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Head-on collisions of unequal mass black holes: Close-limit predictions
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The close-limit method has given approximations in excellent agreement with those of numerical relativity
for collisions of equal mass black holes. We consider here colliding holes with unequal mass, for which
numerical relativity results are not available. We try to ask two questionSan we get approximate answers
to astrophysical questiorfigleal mass ratio for energy production, maximum recoil velocity)®{d) Can we
better understand the limitations of approximation methods? There is some success in answering the first type
of question, but more with the second, especially in connection with the issue of measures of the intrinsic mass
of the colliding holes, and of the range of validity of the methi@0556-282(197)00622-X]

PACS numbgs): 04.30.Db, 04.25.Dm, 04.70.Bw

[. INTRODUCTION AND OVERVIEW All applications listed above have involved collisions of
holes with equal masse$Those are essentially the only
Recently much attention has been given to the problem ofases for which comparisons have been available with fully
the collision of two black holes. There are two main reasonsiumerical computationsHere we consider collisions of un-
for such interest. First, black hole collisions provide one ofequal mass holes, though comparisons with numerical results
the most powerful and interesting sources for possible detesannot yet be made. There are two reasons we do this. First,
tion by gravitational wave observatorig¢s]. Second, black there are some interesting questions to which it is better to
hole collisions are being intensively studied numerically byhave a very rough answer, even an uncertain angifvére
using supercomputers to evolve Einstein’s equations fronmature of the uncertainty is kept in mindhan no answer at
initial data representing two hol¢g]. all. It is interesting to see whether there are any surprises in
The enormous difficulty of solving the equations numeri-predicted radiation efficiency, in dependence on details of
cally provides motivation for approximation methods that,initial data, etc. One interesting question applesy when
with little effort, can give guidance to what results can bethe masses are unequal: can gravitational radiation from the
expected, what cases are interesting for full numerical studycollision contain a significant amount of linear momentum,
etc. One method that has proved surprisingly successful in g0 that the hole that forms will recoil with an astrophysically
range of tests is the close-limit approximati€@LAP). This  significant proper velocity?
method applies to initial value data representing holes which The second motivation is to look at the range of validity
are initially close to each other. If the holes are close enouglef CLAP calculations. The ultimate index of validifghort
then the horizon will initially surround both holes, and the of full numerical relativity comparisonss second-order per-
spacetime outside the horizon can be considered to be tarbation calculations, and work on this technique is well
single perturbed hole. Strong nonsphericity inside the initiaunderway([11,12. These necessary calculations, however,
horizon cannot affect the evolution of the fields outside, andare quite difficult(though far easier than full numerical com-
hence does not influence the generation of outgoing radigsutations and it is useful to look at whether simple guide-
tion. The nonspherical perturbations outside the horizon calines exist. Our approach here is simultaneously to use the
be analyzed with the well developed techniques of linealCLAP method to look for astrophysical answers, and to use
perturbation theory. the examples to gain deeper understanding of the method.
The method, applied to numerically or analytically gener- The nature of the questions being asked justifies avoiding
ated initial data, was discussed by Abrahams and PBfe unnecessary complications and using the simplest initial data
and has been applied (D simple analytic initial data for the sets applicable. We therefore limit our attention here to non-
head-on collision of momentarily stationary black hdlés  spinning holes which start from rest and undergo a head-on
6], (ii) numerically generated initial value data for holes collision. More specifically, we limit our investigation to two
which are initially moving towards each otHér,8], (iii) ana- momentarily stationary initial solutions. Both initial geom-
lytic initial value solutions for holes which are initially mov- etries are conformally flat, and therefore are completely de-
ing slowly towards each othd®], and (iv) analytic initial  termined by a conformal factab®, where® solves the flat
data for holes which have opposite initial angular momentunspacetime Laplace equatidd3]. The simplest solution is
and are initially momentarily stationafyl0]. Where com- that of Brill and Lindquist[14] (BL) in which ® has the
parisons with full numerical results are availalgél of the  form of the gravitational potential for two Newtonian point
applications above, except the atite results of the CLAP masses. Another solution, that of Misner and Lindq[A&—
method are found to be remarkably successful, even wheh7] (ML) is more complicated but has the very useful feature
initial conditions would seem to violate the assumptions un-of an easily located minimal area of the Einstein-Rosen
derlying the approximations. This success holds the promisbridges in the initial geometry. It is also the initial geometry
of giving easy approximate answers about black hole collithat has been used in almost all numerical relativity studies
sions. of collisions of black holes. For these two sets of initial data
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we look at radiated energy as a function of how close theonsider two different solutions of Eq(2). Brill and
initial holes are. To characterize the separation of the holeg,indquist investigated the solution to E() that is most
we use in all cases the proper distah¢ealong the symmetry immediately apparerjtl4], the solution with the form of the
axis, between the apparent horizons of each of the holes. Newtonian gravitational potential of two mass points:
An important issue that arises is how to characterize the

“bare mass” of each of the throats, i.e., how to assign an ay as
intrinsic mass to each of the holes participating in the colli- =1+ R_R + B_Ri
sion, a mass unaffectdéth some sengeby the presence of | 1l | 2

other nearby sources of gravitation. There is a fairly natura|_|ere all the vectors and their norms are defined in the flat

choice of bare mass for the BL initial data, but not for the ree-dimensional space. wilhbeing the position of
ML initial data. We consider three candidates as bare masté1 -di S| Sp » Wi ing posit an ar-

measures in the ML case. One of the more interesting corRitrary point in such space arig] is the position of a point in
clusions of this work is the importance of the choice of barethe flat space representing haleThough Eq.(3) suggests
mass, and the unphysical consequences of the wrong choid®/© pointlike solutions, there are in fact no physical singu-
In Sec. Il we start by describing the BL and ML solutions larities corresponding to these points. Rather the three geom-
and the choices that can be made for bare mass. We th&iy near each “point” can be extended, through a throat, out
describe the CLAP method. CLAP estimates of radiated ent0 an asymptotically flat spac@n Einstein-Rosen bridge
ergy are presented in Sec. Ill where it is seen that the choicEh® complete BL three geometry, then, includes three as-
of bare mass of one ML hole governs even the qualitative/mptotically flat regions. One is a region with two throats
nature of some answers. In Sec. IV results are given for théonnected, the region of “our universe.” The other two re-
recoil velocity of the final hole formed, due to the emissiondions contain one throat each corresponding to mass 1, and
of radiation. In the results of Secs. Il and IV, the usefulnes§0 Mass 2(These distinctions are meaningful only when the
of the results depend heavily on the range of validity of thetwo throats are well separated in “our” universe; jéd|.)
CLAP. In Sec. V we look at a simple criterion for when  The BL topology has a useful practical feature. Since hole
linearized theory should be applicable. We find that the val (for example has its own asymptotically flat region we can
lidity of this criterion, which seems useful in the case ofinfer a “bare mass”m for hole 1 from the metric at large
equal mass holes, does not seem to extend to collisions fstances from the throat. In this way we can compute bare
which the ratio of hole masses is very small. Conclusions aréassesn; for each of the individual holegin the limit that
presented in Sec. VI. Details of several calculations are prethe holes are very far apart, the bare masses are related to the

()

sented in three appendixes. parametersa; in Eq. (3) by aj=m;/2, where we use
c=G=1 units] We can also compute the total madsin
Il. APPROXIMATION METHOD “our” universe, the Arnowitt-Deser-MisnefADM) mass of
AND INITIAL GEOMETRIES the two-hole spacetime. _
Another solution to Eq(2), corresponding to two throats,
A. Initial value solutions of the form
For simplicity we limit attention to time symmetric initial w
data. There is then an initial hypersurface on which the ex- _ an by
ala. : . d=14 | ——-+—""], 4
trinsic curvature is zero so that initial value data for Ein- n=1 \ |R—d,| |R—ey|

stein’s equations consists only of the three geometry of this

hypersurface. Also for simplicity, we limit our consideration can be constructed by placing the “masses,'andb,, at the

to three geometries that are conformally flat. This Simp”ﬁ'locations&n andén in the flat conformal three geometry in a
cation is neither selected for or against by any strong physimanner similar to the placement of electrical charges in the
cal argument, but it leads to a very convenient mathematicgroplem of finding the electric potential distribution in the
description, and is therefore used, e.g., in most numerlcq,legion outside two charged conducting spheres. With an in-

relativity work. _ . ~ finite set of image “masses” it is possible to construct a
. We write the conformally flat axisymmetric three metric {hree geometry with two throats which open into two identi-
in the form cal asymptotically flat regions. The isometry between the

_ 4 2, 52402 two regions takes the form of a reflection through spheres at
ds’= (R, 0) (dR*+ R°dO?), @ the minimal neck of each of the throats. The details of the

wheredQ?=d 6%+ de2sirt6, andR, 6, ¢ are spherical coor- symmetrization procedure are given in Appendixsge also
dinates in the flat conformal space. The Einstein initial valug-indauist[17)).

equations then turn out to require only tdabbey Laplace’s For our purposes, the disadvantage of ML solutions is that
equation there is no immediate meaning that can be given to “bare
mass.” We consider three candidates for bare mass in ML

V20 =0, (2)  solutions. One candidate is the bare mass suggested by

Lindquist in his study of symmetrized initial value solutions
where V2 is the Laplacian with respect to the flat metric [17]. The “Lindquist mass” sums the bare masses of all the
dR?+ R?d02. images associated with one of the thro@slivergent sum

It is necessary to find solutions corresponding to two ini-then subtracts a Newtonian expression for the binding energy
tially static black holes. To investigate the possible sensitivdue to the interaction of those images with each other
ity of radiation to the details of the initial value solution we other divergent suin This definition of bare mass seems not
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FIG. 1. For two holes with fixed Penrose mass
m;p , in the ratiom,p/myp=3/7, the dependence
of the Lindquist massm; on separation is
shown.

Lindquist mass/Penrose mass

0.2 ;
0.0 1.0 2.0

to have been used in recent work on the problem. Much.indquist masses. A similar comparison between Lindquist
more commonly cited is a rather straightforward measure ofass and area mass tells a very different story. linthém,
the bare mass that we shall call the “area mass.” One takematio of area mass is 7:3 then, to considerable accuracy, the
the areaA; of the minimal throat on the initial hypersurface ratio of Lindquist masses is also 7:3. There is not a strict
and computes a bare mass from it as if it were an isolatedquivalence of the two ratios. At very small separation there
Schwarzschild horizorm; = yA;/167. A third candidate for is a small deviation in the ratios. More important, the value
the bare mass is the “Penrose mags®8-20. This is a of the Lindquist mass and that of the area mass for a given
guasilocal definition of mass interior to a two-sphere thathole are not the same when separations are small, but even
starts with a method, valid in linearized theory, of extractinghere the effects are small. This is shown in Fig. 2 for two
mass information from the Weyl tensor. This method is therequal mass hole. At small distancds/i/l less than around
formally converted to curved spacetime. The method, cannd.5 the Lindquist mass is discernibly larger than the area
be applied to all spacetimes, but it is always applicable tonass. By comparison, the difference in Penrose mass and
axisymmetric cases. Some details of the computation of tharea mass is 20 times larger. In our energy and recoil esti-
Penrose mass are given in Appendix C. mates in the next two sections, no difference can be seen in
There are, in principle, other choices of mass. An exampléhe results depending on which mass ratio is held constant,
would be the Hawking masf21], which depends on the the Lindguist mass or the area mass. We shall, therefore,
choice of a closed two-surface. For the BL case there is npresent only the latter.
favored choice of such a two-surface, and hence no natural In the limit of extreme mass rati@s well as in the limit
way to define a Hawking mass. In the ML case, there is @f large separationthe ambiguities of bare mass disappear.
natural choice, the minimum area throats, but in this case th&/hen the limitm,/m; of the bare masses becomes very
Hawking mass agrees with the area mass. We do not, theremall, the “particle” limit for m,, physical intuition suggests
fore, separately consider the Hawking mass. In any case, otihat any reasonable definition of bare mass must agree with
aim here is not to make an exhaustive comparison of althe proper mass of a point particle perturbing the spacetime,
possible definitions of mass, but rather to demonstrate thand therefore all reasonable definitions of bare mass will
sensitivity of conclusions to the type of mass definition usedyield the same result. This is illustrated in Fig. 3, which
The area mass, Lindquist mass, and Penrose mass serve tei®ows the ratio of the Penrose and Lindquist measures of
purpose well, and are interesting in that they are based othe bare mass of the less massive hole, as the ratio of bare
very different principles. massesn, /m; goes to zero. It is clear that in this limit also
Figure 1 illustrates the issue of choice of bare mass in thall reasonable measures of;, the bare mass of the more
ML case with an example in which the ratio of Penrose baremassive hole, will agree with each other and with the ADM
masses of the two holes is 7:3. For each hole, the ratio ahass of the spacetime. As a check we have computed the
Lindquist mass to Penrose mass is shown as a function oftio of Penrose to Lindquist values af; as m,/m; de-
separation. For both the heavy and the light holes, thereases and have verified that the ratio goes to ufailty
Lindquist mass decreases relative to the Penrose mass, kthbugh not as quickly as in Fig.).3
the decrease is more dramatic for the heavy hole. If the state-
ment “put the same two holes at different separation” means
putting holes of fixed Penrose mass at different separations,
then these “same” two holes at small separation have very To apply the CLAP to the momentarily stationary axisym-
different Lindquist masses, and a very different ratio ofmetric space we must rewrite E@l) in the form of a

B. The close approximation
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£ the spacetime.
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t~ constant slice of a Schwarzschild spacetime. This reThe function® must satisfy Eq(2) and will have singulari-
quires mapping the geometry ofl) onto a set of ties at the coordinate locatio of “mass points’(BL) or
Schwarzschild-like coordinatas,¢. We do this by trans- “images”(ML). Since® must approach the Schwarzschild
forming the radial coordinate asi were the isotropic radial spatial metricd —1+2M/R as R—~, we can expandp,

coordinate for the Schwarzschild geometry: for R>max(R), in Legendre polynomial® , as
R=(\r +r—2M)%4, (5 o
2M /+1
whereM is the total mass of the spacetime. This transforma- P=1+ ?ﬂLZl 7’/(§> P, (cosd). ®
tion puts the spatial metric in the form
42— F dr? 12402 5 We can eliminate the’=1 term from Eq.(8) by appropriate
- 1—2M/r r ' ®) choice of coordinate origin. The expression f6rtherefore,
can be put into the form
where
@(R, 6) 1 *° /+1
=T an =1+ —75 = P .
F=1TrMiR: ™ P TR, TR Acosd). (9
1.60 . :
- L/M=0.1
———- L/M=0.5
140 | FIG. 3. For the bare mass, of a hole, the
ratio of the Penrose measure of bare massy]
5 to the Lindquist measurent, ) is shown as a
% function of the ratio of(Lindquis? bare masses
= for two different separationk/M (whereM is
the total ADM mass of the spacetimé& he result
120 shows that in the extreme ratio limit different
measures of bare mass agree.
1.00

0.0
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FIG. 4. For two ML holes, with bare mass
ratio F=m,/m,, the radiated energy is shown as
a function of the proper separatibnbetween the
apparent horizons. Results are shown for both the
Penrose bare mass definition and the Lindquist
definition. For extreme mass ratios the choice of
bare mass is irrelevant, but fér=0.75 a quali-

—— F=0.75 (Lindquist)
&< F=0.75 (Penrose) . > )
%---X F=0.01 (Lindquist) tatively different dependence on separation
o-—-o F=0.01 (Penrose) shows up.
~14 L ] L L
197 00 1.0 20 3.0 4.0 5.0
L/(m,+m,)

Radiated Energy/2(m,+m,)

For an initial value solution representing two black holes,It can easily be shown that the Zerilli functions correspond-
the coefficientsy, will contain a parameter describing the ing to two different solution®\ andB of Eq. (2) differ only
separation of the holes. As the separation goes to zero, the amplitude, i.e., they are related through
geometry approaches that of &=const slice of the
Schwarzschild geometry, and the: must therefore all ap- yE

imati i i Yo(r = —yo(r,b) (12)
proach zero. The close approximation consists of treating the Al Ay AL,
separation of the holes as a perturbation parameter and in Eq. Y/

(9) keeping only the terms lowest order in the separation.rhis means that if we know(r,t) for a given solution of

When we take the fourth power df the mixing of theP, Eq. (2), say the Misner equal mass solution, we can compute

gives us, in principle, very complicated mixtures of contri-the ener : -
. / ! . gy(Sec. ll) and the recoil velocitySec. IV) for any
butions of different/” for each final multipole ofF*. The other conformally flat solution, directly.

result in practice is much simpler. For both the BL and ML
solutions[in fact for any conformally flat metriql) for
which Eq. (5) is used the y, coefficients increase in the
order of the perturbation as$ increases and, as a result, for ~ we give here the radiated energy corresponding to a
the /'=p multipole of 7* the contribution of lowest pertur- range of head on collisions. To choose a particular black hole
bative order is due only to the term linear ¥, and to  collision, we must first say whether the initial data is BL or
lowest perturbative order in each multipole the conformalMmL. Second, we must specify a ratio=m,/m; of hole bare

Ill. RADIATED ENERGY

factor can be written masses, and third we must specifythe separation of the
holes, i.e., the proper distance between the apparent hori-
4 % M\ 7 +1 zons. Our results are plotted with the radiated energy and the
F=1+ 1TM2R 'y/(ﬁ P, (cosd). (10 separatiorL. normalized by the sum of the bare masses, so
/=2 that the results can be interpreted as showing the change of

radiation with separation when the “same” two holes are

Equationg5), (6), and(10) describe an initial perturbation of moved closer together.
the Schwarzschild geometry. Following the prescription of For ML holes we consider several different definitions of
Moncrief [22], we can use this perturbed initial solution to bare mass, and in Fig. 4 show the results for the Penrose
give us, for eaclr’, the initial value of a “Zerilli function”  definition and the Lindquistequivalently, the argameaning
[23] ¢, . (We use the normalization of Abrahams and Priceof bare mass. To avoid cluttering the plot the results for
[3], our ¢, being theirQ .) F=1 have been omitted. The§e=1 results show little dif-

This Zerilli function satisfies a simple wave equation andference depending on the choice of bare mass definition. The
from its initial value it is simple to find the time evolved F=1 curves are only slightly different for Penrose and
function #(t,r). Once this is known we can compute the Lindquist mass, and both are qualitatively similar to the re-

gravitational energy radiated by the system of two blacksults forF=0.75, with Penrose mass.
holes from The results in Fig. 4 foF =0.01 show the expected inde-

pendence of bare mass definition. But they fail to show an-
) other important feature that has appeared in a study of the
1 (11) particle limit[24]. For particles that fall, starting from rest at

E 1 & dy,
= dt|—=| =
2M 327 Zz J ‘ dt | 2M distancel from a Schwarzschild hole, here is an anomalous

/
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FIG. 5. For two BL holes, with bare mass
ratio F=m,/m,, the radiated energy is shown as
a function of the proper separatibnbetween the
apparent horizons.

Radiated Energy/2(m,+m,)

4.0 6.0 8.0
L/(m, +m,)

decrease of radiation with decreasingThis is found only in  the LindquistF=0.75 curve in Fig. 4 is due to an unphysical
the rangd. =5M to 7M, whereM is the total ADM mass of choice of bare mass.

the spacetime. This unexpected reversal of the general trend

is a manifestation of the role played by the “curvature po- IV. RECOIL VELOCITY

tential” (due to strong field effects near the holehich
peaks at arountd =3M.

For ourF=0.01 results the ADM mass should be negli-
gibly different f_rom My + M. So the plot of rad_lated ENeTYY has considered a similar effect in the radiation emitted by a
should show this effect in Fig. 4. The fact that it does not Carl:ollapsing star.
be ascribed to failure of the close limit. We know in fact that = 14 general expression for the rate at whigdhomentum,
this is the case from the study of the particle lif#24]. For g (adiated is given by
extreme mass ratios the close limit will work only forless
than about B, and when it applies the radiation decreases dapz 1 = (1-1)(1+3) diy dipyoq
with decreasingd-. T T TAC e

For equal mass holes there is no anomalous region. Radi- dt  16mi V(@+1)(2I+3) dt dt
ated energy is a monotonic function of initial separation.The mixture of /=2 and 3 is dominant in the surfL3d)
This can be interpreted to mean that when the smaller hole ighen the holes start close but the next mixture becomes
not at the particle limit it is “too large” to be situated in the more and more important as they start farther and farther
narrow range of radii for which the anomalous energy-apart. As a result of radiation emission, the final hole formed
separation behavior occurs. As we decrease the bare mag#il aquire a velocity (relative to the asymptotic frame in
ratio F from unity, there must be some value at which thewnhich the colliding holes were initially at restThis recoil
anomalous region appears. The results in Fig. 4 are interesgelocity is
ing in connection with this. FoOF=1 it is well established
that close limit results are reasonably accurate for values of _ if dtd_Pz (14)

L/M around 4. It would suggest that the anomalous behavior YT dt -
seen at rather smadll for theF=0.75 is not an artifact of the

close limit. The dramatic low- bump in that curve, of In terms of Eq.(13) the recoil velocity is
course, has no counterpart in the corresponding Penrose

For unequal mass holes colliding along thexis there
will be momentum contained in the outgoing radiation due to
the interaction of multipoles of different. Moncrief [25]

(13

curve, which suggests that what we are seeing is an effect , 1 = (I=D{+3) [ dgy dihiy idt
due to an anomalous choice of bare mass. U7 16w V(@ +1)(21+3)) dt dt M
For BL collisions, as explained in the previous section, (15)

there is a “favored” definition of bare mass. It is straight-

forward in principle and easy in practice to compute a reaNow the Zerilli functions «,(t) and «,,.(t) must be
sonable mass of each hole by going to large distances in thevolved numerically and the overlap integral in EG5)
asymptotically flat region in which that hole is the only must be numerically computed. The functiogs(t) and
throat. For this definition of bare mass, Fig. 5 shows they,, ,(t) have a fixed form and the details of the collision
radiated energy as a function bf with no anomalous be- influence only the amplitude. The overlap integral in Eldp)
havior. This supports the argument that the lovsump, for  therefore needs to be integrated only ori&ee Eq(12).]



6342 ZEFERINO ANDRADE AND RICHARD H. PRICE 56

10000

100

— 1t
wn
E FIG. 6. Recolil velocity for BL holes. The re-
x F=0.01 . ; ) :
~ ———- F=0.1 coil velocity of the final hole is shown as a func-
T orf e ] tion of initial separation for several ratios of bare
— F=0.25 mass
o—o F=0.5
%-—-X F=0.75
of _
fi
f
/
ol . ) s
0.0 2.0 4.0 6.0 8.0
L/(m1+m2)

This recoil velocity is always negative. Since our conven-physical interest depends on whether the CLAP fails at the
tion is always to put the more massive of the colliding holesseparations which predict large recoils. This question then,
on the positivez axis and the less massive on the negativegives us a very specific motivation for turning, in the next
side, this means that the final hole moves in the directiorsection to a consideration of the range of applicability of
from which the smaller mass approached. Results are show@LAP.
in Fig. 6 for the recoil velocity, in the case of BL initial data,
as a function of separation. V. RANGE OF VALIDITY OF CLAP

At the low values ofL at which the CLAP should be
reliable, the highest values of recoil velocity occur for There is nothing inherent in the linear perturbation theory

F~0.3. The recoil velocity results for ML initial conditions, underlying the CLAP to indicate how small the expansion
shown in Fig. 7 are roughly similar. Mass ratiés-0.1-0.3  parametele must be to have answers accurate to, say, 10%.
produce the highest recoil velocities. In other words, we do not immediately know “how close is
The figures both for ML and BL initial conditions include close enough.” The only priori justifiable way of finding

recoil velocities of many hundreds of km/sec, proper veloci-the range of validity(aside of course from full numerical
ties that would be astrophysically interesting. The large valsolutions is carry out second-order perturbation theory, and
ues ofv? correspond, of course, to large initial separationsto see at whak the first and second-order answers differ.
Whether Figs. 6 and or 7 actually contain results of astroThe formalism for higher order computations has been de-

100

@)
E FIG. 7. For two ML holes the recoil velocity
= of the final hole formed is shown as a function of
M o——o F=0.1 initial separation, for several different values of
I % F=0.25 F, the ratio of Penrose bare masses.
°f ———- F=0.5 I
% ---x F=0.75
A= F=0.9
0 1
0.0 1.0 3.0 4.0
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veloped[11], and successfully applied to the equal mass caseeparation case by taking the values at the CLAP limit.

[12]. Higher order perturbation theory, though much easier An easy index for this limit has been suggested by Suen

than full numerical solutions, is lengthy and tedious. For thig26]. One can take the nonlinear initial data, extract pertur-

reason it is useful to look for easy rough indices of validity bation quantities and compute Moncrief's two even parity
of CLAP. gauge-invariant functiong,; andq,. For linearized data the

To understand the importance of an index of validity onelinearized Hamiltonian constraint givep=0, so the mag-

can look at the application of CLAP to the collision of equal nitude ofq, is an indication of “how nonlinear” the initial
mass ML holeg4,5]. Here a comparison can be made with data are, and therefore, presumably, how accurate linearized
the results of full nonlinear numerical analysis. Both meth-computations are for the evolution. In Figs. 8 and 9, we plot
ods predict an increase of radiation with increasing initialthe value ofq,/q; as a function of radius. To make this
separation. The computed energies agree reasonably welbnlinearity index more plausible we have modified it in two
(within a factor of ~2) for initial separations out to around ways. The factor of (/M —2) corrects for the divergence of
L/M~4. The energy for infall from extremely large dis- g, at the horizon. If the mass ratim,/m, becomes very
tances is larger only by a facter2—3. It may be that these small, violations of sphericity must scale as. We would
features are generally true: the magnitudes of radiation quanhen find that violations of nonlinearity were very small re-
tities at the limit of CLAP validity may be within better than gardless how far apart the holes start, and regardless how
an order of magnitude agreement with the large separatiobadly the CLAP fails. To take into account the scaling of

limits. In that case we can make good estimates for the largronlinearities asn,, we place a factoF in the denominator

--—.\_- ------- — —T
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20| \ ! ]
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o \ !
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E \ " — | /M=0.43 FIG. 9. The linearized constraint violation for
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= -70f \ ! ———- LUM=0.83 { masses.
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of the nonlinearity index. In the two figures we normalize strongly and it is in just this case that there is the most
separation with the ADM masM, rather than with bare ambiguity in translating the Newtonian concept of the mass
masses. Since the curves refer to a fixed set of masses, théa hole, into a parameter of the relativistic initial data.
ratio of M to m;+m, is fixed. We have considered three measures of bare mass. The
The first figure shows the result for equal masses and ML‘area mass,” and the “Lindquist mass” are well defined
initial geometry(see alsd3]). In this case we know, from only for ML data, for which there are symmetric Einstein-
numerical relativity results, that the CLAP fails at around Rosen bridges. The “Penrose” mass meas(irough not
L/M~3—4. The results in Fig. 8 show a dramatic increasegenerally applicablecan be computed for either ML or BL
in the Hamiltonian violation a&/M increases beyond-2  initial data (and in the latter case agrees with the obvious
and this coincides, approximately, to the valueLéM for  choice of bare mass in the asymptotically flat region of a
which CLAP starts to fail. throa). We have found very mixed messages about the
In Fig. 9 we show the equivalent results for ML holes physical meaningfulness of the various mass measures when
with a ratio of Penrose ma$s=0.1; in the previous section the holes are initially close. One somewhat surprising mes-
we saw that ratios roughly around this value maximize thesage is that the area mass and the Lindquist mass of each
recoil velocity. The results in this figure suggest that atthroat are numerically quite close. They are even closer if we
L/M=0.83, CLAP must fail badly. We know, from the par- make a more subtle comparison: the ratio of area/Lindquist
ticle limit study[24] that CLAP estimates are quite accurate masses of two holes, and the ratio of Penrose masses. This
(within 20%) up to aroundL/M~ 1.5 This implies that the agreement is not a manifestation of some general necessity
CLAP method can work well even when there is significantof all mass measures to agree. The Penrose mass and the
“linearity violation” in the initial data. It also implies, un- area/Lindquist mass are markedly different for close separa-
fortunately, that there may be no easy reliable way to estitions.
mate the validity of CLAP calculations. The agreement of area mass and Lindquist mass is unex-
Let us now tentatively accept, from the particle limit re- pected, because they are based on such different criteria. The
sults that folf =0.1 the CLAP method is valid out to around area mass connects mass to the area of the minimum section
L/M~1, and that the energy and linear momentum at thi®f the Einstein-Rosen bridge, just as if it were an isolated
limit are, to order of magnitude, as large as they would be foSchwarzschild hole. It takes no direct account of the pres-
initially infinite separation(as in the case of equal mass ence of a second throat. The Lindquist mass, by very sharp
holes. The plots in Figs. 6 and 7 then tell us that recoil contrast, uses asymptotic masses of “images” used to form a
velocities will always be well short of the several hundredsingle hole and subtracts an expression for binding energy
km/sec values that would be astrophysically interesting. ~ due to gravitational interaction of the images. The binding
energy is computed by Newtonian physics applied in the
conformally flat space underlying the initial dat®oth the
VI. CONCLUSIONS sum of asymptotic masses and the binding energy are diver-
n- gent, but the sum is notlt is often the case that when two
io¥ery different ways of measuring a physical quantity agree it
The linear momentum generated in the collisions will be far'S taken as good evidence that t_he measurement is va_Iid. This
too small to produce astrophysically interesting recoil veloc-Would suggest that we_take seriously the area/Lindquist bare
ity of the final hole. mass, perhaps for a wider class of problems. But the strange

The study has been much more successful in raising queg)_ehavior seen in Fig. 4 for mass rafic-0.75 suggests even

tions and in uncovering difficulties. The most important dif- MO'e strongly that this bare mass measure can be misleading.

ficulty is the choice of the bare mass of the holes participat-

ing in a collision. It should be understood that this is not an ACKNOWLEDGMENTS

issue specific to CLAP estimates. Rather, CLAP estimates .

were used to probe it. The general problem is how do we we WO.UId like to thank Carlos Lousto for many US.erI

best characterize an individual hole when it is interactingcpnversat'ons' and also Madhavan Varadarajan for discus-
sions of the Penrose mass. We thank Carleton DeTar for help

. L o L ;
strongly with another gravitational source? And this issue IS ith computational aspects of the work. Z.A. was supported

part of the broader question, how do we set up initial data t%y a grant under PRAXIS XXI administered by JNIGFor-

represent a black hole configuration? : .
Astrophysical models, or Newtonian physics applied togjgib_'ggg'?s;fg rk was partially supported by NSF Grant No.

the early dynamics, can give us an initial configuration in
terms of simple physical parametémsass of the holes, sepa-
ration . ..). Toturn this into appropriate initial data for nu- APPENDIX A: THE BRILL-LINDQUIST SOLUTION
merical relativity we must know the correct general relativ- FOR TWO BLACK HOLES

istic interpretation of the classical picture. This will be of
crucial i_mportgnce to the use of numgrical relativity to StUdyexpansior(S) of the Brill-Lindquist solution(3).
three dimensional black hole collisions. Codes to evolve S - = ) ,
black holes tend to be unstable. It is therefore important to WhenIR|>|Ry| and|R|>|R,| the expansion of E¢3) in
apply the codes “at the last possible moment,” i.e., only to-€9endre polynomials gives

follow the last orbit or last few orbits of black hole coales- | |

cence. It will be necessary then for those codes to begin with &) ﬂ+ (&) a2
initial data for holes which are already interacting fairly M/ M M) M|

The application of the CLAP method to collisions of u

In this appendix we evaluate the coefficients in the

Y= (A1)




56 HEAD-ON COLLISIONS OF UNEQUAL MASS BLACK ... 6345

We can completely characterize the two holes by two param- (F—1)(2+M/zp) +(1—F)%(2+M/z)%+ 16F
eters in the flat space: the “distance}=|R,—R;| and the C= 4 -
“mass ratio” C= a,/a4. Choosing the origin of coordinates (A10)
in this space at the ficticious center of mass, we can rewrite

v, as Typically to characterize a BL solution, we chooseraand

a set ofzy values. Then from EqA10) we obtain the cor-
ar[z0)' 1 | | responding set o€ values and from Eq(A6) the L value
Y= MM (1+C)' [C+(=1)C], (A2) corresponding to each pai€(z,).

where we chose the convention that hole 1 is on the positive APPENDIX B: THE MISNER-LINDQUIST SOLUTION
z axis, hole 2 on the negative side, ang G<1. Since the FOR TWO BLACK HOLES

Fotal mass of the spacetime at the moment of time symmetry In this appendix we present the ML solution and some
IS additional details relevant to the CLAP of this solution. We

M= 2( i+ A vinI fpllc_)w c.Io.ser Lindquist[l?] wh_o derived such a squ—.
(ay+ az), (A3) tion in implicit form. Our notation is also the same as his
ie., with minor changes.
ay 1 (Ad) 1. The solution
M 2(1+C)’ The conformal factor can be written in the explicit form
4):
we obtain @
- a b
%) Cl+(-1)'C A5 o=l 2 n& tie ) (B1)
= — —_— — :1 _ _
Y =M 2(1+C)'+1[ (=1Cl. (A5) n=1\|x—d,| |x—ey

Whereal is the position of sphere 1, of radiasand él the
osition of sphere 2, of radius, relative to a given origin in
Re flat spacdthe spheres in the flat space correspond to the

The two parameterg, andC do not have a direct physical
meaning. We therefore introduce the ratio of the bare mass
of each black hold==m,/m; and the separation between ) 5 .
the apparent horizoris measured along the axis of symme- throats in the trjreg geomejrgndd,, are the positions of the
try and we expresg, andC (and hencey,) in terms of them. image poles ofl;, e, are the positions of the image poles of

If we choose, for simplicity, the origin of coordinates to e; with a, andb,, being the corresponding weights. These
be at singularity 1, theh, the proper distance between ap- coefficients obey the following recursion relations.

parent horizons is If nis even,
L f221+ N C)zd A6 d L
= - z =e;—
2 2(1+C)\z " 2z (A6) =T ek d,
Herez, and z, are thez-axis intersections of the apparent b
horizons surrounding holes 1 and 2, respectively. To find a”:e1+dn_1a”*1’
Z,,Z, we numerically integrated the system of ODE’s that
determine all the extremal two dimensional surfaces of the a2
BL solution (see[28] for detail9, and we searched along the e,=d;— dire
1 n—1

segment of the axis between the positions of the two holes
(i.e., betweerz=0 andz=z,) for the critical values,; and

z, at which the extremal surfaces are closed. The bare bn:Lbnfl-
masses of hole 1 and hole 2 dfiel] dit+en_s
@, If nisodd (=3),
m;=2ay| 1+ —|, (A7)
Zy a2
N A=t g g
my=2a,| 1+ —|, (A8)
Z, a;=a,
and hence a
an=—"——an 1,
_m,  1+[121+C)](M/zp) a6 "dytdy
my 1+[C/2(1+C)(M/zp) (A9) b2

:e -,
Solving for C in terms ofF andz, we obtain €1+t€enh1
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n n—1»

Cete,

whose solution igsee, for example, Smytta7]) the follow-
ing

If nis even,
basinh(n+2) ue+a2sintnu,
d,=e;—c| 1- o ,
c“sintnug
(B23)
absinh2u,
an= csinmug (B2b)
basinh(n+2) ue+ b2sintnu,
en=d;—c| 1— o ,
cesinmug
(B2¢)
absinh2u,
N csinug (B2d)
If nis odd,
sinh(n+1
d,=d;—c[ 1— h( R )Mo ,
sinh(n+1)uo+ Bsinr(n— Lo
(B3a)
absinh
a,=— Gad: ., (B3b)
bsinh(n+ 1) ug+asinh(in—1) ug
sinh(n+1) uq
e,=e;—¢c| 1- b ,
sinh(n+1) uo+ asinr(n—l),uo
(B3c)
absinh
2o (834

Pn= SN+ 1) g + bSINA(N—1) g

wherec is the distancéin the flat spacebetween the centers

of the two spheres

C:dl+ el, (B4)

and u is given by
hgup= B5
COSN%0= "2 (85

2. The choice of parameters
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positivez axis is greater or equal to hole 2 on the negative
axis. We must also havi@>1+C and, from Eq.B1),

1
mo==cosh 1 (B6)

2

D?-1-C?
2c |

These two parameters, as withandz,/M in the BL solu-
tion, completely characterize the Misner-Lindquist solution.
As in the BL solution, however, they do not have a direct
physical meaning and we must look to other way of param-
etrizing the ML solution. One parameter which can be de-
fined in a natural way in the ML solution, the distance be-
tween the two holes defined by the length of the geodesic
which threads through their corresponding Einstein-Rosen
bridgesL is discussed in the first part of this section. Another
physical parameter is the ratio between the “bare” masses of
each ML holeF=m,/m,;. As discussed above, we lack a
unigue, well defined, notion of bare mass of each hole. The
Lindquist masses presented on the second part are just a
possibility. Once we have a prescription that gives the
masses we can parametrize the ML solution either by F and
L/M or by F andL/(m;+m5).

Due to the difficulty of obtainingC andD as functions of
these physical parameters, we will instead derive all the
quantities in terms of andD. As we will see the restriction
D>1+C, equivalent touy>0, is required in order to obtain
convergence of the different series which appear in the next
sections.

a. Invariant distance of separation

Instead of using the distance between the thrGats the
parameterD defined aboveas measured in the Euclidean
space, it makes more sense physically to use the invariant
separation distance between the two holes defined as the
length of the shortest closed path which threads through their
correspondinde-R bridges. Such a curve is a geodesic of the
initial slice. To evaluate its length it is convenient to work in
bispherical coordinates instead of Cartesian ones.

In these coordinates the metric of the initial surface is

In the background three-dimensional Euclidean space

there are two natural dimensionless parameters: the ratio
C=nb/a of the radiia andb of the spheres 1 and 2, and the

ratio of the distance between the two throéts., the dis-
tance between the centers of the spheresl; +e,) to the
radius of one of the throats, say, D=c/a. We will always
restrict attention to the cases<@=<1, i.e., hole 1 on the

2
ds?= @4(m [du?+d7?+sirf pde?].

(B7)

We introduce
a=fcschu,, (B8a)
d,=fcothu,, (B8h)
b=fcschu,, (B8c)
e, = fcothu,, (B8d)

where

M1t ua=2pug, (B9)
M2=sinh‘1%, (B10)
f=bsinhu,. (B11)
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Substituting Eqg.(B8) in Egs. (B2) and (B3) we obtain a
convenient form for the coefficients df in (B1). [Compare
with Eqg. (4.7) in Lindquist[17] when the two black holes are

equal]
If nis even,
a,=b,=fcschug, (B12a
d,=e,=fcotmu,. (B12b
If nis odd,
ap=fesch(n+1) wo— p2l, (B133
b,=fcsch(nN—1) uo+ o], (B13b)
d,=fcotH (n+1)ug— o], (B130
e,=fcotH (n—1) wo+ w-], (B13d

and the conformal factor becomes

o0

1

@:
n==x | \JcosH u+4nug) — cosy

1

+ 1/2
Jeosh w+4nmo+ 2 5] — cosy

(coshu—cosp)

(B14)

which converges if and only iftg>0.

We note that this parametrization implies a specific choice

6347
a2n71b2m71 bZnaZm b2nbszl
|don—1—€m-1 |€n—doml |€2n—€2m-1] ,
(B17)
” a,na anb
mz—ZE Ayt by, 1"‘2 2nem-1 2
l|dzn d2m 1| [dan— €|
bon_18m_ b,,_1b
Q 2n-1 Em 1 h 2n-1 Em (818)
|62n71_d2m71| |62n71_62m|

which using the coefficients in Eq€812) and(B13) become

1
sinh(2nuo—u2)

my =2f 21 [sthn,uo -

1
o
sinh(2npo+p2))’

(B19)

1
sinf{2(n+1) wo— po]

m,= ZfZ

A=1 (sthn,uo -

1
+— .
sinf2(n—1)uo+ po]

Both series converge if and only jif,>0.

(B20)

3. The choice of origin

In order to determine the energy and the recoil velocity

of origin in the Euclidean space, however, the geodesic diswe need to choose the origin in such a way that the dipole
tance between the two throats is the same independent of tierm in Eq. (8) vanishes. This requires that the origin be
choice of origin. It is thus just a matter of convenience. Thelocated at the “center of mass{c.m) of the “masses”

equations of the throatsx?+y?+(z—d;)?=a® and
x2+y?+(z+e;)>=b? becomeu=pu,; and u=—pu,, re-

spectively.

The geodesic of interest ig=0, »=. Therefore the

distance of separation between the holes is

j Vo mdu=t [ @

2
(’u’w)costrld’“

M2
(B15)
or, explicitly,
M2 4npg
’ sinh(uy)  A=1 [Sinh(2nug)
2Npg— 2Nuo+
_ Mo M2 _ Mo M2 } . (B16)
sinh(2nuo—p2)  siN(2nug+u2)

Again this series converges if and onlygif,>0.

b. The Lindquist mass

The bare masses of the holes, according to Linddjtia
are

Azn-182m

ml—ZE aon- 1+b2n+2 m
2n—-1 2m

a,,b,,

n; a,0nem+bn€nem=0. (B21)

(Thea, andb, do not depend on the choice of origitdne
systematic way of determining thg,. ., ,€nc.m iS the follow-
ing.

We choose an arbitrary origin, for example the one for
which bispherical coordinates can be introduced and pick the
correspondingl, ande,, in Egs.(B12) and (B13).

We next find the center-of-mass position using

Sn=1—axUontaz,_1dn— 1+ byn€on—

, ban—1€2n-1
c.m. Sa=18,+ b, '

(B22)

Finally we determine the position of a given image rela-
tively to the CM, using the formula

- - -

Ziem=Zi— Ze.m. (B23)

or in scalar form
donem=—d2n—Zcm., (B243
€2n+1cm= " €2n+1" Zem, (B24b
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€nem=Eon—Zem.» (B24¢) In fact Tod [19] has evaluated the Penrose quasilocal
mass associated with a two-surfé@@beying the restriction
ons1em=2n+1— Zem.- (B24d)  above, including the time symmetric case. He showed that in

the BL case, the Penrose mass of each hole coincides with
the ADM mass and that for both BL and ML solutions the
total Penrose mass of the spacetime at the instant of time

Comparing Eq(4) with Eq. (8), we obtain the coefficients symmetry is the same as the total ADM mass. He also de-
074 rived the mass of each ML hole, when the masses are equal.

In this appendix we use Tod's results to derive the Pen-

dnem. /+ Bn( €nc.m. ‘ rose mass of each ML black hole when their masses are
M M\ M ' unequal. We will use a signature-(— — —).

Let t denote the unit timelike vector normal to the time
symmetric 3-surfac&.. The Penrose mass “enclosed” by
the two surfaceS lying in 3 with normaln is

4. The y, coefficients

o

7/22

n=1

an
M

(B25)

5. The mass of the system

To determine they, above we need to know a dimension-
less parameter, say the radius of spherd 2per unit of
mass. This can easily be done by expressing the mass in
terms of the coefficients in the conformal factor. The ADM
mass of the spacetime at the moment of time symmetry is th&hich we can rewrite in terms of spinors e Tod 19])
coefficient of 1f in an expansion ofis? in inverse powers of

1 1 ,.,—
m=P,P?~ E)\ABMAB_E)\A ® e, (C2

r. The result is mg= _ZtA’(BPﬁ)/ tc/(BEé)r + PPty (PPty) + MBSt sac
AR ag, C3
M=2> a,+b,. (B26) BriA HAB €3
n=1
where
If the explicit expressions in Eq$B2) and (B3) are used, i
this becomes ’“ABt?\’:EJ {2(n-V®)VD—(VD)2n}dS, (CH
- 2 1
M=2f> | +— o1 R N .
n=1 | sinh2nug — sinh(2nwg— wo) tPazz {-®n-V®—-2(n-VP)(R- VD)
1 - o
- +(V®)%(n-R)}d C5
*SiT2(0— D o+ ] (®20 (TEIm RS o

from which we can expreds in terms ofC andD. We note tA’(BPﬁ),: zij {®(VOXN)+(VD)2nXR—2(VD-n)
that once more the series converges if and only4&0. 77
X(VOXR)}dS, (Co
APPENDIX C: THE PENROSE QUASILOCAL MASS
OF ONE ML BLACK HOLE i
tANAB = —
In Penrose’s approach a complex quantdy,;, the B 2m
momentum-angular momentum twistor of the source inside a . - - - )
two-surfaceS (with topology $) is defined and the total +R[2(n-VO)(R-V®)—(n-R)(VD)
mass threading throug® is [18]

.1 . 1
f(n(§¢>2+¢(R-V¢)+ER2(V¢)2)

+®dn-VO]-VP[D(n- §)+R2(ﬁ-vq>)]]ds

mi= - A, A (€Y
P 2aB ) (€7
with all expressions on the right-hand side written in terms

Certain problems with this definition remain. In order to .
evaluate this mass we need a Hermitian “norm” defined forof a three vector notation on flat three-space. To evaluate the

the surfaceS as a whole. This norm can only be defined integrals we. transform them to integrals over a volume
unambiguously ifS can be embedded in some conformally spanned by:

flat spacetime in such a way that both its intrinsic geometry i

(induced metrig and the quantities characterizing its extrin- MABtf\,: - —f VOV2Dd3x, (C8
sic curvature are unaltered from their values wiseis em- ™

bedded in the true spacetime. However, this is not a diffi- 1

culty for the ML solution(and BL solution, since any time 2P, = — _f (P+2R-VP)V2Pd3x, (C9
symmetricconformally flathypersurface can be embedded in 27

a conformally flat four-space as a surface of constamith 1

the same intrinsic and extrinsic geometries and hence also all A_= | B 2 3
two-surfaces lying on this hypersurface. tarBPmy = TJ (RXVE)VERdx, (€10
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A B’ i 3 S 3 ra’ . - - -
tg NP = ZJ [2R-VOR+®R-R?VP]V2Pdx. (thAA'B'), = _2.;l ap 1051t byiey
(1D

In the ML solution the conformal factd@) leads to _2';1 n; Azi-1) A2n FEENE
5 =
© i_R B €5 102-1— 0516501
d en—R +b 2n—1Y2i— i—
Vb= a,— +hy—=— C1 2n-1 j
zl “|R n|3 | _enls (€12 [dai—4 eZn 1|
i e2n 192| e2|e2n 1
_2|2 Z b2|[bZn 1 >
and i=1ln |e| e2n 1|
L E 4o, Uoneai—€idan
V2b=—4x| >, a,8(R—d,)+ >, bnﬁ(R—en)} 2" 6y — g2
n=1 n=1
(C13 . .
and the Penrose quasilocal mass of black hole 1 will be
In order to evaluate the Penrose mass of the hole 1, we m2p=[(P,t%),]%+ Z(FBté/)l(tgrﬂAC)l- (C14

choose the two-surface to be the sphere with centBrad, o _ _ _
(the throat of radiusa). Remembering that all the images Similarly if we take for volume of integration the sphere of

located atR=d,,_, and R=6,, lie inside that sphere we radiusb we get

obtain B B
(magta)2=—(agta)1
- don—dai_1 i
t,, 4i a M a - . )
(MABA )1= IZ HZ 2i - ( n|d2n_d2ifl|3 (t Pa)z—ZiZ1 ast+ by
€on-1— i1 * d2 —g2
+byn 1—) —9 A | @, —2n 271
|€2n-1—dpi_q/? Zl nzl 2t 2n|&2i_1—62n|3
i €11~ Eni 2
4y > b2|(b2n 1L»ZI3 b, €51~ 5
i=1n=1 | €on-17 €y | 2i— eZn—l|3
dan— €y c oz e2 .—e?
ta, -2 A ) 2n—1" €2
|62| e2n 1
o ta d2n_eZ|
(tapa)lzzz ay_1t+Dby 2n|e2I donl®)’
i=1
d5n—d5 4 [tarsPR)2]=0,

2n->—
|d2ifl_d2n|

A In’ . - >
ez —d3 (tg NB) = =21 X aydy+y 185
n—-1 2i—1 i=1

e _ - -
| 2i— 2n l| dgndZifl_dgi—leH

|azi—l_a2n|3

azn

o] e
) © 2 +2|2 E azi*l
62n 1 e2| i=1 n=1
Z Z 2i b2n l|e e 3
- - 2i 2n—1 2 J 2 -
€n-102i-1—d5 _1€2n-1

|d)2i—l_é)2n—il.|3

+bon g

d - egl

|92| 2n|3

i €2 ,6y—e2e
+2|2 E b2|[b2n L 2n—1%2i 2iv2n—1
i=1n=1 |62| e2n 1|

[tA’(BPﬁ;l]:Ov

since all images lie along theaxis, and |epi—dop|®
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and the corresponding Penrose mass will be Eg=M—m;p—myp. (C17)

2 _ ay 12 N AB{A’ C
Mop=[(Pat)2l"+ 2(A g )a(tyiac)e-  (C19 e special case in which the holes have equal mass, we

To compute the total mass at the instant of time symmetrPPtain
we choose for surface of integration a two-sphere surround-
ing both throats. Then each term above add up and we get (t3P,)1=(t?P,),=3 M, (C18

B B B
(pata ) 7= (maBta )1t (aBta)2=0, B B .
(tagta)1= = (agta) 2= —1l

a __(ta a _ . . ” ~ sinmwgsin
(1%Pa)7=(1%Pg)1 + (1*P0), =22, 4Dy, __giy s SMuesinmuo g
n=1m=1 sinff(n+m)ug

[tA'(BPﬁ)T]:[tA'(BPﬁ)l]+[tA'(BPﬁ)]2:0 A ae A ae _
(ANAE) = — (tANA'R),= —i]

and
. “ costug
o _ S = —2ia%sinhu,| >, ———
(tg ANA'B)r==2 > (aidi+Dbie), O( =1 sinfPnug
i=1
- cosugcoshm
and hence + Ho o).
n=1m=1 sintfP(m+n)ug
M=22, a;+b;, C16 -
izl b (€19 giving
which coincides with the ADM masAppendix B, expres- 2 2 1442
sion(B26)]. As expected, this mass is not equal to the sum of Mip=myp=3 M=+21J, (C20
the two individual masses. The difference is the binding en-
ergy a result obtained by TofL9].
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