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The close-limit method has given approximations in excellent agreement with those of numerical relativity
for collisions of equal mass black holes. We consider here colliding holes with unequal mass, for which
numerical relativity results are not available. We try to ask two questions.~i! Can we get approximate answers
to astrophysical questions~ideal mass ratio for energy production, maximum recoil velocity, etc.!? ~ii ! Can we
better understand the limitations of approximation methods? There is some success in answering the first type
of question, but more with the second, especially in connection with the issue of measures of the intrinsic mass
of the colliding holes, and of the range of validity of the method.@S0556-2821~97!00622-X#

PACS number~s!: 04.30.Db, 04.25.Dm, 04.70.Bw

I. INTRODUCTION AND OVERVIEW

Recently much attention has been given to the problem of
the collision of two black holes. There are two main reasons
for such interest. First, black hole collisions provide one of
the most powerful and interesting sources for possible detec-
tion by gravitational wave observatories@1#. Second, black
hole collisions are being intensively studied numerically by
using supercomputers to evolve Einstein’s equations from
initial data representing two holes@2#.

The enormous difficulty of solving the equations numeri-
cally provides motivation for approximation methods that,
with little effort, can give guidance to what results can be
expected, what cases are interesting for full numerical study,
etc. One method that has proved surprisingly successful in a
range of tests is the close-limit approximation~CLAP!. This
method applies to initial value data representing holes which
are initially close to each other. If the holes are close enough
then the horizon will initially surround both holes, and the
spacetime outside the horizon can be considered to be a
single perturbed hole. Strong nonsphericity inside the initial
horizon cannot affect the evolution of the fields outside, and
hence does not influence the generation of outgoing radia-
tion. The nonspherical perturbations outside the horizon can
be analyzed with the well developed techniques of linear
perturbation theory.

The method, applied to numerically or analytically gener-
ated initial data, was discussed by Abrahams and Price@3#,
and has been applied to~i! simple analytic initial data for the
head-on collision of momentarily stationary black holes@4–
6#, ~ii ! numerically generated initial value data for holes
which are initially moving towards each other@7,8#, ~iii ! ana-
lytic initial value solutions for holes which are initially mov-
ing slowly towards each other@9#, and ~iv! analytic initial
data for holes which have opposite initial angular momentum
and are initially momentarily stationary@10#. Where com-
parisons with full numerical results are available~all of the
applications above, except the last! the results of the CLAP
method are found to be remarkably successful, even when
initial conditions would seem to violate the assumptions un-
derlying the approximations. This success holds the promise
of giving easy approximate answers about black hole colli-
sions.

All applications listed above have involved collisions of
holes with equal masses.~Those are essentially the only
cases for which comparisons have been available with fully
numerical computations.! Here we consider collisions of un-
equal mass holes, though comparisons with numerical results
cannot yet be made. There are two reasons we do this. First,
there are some interesting questions to which it is better to
have a very rough answer, even an uncertain answer~if the
nature of the uncertainty is kept in mind!, than no answer at
all. It is interesting to see whether there are any surprises in
predicted radiation efficiency, in dependence on details of
initial data, etc. One interesting question appliesonly when
the masses are unequal: can gravitational radiation from the
collision contain a significant amount of linear momentum,
so that the hole that forms will recoil with an astrophysically
significant proper velocity?

The second motivation is to look at the range of validity
of CLAP calculations. The ultimate index of validity~short
of full numerical relativity comparisons! is second-order per-
turbation calculations, and work on this technique is well
underway @11,12#. These necessary calculations, however,
are quite difficult~though far easier than full numerical com-
putations! and it is useful to look at whether simple guide-
lines exist. Our approach here is simultaneously to use the
CLAP method to look for astrophysical answers, and to use
the examples to gain deeper understanding of the method.

The nature of the questions being asked justifies avoiding
unnecessary complications and using the simplest initial data
sets applicable. We therefore limit our attention here to non-
spinning holes which start from rest and undergo a head-on
collision. More specifically, we limit our investigation to two
momentarily stationary initial solutions. Both initial geom-
etries are conformally flat, and therefore are completely de-
termined by a conformal factorF4, whereF solves the flat
spacetime Laplace equation@13#. The simplest solution is
that of Brill and Lindquist@14# ~BL! in which F has the
form of the gravitational potential for two Newtonian point
masses. Another solution, that of Misner and Lindquist@15–
17# ~ML ! is more complicated but has the very useful feature
of an easily located minimal area of the Einstein-Rosen
bridges in the initial geometry. It is also the initial geometry
that has been used in almost all numerical relativity studies
of collisions of black holes. For these two sets of initial data
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we look at radiated energy as a function of how close the
initial holes are. To characterize the separation of the holes,
we use in all cases the proper distanceL, along the symmetry
axis, between the apparent horizons of each of the holes.

An important issue that arises is how to characterize the
‘‘bare mass’’ of each of the throats, i.e., how to assign an
intrinsic mass to each of the holes participating in the colli-
sion, a mass unaffected~in some sense! by the presence of
other nearby sources of gravitation. There is a fairly natural
choice of bare mass for the BL initial data, but not for the
ML initial data. We consider three candidates as bare mass
measures in the ML case. One of the more interesting con-
clusions of this work is the importance of the choice of bare
mass, and the unphysical consequences of the wrong choice.

In Sec. II we start by describing the BL and ML solutions
and the choices that can be made for bare mass. We then
describe the CLAP method. CLAP estimates of radiated en-
ergy are presented in Sec. III where it is seen that the choice
of bare mass of one ML hole governs even the qualitative
nature of some answers. In Sec. IV results are given for the
recoil velocity of the final hole formed, due to the emission
of radiation. In the results of Secs. III and IV, the usefulness
of the results depend heavily on the range of validity of the
CLAP. In Sec. V we look at a simple criterion for when
linearized theory should be applicable. We find that the va-
lidity of this criterion, which seems useful in the case of
equal mass holes, does not seem to extend to collisions in
which the ratio of hole masses is very small. Conclusions are
presented in Sec. VI. Details of several calculations are pre-
sented in three appendixes.

II. APPROXIMATION METHOD
AND INITIAL GEOMETRIES

A. Initial value solutions

For simplicity we limit attention to time symmetric initial
data. There is then an initial hypersurface on which the ex-
trinsic curvature is zero so that initial value data for Ein-
stein’s equations consists only of the three geometry of this
hypersurface. Also for simplicity, we limit our consideration
to three geometries that are conformally flat. This simplifi-
cation is neither selected for or against by any strong physi-
cal argument, but it leads to a very convenient mathematical
description, and is therefore used, e.g., in most numerical
relativity work.

We write the conformally flat axisymmetric three metric
in the form

ds25F4~R,u!~dR21R2dV2!, ~1!

wheredV25du21dw2sin2u, andR,u,w are spherical coor-
dinates in the flat conformal space. The Einstein initial value
equations then turn out to require only thatF obey Laplace’s
equation

¹2F50, ~2!

where ¹2 is the Laplacian with respect to the flat metric
dR21R2dV2.

It is necessary to find solutions corresponding to two ini-
tially static black holes. To investigate the possible sensitiv-
ity of radiation to the details of the initial value solution we

consider two different solutions of Eq.~2!. Brill and
Lindquist investigated the solution to Eq.~2! that is most
immediately apparent@14#, the solution with the form of the
Newtonian gravitational potential of two mass points:

F511
a1

uRW 2RW 1u
1

a2

uRW 2RW 2u
. ~3!

Here all the vectors and their norms are defined in the flat
three-dimensional space, withRW being the position of an ar-
bitrary point in such space andRW i is the position of a point in
the flat space representing holei . Though Eq.~3! suggests
two pointlike solutions, there are in fact no physical singu-
larities corresponding to these points. Rather the three geom-
etry near each ‘‘point’’ can be extended, through a throat, out
to an asymptotically flat space~an Einstein-Rosen bridge!.
The complete BL three geometry, then, includes three as-
ymptotically flat regions. One is a region with two throats
connected, the region of ‘‘our universe.’’ The other two re-
gions contain one throat each corresponding to mass 1, and
to mass 2.~These distinctions are meaningful only when the
two throats are well separated in ‘‘our’’ universe; see@14#.!

The BL topology has a useful practical feature. Since hole
1 ~for example! has its own asymptotically flat region we can
infer a ‘‘bare mass’’m1 for hole 1 from the metric at large
distances from the throat. In this way we can compute bare
massesmi for each of the individual holes.@In the limit that
the holes are very far apart, the bare masses are related to the
parametersa i in Eq. ~3! by a i'mi /2, where we use
c5G51 units.# We can also compute the total massM in
‘‘our’’ universe, the Arnowitt-Deser-Misner~ADM ! mass of
the two-hole spacetime.

Another solution to Eq.~2!, corresponding to two throats,
of the form

F511 (
n51

` S an

uRW 2dW nu
1

bn

uRW 2eWnu
D , ~4!

can be constructed by placing the ‘‘masses’’an andbn at the
locationsdW n andeWn in the flat conformal three geometry in a
manner similar to the placement of electrical charges in the
problem of finding the electric potential distribution in the
region outside two charged conducting spheres. With an in-
finite set of image ‘‘masses’’ it is possible to construct a
three geometry with two throats which open into two identi-
cal asymptotically flat regions. The isometry between the
two regions takes the form of a reflection through spheres at
the minimal neck of each of the throats. The details of the
symmetrization procedure are given in Appendix B~see also
Lindquist @17#!.

For our purposes, the disadvantage of ML solutions is that
there is no immediate meaning that can be given to ‘‘bare
mass.’’ We consider three candidates for bare mass in ML
solutions. One candidate is the bare mass suggested by
Lindquist in his study of symmetrized initial value solutions
@17#. The ‘‘Lindquist mass’’ sums the bare masses of all the
images associated with one of the throats~a divergent sum!
then subtracts a Newtonian expression for the binding energy
due to the interaction of those images with each other~an-
other divergent sum!. This definition of bare mass seems not
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to have been used in recent work on the problem. Much
more commonly cited is a rather straightforward measure of
the bare mass that we shall call the ‘‘area mass.’’ One takes
the areaAi of the minimal throat on the initial hypersurface
and computes a bare mass from it as if it were an isolated
Schwarzschild horizon:mi5AAi /16p. A third candidate for
the bare mass is the ‘‘Penrose mass’’@18–20#. This is a
quasilocal definition of mass interior to a two-sphere that
starts with a method, valid in linearized theory, of extracting
mass information from the Weyl tensor. This method is then
formally converted to curved spacetime. The method, cannot
be applied to all spacetimes, but it is always applicable to
axisymmetric cases. Some details of the computation of the
Penrose mass are given in Appendix C.

There are, in principle, other choices of mass. An example
would be the Hawking mass@21#, which depends on the
choice of a closed two-surface. For the BL case there is no
favored choice of such a two-surface, and hence no natural
way to define a Hawking mass. In the ML case, there is a
natural choice, the minimum area throats, but in this case the
Hawking mass agrees with the area mass. We do not, there-
fore, separately consider the Hawking mass. In any case, our
aim here is not to make an exhaustive comparison of all
possible definitions of mass, but rather to demonstrate the
sensitivity of conclusions to the type of mass definition used.
The area mass, Lindquist mass, and Penrose mass serve this
purpose well, and are interesting in that they are based on
very different principles.

Figure 1 illustrates the issue of choice of bare mass in the
ML case with an example in which the ratio of Penrose bare
masses of the two holes is 7:3. For each hole, the ratio of
Lindquist mass to Penrose mass is shown as a function of
separation. For both the heavy and the light holes, the
Lindquist mass decreases relative to the Penrose mass, but
the decrease is more dramatic for the heavy hole. If the state-
ment ‘‘put the same two holes at different separation’’ means
putting holes of fixed Penrose mass at different separations,
then these ‘‘same’’ two holes at small separation have very
different Lindquist masses, and a very different ratio of

Lindquist masses. A similar comparison between Lindquist
mass and area mass tells a very different story. If them1 /m2
ratio of area mass is 7:3 then, to considerable accuracy, the
ratio of Lindquist masses is also 7:3. There is not a strict
equivalence of the two ratios. At very small separation there
is a small deviation in the ratios. More important, the value
of the Lindquist mass and that of the area mass for a given
hole are not the same when separations are small, but even
here the effects are small. This is shown in Fig. 2 for two
equal mass hole. At small distances (L/M less than around
0.5! the Lindquist mass is discernibly larger than the area
mass. By comparison, the difference in Penrose mass and
area mass is 20 times larger. In our energy and recoil esti-
mates in the next two sections, no difference can be seen in
the results depending on which mass ratio is held constant,
the Lindquist mass or the area mass. We shall, therefore,
present only the latter.

In the limit of extreme mass ratio~as well as in the limit
of large separation! the ambiguities of bare mass disappear.
When the limit m2 /m1 of the bare masses becomes very
small, the ‘‘particle’’ limit for m2, physical intuition suggests
that any reasonable definition of bare mass must agree with
the proper mass of a point particle perturbing the spacetime,
and therefore all reasonable definitions of bare mass will
yield the same result. This is illustrated in Fig. 3, which
shows the ratio of the Penrose and Lindquist measures ofm2,
the bare mass of the less massive hole, as the ratio of bare
massesm2 /m1 goes to zero. It is clear that in this limit also
all reasonable measures ofm1, the bare mass of the more
massive hole, will agree with each other and with the ADM
mass of the spacetime. As a check we have computed the
ratio of Penrose to Lindquist values ofm1 as m2 /m1 de-
creases and have verified that the ratio goes to unity~al-
though not as quickly as in Fig. 3!.

B. The close approximation

To apply the CLAP to the momentarily stationary axisym-
metric space we must rewrite Eq.~1! in the form of a

FIG. 1. For two holes with fixed Penrose mass
miP , in the ratiom2P /m1P53/7, the dependence
of the Lindquist massmiL on separation is
shown.
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t' constant slice of a Schwarzschild spacetime. This re-
quires mapping the geometry of~1! onto a set of
Schwarzschild-like coordinatesr ,u,w. We do this by trans-
forming the radial coordinate as ifR were the isotropic radial
coordinate for the Schwarzschild geometry:

R5~Ar 1Ar 22M !2/4, ~5!

whereM is the total mass of the spacetime. This transforma-
tion puts the spatial metric in the form

ds25F4S dr2

122M /r
1r 2dV2D , ~6!

where

F[
F~R,u!

11M /2R
. ~7!

The functionF must satisfy Eq.~2! and will have singulari-
ties at the coordinate locationsRi of ‘‘mass points’’~BL! or
‘‘images’’~ML !. SinceF must approach the Schwarzschild
spatial metricF→112M /R as R→`, we can expandF,
for R.max(Ri), in Legendre polynomialsPl as

F511
2M

R
1 (

l 51

`

g l S M

R D l 11

Pl ~cosu!. ~8!

We can eliminate thel 51 term from Eq.~8! by appropriate
choice of coordinate origin. The expression forF, therefore,
can be put into the form

F511
1

11M /2R(
l 52

`

g l S M

R D l 11

Pl ~cosu!. ~9!

FIG. 2. Difference between Lindquist and
area mass as a function of separation when the
holes are equal. HereM is the total ADM mass of
the spacetime.

FIG. 3. For the bare massm2 of a hole, the
ratio of the Penrose measure of bare mass (m2P)
to the Lindquist measure (m2L) is shown as a
function of the ratio of~Lindquist! bare masses
for two different separationsL/M ~where M is
the total ADM mass of the spacetime!. The result
shows that in the extreme ratio limit different
measures of bare mass agree.
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For an initial value solution representing two black holes,
the coefficientsg l will contain a parameter describing the
separation of the holes. As the separation goes to zero, the
geometry approaches that of at5const slice of the
Schwarzschild geometry, and theg l must therefore all ap-
proach zero. The close approximation consists of treating the
separation of the holes as a perturbation parameter and in Eq.
~9! keeping only the terms lowest order in the separation.
When we take the fourth power ofF the mixing of thePl

gives us, in principle, very complicated mixtures of contri-
butions of differentl for each final multipole ofF4. The
result in practice is much simpler. For both the BL and ML
solutions @in fact for any conformally flat metric~1! for
which Eq. ~5! is used# the g l coefficients increase in the
order of the perturbation asl increases and, as a result, for
the l 5p multipole ofF4 the contribution of lowest pertur-
bative order is due only to the term linear ingp , and to
lowest perturbative order in each multipole the conformal
factor can be written

F4511
4

11M /2R(
l 52

`

g l S M

R D l 11

Pl ~cosu!. ~10!

Equations~5!, ~6!, and~10! describe an initial perturbation of
the Schwarzschild geometry. Following the prescription of
Moncrief @22#, we can use this perturbed initial solution to
give us, for eachl , the initial value of a ‘‘Zerilli function’’
@23# c l . ~We use the normalization of Abrahams and Price
@3#, our c l being theirQl

1 .!
This Zerilli function satisfies a simple wave equation and

from its initial value it is simple to find the time evolved
function c(t,r ). Once this is known we can compute the
gravitational energy radiated by the system of two black
holes from

E

2M
5

1

32p (
l 52

` E dtUdc l

dt U
2 1

2M
. ~11!

It can easily be shown that the Zerilli functions correspond-
ing to two different solutionsA andB of Eq. ~2! differ only
in amplitude, i.e., they are related through

c l
B~r ,t !5

g l
B

g l
A

c l
A~r ,t !. ~12!

This means that if we knowc l (r ,t) for a given solution of
Eq. ~2!, say the Misner equal mass solution, we can compute
the energy~Sec. III! and the recoil velocity~Sec. IV! for any
other conformally flat solution, directly.

III. RADIATED ENERGY

We give here the radiated energy corresponding to a
range of head on collisions. To choose a particular black hole
collision, we must first say whether the initial data is BL or
ML. Second, we must specify a ratioF[m2 /m1 of hole bare
masses, and third we must specifyL the separation of the
holes, i.e., the proper distance between the apparent hori-
zons. Our results are plotted with the radiated energy and the
separationL normalized by the sum of the bare masses, so
that the results can be interpreted as showing the change of
radiation with separation when the ‘‘same’’ two holes are
moved closer together.

For ML holes we consider several different definitions of
bare mass, and in Fig. 4 show the results for the Penrose
definition and the Lindquist~equivalently, the area! meaning
of bare mass. To avoid cluttering the plot the results for
F51 have been omitted. TheseF51 results show little dif-
ference depending on the choice of bare mass definition. The
F51 curves are only slightly different for Penrose and
Lindquist mass, and both are qualitatively similar to the re-
sults forF50.75, with Penrose mass.

The results in Fig. 4 forF50.01 show the expected inde-
pendence of bare mass definition. But they fail to show an-
other important feature that has appeared in a study of the
particle limit @24#. For particles that fall, starting from rest at
distanceL from a Schwarzschild hole, here is an anomalous

FIG. 4. For two ML holes, with bare mass
ratio F[m2 /m1, the radiated energy is shown as
a function of the proper separationL between the
apparent horizons. Results are shown for both the
Penrose bare mass definition and the Lindquist
definition. For extreme mass ratios the choice of
bare mass is irrelevant, but forF50.75 a quali-
tatively different dependence on separation
shows up.
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decrease of radiation with decreasingL. This is found only in
the rangeL55M to 7M , whereM is the total ADM mass of
the spacetime. This unexpected reversal of the general trend
is a manifestation of the role played by the ‘‘curvature po-
tential’’ ~due to strong field effects near the hole! which
peaks at aroundL53M .

For ourF50.01 results the ADM mass should be negli-
gibly different fromm11m2. So the plot of radiated energy
should show this effect in Fig. 4. The fact that it does not can
be ascribed to failure of the close limit. We know in fact that
this is the case from the study of the particle limit@24#. For
extreme mass ratios the close limit will work only forL less
than about 2M , and when it applies the radiation decreases
with decreasingL.

For equal mass holes there is no anomalous region. Radi-
ated energy is a monotonic function of initial separation.
This can be interpreted to mean that when the smaller hole is
not at the particle limit it is ‘‘too large’’ to be situated in the
narrow range of radii for which the anomalous energy-
separation behavior occurs. As we decrease the bare mass
ratio F from unity, there must be some value at which the
anomalous region appears. The results in Fig. 4 are interest-
ing in connection with this. ForF51 it is well established
that close limit results are reasonably accurate for values of
L/M around 4. It would suggest that the anomalous behavior
seen at rather smallL for theF50.75 is not an artifact of the
close limit. The dramatic low-L bump in that curve, of
course, has no counterpart in the corresponding Penrose
curve, which suggests that what we are seeing is an effect
due to an anomalous choice of bare mass.

For BL collisions, as explained in the previous section,
there is a ‘‘favored’’ definition of bare mass. It is straight-
forward in principle and easy in practice to compute a rea-
sonable mass of each hole by going to large distances in the
asymptotically flat region in which that hole is the only
throat. For this definition of bare mass, Fig. 5 shows the
radiated energy as a function ofL, with no anomalous be-
havior. This supports the argument that the low-L bump, for

the LindquistF50.75 curve in Fig. 4 is due to an unphysical
choice of bare mass.

IV. RECOIL VELOCITY

For unequal mass holes colliding along thez axis there
will be momentum contained in the outgoing radiation due to
the interaction of multipoles of differentl . Moncrief @25#
has considered a similar effect in the radiation emitted by a
collapsing star.

The general expression for the rate at whichz momentum,
is radiated is given by

dPz

dt
5

1

16p(
l 52

` A ~ l 21!~ l 13!

~2l 11!~2l 13!

dc l

dt

dc l 11

dt
. ~13!

The mixture of l 52 and 3 is dominant in the sum~13!
when the holes start close but the next mixture becomes
more and more important as they start farther and farther
apart. As a result of radiation emission, the final hole formed
will aquire a velocity ~relative to the asymptotic frame in
which the colliding holes were initially at rest!. This recoil
velocity is

vz52
1

ME dt
dPz

dt
. ~14!

In terms of Eq.~13! the recoil velocity is

vz52
1

16p(
l 52

` A ~ l 21!~ l 13!

~2l 11!~2l 13!
E dc l

dt

dc l 11

dt

1

M
dt.

~15!

Now the Zerilli functions c l (t) and c l 11(t) must be
evolved numerically and the overlap integral in Eq.~15!
must be numerically computed. The functionsc l (t) and
c l 11(t) have a fixed form and the details of the collision
influence only the amplitude. The overlap integral in Eq.~15!
therefore needs to be integrated only once.@See Eq.~12!.#

FIG. 5. For two BL holes, with bare mass
ratio F[m2 /m1, the radiated energy is shown as
a function of the proper separationL between the
apparent horizons.
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This recoil velocity is always negative. Since our conven-
tion is always to put the more massive of the colliding holes
on the positivez axis and the less massive on the negative
side, this means that the final hole moves in the direction
from which the smaller mass approached. Results are shown
in Fig. 6 for the recoil velocity, in the case of BL initial data,
as a function of separation.

At the low values ofL at which the CLAP should be
reliable, the highest values of recoil velocity occur for
F;0.3. The recoil velocity results for ML initial conditions,
shown in Fig. 7 are roughly similar. Mass ratiosF;0.120.3
produce the highest recoil velocities.

The figures both for ML and BL initial conditions include
recoil velocities of many hundreds of km/sec, proper veloci-
ties that would be astrophysically interesting. The large val-
ues ofvz correspond, of course, to large initial separations.
Whether Figs. 6 and or 7 actually contain results of astro-

physical interest depends on whether the CLAP fails at the
separations which predict large recoils. This question then,
gives us a very specific motivation for turning, in the next
section to a consideration of the range of applicability of
CLAP.

V. RANGE OF VALIDITY OF CLAP

There is nothing inherent in the linear perturbation theory
underlying the CLAP to indicate how small the expansion
parametere must be to have answers accurate to, say, 10%.
In other words, we do not immediately know ‘‘how close is
close enough.’’ The onlya priori justifiable way of finding
the range of validity~aside of course from full numerical
solutions! is carry out second-order perturbation theory, and
to see at whate the first and second-order answers differ.
The formalism for higher order computations has been de-

FIG. 6. Recoil velocity for BL holes. The re-
coil velocity of the final hole is shown as a func-
tion of initial separation for several ratios of bare
mass.

FIG. 7. For two ML holes the recoil velocity
of the final hole formed is shown as a function of
initial separation, for several different values of
F, the ratio of Penrose bare masses.
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veloped@11#, and successfully applied to the equal mass case
@12#. Higher order perturbation theory, though much easier
than full numerical solutions, is lengthy and tedious. For this
reason it is useful to look for easy rough indices of validity
of CLAP.

To understand the importance of an index of validity one
can look at the application of CLAP to the collision of equal
mass ML holes@4,5#. Here a comparison can be made with
the results of full nonlinear numerical analysis. Both meth-
ods predict an increase of radiation with increasing initial
separation. The computed energies agree reasonably well
~within a factor of;2) for initial separations out to around
L/M;4. The energy for infall from extremely large dis-
tances is larger only by a factor;223. It may be that these
features are generally true: the magnitudes of radiation quan-
tities at the limit of CLAP validity may be within better than
an order of magnitude agreement with the large separation
limits. In that case we can make good estimates for the large

separation case by taking the values at the CLAP limit.
An easy index for this limit has been suggested by Suen

@26#. One can take the nonlinear initial data, extract pertur-
bation quantities and compute Moncrief’s two even parity
gauge-invariant functionsq1 andq2. For linearized data the
linearized Hamiltonian constraint givesq250, so the mag-
nitude ofq2 is an indication of ‘‘how nonlinear’’ the initial
data are, and therefore, presumably, how accurate linearized
computations are for the evolution. In Figs. 8 and 9, we plot
the value ofq2 /q1 as a function of radius. To make this
nonlinearity index more plausible we have modified it in two
ways. The factor of (r /M22) corrects for the divergence of
q2 at the horizon. If the mass ratiom2 /m2 becomes very
small, violations of sphericity must scale asm2. We would
then find that violations of nonlinearity were very small re-
gardless how far apart the holes start, and regardless how
badly the CLAP fails. To take into account the scaling of
nonlinearities asm2, we place a factorF in the denominator

FIG. 8. The linearized constraint violation for
two equal mass ML holes,F51 according with
Penrose, is shown for several values of initial
separation. Here r * is the coordinate
r 12M ln(r/2M21) for the Schwarzschild geom-
etry.

FIG. 9. The linearized constraint violation for
ML holes with a ratioF50.1 of the Penrose
masses.
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of the nonlinearity index. In the two figures we normalize
separation with the ADM massM , rather than with bare
masses. Since the curves refer to a fixed set of masses, the
ratio of M to m11m2 is fixed.

The first figure shows the result for equal masses and ML
initial geometry~see also@3#!. In this case we know, from
numerical relativity results, that the CLAP fails at around
L/M;324. The results in Fig. 8 show a dramatic increase
in the Hamiltonian violation asL/M increases beyond;2
and this coincides, approximately, to the value ofL/M for
which CLAP starts to fail.

In Fig. 9 we show the equivalent results for ML holes
with a ratio of Penrose massF50.1; in the previous section
we saw that ratios roughly around this value maximize the
recoil velocity. The results in this figure suggest that at
L/M50.83, CLAP must fail badly. We know, from the par-
ticle limit study @24# that CLAP estimates are quite accurate
~within 20%! up to aroundL/M;1.5 This implies that the
CLAP method can work well even when there is significant
‘‘linearity violation’’ in the initial data. It also implies, un-
fortunately, that there may be no easy reliable way to esti-
mate the validity of CLAP calculations.

Let us now tentatively accept, from the particle limit re-
sults that forF50.1 the CLAP method is valid out to around
L/M;1, and that the energy and linear momentum at this
limit are, to order of magnitude, as large as they would be for
initially infinite separation~as in the case of equal mass
holes!. The plots in Figs. 6 and 7 then tell us that recoil
velocities will always be well short of the several hundred
km/sec values that would be astrophysically interesting.

VI. CONCLUSIONS

The application of the CLAP method to collisions of un-
equal mass holes has provided one very tentative conclusion:
The linear momentum generated in the collisions will be far
too small to produce astrophysically interesting recoil veloc-
ity of the final hole.

The study has been much more successful in raising ques-
tions and in uncovering difficulties. The most important dif-
ficulty is the choice of the bare mass of the holes participat-
ing in a collision. It should be understood that this is not an
issue specific to CLAP estimates. Rather, CLAP estimates
were used to probe it. The general problem is how do we
best characterize an individual hole when it is interacting
strongly with another gravitational source? And this issue is
part of the broader question, how do we set up initial data to
represent a black hole configuration?

Astrophysical models, or Newtonian physics applied to
the early dynamics, can give us an initial configuration in
terms of simple physical parameters~mass of the holes, sepa-
ration, . . . ). To turn this into appropriate initial data for nu-
merical relativity we must know the correct general relativ-
istic interpretation of the classical picture. This will be of
crucial importance to the use of numerical relativity to study
three dimensional black hole collisions. Codes to evolve
black holes tend to be unstable. It is therefore important to
apply the codes ‘‘at the last possible moment,’’ i.e., only to
follow the last orbit or last few orbits of black hole coales-
cence. It will be necessary then for those codes to begin with
initial data for holes which are already interacting fairly

strongly and it is in just this case that there is the most
ambiguity in translating the Newtonian concept of the mass
of a hole, into a parameter of the relativistic initial data.

We have considered three measures of bare mass. The
‘‘area mass,’’ and the ‘‘Lindquist mass’’ are well defined
only for ML data, for which there are symmetric Einstein-
Rosen bridges. The ‘‘Penrose’’ mass measure~though not
generally applicable! can be computed for either ML or BL
initial data ~and in the latter case agrees with the obvious
choice of bare mass in the asymptotically flat region of a
throat!. We have found very mixed messages about the
physical meaningfulness of the various mass measures when
the holes are initially close. One somewhat surprising mes-
sage is that the area mass and the Lindquist mass of each
throat are numerically quite close. They are even closer if we
make a more subtle comparison: the ratio of area/Lindquist
masses of two holes, and the ratio of Penrose masses. This
agreement is not a manifestation of some general necessity
of all mass measures to agree. The Penrose mass and the
area/Lindquist mass are markedly different for close separa-
tions.

The agreement of area mass and Lindquist mass is unex-
pected, because they are based on such different criteria. The
area mass connects mass to the area of the minimum section
of the Einstein-Rosen bridge, just as if it were an isolated
Schwarzschild hole. It takes no direct account of the pres-
ence of a second throat. The Lindquist mass, by very sharp
contrast, uses asymptotic masses of ‘‘images’’ used to form a
single hole and subtracts an expression for binding energy
due to gravitational interaction of the images. The binding
energy is computed by Newtonian physics applied in the
conformally flat space underlying the initial data.~Both the
sum of asymptotic masses and the binding energy are diver-
gent, but the sum is not.! It is often the case that when two
very different ways of measuring a physical quantity agree it
is taken as good evidence that the measurement is valid. This
would suggest that we take seriously the area/Lindquist bare
mass, perhaps for a wider class of problems. But the strange
behavior seen in Fig. 4 for mass ratioF50.75 suggests even
more strongly that this bare mass measure can be misleading.
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APPENDIX A: THE BRILL-LINDQUIST SOLUTION
FOR TWO BLACK HOLES

In this appendix we evaluate the coefficientsg l in the
expansion~8! of the Brill-Lindquist solution~3!.

WhenuRW u.uRW 1u anduRW u.uRW 2u the expansion of Eq.~3! in
Legendre polynomials gives

g l 5F S R1

M D l a1

M
1S R2

M D l a2

M G . ~A1!
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We can completely characterize the two holes by two param-
eters in the flat space: the ‘‘distance’’z05uRW 22RW 1u and the
‘‘mass ratio’’ C5a2 /a1. Choosing the origin of coordinates
in this space at the ficticious center of mass, we can rewrite
g l as

g l 5
a1

M S z0

M D l 1

~11C! l
@Cl1~21! lC#, ~A2!

where we chose the convention that hole 1 is on the positive
z axis, hole 2 on the negative side, and 0,C<1. Since the
total mass of the spacetime at the moment of time symmetry
is

M52~a11a2!, ~A3!

i.e.,

a1

M
5

1

2~11C!
, ~A4!

we obtain

g l 5S z0

M D l 1

2~11C! l 11
@Cl1~21! lC#. ~A5!

The two parametersz0 andC do not have a direct physical
meaning. We therefore introduce the ratio of the bare masses
of each black holeF5m2 /m1 and the separation between
the apparent horizonsL measured along the axis of symme-
try and we expressz0 andC ~and henceg l) in terms of them.

If we choose, for simplicity, the origin of coordinates to
be at singularity 1, thenL, the proper distance between ap-
parent horizons is

L5E
z1

z2F11
1

2~11C!S 1

z
1

C

z02zD G
2

dz. ~A6!

Here z1 and z2 are thez-axis intersections of the apparent
horizons surrounding holes 1 and 2, respectively. To find
z1 ,z2 we numerically integrated the system of ODE’s that
determine all the extremal two dimensional surfaces of the
BL solution ~see@28# for details!, and we searched along the
segment of thez axis between the positions of the two holes
~i.e., betweenz50 andz5z0) for the critical valuesz1 and
z2 at which the extremal surfaces are closed. The bare
masses of hole 1 and hole 2 are@14#

m152a1S 11
a2

z0
D , ~A7!

m252a2S 11
a1

z0
D , ~A8!

and hence

F5
m2

m1
5

11@1/2~11C!#~M /z0!

11@C/2~11C!#~M /z0!
C. ~A9!

Solving for C in terms ofF andz0 we obtain

C5
~F21!~21M /z0!1A~12F !2~21M /z0!2116F

4
.

~A10!

Typically to characterize a BL solution, we choose anF and
a set ofz0 values. Then from Eq.~A10! we obtain the cor-
responding set ofC values and from Eq.~A6! the L value
corresponding to each pair (C,z0).

APPENDIX B: THE MISNER-LINDQUIST SOLUTION
FOR TWO BLACK HOLES

In this appendix we present the ML solution and some
additional details relevant to the CLAP of this solution. We
will follow closely Lindquist @17# who derived such a solu-
tion in implicit form. Our notation is also the same as his
with minor changes.

1. The solution

The conformal factor can be written in the explicit form
~4!:

F511 (
n51

` S an

uxW2dW nu
1

bn

uxW2eWnu
D , ~B1!

wheredW 1 is the position of sphere 1, of radiusa andeW1 the
position of sphere 2, of radiusb, relative to a given origin in
the flat space~the spheres in the flat space correspond to the
throats in the three geometry! anddW n are the positions of the
image poles ofdW 1, eWn are the positions of the image poles of
eW1 with an and bn being the corresponding weights. These
coefficients obey the following recursion relations.

If n is even,

dn5e12
b2

e11dn21
,

an5
b

e11dn21
an21 ,

en5d12
a2

d11en21
,

bn5
a

d11en21
bn21 .

If n is odd (n>3),

dn5d12
a2

d11dn21
,

a15a,

an5
a

d11dn21
an21 ,

en5e12
b2

e11en21
,
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b15b,

bn5
b

e11en21
bn21 ,

whose solution is~see, for example, Smythe@27#! the follow-
ing.

If n is even,

dn5e12cS 12
basinh~n12!m01a2sinhnm0

c2sinhnm0
D ,

~B2a!

an5
absinh2m0

csinhnm0
, ~B2b!

en5d12cS 12
basinh~n12!m01b2sinhnm0

c2sinhnm0
D ,

~B2c!

bn5
absinh2m0

csinhnm0
. ~B2d!

If n is odd,

dn5d12cS 12
sinh~n11!m0

sinh~n11!m01
a

b
sinh~n21!m0

D ,

~B3a!

an5
absinh2m0

bsinh~n11!m01asinh~n21!m0
, ~B3b!

en5e12cS 12
sinh~n11!m0

sinh~n11!m01
b

a
sinh~n21!m0

D ,

~B3c!

bn5
absinh2m0

asinh~n11!m01bsinh~n21!m0
, ~B3d!

wherec is the distance~in the flat space! between the centers
of the two spheres

c5d11e1 , ~B4!

andm0 is given by

cosh2m05
c22a22b2

2ab
. ~B5!

2. The choice of parameters

In the background three-dimensional Euclidean space
there are two natural dimensionless parameters: the ratio
C5b/a of the radiia andb of the spheres 1 and 2, and the
ratio of the distance between the two throats~i.e., the dis-
tance between the centers of the spheresc5d11e1) to the
radius of one of the throats, say,a: D5c/a. We will always
restrict attention to the cases 0,C<1, i.e., hole 1 on the

positivez axis is greater or equal to hole 2 on the negativez
axis. We must also haveD.11C and, from Eq.~B1!,

m05
1

2
cosh21FD2212C2

2C G . ~B6!

These two parameters, as withC andz0 /M in the BL solu-
tion, completely characterize the Misner-Lindquist solution.
As in the BL solution, however, they do not have a direct
physical meaning and we must look to other way of param-
etrizing the ML solution. One parameter which can be de-
fined in a natural way in the ML solution, the distance be-
tween the two holes defined by the length of the geodesic
which threads through their corresponding Einstein-Rosen
bridgesL is discussed in the first part of this section. Another
physical parameter is the ratio between the ‘‘bare’’ masses of
each ML holeF5m2 /m1. As discussed above, we lack a
unique, well defined, notion of bare mass of each hole. The
Lindquist masses presented on the second part are just a
possibility. Once we have a prescription that gives the
masses we can parametrize the ML solution either by F and
L/M or by F andL/(m11m2).

Due to the difficulty of obtainingC andD as functions of
these physical parameters, we will instead derive all the
quantities in terms ofC andD. As we will see the restriction
D.11C, equivalent tom0.0, is required in order to obtain
convergence of the different series which appear in the next
sections.

a. Invariant distance of separation

Instead of using the distance between the throats~i.e., the
parameterD defined above! as measured in the Euclidean
space, it makes more sense physically to use the invariant
separation distance between the two holes defined as the
length of the shortest closed path which threads through their
correspondingE-R bridges. Such a curve is a geodesic of the
initial slice. To evaluate its length it is convenient to work in
bispherical coordinates instead of Cartesian ones.

In these coordinates the metric of the initial surface is

ds25F4S f

coshm2cosh D 2

@dm21dh21sin2hdw2#.

~B7!

We introduce

a5 f cschm1 , ~B8a!

d15 f cothm1 , ~B8b!

b5 f cschm2 , ~B8c!

e15 f cothm2 , ~B8d!

where

m11m252m0 , ~B9!

m25sinh21
sinh2m0

D
, ~B10!

f 5bsinhm2 . ~B11!
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Substituting Eq.~B8! in Eqs. ~B2! and ~B3! we obtain a
convenient form for the coefficients ofF in ~B1!. @Compare
with Eq. ~4.7! in Lindquist@17# when the two black holes are
equal.#

If n is even,

an5bn5 f cschnm0 , ~B12a!

dn5en5 f cothnm0 . ~B12b!

If n is odd,

an5 f csch@~n11!m02m2#, ~B13a!

bn5 f csch@~n21!m01m2#, ~B13b!

dn5 f coth@~n11!m02m2#, ~B13c!

en5 f coth@~n21!m01m2#, ~B13d!

and the conformal factor becomes

F5 (
n52`

` F 1

Acosh~m14nm0!2cosh

1
1

Acosh@m14nm012m2#2cosh
G ~coshm2cosh!1/2

~B14!

which converges if and only ifm0.0.
We note that this parametrization implies a specific choice

of origin in the Euclidean space, however, the geodesic dis-
tance between the two throats is the same independent of the
choice of origin. It is thus just a matter of convenience. The
equations of the throatsx21y21(z2d1)25a2 and
x21y21(z1e1)25b2 become m5m1 and m52m2, re-
spectively.

The geodesic of interest isw50, h5p. Therefore the
distance of separation between the holes is

L5E
2m2

m1 Agmm~m,p!dm5 f E
2m2

m1
F2~m,p!

1

coshm11
dm

~B15!

or, explicitly,

L52 f H 11
m2

sinh~m2!
1 (

n51

` F 4nm0

sinh~2nm0!

1
2nm02m2

sinh~2nm02m2!
1

2nm01m2

sinh~2nm01m2!G J . ~B16!

Again this series converges if and only ifm0.0.

b. The Lindquist mass

The bare masses of the holes, according to Lindquist@17#,
are

m152(
n51

` Fa2n211b2n1 (
m51

`
a2n21a2m

udW 2n212dW 2mu

1
a2n21b2m21

udW 2n212eW2m21u
1

b2na2m

ueW2n2dW 2mu
1

b2nb2m21

ueW2n2eW2m21u
G ,

~B17!

m252(
n51

` Fa2n1b2n211 (
m51

`
a2na2m21

udW 2n2dW 2m21u
1

a2nb2m

udW 2n2eW2mu

1
b2n21a2m21

ueW2n212dW 2m21u
1

b2n21b2m

ueW2n212eW2mu
G , ~B18!

which using the coefficients in Eqs.~B12! and~B13! become

m152 f (
n51

`

nH 2

sinh2nm0
1

1

sinh~2nm02m2!

1
1

sinh~2nm01m2!J , ~B19!

m252 f (
n51

`

nH 2

sinh2nm0
1

1

sinh@2~n11!m02m2#

1
1

sinh@2~n21!m01m2#J . ~B20!

Both series converge if and only ifm0.0.

3. The choice of origin

In order to determine the energy and the recoil velocity
we need to choose the origin in such a way that the dipole
term in Eq. ~8! vanishes. This requires that the origin be
located at the ‘‘center of mass’’~c.m.! of the ‘‘masses’’
an,bn ,

(
n51

`

andW nc.m.1bneWnc.m.50. ~B21!

~The an andbn do not depend on the choice of origin.! One
systematic way of determining thedW nc.m.,eWnc.m. is the follow-
ing.

We choose an arbitrary origin, for example the one for
which bispherical coordinates can be introduced and pick the
correspondingdn anden in Eqs.~B12! and ~B13!.

We next find the center-of-mass position using

zc.m.5
(n512a2nd2n1a2n21d2n211b2ne2n2b2n21e2n21

(n51an1bn
.

~B22!

Finally we determine the position of a given image rela-
tively to the CM, using the formula

zW ic.m.5zW i2zWc.m. ~B23!

or in scalar form

d2nc.m.52d2n2zc.m., ~B24a!

e2n11c.m.52e2n112zc.m., ~B24b!
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e2nc.m.5e2n2zc.m., ~B24c!

d2n11c.m.5d2n112zc.m.. ~B24d!

4. The g l coefficients

Comparing Eq.~4! with Eq. ~8!, we obtain the coefficients
g l

g l 5 (
n51

` Fan

M S dnc.m.

M D l

1
bn

M S enc.m.

M D l G . ~B25!

5. The mass of the system

To determine theg l above we need to know a dimension-
less parameter, say the radius of sphere 2,b, per unit of
mass. This can easily be done by expressing the mass in
terms of the coefficients in the conformal factor. The ADM
mass of the spacetime at the moment of time symmetry is the
coefficient of 1/r in an expansion ofds2 in inverse powers of
r . The result is

M52(
n51

an1bn . ~B26!

If the explicit expressions in Eqs.~B2! and ~B3! are used,
this becomes

M52 f (
n51

` H 2

sinh2nm0
1

1

sinh~2nm02m2!

1
1

sinh@2~n21!m01m2#J ~B27!

from which we can expressb in terms ofC andD. We note
that once more the series converges if and only ifm0.0.

APPENDIX C: THE PENROSE QUASILOCAL MASS
OF ONE ML BLACK HOLE

In Penrose’s approach a complex quantityAab , the
momentum-angular momentum twistor of the source inside a
two-surfaceS ~with topology S2! is defined and the total
mass threading throughS is @18#

mP
2 52

1

2
AabĀab. ~C1!

Certain problems with this definition remain. In order to
evaluate this mass we need a Hermitian ‘‘norm’’ defined for
the surfaceS as a whole. This norm can only be defined
unambiguously ifS can be embedded in some conformally
flat spacetime in such a way that both its intrinsic geometry
~induced metric! and the quantities characterizing its extrin-
sic curvature are unaltered from their values whenS is em-
bedded in the true spacetime. However, this is not a diffi-
culty for the ML solution~and BL solution!, since any time
symmetricconformally flathypersurface can be embedded in
a conformally flat four-space as a surface of constantt with
the same intrinsic and extrinsic geometries and hence also all
two-surfaces lying on this hypersurface.

In fact Tod @19# has evaluated the Penrose quasilocal
mass associated with a two-surfaceS obeying the restriction
above, including the time symmetric case. He showed that in
the BL case, the Penrose mass of each hole coincides with
the ADM mass and that for both BL and ML solutions the
total Penrose mass of the spacetime at the instant of time
symmetry is the same as the total ADM mass. He also de-
rived the mass of each ML hole, when the masses are equal.

In this appendix we use Tod’s results to derive the Pen-
rose mass of each ML black hole when their masses are
unequal. We will use a signature (1222).

Let t denote the unit timelike vector normal to the time
symmetric 3-surfaceS. The Penrose mass ‘‘enclosed’’ by
the two surfaceS lying in S with normaln is

mP
2 5PaP̄a2

1

2
l̄ ABmAB2

1

2
lA8B8m̄A8B8, ~C2!

which we can rewrite in terms of spinors as~see Tod@19#!

mP
2 522tA8~BPA)

A8 tC8~BP̄C8
A)

1Pbtb~Pbtb!1 l̄ ABtB
A8tA8

C mAC

1lA8B8tB8
A tA

C8m̄A8B8, ~C3!

where

mABtA8
B

5
2 i

2pE $2~nW •¹F!¹F2~¹F!2nW %dS, ~C4!

taPa5
1

2pE $2FnW •¹F22~nW •¹F!~RW •¹F!

1~¹F!2~nW •RW !%dS, ~C5!

tA8~BPA)
A85

1

2pE $F~¹F3nW !1~¹F!2nW 3RW 22~¹F•nW !

3~¹F3RW !%dS, ~C6!

tB8
A lA8B85

i

2pE H nW S 1

2
F21F~RW •¹F!1

1

2
R2~¹F!2D

1RW @2~nW •¹F!~RW •¹F!2~nW •RW !~¹F!2

1FnW •¹F#2¹F@F~nW •RW !1R2~nW •¹F!#J dS

~C7!

with all expressions on the right-hand side written in terms
of a three vector notation on flat three-space. To evaluate the
integrals we transform them to integrals over a volume
spanned byS:

mABtA8
B

52
i

pE ¹F¹2Fd3x, ~C8!

taPa52
1

2pE ~F12RW •¹F!¹2Fd3x, ~C9!

tA8~BPA)
A85

1

pE ~RW 3¹F!¹2Fd3x, ~C10!
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tB8
A lA8B85

i

2pE @2RW •¹FRW 1FRW 2R2¹F#¹2Fd3x.

~C11!

In the ML solution the conformal factor~4! leads to

¹F5 (
n51

`

an

dW n2RW

uRW 2dW nu3
1bn

eWn2RW

uRW 2eWnu3
~C12!

and

¹2F524pF (
n51

`

and~RW 2dW n!1 (
n51

`

bnd~RW 2eWn!G .

~C13!

In order to evaluate the Penrose mass of the hole 1, we
choose the two-surface to be the sphere with center atRW 5dW 1
~the throat of radiusa). Remembering that all the images
located atRW 5dW 2n21 and RW 5eW2n lie inside that sphere we
obtain

~mABtA8
B

!154i(
i 51

`

(
n51

`

a2i 21S a2n

dW 2n2dW 2i 21

udW 2n2dW 2i 21u3

1b2n21

eW2n212dW 2i 21

ueW2n212dW 2i 21u3D
14i(

i 51

`

(
n51

`

b2iS b2n21

eW2n212eW2i

ueW2n212eW2i u3

1a2n

dW 2n2eW2i

udW 2n2eW2i u3
D ,

~ taPa!152(
i 51

`

a2i 211b2i

12(
i 51

`

(
n51

`

a2i 21Fa2n

d2n
2 2d2i 21

2

udW 2i 212dW 2nu3

1b2n21

e2n21
2 2d2i 21

2

udW 2i 212eW2n21u3G
12(

i 51

`

(
n51

`

b2iFb2n21

e2n21
2 2e2i

2

ueW2i2eW2n21u3

1a2n

d2n
2 2e2i

2

ueW2i2dW 2nu3G ,

@ tA8~BPA)
A8

1#50,

since all images lie along thez axis, and

~ tB8
A lA8B8!1522i(

i 51

`

a2i 21dW 2i 211b2ieW2i

22i(
i 51

`

(
n51

`

a2i 21Fa2n

d2n
2 dW 2i 212d2i 21

2 dW 2n

udW 2i 212dW 2nu3

1b2n21

e2n21
2 dW 2i 212d2i 21

2 eW2n21

udW 2i 212eW2n21u3 G
22i(

i 51

`

(
n51

`

b2iFb2n21

e2n21
2 eW2i2e2i

2 eW2n21

ueW2i2eW2n21u3

1a2n

d2n
2 eW2i2e2i

2 dW 2n

ueW2i2dW 2nu3 G
and the Penrose quasilocal mass of black hole 1 will be

m1P
2 5@~Pata!1#212~ l̄ ABtB

A8!1~ tA8
C mAC!1 . ~C14!

Similarly if we take for volume of integration the sphere of
radiusb we get

~mABtA8
B

!252~mABtA8
B

!1 ,

~ taPa!252(
i 51

`

a2i1b2i 21

22(
i 51

`

(
n51

`

a2i 21Fa2n

d2n
2 2d2i 21

2

udW 2i 212dW 2nu3

1b2n21

e2n21
2 2d2i 21

2

udW 2i 212eW2n21u3G
22(

i 51

`

(
n51

`

b2iFb2n21

e2n21
2 2e2i

2

ueW2i2eW2n21u3

1a2n

d2n
2 2e2i

2

ueW2i2dW 2nu3G ,

@ tA8~BPA)
A8

2#50,

~ tB8
A lA8B8!2522i(

i 51

`

a2idW 2i1b2i 21eW2i 21

12i(
i 51

`

(
n51

`

a2i 21Fa2n

d2n
2 dW 2i 212d2i 21

2 dW 2n

udW 2i 212dW 2nu3

1b2n21

e2n21
2 dW 2i 212d2i 21

2 eW2n21

udW 2i 212eW2n21u3 G
12i(

i 51

`

(
n51

`

b2iFb2n21

e2n21
2 eW2i2e2i

2 eW2n21

ueW2i2eW2n21u3

1a2n

d2n
2 eW2i2e2i

2 dW 2n

ueW2i2dW 2nu3 G ,
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and the corresponding Penrose mass will be

m2P
2 5@~Pata!2#212~ l̄ ABtB

A8!2~ tA8
C mAC!2 . ~C15!

To compute the total mass at the instant of time symmetry
we choose for surface of integration a two-sphere surround-
ing both throats. Then each term above add up and we get

~mABtA8
B

!T5~mABtA8
B

!11~mABtA8
B

!250,

~ taPa!T5~ taPa!11~ taPa!252(
i 51

`

ai1bi ,

@ tA8~BPA)
A8

T#5@ tA8~BPA)
A8

1#1@ tA8~BPA)
A8#250

and

~ tB8
A lA8B8!T522i(

i 51

`

~aidW i1bieW i !,

and hence

M52(
i 51

`

ai1bi , ~C16!

which coincides with the ADM mass@Appendix B, expres-
sion~B26!#. As expected, this mass is not equal to the sum of
the two individual masses. The difference is the binding en-
ergy

EB5M2m1P2m2P . ~C17!

In the special case in which the holes have equal mass, we
obtain

~ taPa!15~ taPa!25 1
2 M , ~C18!

~mABtA8
B

!152~mABtA8
B

!252 i I

524i (
n51

`

(
m51

`
sinhnm0sinhmm0

sinh2~n1m!m0

, ~C19!

~ tB8
A lA8B8!152~ tB8

A lA8B8!252 iJ

522ia2sinhm0S (
n51

`
coshnm0

sinh2nm0

1 (
n51

`

(
m51

`
coshnm0coshmm0

sinh2~m1n!m0
D ,

giving

m1P
2 5m2P

2 5 1
4 M212IJ, ~C20!

a result obtained by Tod@19#.
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