3E!#2]0†~122f!E2~h3B!‡50,
~21!

¹•B50, ~22!

¹•@~122f!E2~h3B!#50, ~23!
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where the nabla operators are defined with respect to the near
flat space-time metricgmn . Equations~20! and ~23! come
from a linearization on the fieldsf andh, and hence we can
solve them perturbatively. Thus, we decompose the electric
and magnetic fields according to

E5E~0!1E~1!, B5B~0!1B~1!, ~24!

whereE(0) andB(0) are fields with the form of a plane wave
but in terms of the post-Newtonian coordinates, which sat-
isfy

¹3E~0!1]0B~0!50, ¹•B~0!50, ~25!

¹3B~0!2]0E~0!50, ¹•E~0!50. ~26!

The E(1) andB(1) fields are the first order gravitational cor-
rections toE(0) andB(0), such thatE andB are solutions of
Eqs.~20!–~23!. Thus, they are given by

¹3E~1!1]0B~1!50, ¹•B~1!50, ~27!

¹3B~1!2]0E~1!54pJg, ¹•E~1!54prg , ~28!

with

rg5
1

4p
¹•~h3B~0!12fE~0!!, ~29!

Jg5
1

4p
@¹3~h3E~0!22fB~0!!2]0~2fE~0!1h3B~0!!# .

~30!

From the Maxwell equations~20!–~23! and the decompo-
sition ~24! it is easy to show that this source satisfies a con-
tinuity equation ṙg1“•Jg50. The structure of these last
equations is very interesting and suggestive. They are com-
pletely analogous to the Maxwell equations in a flat space-
time, but with sources that depend on the gravitational and
the free electromagnetic fields.

This approximation allows us to compute the gravitational
contribution to the electromagnetic field using the formal
solution already known from classical electrodynamics. In
particular, to study the evolution of an incoming electromag-
netic field it is convenient to use retarded potentials, which
leads to

E~1!~r ,t !52¹E d3r 8
rg~r 8,t2ur2r 8u!

ur2r 8u

2]0E d3r 8
Jg~r 8,t2ur2r 8u!

ur2r 8u
, ~31!

B~1!~r ,t !5¹3E d3r 8
Jg~r 8,t2ur2r 8u!

ur2r 8u
. ~32!

IV. PROPAGATION OF AN INCOMING PLANE WAVE

In this section we will write in detail the propagation of
an incoming asymptotically plane wave with linear polariza-
tion in interaction with a weak gravitational field (f,h). To
simplify the expressions we suppose that the propagation
takes place in a region where there is no mass, so that¹2f
50, and we assume that bothf and h potentials are time
independent. Thus, given that the metric satisfies the har-
monic condition we also have¹•h50.

Let us consider the effect of a gravitational field on a
monochromatic light beam, with frequencyv and direction
«̂3. By introducing the orthogonal frame («̂1, «̂2, «̂3) we can
write a solution for Eqs.~25! and ~26! with linear polariza-
tion as

E~0!~r ,t !5uEuRe~ «̂1eiv@«̂3•~r2r0!2t#!,

B~0!~r ,t !5uEuRe~ «̂2eiv@«̂3•~r2r0!2t#!.

From Eqs.~29! and ~30!, the effective sources for the
gravitational contribution to the electromagnetic field are

rg5
uEu
4p

Re$~2¹f• «̂11 ivh–«̂11¹3h–«̂2!eiv@«̂3•~r2r0!2t#%, ~33!

Jg5
uEu
4p

Re„$@2~¹f2 ivh!• «̂314ivf#«̂11@~22¹f1 ivh!–«̂1#«̂31~ «̂1•¹!h%eiv@«̂3•~r2r0!2t#
…. ~34!

Hence from Eqs.~33!, ~34!, ~31!, and~32! we have the following expressions for the gravitational contributions to the electric
and magnetic fields, respectively:

E~1!~r ,t !5
uEu
4p

ReH E d3r 8
eiv@«̂3•~r82r0!1ur2r8u2t#

ur2r 8u
$«̂2 ~ iv¹83h!• «̂31 «̂1 @v2~2h• «̂324f!1 iv2«̂3•¹8f#

1 «̂3 iv@24¹8f• «̂122~¹83h!–«̂2#2¹8~ «̂2•¹83h!22¹8~ «̂1•¹8!f%J , ~35!

and

6380 56J. MANZANO AND R. MONTEMAYOR



B~1!~r ,t !5
uEu
4p

ReH E d3r 8
eiv@«̂3•~r82r0!1ur2r8u2t#

ur2r 8u
$2 «̂1 ~ iv¹83h!• «̂31 «̂2 @v2~2h• «̂324f!1 iv~«̂3•¹8!~6f22h• «̂3!#

1 «̂3 iv@24¹8f• «̂212~ «̂2•¹8!~h–«̂3!#1¹83~ «̂1•¹8!h22¹8~ «̂2•¹8!f%J . ~36!

In the above expressions we see that this contribution contains several terms. They are related to already known effects,
such as the gravitational light deflection and the rotation of the polarization plane, the Rytov effect, and they are also
responsible for new effects, which do not exist in the framework of the geometrical optics. All these effects will be analyzed
in detail in the following sections.

V. EFFECTS ON A BEAM OF LIGHT

To warrant the assumption that the electromagnetic field propagates in a region where there is no mass, we will consider
here a beam of light with an impact parameterR greater than the radius of the beam, propagating in a gravitational field of a
rotating mass. The unperturbed electromagnetic field and its direction of propagation are the ones which have already been
defined above. The details of the computation of the integrals of Eqs.~35! and~36! are discussed in the Appendix. The infinity
range ofrg and jg produces a divergent phase shift from2` to z. To prevent a permanent handling of this contribution we
refer the phase to a finite pointz0, where the phase is null att50. The final expressions in terms of the gravitational potentials
are

E~r ,t !5uEuReXexpF ivS E
z0

z

~122f1h• «̂3!dz82t D G «̂1 ~12f!1E
2`

z

dz8H 2
1

2
«̂2 ~¹3h!• «̂31 «̂3 @2¹f• «̂11~¹

3h!–«̂2#1
i

2vF2¹~«̂2•¹3h!22¹~«̂1•¹!f1 «̂1 ~ «̂3•¹!2S 1

2
h• «̂32f D G J C ~37!

and

B~r ,t !5uEuReXexpF ivS E
z0

z

~122f1h• «̂3!dz82t D G «̂2 ~11h• «̂323f!1E
2`

z

dz8H 1

2
«̂1 ~¹3h!• «̂31 «̂3 @2¹f• «̂2

2~ «̂2•¹!~h–«̂3!#1
i

2vF¹3~ «̂1•¹!h22¹~«̂2•¹!f1 «̂2 ~ «̂3•¹!2S 1

2
h• «̂32f D G J C. ~38!

To avoid excessively large expressions we have left without developing the integrals onz. We can also rewrite these solutions
directly in terms of the angular momentum and mass of the source of the gravitational field,J andM , which perhaps allows
a more straightforward reading of the effect on the light beam. Definingr5x«̂11y«̂21z«̂3 andr 85x«̂11y«̂21z8«̂3, we have

E~r ,t !5uEueia1H S 11
GM

r D «̂11GF2
J–r

r 3
1

3i

v E
2`

z S 2y
J2

r 85
1

J–r 8

r 87
~r 8225y2!1

Mxy

r 85 D dz8G «̂2

1GF2E
2`

z S J2

r 83
23y

J–r 8

r 85
1

Mx

r 83 D dz81
i

vS 2
J2

r 3
13y

J–r

r 5
2

Mx

r 3 D G «̂3J , ~39!

and

B~r ,t !5uEueia2H F12GS 2~J3r !• k̂

r 3
1

3M

r D G «̂21GFJ–r

r 3
1

3i

v E
2`

z F22x
J1

r 85
2

J–r 8

r 87
~r 8225x2!1

Mxy

r 85 Gdz8G «̂1

1GF2E
2`

z S J1

r 83
23y

~J3r 8!• k̂

r 85
1

My

r 83 D dz81
i

vS J1

r 3
23x

J–r

r 5
2

My

r 3 D G «̂3J , ~40!

where the phase of each field is
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a65vF E
z0

z S 11
2GM

r 8
2

2G~J3r 8!• k̂

r 83 D dz82tG6
3G

v F E
2`

z J1y1J2x

r 85
dz87

1

2

z~J3r !• k̂

r 5

25xyE
2`

z J•r 8

r 87
dz81

1

2
ME

2`

z x22y2

r 85
dz8G . ~41!

We can see that the electric and magnetic fields have a dif-
ferent phase; this effect is analogous to the one that appears
when an electromagnetic field propagates in an inhomoge-
neous medium@5#. Despite this, the phase velocity is the
same up to orderl52p/v for both fields:

v05
]a6

]t
u¹a6u215112f2h3 . ~42!

This is the well-known result for the velocity of propagation
of an electromagnetic wave in a curved space-time. The path
of the beam is a null geodesic; i.e., the interval between two
points connected by a light signal is null.

To enlighten the physical meaning of the fields given by
Eqs.~39! and ~40! it is convenient to discriminate the terms
of orderv andv0 from the ones of orderv21. The first ones
lead to well-known effects, already given by the geometrical
optics in curved spaces, and will first be discussed.

The direction of propagationk̂ of the wave is given by the
gradient of the phase, which up to orderl0 is

k5 «̂1E
2`

z ]~22f1h3!

]x
dz81 «̂2E

2`

z ]~22f1h3!

]y
dz8

1 «̂3~122f1h3! . ~43!

From here we see that the deflection of the beam depends
only on the scalar potentialf and the componenth3 of the
vectorial potential in the direction of the nonperturbed elec-
tromagnetic wave. In general the path is not a plane curve
due to the contribution ofh3. If we assume that theh3 com-
ponent of the angular momentum of the source is null, we
have a plane curve with a deflection~curvature of flection!
given by

uM~z!5E
2`

z 2GMR

~R21s2!3/2
ds5

2GM

R S 11
z

r D , ~44!

whereR2[x21y2. Hence, forz51` this expression leads
to

uM~`!5
4MG

R
, ~45!

which is exactly the value for the light deflection we can
obtain from the geometrical optics for a weak gravitational
field @6#. From the deflection angle~44! we can compute the
total deviation of the light beam as a function ofz:

d~z!5E
2`

z

u~s!ds5
2GMz

R F11A11S R

z D 2G , ~46!

where R is the impact parameter of the beam. This result
coincides with the one directly obtained from the geometri-
cal optics for a beam propagating in the gravitational field of
a nonrotating mass@7#. To analyze the effect of the angular
momentum in the deflection of the beam, we will use the
frame defined by the tangentt̂ as the direction of propagation
of the beam, the principal normaln̂ as the direction perpen-
dicular to t̂ , in the osculator plane of the beam and orientated
inside, and the binormalb̂ as b̂[ t̂3n̂. Using this frame we
have that the angular momentum contributes to the deflection
already discussed with an angleuJb

(z),

uJb
~z!5E

2`

z 2GJb

~R21s2!3/2
ds23E

2`

z R22GJb

~R21s2!5/2
ds

52
2GJb

R2 S 11
z

r
1

zR2

r 3 D , ~47!

and pulls the path out of the osculator plane, in the direction
of the binormal, by an angleuJn

(z),

uJn
~z!5E

2`

z 2GJn

~R21s2!3/2
ds5

2GJn

R2 S 11
z

r D , ~48!

whereJn is the component of the angular momentum in the
direction ofn̂, andJb is the component in the direction ofb̂.
For z→` both angles take the value 4GJ/R2 @8#. This effect
is of orderJpn /MR with respect to the deflection due to the
mass. For example, in the case of a gravitational lens effect
produced by a spherical distribution of mass,J introduces a
small correction, which breaks the dominant radial symme-
try.

The most interesting consequence of the contributions
that involveh at zero order inl is the Rytov effect, i.e., a
rotation of the plane of polarization of the incident beam in a
gravitational field of a rotating mass@2#. This effect can be
evaluated from Eqs.~39! and ~40! for a propagation from
2` to z, and is characterized by the angle defined positive
from the normal to the binormal given by

uR~z!52
GJ–r

r 3
. ~49!

To make this effect clearer, we can consider two representa-
tive cases, i.e., the angular momentum parallel or orthogonal
to the direction of the beam. In the first case the Rytov angle
is uRi52GJz/r 3. It reaches its maximum values atz5
6R/A2 and becomes null atz50 andz51`. In the second
case the maximum value corresponds toz50, and is given
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by uR(0)52GJn /R2, and from 0,z,` it develops the
same angle but with an opposite sign. Thus, the total rotation
of the plane of polarization between2`,z,` is null.

At first order inl new effects appear related to the mass
and the angular momentum of the source of the gravitational
field. From Eqs.~39! and ~40!, we see that the solution has
components perpendicular to the unperturbed fields, which
have ap/2 phase with respect to these fields. Naming these
components according to

El
25

3iGuEu
v E

2`

z S 2y
J2

r 85
1

J–r 8

r 87
~r 8225y2!1M

xy

r 85D dz8,

~50!

Bl
15

3iGuEu
v E

2`

z F22x
J1

r 85
2

J–r 8

r 87
~r 8225x2!1M

xy

r 85Gdz8,

~51!

we can analyze the physical meaning of these contributions
by writing them as

El
25S11S2 , Bl

15S12S2 , ~52!

where

S15
1

2
~El

11Bl
2!5 i

3GuEu
2 E

2`

z F2
yJ22xJ1

r 85

15
J–r 8

r 87
~x22y2!12M

xy

r 85Gdz8, ~53!

S25
1

2
~El

12Bl
2!

5 i
3GuEu

2 E
2`

z FJ–r 8

r 87
~5z822r 82!22

z8J3

r 85 Gdz8. ~54!

The terms with opposite sign inEl andBl describe a gravi-
tationally induced circular polarization, whereas the equal
sign terms correspond to components that turn the electric
and magnetic fields in opposite directions, and thus break the
orthogonality of the unperturbed fields.

The circular polarization only appears due to the angular
momentum. It has a contribution from the component ofJ
parallel to the direction of propagation of the beam, which
develops peak values of amplitude atz56A3/2R andz50,
and a contribution from the orthogonal component, with
maximum values atz56R/2. Both contributions nullify
whenz→`:

S2~`!50. ~55!

In contrast with the circular polarization, the orthogonal-
ity breaking component is generated by bothJ and M and
survives even forz→`. That is,

S1~`!5
i4GuEu

vR6
@xJ1~x223y2!1yJ2~3x22y2!

1MR2xy#. ~56!

Another interesting feature of this solution is a different
phase shift to orderl for the electric and magnetic fields,
which produces a difference in the phase velocity of both
fields. Using Eq.~41!, the phase velocities for the electric
and magnetic fields are

vE5v01Dv1 , vB5v01Dv2 , ~57!

with

Dv656
3G

v2 S 2
J1y1J2x

r 5
6

1

2

~J3r !• k̂

r 7
~r 225z2!

15xy
J•r

r 7
1

1

2
M

y22x2

r 5 D . ~58!

This effect is analogous to the one that appears for an elec-
tromagnetic wave propagating in an inhomogeneous medium
@5#. In our case the velocities depend on the angular momen-
tum and mass of the gravitational source.

Thel-dependent contributions to the phase have a disper-
sive character, and remain non-null for the outcoming wave.
In fact their value is

Da6~z→`!562
G

vR6
@2J1y~y223x2!12J2x~x223y2!

1R2M ~x22y2!#. ~59!

Thus Eqs.~56! and ~59! clearly show that the asymptotic
outcoming wave is not a plane wave. This is due to the
infinite range of the gravitational potentials. To close this
section we can mention an interesting consequence of this
dispersive behavior: a rainbow effect. The directions of the
outcoming electric and magnetic fields depend onl, as be-
comes clear by computing the gradient of the phases.

VI. SOLUTION IN LOCALLY INERTIAL COORDINATES

In order to unveil the most interesting characteristics of
the solution encountered, we will write it in locally inertial
coordinates. Up to first order inG a general expression for a
tetradt a

m is

t a
m 5S 12f a1 a2 a3

2h11a1 111f 1b 1g

2h21a2 2b 111f 1d

2h31a3 2g 2d 111f

D ,

~60!

where a1, a2, a3, b, g, and d parametrize the Lorentz-
related family of locally inertial coordinates in a given neigh-
borhood in space-time. Ifdxm are the differentials in the
general coordinate system andd x̃a are the corresponding
ones in the locally coordinate system, they are related by the
tetrad such thatdxm5t a

m d x̃a andhab5t a
m gmnt b

n , with hab

the Minkowskian metric (21,1,1,1!. From here the electro-
magnetic tensorFmn ,
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Fmn5S 0 2E1 2E2 2E3

E1 0 B3 2B2

E2 2B3 0 B1

E3 B2 2B1 0

D , ~61!

transforms intoF̃ab in the locally inertial coordinates ac-
cording to

F̃ab~Xl1d x̃l!5t a
m t b

n Fmn~Xl1t «
l d x̃«!, ~62!

whereXl is the point around which we define the neighbor-
hood, where the locally inertial coordinates are given by
Xl1d x̃l. Therefore, up to first order inG the components
of F̃ab are

Ẽ15E11~h32a3!B2 ,

Ẽ25E21bE1 ,

Ẽ35E31gE11~a12h1!B2 ,

B̃15B12bB2 , ~63!

B̃25~112f!B22a3E1 ,

B̃35B31dB21a2E1 .

We can now analyze the structure of the electromagnetic
field in the locally inertial system. From these equations and
Eqs. ~39! and ~40! we can verify that the modulus of both
fields become equal, that is,

uẼu5uB̃u5uEu~12f1h32a3!, ~64!

where the parametera3 expresses the modulus dependence
on boosts in the«̂3 direction.

Considering now the fields in the original frame, the con-
tribution of orderl21 to the phasew of the solution is

w5vF E
z0

z S 11
2GM

r 8
2

2G~JW3rW8!• k̂

r 83 D dz82tG . ~65!

Here we see that the wave propagates in a directionk, given
by the gradient ofw,

k5 «̂12GvE
2`

z S J22Mx

r 83
23

~xJ22yJ1!x

r 85 D dz8

1 «̂22GvE
2`

z S 2J12My

r 83
23

~xJ22yJ1!y

r 85 D dz8

1 «̂3vS 112G
xJ22yJ11Mr 2

r 3 D , ~66!

and that the magnetic field is orthogonal tok,

k•B50, ~67!

whereas the electric field satisfies

k•E5vh1 . ~68!

If we now transform to a locally inertial system, the differ-
ential of the phase becomes

dw5v@~11h32f2a3!dz82~11h32a32f!dt8

1~2a12g!dx81~2a22d!dy8#

12vGE
2`

z S J22Mx

~R21s2!3/2
23

~xJ22yJ1!x

~R21s2!5/2 D dsdx8

12vGE
2`

z S 2J12My

~R21s2!3/2
23

~xJ22yJ1!y

~R21s2!5/2 D dsdy8.

~69!

So up to orderl0, in this new system the wave propagates in
the directionk8 given by

k85k2v@«̂1~a11g!1 «̂2~a21d!1 «̂3~a32f!#, ~70!

with a velocity

v loc5
v~11h32f2a3!

uk8u
5

~11h32f2a3!

A~11h32f2a3!21O~G2!

511O~G2!. ~71!

Here, both the magnetic and the electric fields are orthogonal
to k8:

k8–B85k–B50, ~72!

k8–E85k–E2vh150. ~73!

Therefore, we see that up to order zero inl in the locally
inertial frame the electromagnetic field has the properties ex-
pected for a plane wave. But when we analyze the terms of
orderl novel characteristics appear. The new terms are lin-
ear inG and so are unaffected by the change of coordinates.
In other words, they are the same in the original coordinates
and in the locally inertial ones. Thus, even in the local sys-
tem the presence of a gravitational field is apparent. The
most conspicuous phenomena that these terms generate have
already been discussed at the end of the preceding section.

VII. FINAL REMARKS

In this paper we have studied the effects of a gravitational
field on the propagation of light. For such purposes we have
developed a perturbative approach in powers of the gravita-
tional constantG. Although for the sake of simplicity we
have restricted here the exposition to a first order inG, the
formalism can be extended without difficulty to higher or-
ders. According to our approach the electromagnetic field in
a curved space-time is described by a dominant contribution,
solution of the Maxwell equations in a flat space-time, plus a
metric-dependent perturbation. This last component is also a
solution of the Maxwell equations in a flat space-time, but
now with sources that depend both on the dominant solution
and on the gravitational field. The perturbation can be com-
puted as a power expansion in the wavelength of the electro-
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magnetic field. It can be exactly evaluated for each order in
G. The solution up tonth order inG is given by a polyno-
mial of the same order inl.

At first order in G we not only recover the well-known
results of the geometrical optics, but we also identify new
contributions, at first order inl, which show that the gravi-
tational field induces terms that change the polarization of
the light, as well as anomalous terms that break the orthogo-
nality of the electric and magnetic fields. The first terms are
due to the angular momentum of the source of the gravita-
tional field, whereas the second ones depend both on the
angular momentum and the mass. In the particular case con-
sidered here, i.e., an incoming plane wave with linear polar-
ization, both effects are present in the surroundings of the
rotating mass, but only the second one remains in the
asymptotic outcoming wave. This somehow unexpected be-
havior is possible because the effective sources of the equa-
tions for the perturbations extend on the whole space.

Another consequence is the difference of phases to order
l that the electric and magnetic fields develop. For this rea-
son they acquire phase velocities that are both different in
magnitude and in direction. Although these velocities be-
come asymptotically equal, the phase shifts remain asymp-
totically non-null and different. Thus, the gravitational inter-
action induces a dispersive behavior on the propagation of
the electromagnetic field, which produces effects of the type
of an asymptotic rainbow, the smaller the impact parameter
of the beam, the more noticeable the rainbow. Although very
small, these dispersive phenomena are interesting candidates
for providing additional information about the angular mo-
mentum of the source of the gravitational lensing effect.

To appreciate the magnitude of the asymptotic gravita-
tional effects on the electromagnetic wave, we can consider
some simple configurations. From Eq.~56!, if the unper-
turbed electric or magnetic field has a radial direction, the
outcoming fields describe ellipses with the same ratio be-
tween the minor and the major axes, 4GJn /vR3, which de-
pends only on the component of the angular momentum in
the osculator plane. The distinctive feature of this effect is
that both fields rotate in opposite directions. In particular, for
a black hole with maximum angular momentum we have
GJn /RS

251, with RS the Schwarzschild radius, and thus this
ratio is 4(RS /R)2(1/vR). If the unperturbed fields have any
other directions the contribution of the massM is non-null,
and it acquires its maximum value when they form an angle
of p/4 with the radial direction. IfJ50 and with this orien-
tation for the electromagnetic fields, the ratio between the
axes of the ellipses is 2(RS /R)(1/vR).

The gravitational rainbow can be computed from Eq.~59!.
For a beam with the magnetic field in a radial direction the
contributionkl of orderl to the outcoming wave vector for
the electric field is

kl5
12G

vR4F S MR

12
2JbD «̂11Jn«̂2G . ~74!

The magnetic field has the same contribution but with oppo-
site sign. This difference between both wave vectors is a
manifestation of the inhomogeneity of the gravitational back-
ground.

The remaining effect at first order inl is the induced
circular polarization. It depends only on the angular momen-
tum of the source of the gravitational field and is significant
in the proximity of this source. For example, in the equato-
rial plane we haveuEcircu/uEu5GJt/2R3.

These examples are only given to visualize the order of
magnitude of the different effects, but as is clear from Eqs.
~53!, ~56!, and~59! their spatial structure and values strongly
depend on the orientation of the fields and of the angular
momentum of the source.
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APPENDIX

In the Eqs.~35! and ~36! for E(1) and B(1) we have to
integrate expressions with the general form

I ~r ,t !5E f ~r 8!
eiv@«̂3•~r82r0!1ur2r8u2t#

ur2r 8u
d3r 8, ~A1!

where thef (r ) can be the functionsf, ] if, ] i] jf, hk , ] ihk ,
or ] i] jhk , which are

f52
GM

uxu
, hk5

2GxrJkr

uxu3
,

] if5
GMxi

uxu3
, ] ihk5

2GJki

uxu3
23

2GxrxiJkr

uxu5
,

] i] jf5
GMd i j

uxu3
23

GMxixj

uxu5
,

] i] jhk523
2GxjJki

uxu5
115

2GxrxixjJkr

uxu7
23

2GxiJk j

uxu5

23
2Gxrd i j Jkr

uxu5
. ~A2!

To perform this type of integrals we can introduce spherical
coordinates, such that

r5x«̂11y«̂21z«̂3, ~A3!

r 82r5rsinucosw«̂112rsinusinw«̂1rcosu«̂3 . ~A4!

With this change of variables Eq.~A1! becomes

I ~r ,t !5E eiv@«̂3•~r2r0!2t# f ~r 8!rsinueivr~11cosu!drdudw.

~A5!

The integrand contains an oscillating factor exp@ivr(1
1cosu)]. The surfaces of constant phase determined by this
factor are paraboloids given by the equation
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r5
2nl

~11cosu!
, ~A6!

wherel52p/v.
The characteristic lengths for the functionsf (r 8) are

given by the impact parameterR, the Schwarzschild radius
RS52GM, and the angular-momentum-related length
GJ/R5(RS /R)J/2M , while for the oscillating factor we
have the wavelengthl. We can develop an expansion of
f (r 8) around the axis of the paraboloids that gives an expan-
sion of the solution in terms of powers ofl. To do this we
write

r 85r 82r1r5~rsinucosw1x!«̂11~rsinusinw1y!«̂2

1~rcosu1z!«̂3 , ~A7!

and hence we have

r 825R21~z2r!212rz~cosu11!12rRsinusin~w2b!,
~A8!

whereR[x21y2 and tan(b)[2x/y. For a pointr 8 inside
the nth paraboloid, the following relations are satisfied:

sinu5A12cos2u,A2nl

r S 22
2nl

r D,2Anl

r
,

~A9!

2rRsinusin~w2b!,4rAnl

r
R54ArnlR, ~A10!

2rz~cosu11!,4znl, ~A11!

and so ifl!R, we have

2rz~cosu11!12rRsinusin~w2b!,4~ArnlR1nlz!

!R21~z2r!2, ~A12!

which allows us to perform the expansion

ur 8ub5@R21~z2r!212rz~cosu11!12rRsinusin~w2b!#b/25@R21~z2r!2#b/2F11b
rz~cosu11!1rRsinusin~w2b!

R21~z2r!2

1
b~b22!

2 S rz~cosu11!1rRsinusin~w2b!

R21~z2r!2 D 2

1•••G . ~A13!

Using the expressions given by Eq.~A2! and the expansion
~A13! we can perform analytically all the integrations to the
desired order inl.

In our case the sources of the Maxwell equations for the
perturbations have a very simple dependence inv, of the
form

Geiv~z2z02t !~vA1B! , ~A14!

were A and B are v-independent functions. The Maxwell
equations are linear differential equations, and so if we write
the solution as an expansion in powers ofv,

Geiv~z2z02t !~vS211S01v21S11v22S21••• !,
~A15!

we can easily see thatSn with n.1 vanishes identically; so
the solution up to orderl is the exact one. The general
scheme to perform the integrals can be summarized in the
following simple recipe: Expandur 8ub following Eq. ~A13!,
keep all the terms that contribute up to first order inl, and
then perform the integrations inw and u. The integration
over r can also be performed, but for the sake of simplicity
we sometimes leave it expressed in terms of an integral over
z.

Finally, a comment on the identification of the phases.
The total solution, for the electric field for example, is writ-
ten E5E(0)1E(1), whereE(0) andE(1) are the unperturbed
field and its correction, respectively. If we are analyzing the
component in the direction ofE(0), the contribution ofE(1)

in such a direction has the formE1
(1)5GuEu(a1 ib), with a

andb real, and so the total solutionE1 in the «̂1 direction can
be written as

E15uEueiv@«̂3•~r2r0!2t#~11Ga1 iGb!, ~A16!

which to first order inG can be expressed as

E15uEu~11Ga!eiv@«̂3•~r2r0!1Gb/v2t#. ~A17!

This is the phase assignment in the perturbative results ob-
tained to first order inG.

Taking into account all the above considerations we ob-
tain the solutions given by Eqs.~39! and ~40!, which are
exact inl at first order inG. If we extend the computation to
second order inG, we will also obtain contributions to the
second order inl. In general, the contributions to thenth
order in l ~with n>0) are given by series inG that begin
with the nth order in this constant.
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