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We describe a numerical code that solves Einstein’s equations for a Schwarzschild black hole in spherical
symmetry, using a hyperbolic formulation introduced by Choquet-Bruhat and York. This is the first time this
formulation has been used to evolve a numerical spacetime containing a black hole. We excise the hole from
the computational grid in order to avoid the central singularity. We describe in detail a causal differencing
method that should allow one to stably evolve a hyperbolic system of equations in three spatial dimensions
with an arbitrary shift vector, to second-order accuracy in both space and time. We demonstrate the success of
this method in the spherically symmetric case.@S0556-2821~97!06022-0#

PACS number~s!: 04.25.Dm, 02.70.Bf, 04.70.Bw

I. INTRODUCTION

A key goal of numerical relativity is to determine the
gravitational radiation produced by the inspiral and coales-
cence of two black holes in a decaying binary orbit. The
importance of solving this problem is heightened by the pos-
sibility that gravitational wave detectors such as the Laser
Interferometric Gravitational Wave Observatory~LIGO!,
VIRGO, and GEO may observe gravitational waveforms
from binary black hole coalescence within the next decade.
Not only could a comparison of measured waveforms with
numerical simulations provide a crucial strong-field test of
general relativity, but in addition, accurate templates pro-
duced by these simulations could significantly increase the
sensitivity of waveform measurements@1# and reduce the
uncertainties in astrophysical parameters derived from gravi-
tational wave data.

Although constructing a numerical simulation of binary
black hole coalescence is a difficult and unsolved problem,
several recent advances have brought us closer to a solution.
One key advance is the development of so-called apparent
horizon boundary condition~AHBC! methods@2–7#, which
treat black holes by evolving only the regions of spacetime
that lie outside apparent horizons. These methods take ad-
vantage of the fact that information cannot emerge from
within the apparent horizon of a black hole~which, assuming
cosmic censorship, is contained within the event horizon!.
Without AHBC schemes, the spacetime singularity that in-
evitably forms inside a black hole eventually causes numeri-
cal simulations to terminate, typically on a time scale of
order 10 to 100M , whereM is the mass of the system. For
this reason, AHBC methods may be crucial for solving the
binary black hole problem, where one hopes to evolve two
holes long enough to see them orbit, coalesce, and eventually
settle into a final state containing a single~Kerr! black hole.

Another promising development is the construction of
manifestly hyperbolic formulations of Einstein’s equations
@8–13#. Not only do these formulations offer insights into the
mathematical structure of general relativity, but they may
also be better-suited for numerical solution than the usual

Arnowitt-Deser-Misner~ADM ! @14# equations, which are
not manifestly hyperbolic. The reason for this is twofold:
First, there exists an extensive literature concerning stable
and efficient numerical methods for solving hyperbolic sys-
tems of equations@15#. Some of these methods have been
successfully applied to hyperbolic formulations of general
relativity by Bona and Masso@6#. The second reason is that
a nonhyperbolic set of equations can present a fundamental
difficulty for black hole simulations that employ an AHBC
approach.

To understand this difficulty, consider a nonhyperbolic set
of equations, or even a hyperbolic set that has characteristics
lying outside the local light cone. Suppose such a system is
to be solved on a domain that includes a black hole. Al-
though the physics guarantees that nothing can emerge from
the hole, the equations do not know this, and nonphysical
~gauge! modes can propagate outward through the apparent
horizon. Solving such a system of equations on a restricted
domain that excludes the interior of the hole is mathemati-
cally well-posed only if appropriate boundary conditions are
imposed on the horizon. While it should be possible to im-
pose explicit horizon boundary conditions to fix the coordi-
nate system@16#, it is unclear which boundary conditions are
appropriate for dynamical variables, particularly in the gen-
eral three-dimensional case in which one may have a non-
spherical horizon and a significant amount of gravitational
radiation.

Now consider a hyperbolic set of equations with charac-
teristics that never lie outside the local light cone. In this
case, future-pointing characteristics inside the apparent hori-
zon ~which must be an outgoing nontimelike surface! can
never intersect the horizon itself, so that quantities at or out-
side the horizon cannot depend on the interior region. Con-
sequently, one can solve this set of equations on a restricted
domain that excludes the interior of the hole, and one can do
so without imposing boundary conditions on the horizon.

In this paper, we concentrate on the hyperbolic formula-
tion of Einstein’s equations originally proposed by Choquet-
Bruhat and York@9,10# ~CBY!. This formulation has several
advantageous features. First, the characteristics of this set of
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equations are extremely simple: they lie either along the light
cone or along the normal to the current time slice. This guar-
antees that no information, not even gauge information, can
propagate acausally. Second, the equations admit an arbitrary
shift vector, and the characteristics are independent of the
choice of shift. Finally, the fundamental variables in this
formulation are spatially covariant three-dimensional ten-
sors. These tensors directly measure spacetime curvature,
and from them one can form all components of the spacetime
Weyl tensor.

While we believe that the CBY formalism holds consid-
erable promise for numerical simulations, particularly when
combined with AHBC methods, there is no experience with
solving this particular set of equations on a computer. There-
fore, before expending the significant effort required to
implement the CBY equations in a full three-dimensional
code, it is important to demonstrate that such an approach is
feasible.

Accordingly, we have developed a numerical code that
solves the spherically symmetric Einstein equations using the
CBY formalism. We evolve a Schwarzschild spacetime us-
ing a causal differencing scheme, and we use an AHBC
method to avoid the central singularity. This is the first time
the CBY equations have been used to evolve a numerical
spacetime containing a black hole.

Our code runs in parallel, and is rigorously second-order
convergent. As described in detail elsewhere@17#, it can run
for times in excess of 1000M provided certain constraints are
regularly enforced. Our code is based on theDAGH @18# soft-
ware package originally developed for the Binary Black
Hole Grand Challenge Alliance. It is written inC11, and
usesFORTRAN-90 numerical kernels. TheDAGH system con-
tains support for adaptive mesh refinement, but we have not
yet taken advantage of this feature.

Our code provides an important demonstration that the
CBY formulation works well in numerical simulations. It
allows us to study the details of implementing the CBY
equations in a simple setting, and it provides a testing ground
for apparent horizon excising schemes and causal differenc-
ing algorithms. It also serves as an important check on a
code that solves the CBY equations in three spatial dimen-
sions, a code that is currently under development and will be
described elsewhere.

We employ results and methods specific to spherical sym-
metry as little as possible, so that our techniques are readily
generalizable to the three-dimensional case with Cartesian
coordinates. For example, we do not use logarithmic radial
coordinates@2,4# despite the great advantages they provide
for spherically symmetric codes. Likewise, although there
are many shift conditions that work well with AHBC meth-
ods in spherical symmetry@3#, we consider only those that
can be applied in the general three-dimensional case.

Recent progress has also been made in spherical symme-
try by choosing a global coordinate system that has desirable
properties near the horizon@7#. The spatial gauge used by@7#
depends on the concept of an areal radius, and is thus appli-
cable only in spherical symmetry. We forego such a coordi-
nate choice in favor of a more general approach.

In Sec. II, we summarize the CBY formulation of Ein-
stein’s equations, and we specialize this formulation to the
case of spherical symmetry. In Sec. III, we present a key

ingredient of our code: a causal differencing scheme that is
second-order convergent and has a stability criterion that is
independent of the shift vector. We describe this scheme in
detail for the general case of three spatial dimensions, and
then apply it to the spherically symmetric case. In Sec. IV we
describe the AHBC method employed at the inner boundary
of our grid, and the shift conditions that we use in order to
implement this method. These shift conditions not only allow
us to control the motion of the apparent horizon through the
grid, but they also prevent coordinate singularities that may
result from differential stretching or compression of the grid
in the remainder of the spacetime. In Sec. V we discuss the
boundary condition that we impose at the outer boundary of
our grid. This boundary is ideally at spatial infinity, but in
practice it is placed at a large but finite radius. In Sec. VI we
present the results of rigorous convergence tests using our
code. In Sec. VII, we close with a short discussion of our
results.

II. EQUATIONS

A. The CBY formalism

Here we summarize the fundamental equations and vari-
ables used in the CBY representation of general relativity.
For details of the CBY formulation and a derivation of the
equations, see@9#.

We write the metric in the usual 311 form

ds252N2dt21gi j ~dxi1b idt!~dxj1b jdt!, ~1!

whereN is the lapse function,b i is the shift vector, andgi j
is the three-metric on a spatial hypersurface of constantt.

Define the variables

Ki j [2
1

2
N21]̂0gi j , ~2a!

Li j [N21]̂0Ki j , ~2b!

Mki j[DkKi j , ~2c!

ai[Di~ lnN!, ~2d!

a0i[N21]̂0ai , ~2e!

ai j [D jai . ~2f!

HereD is the three-dimensional covariant derivative compat-
ible with the three-metricgi j , the time derivative operator is

]̂0[
]

]t
2£b , ~3!

and £ denotes a Lie derivative. The quantityKi j is the usual
extrinsic curvature.

If we assume that the time coordinate satisfies the har-
monic slicing condition

ht50, ~4!

then the vacuum evolution equations take the form
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]̂0gi j 522NKi j , ~5a!

]̂0Ki j 5NLi j , ~5b!

]̂0ai5Na0i , ~5c!

]̂0N52N2H, ~5d!

]̂0Gk
i j 52N~2a~ iK j )

k 2akKi j 12M ~ i j !
k2Mk

i j !, ~5e!

]̂0Li j 2NDkM
k
i j 52NJi j , ~5f!

]̂0Mki j2NDkLi j 5N@2~akK ~ i
l K j )l 1Kkl K ~ i

l aj )2Kk~ iK j )
l al

1K ~ i
l M jk)l 1Mkl ~ iK j )

l 2M l k~ iK j )
l !

1akLi j #, ~5g!

]̂0a0i2NDjai
j5NQi , ~5h!

]̂0ai j 2NDja0i5N@aja0i12a~ iK j )
k ak12M ~ i j !

kak2akakKi j

2akM
k
i j #, ~5i!

whereH is the trace ofKi j , X( i j )[(Xi j 1Xji )/2, the quanti-
ties Gk

i j are the connection coefficients associated with the
spatial covariant derivativeDk , and

Ji j [gi j @H~L2H21akak1ak
k!1Kkl ~4HKkl 22Lkl 24KmkK l

m22akal 22akl !#2Ki j ~L23H21ak
k12akak13Kkl Kkl !

2H~3Li j 16aiaj14ai j 110KikK j
k!12K ~ i

k @5L j )k18K j )l Kk
l 15aj )ak14aj )k#1ak~4M ~ i j !

k23Mk
i j !24a~ jM i )k

k,

~5j!

Qi[HMi j
j22K jkM i jk1aj~ai

j2Li
j1HKi

j22KikKk j!1ai~H21ajaj12aj
j22K jkK jk!. ~5k!

Equation~5d! is the harmonic slicing condition~4!.
There are considerably more variables and equations in

the CBY formalism than in the usual ADM formalism. How-
ever, the form of the equations is much simpler in the CBY
case. While the right-hand sides of Eqs.~5! contain many
terms, these terms consist solely of algebraic combinations
of the dynamical variables and involve no derivatives. Equa-
tions ~5f!–~5i! are tensor wave equations whose characteris-
tics are along the light cones. Equations~5a!–~5e! are even
simpler—they drag information normal to the surfaces of
constantt, that is, along zero-velocity~with respect to the
normal! characteristics. There are no other characteristics in
the system.

Although we have eliminated some gauge freedom in the
choice of lapse function by imposing the harmonic time slic-
ing condition~4!, the shiftb i is unspecified and completely
arbitrary. The shift is not a dynamical variable in this for-
malism, in the sense that it obeys no evolution equation, and
that it appears in Eqs.~5! only through the time derivative
operator]̂0. Instead, the shift is an auxiliary gauge variable
that may be freely chosen on each time slice, and may even
change discontinuously from one slice to the next.

In vacuum, the constraint equations include

05Li
i1Ki j Ki j 1aiai1ai

i , ~6a!

05M j
ji 2Mi j

j , ~6b!

05a0i1Hai1Mi j
j , ~6c!

05R̄i j 2Li j 1HKi j 22KikK j
k2aiaj2ai j , ~6d!

where R̄i j is the three-dimensional Ricci tensor. Equations
~6a! and ~6b! are the familiar Hamiltonian and momentum

constraints rewritten in terms of the CBY variables, and Eq.
~6c! is a result of harmonic time slicing. Equation~6d! is the
familiar ADM evolution equation forKi j , which in the CBY
picture becomes a constraint onLi j . Equations~2c!, ~2d!,
~2f!, and the usual relation betweenGk

i j and derivatives of
gi j are also constraints that must be satisfied at all times. All
constraints are preserved by the evolution equations.

B. Spherical symmetry

We write the spherically symmetric three-metric in the
general form

~3!ds25A2dr21B2r 2~du21sin2udf2!, ~7!

where (r ,u,f) are the usual spherical coordinates. Spherical
symmetry reduces the number of dynamical variables~in-
cluding the connection coefficients! from 67 to 16. Define

G rT[2BrGu
ur52BrGf

fr52
2A2

Br
G r

uu52
2A2

Brsin2u
G r

ff ,

~8a!

aT[au
u5af

f , ~8b!

LT[Lu
u5Lf

f , ~8c!

KT[Ku
u5Kf

f , ~8d!

MrT[Mr
u

u5Mr
f

f , ~8e!

MTr[M u
ur5Mf

fr , ~8f!

where the subscriptT denotes ‘‘transverse.’’ Then the
vacuum evolution equations~5! take the form
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]̂0A52NAKr
r , ~9a!

]̂0Br52NBrKT , ~9b!

]̂0Krr 5NLrr , ~9c!

]̂0KT5N~LT12KT
2!, ~9d!

]̂0N52N2~Kr
r12KT!, ~9e!

]̂0ar5Na0r , ~9f!

]̂0aT5NF ~2MTr2MrT2arKT!
ar

A2
1

G rT

2A2Br
a0r12KTaTG ,

~9g!

]̂0G r
rr 52

N

A2 @Krr ar1Mrrr #, ~9h!

]̂0G rT52N@KTG rT12Br~arKT1MrT!#, ~9i!

]̂0MTr5NFKT~2MTr1MrT1arKT!1
G rT

2BrS Lrr

A2
2LTD

1Kr
r~2MTr2MrT2arKT!G , ~9j!

]̂0arr 2N
]

]r
a0r

5N@2G r
rr a0r1ar~arK

r
r1Mrrr /A21a0r !#,

~9k!

]̂0a0r2
N

A2

]

]r
arr 5NFQr2

2G r
rr arr

A2
1

G rT

Br
~arr /A22aT!G ,

~9l!

]̂0Mrrr 2N
]

]r
Lrr 5N@~ar22G r

rr !Lrr

12Kr
r~Krr ar1Mrrr !#, ~9m!

]̂0MrT2N
]

]r
LT5N@2KT~arKT12MrT!1arLT#,

~9n!

]̂0Lrr 2
N

A2

]

]r
Mrrr 5NF2Jrr 2

3G r
rr M rrr

A2

1
G rT

Br
~Mrrr /A222MTr!G , ~9o!

]̂0LT2
N

A2

]

]r
MrT5NF2JT2

G r
rr M rT

A2

1
G rT

A2Br
~MrT1MTr!G , ~9p!

where

JT[~Lrr 1arr !~KT2Kr
r !

1

A22LTKr
r2

ar
2Kr

r

A2

22aT~Kr
r1KT!12KT

322Kr
rKT

212Kr
r
2KT2Kr

r
3

1
ar

A2
~4MTr23MrT!, ~9q!

Jrr [Lrr ~5Kr
r24KT!1ar

2~Kr
r210KT!12arr ~Kr

r23KT!

1Krr ~5Kr
r
226Kr

rKT12KT
2!2arS 3Mrrr

A2
18MrTD ,

~9r!

Qr[
Mrrr

A2
~2KT2Kr

r !12MrTKr
r1ar S ~ar

213arr 2Lrr !
1

A2

14aT22Kr
r~Kr

r23KT! D . ~9s!

The constraints~6! become

2LT1
Lrr

A2
12KT

21Kr
r
212aT1

1

A2 ~ar
21arr !50,

~10a!

MrT2MTr50, ~10b!

a0r1ar~2KT1Kr
r !1

Mrrr

A2
12MrT50, ~10c!

1

BrF2
]

]r
G rT1G r

rr G rTG2arr 2ar
21Krr ~2KT2Kr

r !2Lrr

50, ~10d!

1

2A2BrF2
]

]r
G rT1G r

rr G rT2
G rT

2

2Br G1
1

B2r 2 1KTKr
r2aT

2LT50. ~10e!

The additional constraints~2c!, ~2d!, ~2f!, and the usual
relation betweenGk

i j and derivatives ofgi j take the form

]

]r
Krr 22G r

rr Krr 2Mrrr 50, ~11a!

]

]r
KT2MrT50, ~11b!
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MTr2
G rT

2Br
~Kr

r2KT!50, ~11c!

]

]r
~ lnN!2ar50, ~11d!

aT2
G rT

2A2Br
ar50, ~11e!

]

]r
ar2arr 2G r

rr ar50, ~11f!

]

]r
A2AG r

rr 50, ~11g!

]

]r
Br2

G rT

2
50. ~11h!

III. CAUSAL EVOLUTION METHOD

Here we present the causal differencing method we use to
evolve Eqs.~5! from one spacelike hypersurface to the next.
Straightforward differencing schemes typically become un-
stable for large shifts, which are needed for the implementa-
tion of AHBC methods. Our method is second-order accurate
and has a stability criterion that is independent of the shift
vector. We emphasize that our method is not specific to Eqs.
~5!, but can be used to handle advective terms in any system
of first-order evolution equations. Similar causal differencing
methods have been used by@2,3,19# in order to treat large
shifts in the standard ADM formulation of Einstein’s equa-
tions.

Our causal differencing method is independent of the ac-
tual form of the shift vector. We only place two restrictions

on the shift: First, it must be a smooth functional of the
dynamical variables and of the space and time coordinates.
Second, it can be computed to second-order accuracy, given
second-order values for these variables and coordinates. The
particular prescription that we use for computing the shift
will be discussed in Sec. IV. In this section we assume only
that such a prescription exists.

Although the code described in this paper assumes spheri-
cal symmetry, our causal evolution method is general. In this
section we first describe our method for the general case of
three spatial dimensions plus time, and then we specialize to
spherical symmetry.

A. Overview of the method

Figure 1 shows an initial spatial hypersurface labeled by
t5t0, and a subsequent spatial hypersurface labeled by
t5t01Dt. We wish to evolve quantities defined at the point
(t0 ,xi) to the point (t01Dt,xi), that is, along the vectortW
shown in Fig. 1. Heret andxi are the coordinates defined in
Eq. ~1!, and the vectortW is given by

tW5NnW 1bW , ~12!

wherenW is the unit normal to the hypersurfacet5t0.

FIG. 1. Spacetime diagram illustrating the relationtW5 t̃W 1bW and

showing both the (t,xi) and the (t̃ , x̃ i) coordinate systems. The

vector t̃W must always lie within the light cone. This is not true for

the vectortW for a sufficiently large shiftbW .

FIG. 2. Two-dimensional spacetime diagrams illustrating the
two coordinate systems used in our causal differencing scheme.

Solid and dotted arrows denote the normal vectort̃W and the time

vector tW at each grid point on the initial time slice. Solid dots
represent grid points with particular values ofxi , and circles repre-

sent grid points with particular values ofx̃ i . The dots and circles
coincide att5t0, but not att5t01Dt. This is becausexi is con-

stant alongtW while x̃ i is constant alongt̃W . DiagramsA and B
represent the same spacetime. The only difference is thatA is
drawn in the computational coordinate system (t,xi), where the

time axis lies alongtW, and B is drawn in the normal coordinate

system (t̃ , x̃ i), where the time axis lies alongt̃W and is normal to
the spatial slices.
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A large shift vectorbW tends to cause stability problems in
most numerical schemes. Some schemes, including many
implicit ones, are unconditionally unstable whenevertW is
nontimelike, as is the case in Fig. 1. Other schemes can be
made stable for an arbitrary shift, but only at the expense of
a very small time stepDt.

In order to construct a differencing scheme that works for
an arbitrary shift, we introduce an auxiliary coordinate sys-
tem. First define a new timelike vector

t̃W [NnW [ tW2bW . ~13!

Then define new coordinates (t̃ , x̃ i) such that

t̃ 5t, ~14!

x̃ i5 x̃ i~xi ,t !, ~15!

£ t̃ x̃ i50, ~16!

and such that the spatial coordinatesx̃ i coincide withxi at
t5t0. The new coordinates and their relationship to the vec-

tors tW and t̃W are shown in Fig. 1. Partial derivatives with
respect to the new coordinates (t̃ , x̃ i) are given by

]

] t̃
5

]

]t
2b i

]

]xi , ~17!

]

] x̃ i
5

]xj

] x̃ i

]

]xj . ~18!

Our method works by breaking up each time step into two
substeps, as illustrated in Fig. 2: First, we evolve quantities

along the vectort̃W , that is, we evolve using the (t̃ , x̃ i) co-
ordinate system, from the points on the slicet5t0 in Fig. 2
to the points on the slicet5t01Dt that are labeled by
circles. We then complete the time step by interpolating from
the points labeled by circles to those labeled by dots. These
two substeps will be considered separately in Secs. III C and
III D below.

B. Transforming into the „ t̃ , x̃ i
… system

Each evolution equation in the system~5! can be written
in the form

]̂0T2Q
]

]xi Si5R, ~19!

where T, the quantity being evolved, is not necessarily a
scalar, but may be a coordinate-dependent object. We wish
to rewrite Eq.~19!, which is defined in the computational
coordinate system (t,xi), in terms of the normal coordinate
system (t̃ , x̃ i).

If we consider all quantities to be definedin the (t,xi)
basis, we can rewrite the]̂0 operator in the (t̃ , x̃ i) coordi-
nate system as follows:

]̂05£ t̃

5£t2£b

5
]

]t
2£b

5
]

]t
2b i

]

]xi2S £b2b i
]

]xi D
5

]

] t̃
2S £b2b i

]

]xi D , ~20!

so that Eq.~19! becomes

]

] t̃
T2Q

] x̃ j

]xi

]

] x̃ j
Si5L̂bT1R, ~21!

where

L̂b[£b2b i
]

]xi ~22!

5£b2b i
] x̃ j

]xi

]

] x̃ j
. ~23!

Here we have used Eqs.~3!, ~13!, and~17!. The first two
lines of Eq.~20! are coordinate independent, but in the third
line we have assumed the (t,xi) basis in order to write
£t5]/]t. In the fourth line we have separated the Lie deriva-
tive alongbW into two pieces: The advective piece,b i]/]xi , is
the one responsible for the instability that often arises when
one tries to evolve alongtW with a large shift vector. This
piece is eventually absorbed into the time derivative]/] t̃ .
The remaining piece,L̂b , when operating on some quantity
T, describes the change inT induced by the change in basis
vectors alongbW . The operatorL̂b vanishes when operating
on a scalar. Furthermore,L̂bT does not actually contain any
derivatives ofT, but only contains derivatives ofbW . There-
fore, no spatial derivatives ofT appear in Eq.~21!.

Note that Eq.~21! is not the same as Eq.~19! transformed
into the (t̃ , x̃ i) basis. By splitting the Lie derivative alongbW
into two pieces, we have derived an equation that describes
the evolution ofT defined with respect to the(t,xi) basis

along a path of constantx̃ i . The coordinate system used to
define tensor components, (t,xi), is different from the coor-
dinate system used to label spacetime points during the evo-
lution, ( t̃ , x̃ i).

Note also that we have introduced an additional auxiliary
variable: the Jacobian] x̃ j /]xi that appears in Equation~21!.
From Eqs.~17! and ~18!, we can find the rate of change of

the Jacobian along the vectort̃W :

]

] t̃
F] x̃ i

]xj G 5
] x̃ i

]xk

] x̃ l

]xj

]bk

] x̃ l
. ~24!

To compute the Jacobian, we evolve this equation along with
Eq. ~21!. Because we setx̃ i5xi at the beginning of each
time stept5t0, the initial value of] x̃ j /]xi on each time step
is the Kroeneker deltad i

j .

Finally, we require derivatives ofbW , which appear in the
operatorL̂b and also on the right-hand side of Eq.~24!.
Assuming that we have some prescription for choosing the
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shift given the values ofxi , t, and the dynamical variables at
each grid point, we simply use this prescription to compute
bW , and then we obtain its derivatives either analytically~if
the shift is analytic! or by finite differencing.

C. Step 1: Evolve along t̃¢

The first step of our causal differencing method is to
evolve Eq.~21! and the auxiliary equation~24! along the

vector t̃W , from t̃ 5t0 to t̃ 5t01Dt. Although this can be
done using any standard differencing scheme, the algorithm
described in this section assumes a scheme with two time
levels; a three-level scheme~such as leapfrog! requires a
slight modification of the algorithm. We use a Macormack
predictor-corrector method, which we illustrate with a simple
wave equation in spherical symmetry, written in first-order
form in the (t̃ , r̃ ) coordinate system:

]

] t̃
P2

]

] r̃
Q5R, ~25!

]

] t̃
Q2

]

] r̃
P5S. ~26!

Here R and S are arbitrary functions ofP, Q, r̃ , and t̃ .
Given a discrete set of uniformly spaced grid pointsr̃ i , we
denoteP andQ at grid pointi and time t̃ 5 t̃ n by Pi

n andQi
n

respectively. To compute P and Q at time
t̃ 5 t̃ n115 t̃ n1D t̃ , we first compute initial guessesP̄ and
Q̄ using the ‘‘predictor’’ step

P̄i
n115Pi

n1
D t̃

D r̃
~Qi 11

n 2Qi
n!1R~Pi

n ,Qi
n!, ~27!

Q̄i
n115Qi

n1
D t̃

D r̃
~Pi 11

n 2Pi
n!1S~Pi

n ,Qi
n!, ~28!

whereD r̃ 5 r̃ i 112 r̃ i . The quantitiesP̄i
n11 and Q̄i

n11 are
first-order accurate in both space and time. Notice that the
finite difference approximation to the spatial derivative is
one-sided.

Once we have the predicted quantities, we then compute
P andQ at time t̃ 5 t̃ n115 t̃ n1D t̃ to second order in both
space and time using the ‘‘corrector’’ step:

Pi
n115

1

2S P̄i
n111Pi

n1
Dt

D r̃
~Q̄i

n112Q̄i 21
n11!

1R~ P̄i
n11 ,Q̄i

n11!D , ~29!

Qi
n115

1

2S Q̄i
n111Qi

n1
Dt

D r̃
~ P̄i

n112 P̄i 21
n11!

1S~Pi
n11 ,Q̄i

n11!D . ~30!

The spatial derivatives are taken in the opposite direction to
the predictor step. This ensures that the first-order error terms
introduced by the one-sided derivatives in the corrector step
cancel those produced by the one-sided derivatives in the
predictor step. This cancellation would be spoiled by substi-
tuting Qn11 for Q̄n11 in the spatial derivative term of Eq.
~29! or by substitutingPn11 for P̄n11 in the spatial deriva-
tive term of Eq.~30!. However, it is irrelevant for accuracy
or stability whether the right-hand sidesR andS in the cor-
rector step are computed using predicted values ofP andQ
as in Eq.~29! or using corrected values ofP and predicted
values ofQ as in Eq.~30!. We use corrected values in the
right-hand sides whenever possible because it minimizes the
memory required for storing temporary variables on the
computer.

The above Macormack scheme is stable~disregarding the
boundaries, which will be discussed in Sec. V! whenever
D t̃ ,D r̃ . For a wave equation with characteristic speedv,
the stability condition for the above scheme is the familiar
Courant conditionvD t̃ ,D r̃ .

To obtain a corrected value for a particular variable, we
require predicted values for all quantities appearing in the
equation for that variable. For our prototypical equation~21!,
in order to compute a corrected value forT, we must have
predicted values not only forT, Q, Si , andR, but also for the
Jacobian] x̃ j /]xi and forbW and its derivatives~which appear
in the operatorL̂b). The predicted value of the Jacobian is
obtained by evolving Eq.~24! to first order using the Macor-
mack predictor step. The predicted value of the shift is ob-
tained by using our shift prescription to computebW from the
predicted values of the dynamical variables.

D. Step 2: Interpolation

One entire numerical time step should take variables de-
fined on discrete points with particular values ofxi , and com-
pute quantities at thesamevalues ofxi but at a later time. In
Fig. 2, this corresponds to taking values defined at the dis-
crete points on the slicet5tn and computing quantities at the
solid dots on the slicet5tn1Dt. However, when we evolve

along t̃W as described in Sec. III C, we compute quantities at
the points that correspond to the circles on the slice
t5tn1Dt in Fig. 2.

Our causal differencing method therefore requires a sec-
ond step, namely, interpolation of our dynamical variables
from the (t̃ , x̃ i) coordinate system back into the (t,xi) co-
ordinate system, that is, from the circled points to the dotted
points on the slicet5tn1Dt in Fig. 2. The values ofxi at the
dotted points and the values ofx̃ i at the circled points are
known; both are the same as the values ofxi at the appro-
priate grid points on the initial slice. To perform the interpo-
lation, we must also know either the values ofxi at the
circled points or the values ofx̃ i at the dotted ones.

From Eq.~17!, the change in the coordinatexi along the

vector t̃W is given by

]xi

] t̃
52b i . ~31!
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Therefore, if we evolve Eq.~31! along with Eq.~21! using
the Macormack scheme, we obtain the value ofxi at each of
the circled grid points att5tn1Dt in Fig. 2. This allows us
to interpolate quantities from the circles to the dots, working
in the xi coordinate system.

Note, however, that the circled grid points are, in general,
not uniformly spaced inxi , as shown in Fig. 2~a!. Instead, the
dotted grid points are uniformly spaced inxi . While this
poses no difficulty for the spherically symmetric case dis-
cussed in this paper, in the general three-dimensional case
interpolating from an arbitrary set of points onto a uniform
grid is a nontrivial numerical problem that cannot be treated
very efficiently. Much easier and much less costly in terms
of computer time is to interpolate from a uniform grid to an
arbitrary set of points.

To handle this difficulty, notice that if we evolve along

the vectortW instead of along the vectort̃W , the coordinatesxi

remain constant and the coordinatesx̃ i vary. The change in
x̃ i along the vectortW is given by

] x̃ i

]t
5

] x̃ i

]xj
b j , ~32!

where we have used Eq.~17!. Therefore, if we evolve Eq.
~32! along the vectortW using the Macormack scheme, we
obtain the value ofx̃ i at each of the dotted grid points at
t5tn1Dt in Fig. 2. This allows us to interpolate quantities
from the circled points to the dotted ones, working in thex̃ i

coordinate system. The circled points are uniformly spaced
in x̃ i , as shown in Fig. 2~b!. We thus interpolate from a
uniform grid ~in x̃ i) to an arbitrary set of points. This can be
done relatively easily in three spatial dimensions.

There is a subtlety in evolving Eq.~32! along the vectortW
using the Macormack scheme: In order to implement the
corrector step of Eq.~32!, we require predicted values of the
quantitiesb j] x̃ i /]xj at the dotted points, but these quantities
are only known at the circled points. However, from the
predictor step of Eq.~32!, we already havepredictedvalues
of x̃ i at the dotted points. Therefore, we use these values to
interpolate the predicted values ofb j] x̃ i /]xj from the
circled points to the dotted ones. In this case, we are again
interpolating from a uniform grid to an arbitrary set of
points.

E. Implementation in spherical symmetry

In spherical symmetry, we solve Eqs.~9! on a numerical
grid that extends from some valuer 5r min just inside the
apparent horizon to a large radiusr 5r max. We denote our
numerical grid points byr i , wherei runs fromi min to i max,
corresponding to the innermost and outermost grid points.
We use a zone-centered grid, so that the innermost and out-
ermost grid points do not correspond tor min and r max. In-
stead, we set

r i5r min1S i 2 i min1
1

2DDr , ~33!

where

Dr 5
r max2r min

i max2 i min11
. ~34!

When evolving along t̃W , the spherically symmetric
vacuum evolution equations~9! take the form

]

] t̃
A52NAKr

r1A
] r̃

]r

]

] r̃
b r , ~35a!

]

] t̃
Br52NBrKT , ~35b!

]

] t̃
Krr 5NLrr 12Krr

] r̃

]r

]

] r̃
b r , ~35c!

]

] t̃
KT5N~LT12KT

2!, ~35d!

]

] t̃
N52N2~Kr

r12KT!, ~35e!

]

] t̃
ar5Na0r1ar

] r̃

]r

]

] r̃
b r , ~35f!

]

] t̃
aT5NF ~2MTr2MrT2arKT!

ar

A2
1

G rTa0r

2A2Br
12KTaTG ,

~35g!

]

] t̃
G r

rr 52
N

A2 @Krr ar1Mrrr #1G r
rr

] r̃

]r

]

] r̃
b r

1
] r̃

]r

]

] r̃
S ] r̃

]r

]

] r̃
b r D , ~35h!

]

] t̃
G rT52N@KTG rT12Br~arKT1MrT!#1G rT

] r̃

]r

]

] r̃
b r ,

~35i!

]

] t̃
MTr5NF2MTr~KT1Kr

r !1~MrT1arKT!~KT2Kr
r !

1
G rT

2BrS Lrr

A2
2LTD G1MTr

] r̃

]r

]

] r̃
b r , ~35j!

]

] t̃
arr 2N

] r̃

]r

]

] r̃
a0r

5N@2G r
rr a0r1ar~arK

r
r1Mrrr /A21a0r !#

12arr

] r̃

]r

]

] r̃
b r , ~35k!
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]

] t̃
a0r2

N

A2

] r̃

]r

]

] r̃
arr

5NFQr2
2G r

rr arr

A2
1

G rT

Br
~arr /A22aT!G

1a0r

] r̃

]r

]

] r̃
b r , ~35l!

]

] t̃
M rrr 2N

] r̃

]r

]

] r̃
Lrr

5N@~ar22G r
rr !Lrr 12Kr

r~Krr ar1Mrrr !#

13Mrrr

] r̃

]r

]

] r̃
b r , ~35m!

]

] t̃
M rT2N

] r̃

]r

]

] r̃
LT5N@2KT~arKT12MrT!1arLT#

1MrT

] r̃

]r

]

] r̃
b r , ~35n!

]

] t̃
Lrr 2

N

A2

] r̃

]r

]

] r̃
M rrr 5NF2Jrr 2

3G r
rr M rrr

A2

1
G rT

Br S Mrrr

A2
22MTrD G

12Lrr

] r̃

]r

]

] r̃
b r , ~35o!

]

] t̃
LT2

N

A2

] r̃

]r

]

] r̃
M rT

5NF2JT2
G r

rr M rT

A2
1

G rT

A2Br
~MrT1MTr!G ,

~35p!

where the right-hand sides~9q!–~9s! are unchanged, and we
have included theL̂b terms explicitly. Note the second de-
rivative ofb r in the equation forG r

rr . This term results from
applying £b to a nontensorial quantity. Becauseb r is not an
unknown in the system of Eqs.~35!, but is instead an auxil-
iary variable that may be, for example, given analytically as
a function of the coordinates, this second derivative should
not spoil the hyperbolicity of the system.

In spherical symmetry, Eqs.~24!, ~31!, and~32! become

] r̃

]t
5

] r̃

]r
b r , ~36a!

]r

] t̃
52b r , ~36b!

]

] t̃
F] r̃

]r G5S ] r̃

]r 2D ]b r

] r̃
. ~36c!

Equations~36! provide values for] r̃ /]r to be used in the
corrector step, as well as coordinate information for the in-
terpolation step.

We use cubic interpolation for causal differencing. This is
accurate to fourth order inD r̃ . Quadratic interpolation
would also suffice, but linear interpolation would not yield a
scheme that was second-order convergent in time. The rea-
son is that linear interpolation makes anO(D r̃ )2 error on
each time step, so that afterN time steps the error is of order
D r̃ . This is because for a fixed total timet total that we wish
to evolve, the Courant condition requiresN;t total(D r̃ )21.

IV. SHIFT VECTOR AND INNER BOUNDARY
CONDITION

In this section we describe how we choose a shift vector
bW , and how this choice affects how we handle the inner
boundary of our computational domain.

Because both the CBY formalism and the causal differ-
encing scheme discussed in Sec. III place no restrictions on
bW , we are free to choose any shift we wish. Although setting
bW 50 is the simplest choice, it is often useful to employ a
nonzero shift vector. One technique is to use the shift to
simplify the form of the Einstein equations, for example, to
eliminate particular components of the spatial metric@20#.
The disadvantage of this approach is that it involves an ac-
tual change in the equations being solved. Instead of Eqs.
~5!, one would be solving a different~but physically equiva-
lent! system of equations that would include the shift as a
dynamical variable, and would no longer be hyperbolic.

We instead use the shift for a different purpose: to allow
us to truncate our computational domain just inside the ap-
parent horizon, so that we evolve only the exterior region.
We thus avoid the spacetime singularity inside the black
hole. If we were to attempt such a truncation withbW 50,
numerical grid points originally located just outside the ap-
parent horizon would soon fall in, and any grid points lo-
cated inside the apparent horizon would eventually encounter
the singularity. This is because for zero shift, numerical grid
points follow the world lines of normal observers, and these
world lines are necessarily timelike.

A. Shift at the inner boundary

We force the inner boundary of our grid,r 5r min , to
hover within a grid spacing of the apparent horizon. To ac-
complish this for a static black hole, we choosebW near the
horizon to point along the outward normal to the horizon,
and we choose its magnitude so that the local coordinate
speed of light in that direction is zero. The horizon is then
approximately stationary with respect to the spatial coordi-
nates. For the spherically symmetric case, the local coordi-
nate speed of light in the outgoing radial direction is given
by
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c5
dr

dt
5

N

A
2b r , ~37!

so we setb r at the horizon equal toN/A.
We track the apparent horizon at each time step, and re-

tain only the grid points that lie on the outside. This is done
via a masking algorithm that labels grid points outside the
apparent horizon as valid, and those inside as invalid. Invalid
points are never used in the computation, just as if those
points did not exist. Because we use a cell-centered grid, the
inner boundaryr 5r min is located half a grid spacing inside
the innermost valid grid point.

Numerical errors typically cause the horizon to drift
through the grid, even if one tries to lock it in place by
forcing b r5N/A. While this drift seems to cause minimal
difficulty with either the stability or accuracy of the code, for
coarse-resolution runs it produces a small but distracting
gauge pulse each time the horizon crosses a grid zone. Ho-
rizon drift can be eliminated by introducing a feedback
mechanism@21# that adjusts the magnitude of the shift to
compensate. We do this as follows: If we wish to force the
horizon to remain at some radiusr 0, but we find the horizon
is actually at radiusr AH , then we set

b r5
N

A
1

r AH2r 0

Dt
, ~38!

whereb r , N, and A refer to values at the horizon location
r AH . This feedback mechanism is not necessary for suffi-
ciently fine grid spacing.

While locating an apparent horizon on a numerically gen-
erated time slice is a difficult problem in multidimensions
@22–25#, it is trivial in spherical symmetry. The marginal
outer trapped surface equation

Dis
i1sisjKi j 2Ki

i50, ~39!

wheresi is the spatial unit normal to the surface, reduces to

q~r !5G rT /A22BrKT50 ~40!

for a spherically symmetric system. Here we have used our
variables defined in Eqs.~7! and ~8!. We find the apparent
horizon by first evaluatingq(r ) at each grid point, and then
by using three-point interpolation to locate the outermost
root that satisfiesq8(r ).0. When locating the apparent ho-
rizon after the Macormack predictor step, we must be sure to
use the value ofr and not r̃ in evaluating the functionq(r )
at each grid point.

In principle, one can also use a shift condition at the ap-
parent horizon to move a black hole through the numerical
grid. This could be accomplished by adjusting the shift so
that grid points on one side of the hole fall into the horizon,
and grid points on the other side emerge from it. A similar
idea could in principle be applied to rotating black holes or
systems with more than one black hole.

B. Inner boundary condition on Eqs. „9…

Treating the inner boundary correctly is a primary moti-
vation for using a hyperbolic formulation of the Einstein
equations. The spherically symmetric CBY equations have

only three characteristics at each spacetime point. These lie
along the ingoing and outgoing null rays, and along the nor-

mal vector t̃W . A boundary condition is required only at a
point that cannot obtain information from one or more of the
characteristics passing through it. For example, the outer
boundary cannot obtain information from the ingoing null
characteristics that it intersects, because these characteristics
originate from outside the computational domain, where we
have no data. To update quantities at the outer boundary, this
information must be provided by a boundary condition.
Similarly, the inner boundary ordinarily requires a boundary
condition because it cannot obtain information from the out-
going null characteristics that it intersects. However, if the
inner boundary follows an outgoing spacelike or null trajec-
tory, then each point on the inner boundary can obtain infor-
mation from all three characteristics passing through it, so a
boundary condition is not required.

This is the essence of an AHBC scheme for treating the
inner boundary: by forcing the inner boundary to move along
with the apparent horizon, we force it along an outgoing
nontimelike path. Therefore, there is no need to impose an
explicit inner boundary condition. Regardless of the math-
ematical formulation of Einstein’s equations being used,
general relativity tells us that when the inner boundary fol-
lows an outgoing spacelike or null path, information with
physical content cannot penetrate this boundary from the in-
side, since this information cannot propagate outside the
light cone. A key advantage of a hyperbolic formulation with
only simple ~nonspacelike! characteristics is that in such a
formulation, this statement applies to gauge information as
well.

The way we solve Eqs.~9! without imposing an explicit
condition at the inner boundary is by simply ignoring the
innermost grid point during the interpolation step of our
causal differencing scheme. In the case where the inner
boundaryr 5r min moves with respect to the (t̃ , r̃ ) coordi-
nate a distance less thanD r̃ during each time step, the in-
terpolation becomes an extrapolation at the innermost point.
This is always the case in our simulation because of the
Courant limit: Because the inner boundary, which moves
along with the apparent horizon, has a velocity with respect
to the (t̃ , r̃ ) coordinate system of approximatelyN/A, the
inner boundary can never move farther thanD r̃ during a
time step without violating the Courant condition
Dt,(A/N)D r̃ . One could avoid this extrapolation by using
an implicit differencing scheme@19,4# to get around the
Courant condition, but such a scheme requires much more
computer time than explicit schemes, especially in the mul-
tidimensional case.

C. Shift in the remainder of the spacetime

Once a shift criterion at the apparent horizon has been
chosen, one must then determine the shift in the remainder of
the spacetime. At spatial infinity, one presumably would like
the shift to approach zero, so that the spacetime metric com-
ponents approach Minkowski values. Or perhaps, in the case
of spacetimes with nonzero angular momentum, one would
like the asymptotic shift to describe a co-rotating frame.
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However, given the shift at infinity and at the apparent hori-
zon, it is not clear how to choose the shift elsewhere.

One possibility is to use a parametrized analytic function
whose parameters are set so that the shift behaves appropri-
ately near the apparent horizon and far from the black hole.
For example, when evolving a single black hole in spherical
symmetry we have tried the Gaussian form

b r5Ce2~r 2r c!2/w2
, ~41!

whereC, r c , andw are chosen so thatb r is equal toN/A at
the apparent horizon,]b r /]r is equal to](N/A)/]r at the
apparent horizon, andb r is smaller than some threshold at
the outer boundary of the grid. Although this choice results
in a second-order convergent evolution, we find that the grid
points tend to compress or stretch where the shift gradients
are large, and eventually coordinate singularities develop
that cause the simulation to terminate. Similarly, one can
choose

b r5
N

2A
$12tanh@~r 2r c!/w#%, ~42!

so that the shift is equal toN/A far inside some arbitrary
radius r 5r c , and zero far outsider 5r c . In this case, the
grid points become compressed nearr 5r c as one evolves in
time, and again the simulation terminates.

It therefore appears that in addition to a prescription for
specifying the shift at the apparent horizon and at infinity,
one must impose some additional restriction on the shift that
ensures that it will not induce any coordinate pathologies
elsewhere. Such a restriction can be provided by two differ-
ent elliptic shift conditions that were introduced for the very
purpose of minimizing coordinate strain caused by a shift

vector. The first is the minimal distortion condition@26#,
which can be written in the form

D jD jb
i1

1

3
DiD jb

j1R̄j
i b j52D jFNS K j

i 2
1

3
gj

i Kk
kD G .

~43!

The minimal distortion shift minimizes the average change
of shape of a spatial volume element as it is dragged from
one time slice to the next. A related choice is the minimal
strain condition@26#, which can be written in the form

D jD jb
i1DiD jb

j1R̄j
i b j52D j~NKj

i !. ~44!

The minimal strain shift minimizes the average change in the
three metricgi j as one evolves from one time slice to the
next. It differs from the minimal distortion shift in that it
takes into account the change in size of spatial volume ele-
ments as well as their change in shape.

The downside of these shift conditions is that they require
one to solve elliptic equations. This can be costly in terms of
computer time, especially in three dimensions. It may be
possible to use a parametrized analytic function to mimic one
of these conditions, or it may suffice to use an approximate
solution. However, since it appears that these conditions give
us a useful shift vector, we will adopt them in the spherically
symmetric case, where the computational burden is not so
severe.

Both the minimal distortion and minimal strain conditions
work well in spherical symmetry, as shown in Sec. VI. They
prevent grid points from becoming locally compressed or
stretched to the point where coordinate singularities form.
Using the variables defined in Eqs.~2! and ~8!, we find that
the minimal distortion equation~43! takes the form

S ] r̃

]r
D 2

]2

] r̃ 2
b r1FG r

rr 1
G rT

Br
2S ] r̃

]r
D 2

]2r

] r̃ 2G] r̃

]r

]

] r̃
b r1b rS ] r̃

]r

]

] r̃
1

3

2

G rT

Br D S G r
rr 2

G rT

2Br D
5NFar~Kr

r2KT!1
Mrrr

A2
2MrT13MTrG , ~45!

and the minimal strain equation~44! becomes

S ] r̃

]r
D 2

]2

] r̃ 2
b r1FG r

rr 1
G rT

Br
2S ] r̃

]r
D 2

]2r

] r̃ 2G] r̃

]r

]

] r̃
b r1b rF ] r̃

]r

]

] r̃
G r

rr 1
G rT

Br S G r
rr 2

G rT

2Br D G5NFarK
r
r1

Mrrr

A2
12MTrG .

~46!

We have written both equations in ther̃ coordinate system and included the factors] r̃ /]r and]2 r̃ /]r 2 because the shift must
be computed not only after the corrector step of the Macormack scheme whenr̃ 5r , but also after the predictor step, when
r̃ Þr .

Equations~45! and ~46! require boundary conditions at both ends of the numerical grid. We impose the condition

] r̃

]r

]

] r̃
b r1

nb r

r
50 ~n>1! ~47!

at the outer boundaryr 5r max so that the spacetime is asymptotically Minkowski, and we impose
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b r5
N

A
~48!

at the apparent horizon, so that the apparent horizon is stationary with respect to the coordinates.
Both the minimal distortion and minimal strain equations can be written in the general form

]2

] r̃ 2
b r12Q

]

] r̃
b r1Pb r5R. ~49!

We solve this equation using the usual three-point finite difference approximation

1

~D r̃ !2
~b i 11

r 22b i
r1b i 21

r !1
1

D r̃
Qi~b i 11

r 2b i 21
r !1Pib i

r5Ri . ~50!

In order to retain second-order accuracy, we must be careful always to impose the boundary condition~47! at the point
r 5r max, which may be different from the outer boundary of the grid,r̃ 5r max. We write Eq.~47! in the second-order accurate
finite-difference form

S ] r̃

]r i
D 1

D r̃
@~2l11!b i 11

r 24lb i
r1~2l21!b i 21

r #1
n

r max
@l~l11!b i 11

r 12~12l2!b i
r1l~l21!b i 21

r #50, ~51!

where

l[
r̃ max2 r̃ i

D r̃
. ~52!

Here r̃ max is the value of r̃ corresponding to the point
r 5r max, and Eqs.~51! and ~52! are evaluated ati 5 i max.
Combining Eqs.~50! and~51! to eliminate the fictitious grid
point i max11 yields a boundary condition forb i max

r in terms

of b i max21
r .

To impose the boundary condition~48! at the horizon, we
use the finite-difference expression

l~l11!b i 11
r 12~12l2!b i

r1l~l21!b i 21
r 52

N

AU
r̃ 5 r̃ AH

,

~53!

where

l[
r̃ AH2 r̃ i

D r̃
. ~54!

Here r̃ AH is the r̃ -coordinate location of the apparent hori-
zon, and Eqs.~53! and ~54! are evaluated at the value ofi
such thati 21 is the innermost grid point that lies outside the
horizon. Combining Eqs.~50! and ~53! to eliminate the grid
point at i 11 yields a boundary condition forb i 21

r in terms
of b i

r .
We currently use two methods to solve the linear system

of equations that results from Eqs.~50!, ~51!, and ~53!. We
use a standard tridiagonal algorithm@27# when running in
serial, or when running in parallel using a small number of
processors. Although very efficient, this is a serial algorithm,
so it begins to dominate the computation time as the number
of processors increases. For a large number of processors, we

instead use a multigrid technique@27,28# which is parallel-
ized with the help of theDAGH system.

V. OUTER BOUNDARY

The only variables that require a boundary condition at
the outer boundaryr 5r max are the quantitiesLrr , LT , Mrrr ,
MrT , a0r , andarr , which propagate along the ingoing and
outgoing null characteristics. All other variables evolve

along the characteristics parallel to the vectort̃W , and are
never differentiated with respect tor̃ in Eqs.~35!.

To apply a boundary condition on these variables, we
assume that for larger , the functionf for which we need a
boundary condition behaves like

f 5
C1

r n 1
C2

r n11
1••• ~55!

for some integern and constantsCj . We then impose

r
]2

]r 2 ~r nf !12
]

]r
~r nf !50 ~56!

at the outer boundary. This boundary condition truncates the
series~55! after the second term, that is, it uses the correct
values ofC1 andC2, but setsCj to zero forj .2. We set the
value ofn for each variable according to its analytic falloff
rate for the static solution.

We call this boundary condition an ‘‘extended Robin’’
method because of its similarity to the familiar Robin bound-
ary condition

]

]r
~r nf !5C0 , ~57!

which one often imposes on a function that behaves like
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f 5C01
C1

r n 1•••. ~58!

Because Eq.~56! involves approximating the large-r be-
havior of the functionf , it introduces errors that are no
longer second-order in the grid discretization, but fall off
rapidly as one increases the radius of the outer boundary.
These errors result solely from the fact that Eq.~56! is not
exactly satisfied by the initial data. To obtain a second-order
convergent scheme, we effectively eliminate these approxi-
mation errors by increasingr max until the second-order error
terms dominate.

Because we use a cell-centered grid, the outer boundary is
located at half a grid spacing beyond the outermost grid
point: r max5r i max11/2. Therefore, to ensure second-order

convergence inDr , we must impose Eq.~56! not at the out-
ermost grid pointr i max

, but at the outer boundaryr max. This

is necessary becauser i max
depends on the grid spacingDr .

We impose Eq.~56! by using the following finite-
difference approximations for the first and second deriva-
tives:

]2

]r 2 Yi 11/25
1

24~Dr !2 ~7Yi 23240Yi 221102Yi 212112Yi

143Yi 11!1O~Dr !3, ~59a!

]

]r
Yi 11/25

1

24Dr
~Yi 2223Yi 21221Yi123Yi 11!1O~Dr !3.

~59b!

Substituting these expressions in Eq.~56! with i 5 i max yields
an equation that can be solved for the quantityr nf at the
fictitious grid point i 5 i max11. Using this quantity, we can
now evaluate the usual one-sided first derivative operator in
Eqs.~27! and ~28! at the outermost grid pointi 5 i max.

This boundary condition needs to be applied only during
the predictor step of the Macormack scheme discussed in
Sec. III C. This is because the corrector step uses a back-
wards one-sided first derivative operator that is well-defined
for the outermost grid point. Therefore, we need not worry
about whether we user or r̃ in Eqs.~56! and ~59!, because
the normal and computational coordinate systems coincide at
the beginning of the predictor step.

The above boundary condition works well in the case of a
spherically symmetric, static solution, but it does not prop-
erly handle wave propagation. This includes not only physi-
cal gravitational waves, which are absent in spherical sym-
metry, but also wavelike gauge modes, which are present in
our numerical solution. While there exist many methods for
imposing wavelike outer boundary conditions, we find for
this one-dimensional problem that it suffices to simply move
the outer boundary far from the origin.

VI. DIAGNOSTIC TESTS

In this section we present results of rigorous convergence
tests performed with our code.

In all cases below, we evolve a Schwarzschild black hole
in spherical symmetry. We begin each simulation with time-
symmetric initial data corresponding to thev50 plane of the

Kruskal diagram. The initial three-metric is written in isotro-
pic coordinates:

~3!ds25S 11
M

2r D
4

@dr21r 2~du21sin2udf2!#, ~60!

where M is the mass of the black hole, so that the initial
values ofA, B, G r

rr , G rT , Krr , KT , Mrrr , and MrT are
given by

A5B5S 11
M

2r D
2

, ~61!

G r
rr 52

M

r 2S 11
M

2r D
21

, ~62!

G rT52S 11
M

2r D S 12
M

2r D , ~63!

Krr 5KT5Mrrr 5MrT50. ~64!

With harmonic slicing, one is free to choose the initial value
of the lapse function. We choose

N5S 11
M

r D 21

, ~65!

so that the lapse agrees with the canonical Schwarzschild
expression at larger . This choice of lapse yields

ar5
M

r 2S 11
M

r D 21

, ~66!

arr 52
2M

r 3 S 11
M

r D 22S 11
M

2r D
21S 11

M

2r
2

M2

4r 2D ,

~67!

aT5
M

r 3S 11
M

r D 21S 11
M

2r D
25S 12

M

2r D , ~68!

and the constraint equations~10! and ~11! give us

Lrr 52
M2

r 4 S 11
M

2r D
22S 11

M

r D 22S 31
3M

r
1

M2

2r 2D ,

~69!

LT5
M2

r 4 S 11
M

2r D
26S 11

M

r D 21S 11
M

4r D , ~70!

MTr5a0r50. ~71!

We truncate our numerical grid just inside the event ho-
rizon at r 5M /2, and evolve only the exterior region.

A. Self-consistent convergence

We have designed our code to be second-order accurate in
both space and time, so that if we evolve for a fixed timet,
our accumulated truncation error should beO(Dr )2, where
Dr is our grid discretization. Any deviation from second-
order convergent behavior would indicate a mistake in one of
our methods or a coding error.
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To test whether our code is indeed second-order conver-
gent, we evolve the same initial data for the same timet
using different grid discretizations, and we compare the re-
sults. LetX(t;Dr ) be the value of some quantityX at timet,
computed with grid discretizationDr . For second-order con-
vergent behavior,

X~ t;Dr !5X~ t ! true1~Dr !2X~ t !error1•••, ~72!

whereX(t) true is the true solution, and (Dr )2X(t)error is the
leading-order truncation error. Hence

X~ t;Dr /2!2X~ t;Dr !52
3

4
~Dr !2X~ t !error1•••,

~73a!

4@X~ t;Dr /4!2X~ t;Dr /2!#52
3

4
~Dr !2X~ t !error1•••,

~73b!

16@X~ t;Dr /8!2X~ t;Dr /4!#52
3

4
~Dr !2X~ t !error1•••,

~73c!

and so on, so that each of the left-hand sides of Eqs.~73! are
equal to leading order.

Figures 3 and 4 demonstrate that the relation~73! holds
for our code. These figures show results using five different
grid resolutions, each differing by a factor of 2. They were
produced by evolving tot55.625M using our AHBC

method with a minimal distortion shift. This time corre-
sponds to 240 time steps on the coarsest grid, and 3840 time
steps on the finest. The outer boundary is placed atr 564M .
Results from different resolutions are subtracted and scaled
according to Eq.~73!, and plotted together.

If only second-order error terms were present, the four
plots in each figure would coincide. This is indeed the case
except at smallr , where the plots differ slightly because of
third-order and higher error terms, which are present but not
explicitly given in Eqs.~73!. These error terms vanish faster
than (Dr )2 asDr→0, as indicated by the convergence of the
plots toward each other as the grid resolution is increased.

Figure 5 shows the second-order error in the quantity

FIG. 3. Second-order error in the variableaT at time
t55.625M . The labelaT(N) denotes the value ofaT computed
using N grid points per unitr . The apparent horizon is located at
approximatelyr 5M /2. All four plots coincide except at small val-
ues of r , where higher-order error terms become significant. The
portions of the graph at smallr whereaT appears to become con-
stant represent grid points that are not included in the evolution
because they are inside the apparent horizon. The values ofaT at
these grid points are simply set to the value at the innermost sig-
nificant point for purposes of the plot.

FIG. 4. Second-order error in the variableLrr at time
t55.625M , for the same case as shown in Fig. 3.

FIG. 5. Second-order error in the variabler 2b r at time
t55.625M , for the same case as shown in Fig. 3.

56 6333NUMERICAL EVOLUTION OF BLACK HOLES WITH A . . .



r 2b r , for the same case shown in Figs. 3 and 4. This dem-
onstrates that our solution of the minimal distortion equation
is second-order convergent, and that it satisfies the outer
boundary condition toO(Dr )2. Higher-order error terms are
also present in this figure. They converge to zero as the grid
resolution is increased.

B. Convergence of constraint equations

Even if a numerical code is second-order convergent in
the self-consistent manner described above, it still may not
converge to the analytic solution. To test whether this is the
case, we evaluate the left-hand sides of the constraint equa-
tions ~10! and ~11!, which are not explicitly solved in the
code except on the initial time slice. If we are indeed solving
Einstein’s equations, these quantities should vanish like
(Dr )2.

Figure 6 shows left-hand side of Eq.~10b! for the same
case shown in Figs. 3–5, and for five different grid resolu-
tions. For each finer grid discretization, this quantity is mul-
tiplied by a factor of 4, so that for strict second-order con-
vergence, the five plots should coincide. Because they do
coincide except for smallr where higher-order error terms
are significant, we see that the momentum constraint is sat-
isfied toO(Dr )2. The same is true for the other constraints.

There is an additional test we can use to determine
whether we are solving the correct equations: For a static
black hole, the total mass inside each radiusr , which is a
well-defined locally measurable quantity in spherical sym-
metry, should be conserved. The degree to which mass con-
servation is violated provides a good indicator for the overall
accuracy of the code. An invariant expression for the mass
inside a spherical surface of symmetry is@29#

M[S A16p D S 12
¹aA¹aA

16pA D , ~74!

whereA is the area of the surface. In terms of our variables,
this expression reduces to

M5
Br

2 F12S G rT

2A D 2

1~BrKT!2G . ~75!

Figure 7 shows the quantity

DM[
M ~ t !2M ~ t50!

M ~ t50!
~76!

at time t55.625M as calculated from Eq.~75!, for five grid
discretizations. This quantity is multiplied by factors of 4 for
each finer grid discretization. The mass of the system is con-
served toO(Dr )2.

VII. DISCUSSION

While the CBY formulation of Einstein’s equations at first
glance looks more complicated than the usual ADM formu-
lation, in most respects it is actually much simpler, particu-
larly from a numerical point of view. Each equation in the
CBY system is either a wave equation with an advective
term, or a simple advective equation. In thex̃ i coordinate
system that is used for causal differencing, the equations are
even simpler: They are either wave equations or first-order
ordinary differential equations in time. Admittedly, the right-
hand sides of these equations are complicated and nonlinear,
but because these right-hand sides contain no derivatives,
they do not make numerical solution of the equations any
more difficult. The large number of evolution equations in
the CBY formalism is also not a serious drawback because
the equations are all of the same form, so they can all be
solved by the same method.

FIG. 6. Momentum constraint at timet55.625M , for the same
case as shown in Fig. 3. In the plot labels,Jr(N) denotes the value
of the left-hand side of Eq.~10b! computed usingN grid points per
unit r .

FIG. 7. The quantityDM at timet55.625M , for the same case
as shown in Fig. 3.
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Unlike a previous work@4# in which we forced the hori-
zon to sit at a particular grid point, here we allow the horizon
to lie at some arbitrary location on the grid. This is a closer
approximation to what we expect in the three-dimensional
case, where one would most likely use Cartesian coordinates
to describe a spherical hole. Likewise, in the same work we
imposed explicit boundary conditions on the apparent hori-
zon in order to solve elliptic constraint equations outside the
hole. Here we do not impose explicit boundary conditions
@except for the shift via Eq.~48!# because in the three-
dimensional case it is not only difficult to impose such con-
ditions on a nonspherical boundary, but also the number of
boundary conditions needed for solving all of the constraints
in three dimensions exceeds the number of boundary condi-
tions available at the horizon.

A key milestone in three-dimensional black hole simula-
tions is the ability to stably move a hole through the numeri-
cal grid. This is arguably a necessary precursor to simulating
binary orbits. Techniques for moving holes through the grid
could be tested in spherical symmetry using our code, and
we plan such tests in the future. To preserve spherical sym-
metry, the motion in this case would be the expansion or
contraction~in coordinate space! of the hole rather than the
translation of the hole’s center, but since the location of the

center is irrelevant for AHBC methods, many of the same
methods should apply to both cases.

The code as described here tends to lose accuracy at times
greater than 10 or 20M , whereM is the mass of the black
hole. Because this behavior is relatively independent of nu-
merical details such as grid resolution, we believe that it may
be due to either gauge modes or unphysical rapidly growing
solutions of the evolution equations that do not satisfy the
constraints. One way of solving this problem is to enforce
several of the constraint equations after each time step. With
this modification, we can integrate pastt51000M . However,
the details of constraint-violating solutions, gauge modes,
and methods for dealing with them are beyond the scope of
this paper and will be dealt with elsewhere@17#.
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