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We describe a numerical code that solves Einstein’s equations for a Schwarzschild black hole in spherical
symmetry, using a hyperbolic formulation introduced by Choquet-Bruhat and York. This is the first time this
formulation has been used to evolve a numerical spacetime containing a black hole. We excise the hole from
the computational grid in order to avoid the central singularity. We describe in detail a causal differencing
method that should allow one to stably evolve a hyperbolic system of equations in three spatial dimensions
with an arbitrary shift vector, to second-order accuracy in both space and time. We demonstrate the success of
this method in the spherically symmetric cak80556-282(197)06022-(

PACS numbds): 04.25.Dm, 02.70.Bf, 04.70.Bw

I. INTRODUCTION Arnowitt-Deser-Misner(ADM) [14] equations, which are
not manifestly hyperbolic. The reason for this is twofold:
A key goal of numerical relativity is to determine the First, there exists an extensive literature concerning stable
gravitational radiation produced by the inspiral and coalesand efficient numerical methods for solving hyperbolic sys-
cence of two black holes in a decaying binary orbit. Thetems of equation$15]. Some of these methods have been
importance of solving this problem is heightened by the possuccessfully applied to hyperbolic formulations of general
sibility that gravitational wave detectors such as the Laserelativity by Bona and Mass[6]. The second reason is that
Interferometric Gravitational Wave Observatofy.IGO), a nonhyperbolic set of equations can present a fundamental
VIRGO, and GEO may observe gravitational waveformsdifficulty for black hole simulations that employ an AHBC
from binary black hole coalescence within the next decadeapproach.
Not only could a comparison of measured waveforms with To understand this difficulty, consider a nonhyperbolic set
numerical simulations provide a crucial strong-field test ofof equations, or even a hyperbolic set that has characteristics
general relativity, but in addition, accurate templates prodying outside the local light cone. Suppose such a system is
duced by these simulations could significantly increase théo be solved on a domain that includes a black hole. Al-
sensitivity of waveform measurement§] and reduce the though the physics guarantees that nothing can emerge from
uncertainties in astrophysical parameters derived from gravithe hole, the equations do not know this, and nonphysical
tational wave data. (gauge modes can propagate outward through the apparent
Although constructing a numerical simulation of binary horizon. Solving such a system of equations on a restricted
black hole coalescence is a difficult and unsolved problemgomain that excludes the interior of the hole is mathemati-
several recent advances have brought us closer to a solutiorally well-posed only if appropriate boundary conditions are
One key advance is the development of so-called appareithposed on the horizon. While it should be possible to im-
horizon boundary conditiofAHBC) methodg2-7], which  pose explicit horizon boundary conditions to fix the coordi-
treat black holes by evolving only the regions of spacetimenate systeni16], it is unclear which boundary conditions are
that lie outside apparent horizons. These methods take adppropriate for dynamical variables, particularly in the gen-
vantage of the fact that information cannot emerge fromeral three-dimensional case in which one may have a non-
within the apparent horizon of a black hdlghich, assuming spherical horizon and a significant amount of gravitational
cosmic censorship, is contained within the event hopizon radiation.
Without AHBC schemes, the spacetime singularity that in- Now consider a hyperbolic set of equations with charac-
evitably forms inside a black hole eventually causes numeriteristics that never lie outside the local light cone. In this
cal simulations to terminate, typically on a time scale ofcase, future-pointing characteristics inside the apparent hori-
order 10 to 108, whereM is the mass of the system. For zon (which must be an outgoing nontimelike surfacan
this reason, AHBC methods may be crucial for solving thenever intersect the horizon itself, so that quantities at or out-
binary black hole problem, where one hopes to evolve twaside the horizon cannot depend on the interior region. Con-
holes long enough to see them orbit, coalesce, and eventuakbgquently, one can solve this set of equations on a restricted
settle into a final state containing a singkerr) black hole.  domain that excludes the interior of the hole, and one can do
Another promising development is the construction ofso without imposing boundary conditions on the horizon.
manifestly hyperbolic formulations of Einstein’s equations In this paper, we concentrate on the hyperbolic formula-
[8—13. Not only do these formulations offer insights into the tion of Einstein’s equations originally proposed by Choquet-
mathematical structure of general relativity, but they mayBruhat and Yor{9,10] (CBY). This formulation has several
also be better-suited for numerical solution than the usuahdvantageous features. First, the characteristics of this set of
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equations are extremely simple: they lie either along the lightngredient of our code: a causal differencing scheme that is
cone or along the normal to the current time slice. This guarsecond-order convergent and has a stability criterion that is
antees that no information, not even gauge information, caindependent of the shift vector. We describe this scheme in
propagate acausally. Second, the equations admit an arbitra@¢tail for the general case of three spatial dimensions, and
shift vector, and the characteristics are independent of théhen apply it to the spherically symmetric case. In Sec. IV we
choice of shift. Finally, the fundamental variables in this describe the AHBC method employed at the inner boundary
formulation are spatially covariant three-dimensional ten-Of our grid, and the shift conditions that we use in order to
sors. These tensors directly measure spacetime curvatufgIplement this method. These shift conditions not only allow

and from them one can form all components of the spacetimk® {0 control the motion of the apparent horizon through the
Weyl tensor grid, but they also prevent coordinate singularities that may

While we believe that the CBY formalism holds consid- result from differential stretching or compression of the grid

erable promise for numerical simulations, particularly when

in the remainder of the spacetime. In Sec. V we discuss the
combined with AHBC methods, there is no experience Withboundary condition that we impose at the outer boundary of
solving this particular set of equations on a computer. There=

our grid. This boundary is ideally at spatial infinity, but in
fore, before expending the significant effort required toPractice itis placed at a_Iarge but finite radius. In Sec. Viwe
implement the CBY equations in a full three-dimensionalP'€Sent the results of rigorous convergence tests using our
code, it is important to demonstrate that such an approach 2d€: In Sec. ViI, we close with a short discussion of our

feasible. results.

Accordingly, we have developed a numerical code that
solves the spherically symmetric Einstein equations using the Il. EQUATIONS
CBY formalism. We evolve a Schwarzschild spacetime us- A The CBY formalism

ing a causal differencing scheme, and we use an AHBC ) ) )
method to avoid the central singularity. This is the first time Here we summarize the fundamental equations and vari-
the CBY equations have been used to evolve a numericﬁbles used in the CBY I’epresentatlon of general relat|V|ty.

spacetime containing a black hole. For details of the CBY formulation and a derivation of the
Our code runs in parallel, and is rigorously second-ordequations, sef9].
convergent. As described in detail elsewhglrd), it can run We write the metric in the usua3l form

for times in excess of 1000 provided certain constraints are
regularly enforced. Our code is based on theH [18] soft-
ware package originally developed for the Binary Black
Hole Grand Challenge Alliance. It is written io++, and
usesFORTRAN-90 numerical kernels. TheAGH system con-
tains support for adaptive mesh refinement, but we have not

ds?=—N2dt?+g;;(dx + g'dt)(dx + gldt), (1)

whereN is the lapse function3' is the shift vector, andj;
is the three-metric on a spatial hypersurface of condtant
Define the variables

yet taken advantage of this feature. 1 .

Our code provides an important demonstration that the Kij=— ENflaogij , (29
CBY formulation works well in numerical simulations. It
allows us to study the details of implementing the CBY .
equations in a simple setting, and it provides a testing ground Lij=N""d0Kj , (2b)
for apparent horizon excising schemes and causal differenc-
ing algorithms. It also serves as an important check on a Myij=DkKjj , (20
code that solves the CBY equations in three spatial dimen-
sions, a code that is currently under development and will be a;=D;(InN), (2d)
described elsewhere.

We employ results and methods specific to spherical sym- agi= N‘léoai ) L)
metry as little as possible, so that our techniques are readily
generalizable to the three-dimensional case with Cartesian a;=Dja. (2f)

coordinates. For example, we do not use logarithmic radial
coordinateq2,4] despite the great advantages they provideHereD is the three-dimensional covariant derivative compat-
for spherically symmetric codes. Likewise, although thereible with the three-metrig;; , the time derivative operator is
are many shift conditions that work well with AHBC meth-
ods in spherical symmetr8], we consider only those that - d
can be applied in the general three-dimensional case. do= E_Eﬂv ©)
Recent progress has also been made in spherical symme-
try by choosing a global coordinate system that has desirablgnd £ denotes a Lie derivative. The quankity is the usual
properties near the horizdi]. The spatial gauge used Bl  extrinsic curvature.
depends on the concept of an areal radius, and is thus appli- |f we assume that the time coordinate satisfies the har-
cable only in spherical symmetry. We forego such a coordimonic slicing condition
nate choice in favor of a more general approach.
In Sec. Il, we summarize the CBY formulation of Ein- Ot=0, 4
stein’s equations, and we specialize this formulation to the
case of spherical symmetry. In Sec. Ill, we present a keyhen the vacuum evolution equations take the form
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;709ij:_2NKij , (Sa) ;90Mkij_NDkLij:N[Z(akKéKj)/-i_ Kk/Kéaj)—Kk“Kj/)a/
. +K(/iMjk)/+Mk/(in/)_M/k(in/))
&oKiijLij y (5b)

+ayLi;l, (59
éoai = NaOl s (50) bOaOi —N Djaf = NQ, , (Sh)
éoNZ—NZH, (Sd) ;7Oaij_NDjaOi:N[ajaOi+Za(iK]k)ak+2M(ij)kak—akakKij

—a M~ ], (5i)

;90Fkij == N(za(lK:()_akKlj +2M(|J)k_ Mkij)v (Se) whereH is the trace OKij y X(I])E(le +XJI)/21 the quanti'
) ties Fkij are the connection coefficients associated with the
doLij—ND MK = —NJ; (5f)  spatial covariant derivativ®,, and

Jij=0;[H(L—H2+aka+af) + KX (4HK, — 2L, — 4K KT — 2aya, — 2a,,) ] — K;; (L — 3H2+ af+ 2a*a, + 3K K )
—H(3Ljj+6aa; + 4ay; + 10K, K¥) + 2K K[ 5L+ 8K Ki + 5aj)a+ 4aj)] + ax(4M i) — 3M¥;) — daMiyK,

(5))
Qi=HM;;/ = 2KI*M;j +aj(a] — LI + HK] = 2K KM) + a;(H?+ ala; + 2al — 2KI*K ). (5K)
|
Equation(5d) is the harmonic slicing conditio¥). constraints rewritten in terms of the CBY variables, and Eq.

There are considerably more variables and equations if6¢) is a result of harmonic time slicing. Equatié®d) is the
the CBY formalism than in the usual ADM formalism. How- familiar ADM evolution equation foK;; , which in the CBY
ever, the form of the equations is much simpler in the CBYpicture becomes a constraint &g . Equations(2c), (2d),
case. While the right-hand sides of EqS) contain many (2f), and the usual relation betwe(ﬂ‘f”- and derivatives of
terms, these terms consist solely of algebraic combinationg;; are also constraints that must be satisfied at all times. All
of the dynamical variables and involve no derivatives. Equaconstraints are preserved by the evolution equations.
tions (5f)—(5i) are tensor wave equations whose characteris-

ti_cs are along the Iig_ht cones. Equatiaa®)—(5€) are even B. Spherical symmetry

simpler—they drag information normal to the surfaces of ) . i o
constantt, that is, along zero-velocitywith respect to the We write the spherically symmetric three-metric in the
norma) characteristics. There are no other characteristics igeneral form

the system. (3)d2= A2dr2 + B 2(d 62+ sirPod b?), 7)

Although we have eliminated some gauge freedom in the

phoice Of. [apse function. by_imposing th? harmonic time slic- oo t,60,®) are the usual spherical coordinates. Spherical
ing condition(4), the shiftg' is unspecified and completely symmetry reduces the number of dynamical variatiles

arbitrary. The shift is not a dynamical variable in this for- oj,qing the connection coefficientom 67 to 16. Define
malism, in the sense that it obeys no evolution equation, and

that it appears in Eqg5) only through the time derivative 2A2 2A2
operatord,. Instead, the shift is an auxiliary gauge variable I'ir=2BrT"’;=2BrT'?, =— Br Vo=~ granzg! ¢
that may be freely chosen on each time slice, and may even (83
change discontinuously from one slice to the next.
In vacuum, the constraint equations include ar=a’y=a’,, (8b)
=L K. ia+al
O=L{+K'Kj+a'aj+a, (6a) Ly=L%=L%,, 80
=Mi.—M..|
0=Mi =M/, (6b) Kr=K’=K?,, (8d)
=an . L
0=aa+Ha+ My, (60 Mr=M.%=M,?,, (89
=y k
0=Rij—Lij+HKij—2KikK]~—aiaj—aij, (Gd) MTrEMHt‘)r:M(/)dwa (8]‘)

whereR_ij is the three-dimensional Ricci tensor. Equationswhere the subscripfT denotes “transverse.” Then the
(6a) and (6h) are the familiar Hamiltonian and momentum vacuum evolution equation$) take the form



56 NUMERICAL EVOLUTION OF BLACK HOLES WITH A ... 6323
doA=—NAK', (9a) . N 9 ' Mt
) dobr= 22 5 Mer=N| = Jr= A2
doBr=—NBrKy, (9b)
. PLELEVRRVIRY I
oK =NL;, (90 A%Br " ™ P
JoKr=N(Lr+2Kr?), (9d)  where
N — N2 T 1 a 2K’
JdoN=-N (K +2Ky), (9¢) ‘]TE(er+arr)(KT_Krr)ﬁ_LTKrr_ rA2 I’
éoar: Naor, (gf)

T

- a, I,
doar=N| (2M1,—M 1 —a,K1)— + ——a, +2Kar|,
oaT Tr rT r’NT A2 ZAZBI’ Or TAT

(99)

A N
190F = E[Krrar—FMrrr]a (Qh)
dol'rr=—N[KT ;7 +2Br(a,Kr+M1)],  (9i)

er
E‘LT)

: (9)

Uit

doM1,=N| K1(2M1,+ M1 +a,Ky) + >Br

+ Krr(ZMTr_ M t—aKr)

17

—a
ar 7o

508.” —N

=N[-I"ag +a,(a;K' + M, /A2+aOr)]a

(9k)
5 N d 2" a, Tp
7020~ 3z 52N Q= =+ g (A /AT man) |,
(9N
~ J .
aOMrrr_NﬁerzN[(ar_zr re)Lrr
+2Krr(Krrar+Mrrr)], (9m)
N 0
aOMrT_NO-;_rLT:N[ZKT(arKT+2MrT)+arLT],
(9n)
5 N d 3I‘rrerrr
c90"”_F5Mrrr:|\l _Jrr_T

1—‘II'T 2
+§(Mrrr IA“—=2M+,) |, (90)

—2ar(K' +Kyp) +2K3—2K" K2+ 2K 2K —K', 3
a
+E(4MTr_3MrT)v (99)
= er(SKrr_4KT) + a-rz(Krr_ 10Ky) + 2arr(Krr_ 3K1)

r2 r 2 M
+K, (5K"c=6K" K1+ 2K:%) — &, T

1
(ar2+ 3arr - er)ﬁ

= M r r
Q= A2 (2K =K' ) +2M 1K' + 3,

+4aT_2Krr(Krr_3KT)). (98)

The constraint$6) become

Lor 2 Kr2 1.2
2LT+E+2KT +K'?+2ar+ 5 (a’+a,) =0,

(109
Myr—M,=0, (10b)
Mrrr
ag +a,(2Ks+K" )+ 2 +2M,1=0, (100
J r 2 r
a _é,_rFrT'I'F rrFrT Q& '}'Krr(ZKT_K r)_l—rr
=0, (109
1 J ) r+? 1 :
2a%8r|ar el g Tz TR A

The additional constraint€2c), (2d), (2f), and the usual
relation betweerfkij and derivatives of;; take the form

J
_Krr_zrrrrKrr_MrrrIOv

T (113

J
a_rKT_MrT:O' (11b)
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FIG. 1. Spacetime diagram illustrating the relationt + 3 and

showing both the t(x') and the {,X') coordinate systems. The FIG. 2. Two-dimensional spacetime diagrams illustrating the

= L . . two coordinate systems used in our causal differencing scheme.
vector t must always lie within the light cone. This is not true for y 9

the vectort for a sufficiently large shiﬂé. Solid and dotted arrows denote the normal vedtoand the time

vector t at each grid point on the initial time slice. Solid dots
represent grid points with particular valuesxdf and circles repre-

't —

M+, — 2I;> (K',—Kp) =0, (119 sent grid points with particular values af. The dots and circles

r coincide att=tg,, but not att=t,+ At. This is because' is con-

9 stant alongt while X' is constant alongt. DiagramsA and B

—(InN)—a,=0, (110 represent the same spacetime. The only difference is Ahat

ar drawn in the computational coordinate systetyx'), where the
time axis lies alongf, and B is drawn in the normal coordinate

ar— Ter a. — (119  System . "), where the time axis lies alonty and is normal to

2A%Br the spatial slices.

) on the shift: First, it must be a smooth functional of the
Ear—arr—r w3 =0, (11 dynamical variables and of the space and time coordinates.
Second, it can be computed to second-order accuracy, given
J second-order values for these variables and coordinates. The
EA—AFHFO, (119 particular prescription that we use for computing the shift
will be discussed in Sec. IV. In this section we assume only
that such a prescription exists.

iBr— h =0. (11h Although the code described in this paper assumes spheri-

ar 2 cal symmetry, our causal evolution method is general. In this

section we first describe our method for the general case of

I. CAUSAL EVOLUTION METHOD three spatial dimensions plus time, and then we specialize to

. ) spherical symmetry.
Here we present the causal differencing method we use to

evolve Egs(5) from one spacelike hypersurface to the next.
Straightforward differencing schemes typically become un-
stable for large shifts, which are needed for the implementa- Figure 1 shows an initial spatial hypersurface labeled by
tion of AHBC methods. Our method is second-order accuraté=t,, and a subsequent spatial hypersurface labeled by
and has a stability criterion that is independent of the shift=t,+ At. We wish to evolve quantities defined at the point
vector. We emphasize that our method is not specific to Ed$t,,x') to the point €,+At,x), that is, along the vector

(5), but can be used to handle advective terms in any systeho\n in Fig. 1. Heré andx' are the coordinates defined in
of first-order evolution equations. Similar causal differencing >
Eg. (1), and the vectot is given by

methods have been used [8,3,19 in order to treat large
shifts in the standard ADM formulation of Einstein’s equa-
tions.

Our causal differencing method is independent of the ac- .
tual form of the shift vector. We only place two restrictions wheren is the unit normal to the hypersurfate t,,.

A. Overview of the method

t=Nn+3, (12)
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A large shift vectorﬁ tends to cause stability problems in _d
most numerical schemes. Some schemes, including many _ﬁ_Eﬁ

implicit ones, are unconditionally unstable wheneteis
nontimelike, as is the case in Fig. 1. Other schemes can be _7_ i___(£ -8 __)
made stable for an arbitrary shift, but only at the expense of ot X' B X!
a very small time stept.
In order to construct a differencing scheme that works for _7 _ ( £,— _5_) (20)
an arbitrary shift, we introduce an auxiliary coordinate sys- at B ax')’
tem. First define a new timelike vector
so that Eq(19) becomes

T=Nn=t-23. (13) =

J ax!l o P A

Then define new coordinates (x') such that ET_Q§ ﬁs =LpTHR, @D
T=t, (14  where

Xi=X(x1t) (15) L,=£ —gii (22)

v BB gx

£7x'=0, (16) axl g
and such that the spatial coordinatescoincide withx' at s P ax' gx! @3

t=ty. The new coordinates and their relationship to the vec- )
Here we have used Eg8), (13), and(17). The first two

torst and t are shown in Fig. 1. Partial derivatives with lines of Eq.(20) are coordinate independent, but in the third

respect to the new coordinates, k') are given by line we have assumed the,X') basis in order to write
9 9 P £,=dl dt. In the fourth line we have separated the Lie deriva-
oo B' ok (17)  tive along into two pieces: The advective pieg@ 7/dx', is

the one responsible for the instability that often arises when
5 axd g one tries to evolve alonj with a large shift vector. 'Lhis
— == . (18)  piece is eventually absorbed into the time derivatieét .
ax'  ax' o% The remaining piece;, when operating on some quantity
Our method works by breaking up each time step into ton’ describes tt]e change Tninquced t,)y the change in be.lsis
substeps, as illustrated in Fig. 2: First, we evolve quantitie¥€ctors alongs. The operator’, vanishes when operating
along the vectoﬁ, that is, we evolve using theT(')Zi) co- ona scalar. Furthermoré&,,T does not actually contain any

ordinate system, from the points on the SltG’eto in F|g 2 derivatives Oﬂ-, but Only contains derivatives q" There-

to the points on the slicé=t,+At that are labeled by fore, no spatial derivatives of appear in Eq(21).

circles. We then complete the time step by interpolating from Note that Eq(21) is not the same as EL9) transformed

the points labeled by circles to those labeled by dots. Thesato the (t,x') basis. By splitting the Lie derivative along

two substeps will be considered separately in Secs. Ill C an@hto two pieces, we have derived an equation that describes

Il D below. the evolution of T defined with respect to thi,x') basis
along a path of constant'. The coordinate system used to
B. Transforming into the (t,Xx') system define tensor components,X'), is different from the coor-

Each evolution equation in the syste8) can be written dinate system used to label spacetime points during the evo-

in the form lution, (t,X).
Note also that we have introduced an additional auxiliary

variable: the Jacobiafx!/ox' that appears in Equatio21).
From Egs.(17) and (18), we can find the rate of change of

the Jacobian along the vector

- J
doT— Qﬁ_XrSI =R, (19

where T, the quantity being evolved, is not necessarily a

scalar, but may be a coordinate-dependent object. We wish a[ax'] ax ax’ 9B

to rewrite Eq.(19), which is defined in the computational =T | T ok e (24
coordinate systemt(x'), in terms of the normal coordinate gtLoXt]  gx ax! ax’

system (t,x'). To compute the Jacobian, we evolve this equation along with

If we consider all quantities to be definéal the (t,x')

basis we can rewrite the, operator in the {,X') coordi-
nate system as follows:

Eq. (21). Because we set'=x' at the beginning of each
time stept=t,, the initial value ofgx!/dx' on each time step
is the Kroeneker delta) .

:90:£Y Finally, we require derivatives q@ which appear in the

operatorZﬁ and also on the right-hand side of E@4).
=£—£p Assuming that we have some prescription for choosing the
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shift given the values af', t, and the dynamical variables at The spatial derivatives are taken in the opposite direction to
each grid point, we simply use this prescription to computethe predictor step. This ensures that the first-order error terms

,é, and then we obtain its derivatives either analyticdify

the shift is analytig or by finite differencing.

C. Step 1: Evolve along'tz

introduced by the one-sided derivatives in the corrector step
cancel those produced by the one-sided derivatives in the
predictor step. This cancellation would be spoiled by substi-

tuting Q"** for Q" in the spatial derivative term of Eq.
(29) or by substitutingP" ! for P"*1 in the spatial deriva-

The first step of our causal differencing method is 1046 term of Eq.(30). However, it is irrelevant for accuracy

evolve Eqg.(21) and the auxiliary equatio24) along the
vector t, from T =ty to T =ty+At. Although this can be

or stability whether the right-hand sid&andS in the cor-
rector step are computed using predicted valueB ahdQ

done using any standard differencing scheme, the algorithras in Eq.(29) or using corrected values & and predicted
described in this section assumes a scheme with two timgalues ofQ as in Eq.(30). We use corrected values in the

levels; a three-level schemsuch as leapfrogrequires a

right-hand sides whenever possible because it minimizes the

slight modification of the algorithm. We use a Macormackmemory required for storing temporary variables on the
predictor-corrector method, which we illustrate with a simplecomputer.

wave equation in spherical symmetry, written in first-order

form in the (t,r) coordinate system:

d d
—P——=0Q=R, (25
ot ar
d 1%
—Q——=P=S. (26)
ot ar

Here R and S are arbitrary functions oP, Q, r, and t.
Given a discrete set of uniformly spaced grid points we
denoteP andQ at grid pointi and timet =t , by P andQ?
respectively. To compute P and Q at time
T=T1,.,=1,+AT, we first compute initial guessd3 and
Q_using the “predictor” step

Bn+1l_ pn £ n _An non
P —Pi+A~r-(Qi+1 Q) +R(P,Qf), (27

At
(P —PH+S(P!.QY, (29

~n-+1 n
Mo+ —
AT

An+1

where AT =T, ,—T;. The quantitiesP!** and Q"'""* are

The above Macormack scheme is statdlisregarding the
boundaries, which will be discussed in Sec. Whenever

AT<AT. For a wave equation with characteristic speed
the stability condition for the above scheme is the familiar

Courant conditiorv AT <AT.

To obtain a corrected value for a particular variable, we
require predicted values for all quantities appearing in the
equation for that variable. For our prototypical equati@h),
in order to compute a corrected value fby we must have
predicted values not only foF, Q, S, andR, but also for the
Jacobiaryx!/ax' and for3 and its derivativegwhich appear
in the operatorﬁﬁ). The predicted value of the Jacobian is
obtained by evolving Eq24) to first order using the Macor-
mack predictor step. The predicted value of the shift is ob-
tained by using our shift prescription to compuﬁe‘rom the
predicted values of the dynamical variables.

D. Step 2: Interpolation

One entire numerical time step should take variables de-
fined on discrete points with particular valuesxafand com-
pute quantities at theamevalues ofx' but at a later time. In
Fig. 2, this corresponds to taking values defined at the dis-
crete points on the slide=t,, and computing quantities at the
solid dots on the slice=t,+ At. However, when we evolve

first-order accurate in both space and time. Notice that th@long't". as described in Sec. Il C, we compute quantities at
finite difference approximation to the spatial derivative isthe points that correspond to the circles on the slice

one-sided.

t=t,+At in Fig. 2.

Once we have the predicted quantities, we then compute Our causal differencing method therefore requires a sec-
P andQ attimeT=T,.,=1,+AT to second order in both ONd step, namely, interpolation of our dynamical variables

space and time using the “corrector” step:

1/ — At _

P i=g| PITH Pl = (@71 QMY
+R<P_i”“._i”“>), (29
1 — At _

=g QU QM = (PTT-PI)

+S(PP+1,Q_?+1)). (30)

from the (t,X') coordinate system back into thg,x') co-
ordinate system, that is, from the circled points to the dotted
points on the slicé=t,+ At in Fig. 2. The values of' at the
dotted points and the values af at the circled points are
known; both are the same as the values'oit the appro-
priate grid points on the initial slice. To perform the interpo-
lation, we must also know either the values xf at the

circled points or the values of' at the dotted ones.
From Eq.(17), the change in the coordinaé along the

vectort is given by

—=-p" (31)
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Therefore, if we evolve Eq31) along with Eq.(21) using F max— T min
the Macormack scheme, we obtain the value'cdit each of Ar= i1 (34)
the circled grid points at=t,+ At in Fig. 2. This allows us max. min
to interpolate quantities from the circles to the dots, working . = ) )
in thex' coordinate system. When evol\_/lng alon_g t, the spherically symmetric
Note, however, that the circled grid points are, in generalYacuum evolution equation9) take the form
not uniformly spaced ix', as shown in Fig. @). Instead, the
dotted grid points are uniformly spaced k. While this
poses no difficulty for the spherically symmetric case dis- g
cussed in this paper, in the general three-dimensional case
interpolating from an arbitrary set of points onto a uniform
grid is a nontrivial numerical problem that cannot be treated
very efficiently. Much easier and much less costly in terms
of computer time is to interpolate from a uniform grid to an
arbitrary set of points. ~
To handle this difficulty, notice that if we evolve along i,.Krr=NLr,+2K a_riﬂr, (350

N = . re ~
the vectort instead of along the vectdr, the coordinateg' aIrar
remain constant and the coordinatesvary. The change in
i T d
x' along the vectot is given by —TKT:N(LT+ 2K+2), (350

A= —NAK +AL 2 g 35
AaTZp (esa
T

2 >

J
~=Br=—NBrkr, (35b)

S (32
ot g J
—N=—N?*K", +2Ky), (350
where we have used E@L7). Therefore, if we evolve Eq. at
(32) along the vectort using the Macormack scheme, we =
obtain the_ vallue ofx’ gt each of the (_Jlotted grid pointglat iar=Na0,+a,a—ri~ﬁr, (351)
t=t,+ At in Fig. 2. This allows us to interpolate quantities at a 4y

from the circled points to the dotted ones, working in He

cogvr_dinate system. The circled points are uniformly spaced a, T,rao

in x', as shown in Fig. @). We thus interpolate from a _TaT:N (ZMTr_MrT_arKT)E"}_ 2 ABY +2Krar|,
uniform gr@d (in x") to an arbitrary set of_ points. This can be (359
done relatively easily in three spatial dimensions.

There is a subtlety in evolving E€32) along the vectot

. . ] N ar 4
using the Macormack scheme: In order to implement the — I == =[K a,+ M ]+, — =8
corrector step of Eq.32), we require predicted values of the Jt A ar ar
quantitiesglax'/ax! at the dotted pointsbut these quantities 5 alat
are only known at the circled points. However, from the +__~<__~ r>, (35h
predictor step of Eq(32), we already haveredictedvalues a gr\or gr
of X' at the dotted points. Therefore, we use these values to
interpolate the predicted values @igx'/oxi from the d ar a
circled points to the dotted ones. In this case, we are agairﬁFrT: ~N[Ksl'er+2Br(a K+ MrT)]JFFrT(;_r (9_713 :
interpolating from a uniform grid to an arbitrary set of (35i)
points.

L . J
E. Implementation in spherical symmetry — My, =N|2M,(K:+K")+ (M1 +a,K7) (K —K',)

In spherical symmetry, we solve Eq®) on a numerical

grid that extends from some value=r ., just inside the r-(L T
: R rT rr .
apparent horizon to a large radiusr ... We denote our (__ [+ My — —=5", (35))
numerical grid points by;, wherei runs fromi i, t0 i may, 2Br| A2 ar gr
corresponding to the innermost and outermost grid points.
We use a zone-centered grid, so that the innermost and out- 9 ar o
ermost grid points do not correspond tg, and r .. In- —a,—N——=<ag
stead, we set at or
1 =N[-T"ag +a(aK' +My, /A2+a0r)]
I’i=l’min+ i_imin+§ Ar, (33) -
+2a ﬁ—ri,@r (35k)
where Toar gyt
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9 N dr 4
&t Or A2 ar (9[' rr
_2Frrrarr

T
+ B_rr(arr /AZ_aT)

ar aﬁr

+a0rﬁ p= (35I)

ay No"? ]
I rer ar gy
:N[(ar_zrrrr)er+2Krr(Krrar+Mrrr)]

ar
+3Mrrr(9_rﬁﬁr! (35m)

d ar a
ﬁMrT_Na_rELT:N[ZKT(arKT+2MrT)+arLT]
+M o 9 ' 35
rTEE,By (35n)
a N ar VRN ] 307 My,
&"E’ rr A2 ar a‘F’ rer rr A2
I‘rT I\/lrrr
Br|az M
T 9
+2L,— —=p", (350
a gr
d N dr d
r?T T A2 ar (9~ rT
FrrerT

+

L (M,1+Mq,)
AZBI’ rT Tr

(35p

where the right-hand sidé€9g)—(99 are unchanged, and we
have included theﬁﬁ terms explicitly. Note the second de-

rivative of 8" in the equation fof'",, . This term results from
applying £; to a nontensorial quantity. Becaugéis not an

unknown in the system of Eq§35), but is instead an auxil-
iary variable that may be, for example, given analytically as
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d [aT _(a?) B

Equations(36) provide values fordr /dr to be used in the
corrector step, as well as coordinate information for the in-
terpolation step.

We use cubic interpolation for causal differencing. This is

accurate to fourth order iM\T. Quadratic interpolation
would also suffice, but linear interpolation would not yield a
scheme that was second-order convergent in time. The rea-

son is that linear interpolation makes &{AT)? error on
each time stepso that aftelN time steps the error is of order

AT . This is because for a fixed total tinig,, that we wish
to evolve, the Courant condition requirlis-t,,,(AT) 2.

IV. SHIFT VECTOR AND INNER BOUNDARY
CONDITION

In this section we describe how we choose a shift vector

B, and how this choice affects how we handle the inner
boundary of our computational domain.

Because both the CBY formalism and the causal differ-
encing scheme discussed in Sec. Il place no restrictions on

B, we are free to choose any shift we wish. Although setting

B=0 is the simplest choice, it is often useful to employ a
nonzero shift vector. One technique is to use the shift to
simplify the form of the Einstein equations, for example, to
eliminate particular components of the spatial mef26].

The disadvantage of this approach is that it involves an ac-
tual change in the equations being solved. Instead of Egs.
(5), one would be solving a differeribut physically equiva-
lent) system of equations that would include the shift as a
dynamical variable, and would no longer be hyperbolic.

We instead use the shift for a different purpose: to allow
us to truncate our computational domain just inside the ap-
parent horizon, so that we evolve only the exterior region.
We thus avoid the spacetime singularity inside the black

hole. If we were to attempt such a truncation wﬁn:O,
numerical grid points originally located just outside the ap-
parent horizon would soon fall in, and any grid points lo-
cated inside the apparent horizon would eventually encounter
the singularity. This is because for zero shift, numerical grid
points follow the world lines of normal observers, and these
world lines are necessarily timelike.

A. Shift at the inner boundary

a function of the coordinates, this second derivative should We force the inner boundary of our grid=r,, to

not spoil the hyperbolicity of the system.
In spherical symmetry, Eq$24), (31), and(32) become

ar ar r
T (363
ar }
Fran -pB, (36b)

hover within a grid spacing of the apparent horizon. To ac-

complish this for a static black hole, we chog8enear the
horizon to point along the outward normal to the horizon,
and we choose its magnitude so that the local coordinate
speed of light in that direction is zero. The horizon is then
approximately stationary with respect to the spatial coordi-
nates. For the spherically symmetric case, the local coordi-
nate speed of light in the outgoing radial direction is given

by
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dr N only three characteristics at each spacetime point. These lie
c= dat K—ﬂr, (37 along the ingoing and outgoing null rays, and along the nor-

mal vectort. A boundary condition is required only at a
so we sefg" at the horizon equal tbl/A. point that cannot obtain information from one or more of the
‘We track the apparent horizon at each time step, and resharacteristics passing through it. For example, the outer
tain only the grid points that lie on the outside. This is doneyqndary cannot obtain information from the ingoing null
via a masking algorithm that labels grid points outside the.p,acteristics that it intersects, because these characteristics
apparent horizon as valid, and those inside as invalid. Invali riginate from outside the computational domain, where we

points are never used in the computation, just as if .thosﬁave no data. To update quantities at the outer boundary, this
points did not exist. Because we use a cell-centered grid, the

inner boundary =r . is located half a grid spacing inside Ihformation must be provided by a boundary condition.
~ 'min P . . . .
the innermost valid grid point. Similarly, the inner boundary ordinarily requires a boundary

Numerical errors typically cause the horizon to drift co_ndition because it_ca_mnot ob'Fai_n information from the_ out-
through the grid, even if one tries to lock it in place by going null characteristics that |t_|ntersects._ However, |f_the
forcing 8'=N/A. While this drift seems to cause minimal inner boundary fol_lows an ogtgomg spacelike or nuII_trz_ijec-
difficulty with either the stability or accuracy of the code, for tOrY then each point on the inner boundary can obtain infor-
coarse-resolution runs it produces a small but distracting"@tion from all three characteristics passing through it, so a
gauge pulse each time the horizon crosses a grid zone. H8oundary condition is not required.
rizon drift can be eliminated by introducing a feedback This is the essence of an AHBC scheme for treating the
mechanism21] that adjusts the magnitude of the shift to inner boundary: by forcing the inner boundary to move along
compensate. We do this as follows: If we wish to force thewith the apparent horizon, we force it along an outgoing
horizon to remain at some radiung, but we find the horizon nontimelike path. Therefore, there is no need to impose an

is actually at radius 54, then we set explicit inner boundary condition. Regardless of the math-
ematical formulation of Einstein’s equations being used,

Br:ﬂJr Fan~—To (39) general relativity tells us that when the inner boundary fol-

A At lows an outgoing spacelike or null path, information with

) _ physical content cannot penetrate this boundary from the in-
where ', N, and A refer to values at the horizon location gjge, since this information cannot propagate outside the
ran- This feedback mechanism is not necessary for suffifignt cone. A key advantage of a hyperbolic formulation with
ciently fine grid spacing. only simple (nonspacelike characteristics is that in such a

Wh'le. Iocatl_ng an apparent horizon ona num.e.r'ca”y_gen'formulation, this statement applies to gauge information as
erated time slice is a difficult problem in multidimensions well

[22-25, it is trivial in spherical symmetry. The marginal The way we solve Eqg9) without imposing an explicit

outer trapped surface equation condition at the inner boundary is by simply ignoring the
Disi+sistij—K§=O, (399  innermost grid point during the interpolation step of our
causal differencing scheme. In the case where the inner
wheres' is the spatial unit normal to the surface, reduces tdoundaryr =r ,;, moves with respect to theT(?) coordi-

_ _ _ nate a distance less thanr during each time step, the in-
()=l /A=2BrK;=0 (40 terpolation becomes an extrapolation at the innermost point.

for a spherically symmetric system. Here we have used ouf NiS iS always the case in our simulation because of the
variables defined in Eq€7) and (8). We find the apparent Courant' limit: Because thel inner boundary,l whlph moves
horizon by first evaluating}(r) at each grid point, and then 2/0ng with the apparent horizon, has a velocity with respect
by using three-point interpolation to locate the outermosto the (t,r) coordinate system of approximateN/A, the
root that satisfies)’ (r)>0. When locating the apparent ho- inner boundary can never move farther tham during a
rizon after the Macormack predictor step, we must be sure time step without violating the Courant condition

use the value of and notr in evaluating the functior®(r) At<(A/N)AT. One could avoid this extrapolation by using
at each grid point. an implicit differencing schem¢19,4] to get around the

In principle, one can also use a shift condition at the ap-Courant condition, but such a scheme requires much more
parent horizon to move a black hole through the numericatomputer time than explicit schemes, especially in the mul-
grid. This could be accomplished by adjusting the shift satidimensional case.
that grid points on one side of the hole fall into the horizon,

and grid points on the other side emerge from it. A similar C. Shift in the remainder of the spacetime
idea could in principle be applied to rotating black holes or . o .
systems with more than one black hole. Once a shift criterion at the apparent horizon has been

chosen, one must then determine the shift in the remainder of
the spacetime. At spatial infinity, one presumably would like
the shift to approach zero, so that the spacetime metric com-
Treating the inner boundary correctly is a primary moti- ponents approach Minkowski values. Or perhaps, in the case
vation for using a hyperbolic formulation of the Einstein of spacetimes with nonzero angular momentum, one would
equations. The spherically symmetric CBY equations havédike the asymptotic shift to describe a co-rotating frame.

B. Inner boundary condition on Egs. (9)
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However, given the shift at infinity and at the apparent hori-vector. The first is the minimal distortion conditid26],
zon, it is not clear how to choose the shift elsewhere. which can be written in the form

One possibility is to use a parametrized analytic function 1 1
whose parameters are set so that the shift behaves appropri- ~in oy T nin. eiL B 2i— 2N i Tk
ately near the apparent horizon and far from the black hole. DDA+ 3D DA+ RF=2D N Kj= 395Ky |
For example, when evolving a single black hole in spherical 43

symmetry we have tried the Gaussian form o ) ) ) o
The minimal distortion shift minimizes the average change

3r:Ce—(r—rc)2/w2, (41  of shape of a spatial volume element as it is dragged from
one time slice to the next. A related choice is the minimal
whereC, r., andw are chosen so tha#' is equal toN/A at  strain condition26], which can be written in the form
the apparent horizomyg'/dr is equal tod(N/A)/dr at the . o o . .
apparent horizon, ang" is smaller than some threshold at D'D;B'+D'D;B'+ R;B'=2D'(NK;). (44)
the outer boundary of the grid. Although this choice results
in a second-order convergent evolution, we find that the grid e minimal strain shift minimizes the average change in the
points tend to compress or stretch where the shift gradient§iree metricg;; as one evolves from one time slice to the
are large, and eventually coordinate singularities develofext. It differs from the minimal distortion shift in that it
that cause the simulation to terminate. Similarly, one cariakes into account the change in size of spatial volume ele-
choose ments as well as their change in shape.
The downside of these shift conditions is that they require
. N one to solve elliptic equations. This can be costly in terms of
B'=5ail—tanf(r—ro)/wli, (42 computer time, especially in three dimensions. It may be
possible to use a parametrized analytic function to mimic one
so that the shift is equal tdl/A far inside some arbitrary of these conditions, or it may suffice to use an approximate
radiusr=r., and zero far outside=r.. In this case, the solution. However, since it appears that these conditions give
grid points become compressed neair ;. as one evolves in  us a useful shift vector, we will adopt them in the spherically
time, and again the simulation terminates. symmetric case, where the computational burden is not so
It therefore appears that in addition to a prescription forsevere.
specifying the shift at the apparent horizon and at infinity, Both the minimal distortion and minimal strain conditions
one must impose some additional restriction on the shift thatvork well in spherical symmetry, as shown in Sec. VI. They
ensures that it will not induce any coordinate pathologieprevent grid points from becoming locally compressed or
elsewhere. Such a restriction can be provided by two differstretched to the point where coordinate singularities form.
ent elliptic shift conditions that were introduced for the very Using the variables defined in Eq®) and(8), we find that
purpose of minimizing coordinate strain caused by a shifthe minimal distortion equatiof¥3) takes the form

—~ 2 —~ —~
r ar\“é%r |ar o ar 9 3T r
TR I i R B S el ro_ T
Dt Br (ar) (9?21(% (9?’8 +B((?r (9?+2 Br)(r" ZBr)

(a’r“)z P
—| =B+

M
=N| a, (K", —Kq) + ﬁ—Mrﬁ—SMTr , (45)
and the minimal strain equatidd4) becomes
~\ 2 2 ~\ 2 2 ~ ~
ar|" 4 | +FrT ar |\ ar|ar 9 - | ar aF’ +FrT I It Nk Moo
ar ] g2 " Br \ar) grzlor 3?'8 Bl % or " Br\" "™ 2Br/| artr 2 T
(46)

We have written both equations in thecoordinate system and included the factorgdr andd?r /dr? because the shift must
be computed not only after the corrector step of the Macormack schemewhenbut also after the predictor step, when
T#r.

Equations(45) and (46) require boundary conditions at both ends of the numerical grid. We impose the condition

i e 0 1 4
= =
o =B =0 (n=1) (47)

at the outer boundary=r ., SO that the spacetime is asymptotically Minkowski, and we impose
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N 48
B=% (48)
at the apparent horizon, so that the apparent horizon is stationary with respect to the coordinates.
Both the minimal distortion and minimal strain equations can be written in the general form
7 B'+2Q J B +PB' =R (49
ar? ar '
We solve this equation using the usual three-point finite difference approximation
1 r r r 1 r r r
——==(Biy1= 2Bt Bi-)t =Qi(Bir1—Bi-1) T PiBi =R;. (50
(Ar) Ar

In order to retain second-order accuracy, we must be careful always to impose the boundary cofiitadrthe point

I =T max» Which may be different from the outer boundary of the griekr . We write Eq.(47) in the second-order accurate
finite-difference form

j_T)Ai"r[(2>\+1)B{+1—4>\B{+(2>\—1)13{1]+rLD\(H1)B{+1+2(1—’\2)5{+"(7‘_1”3{11:0’ =D

where instead use a multigrid techniqig7,28 which is parallel-
_ _ ized with the help of th®AGH system.
_ Mmax— T
A= AT (52) V. OUTER BOUNDARY

The only variables that require a boundary condition at
the outer boundary=r 5, are the quantitiek,, , L+, M, ,
M7, ao, anda,, , which propagate along the ingoing and
outgoing null characteristics. All other variables evolve
along the characteristics parallel to the vectarand are
never differentiated with respect 1o in Egs.(35).

To apply a boundary condition on these variables, we

assume that for large, the functionf for which we need a
boundary condition behaves like

Here T ax is the value ofT corresponding to the point
r'=rmax, and Egs.(51) and (52) are evaluated ait=i ..
Combining Eqgs(50) and(51) to eliminate the fictitious grid
pointi.+ 1 yields a boundary condition fcﬁ?{max in terms
of ,B{max_l.

To impose the boundary conditi¢d8) at the horizon, we
use the finite-difference expression

N
MNAFD B+ 21N BHFANN-DB =2 2, o
T=Tan v 2
(53 f=mt ot (59
where . .
for some integen and constant€; . We then impose

I‘AH—I’i 2
A= (54) n 9 ey
AT _arZ(r f)+2_ar(r f)=0 (56)

Here a4 is the T -coordinate location of the apparent hori- at the outer boundary. This boundary condition truncates the

zon, and Egs(53) and (54) are evaluated at the value f

series(55) after the second term, that is, it uses the correct

such thai —1 is the innermost grid point that lies outside the values ofC, andC,, but setsC; to zero forj>2. We set the

horizon. Combining Eq950) and (53) to eliminate the grid
point ati +1 yields a boundary condition fg8;_, in terms

of 8.

value ofn for each variable according to its analytic falloff
rate for the static solution.
We call this boundary condition an “extended Robin”

We currently use two methods to solve the linear systenmethod because of its similarity to the familiar Robin bound-

of equations that results from Eq&0), (51), and(53). We

ary condition

use a standard tridiagonal algorithf®7] when running in

serial, or when running in parallel using a small number of J .
processors. Although very efficient, this is a serial algorithm, ar
so it begins to dominate the computation time as the number

of processors increases. For a large number of processors, widich one often imposes on a function that behaves like

(57)
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1 Kruskal diagram. The initial three-metric is written in isotro-
f=Cot 7+ (58 pic coordinates:

Because Eq(56) involves approximating the largebe- 3)g2=
havior of the functionf, it introduces errors that are no
longer second-order in the grid discretization, but fall off . o
rapidly as one increases the radius of the outer boundary’hereM is the mass of the black hole, so that the initial
These errors result solely from the fact that Esp) is not ~ values ofA, B, Iy, T'rr, Ky, Ky, My, and M,y are
exactly satisfied by the initial data. To obtain a second-ordefiVen by
convergent scheme, we effectively eliminate these approxi-

4
1+ ;A—r) [dr2+r2(d6’+sirfod¢?)], (60)

2
mation errors by increasing,, until the second-order error A=B= ( 1+ —] , (61)
terms dominate. 2r
Because we use a cell-centered grid, the outer boundary is 4
located at half a grid spacing beyond the outermost grid T =_M(1+M (62)
point: Fmax= i+ 1/2- Therefore, to ensure second-order " r? 2r] '
convergence i\r, we must impose Eq56) not at the out-
ermost grid poinrima, but at the outer boundafy,,,. This ro=2(1+ M (1_ M) 63)
X T y
is necessary becausyamax depends on the grid spaciny . 2r 2r
We impose Eq.(56) by using the following finite- K =Ke=M.. =M.-=0 (64)
rr — INT— Whypr — W T— U

difference approximations for the first and second deriva-
tives: With harmonic slicing, one is free to choose the initial value

2 1 of the lapse function. We choose
WYi+1/2=W(7Yi—3_4OYi—2+102Yi—1_112Yi 1
N=|1+—]| |, (65)
+43Y;,1)+O(Ar)3, (599 r
P so that the lapse agrees with the canonical Schwarzschild
EYHUZ:W(YFZ—sYi,l—21Yi+23Yi+l)+o(Ar)3_ expression at large. This choice of lapse yields
(59b) M M\t
o . L a =1+ —| | (66)
Substituting these expressions in E56) with i =i, yields r r
an equation that can be solved for the quantity at the B B
s s . s . . . 2M M)\ 2 M\ 1 M M?2
fictitious grid pointi =i+ 1. Using this quantity, we can e _) 1+ — 1+ — — _)

. . . . . rr 3 2
now evaluate the usual one-sided first derivative operator in r r 2r 2r Ar
Egs.(27) and(28) at the outermost grid point=i pay. (67)

This boundary condition needs to be applied only during 1 s
the predictor step of the Macormack scheme discussed in M My MM 69
Sec. Il C. This is because the corrector step uses a back- Ty r 2r 2r)’
wards one-sided first derivative operator that is well-defined . _ _
for the outermost grid point. Therefore, we need not worryand the constraint equatiof$0) and(11) give us
about whether we useor T in Eqgs.(56) and(59), because 2 2 2 2

. - e M M 3Mm M
the normal and computational coordinate systems coincideat | =— —/| 1+ — 1+ — I+ —
. . . rr 4 2 2 ’

the beginning of the predictor step. r r r r r

The above boundary condition works well in the case of a 69)
spherically symmetric, stat_ic squtjop, but it does not prop- M2 M| 6 M -1 M
erly hangle.wave propagation. This mcIude.s not on.Iy physi- Ly=—g| 1+ _) 1+ — 1+ _)’ (70)
cal gravitational waves, which are absent in spherical sym- r 2r r ar

metry, but also wavelike gauge modes, which are present in

our numerical solution. While there exist many methods for M, =ao=0. (72)
imposing wavelike outer boundary conditions, we find for We truncate our numerical grid just inside the event ho-
this one-dimensional problem that it suffices to simply moverizon atr=M/2, and evolve only the exterior region.

the outer boundary far from the origin.

A. Self-consistent convergence

VI. DIAGNOSTIC TESTS . .
We have designed our code to be second-order accurate in

In this section we present results of rigorous convergencboth space and time, so that if we evolve for a fixed time
tests performed with our code. our accumulated truncation error should ®éAr)?2, where

In all cases below, we evolve a Schwarzschild black holeAr is our grid discretization. Any deviation from second-
in spherical symmetry. We begin each simulation with time-order convergent behavior would indicate a mistake in one of
symmetric initial data corresponding to the=0 plane of the our methods or a coding error.
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0.01 = \ ,,,,,,,,,,,,,,,, 4(L,(128)-L_(64))
|
—2%10-5 a(64)—a(32) | o 16(L,,(256)-L,(128)) |
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FIG. 3. Second-order error in the variable; at time FIG. 4. Second-order error in the variable, at time

t=5.629M. The labela;(N) denotes the value ofi; computed t=5.629M, for the same case as shown in Fig. 3.

using N grid points per unitr. The apparent horizon is located at

approximatelyr=M/2. All four plots coincide except at ;mall val- method with a minimal distortion shift. This time corre-
ues_ofr, where higher-order error terms become significant. TheSponds to 240 time steps on the coarsest grid, and 3840 time
portions of the graph at smallwherea; appears to become con- teps on the finest. The outer boundary is plac R4

stant represent grid points that are not included in the evolutio Its f diff t luti btracted and led
because they are inside the apparent horizon. The valuas af esults from difierent resolutions are subtracted and scale

these grid points are simply set to the value at the innermost sig@CCOrding to Eq(73), and plotted together.
nificant point for purposes of the plot. If only second-order error terms were present, the four

plots in each figure would coincide. This is indeed the case

To test whether our code is indeed second-order convefXcept at smalk, where the plots differ slightly because of
gent, we evolve the same initial data for the same time third-order and higher error terms, which are present but not

using different grid discretizations, and we compare the re€xplicitly 2given in Egs.(73). These error terms vanish faster
sults. LetX(t;Ar) be the value of some quanti} at timet, than (Ar)“ asAr—0, as indicated by the convergence of the

computed with grid discretizationr. For second-order con- PIlots toward each other as the grid resolution is increased.
vergent behavior, Figure 5 shows the second-order error in the quantity

X(t;Ar):X(t)true+(Ar)zx(t)error+ T (72) -
whereX(t)yue is the true solution, andA(r)?X(t) error is the
leading-order truncation error. Hence ]
3
X(t;Ar/2)— X(t;Ar)=— Z(Ar)ZX(t)error—i- el 0.0004 |-
(733 ,
3 )
ALX(t;Ar/4) = X(t;Ar/2)]= — = (Ar)“X(t) errort -+ +» i
[X( r/4) ( ri2)] 4( 1) “X() error ‘,/ ______________ 4(r2ar(128)—1r267(64))
(73b) oH ! ;
j] _____ 16(r28r(256)—r2gr(128))
3
LG X(t;Ar/8)—X(t;Ar/d)]=— Z(Ar)ZX(t)ermrJr cee | I — —— 64(r*p7(512)-1%6"(256)) |
(739 L:
and so on, so that each of the left-hand sides of Et§3.are ~0.0004 U . | . l s l
0 20 40 60

equal to leading order.

Figures 3 and 4 demonstrate that the relaiié8 holds
for our code. These figures show results using five different
grid resolutions, each differing by a factor of 2. They were FIG. 5. Second-order error in the variablgg’ at time
produced by evolving tot=5.628M using our AHBC t=5.625V, for the same case as shown in Fig. 3.

r/M (isotropic)
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0.002 . . [ ]
' \
"""'"""Z_:\
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- i N 4AM(64)
Ir(32)
_____ 16AM(128)
................ 4Jr(64) 0.0002 — —
0.001 I _ _ _ 84AM(256)
______ 16J7(128) - i
,,,,,,,,,,,,,,,,,,,,,,,, 256AM(512)
-. ___ 64J7(256) 0.0001 L
- N 25617(512)
Ve =
0 |—— ) | !
| | | (6] 2 4
0 2 4 r/M (isotropic)

r/M (isolropic)

FIG. 7. The quantitAM at timet=5.629M, for the same case

as shown in Fig. 3.
A 1
167

2 - - .
r°g", for the same case shown in Figs. 3 and 4. This demghere 4 is the area of the surface. In terms of our variables,
onstrates that our solution of the minimal distortion equationyis expression reduces to

is second-order convergent, and that it satisfies the outer

FIG. 6. Momentum constraint at tinte=5.625M, for the same
case as shown in Fig. 3. In the plot label§,N) denotes the value
of the left-hand side of Eq10b) computed usingN grid points per
unitr. M=

(74

V. AVaA
1674 |’

boundary condition t@®(Ar)?. Higher-order error terms are Br |
also in this fi i M=—|1—|5~| +(Brky?2|. (75)
present in this figure. They converge to zero as the grid 2 oA T
resolution is increased.
Figure 7 shows the quantity
B. Convergence of constraint equations M(t)—M(t=0)
. . . . AM= —F————— (76)
Even if a numerical code is second-order convergent in M(t=0)

the self-consistent manner described above, it still may not . ) )
converge to the analytic solution. To test whether this is thét imet=5.623V as calculated from Eq(75), for five grid

case, we evaluate the left-hand sides of the constraint euniSCfeFiza“OUS- This qgan_tity is multiplied by factors Of.4 for
tions (10) and (11), which are not explicitly solved in the each finer grid discretization. The mass of the system is con-

code except on the initial time slice. If we are indeed solvingserved toO(Ar)®.
Einstein’s equations, these quantities should vanish like
(Ar)2.

Figure 6 shows left-hand side of E(LOb) for the same While the CBY formulation of Einstein’s equations at first
case shown in Figs. 3—5, and for five different grid resolu-glance looks more complicated than the usual ADM formu-
tions. For each finer grid discretization, this quantity is mul-|ation, in most respects it is actually much simpler, particu-
tiplied by a factor of 4, so that for strict second-order con-larly from a numerical point of view. Each equation in the
vergence, the five plots should coincide. Because they d@BY system is either a wave equation with an advective

coincide except for small where higher-order error terms term, or a simple advective equation. In thé coordinate
are significant, we see that the momentum constraint is satystem that is used for causal differencing, the equations are
isfied toO(Ar)?2. The same is true for the other constraints.even simpler: They are either wave equations or first-order
There is an additional test we can use to determinerdinary differential equations in time. Admittedly, the right-
whether we are solving the correct equations: For a statiband sides of these equations are complicated and nonlinear,
black hole, the total mass inside each radiusvhich is a  but because these right-hand sides contain no derivatives,
well-defined locally measurable quantity in spherical sym-they do not make numerical solution of the equations any
metry, should be conserved. The degree to which mass comore difficult. The large number of evolution equations in
servation is violated provides a good indicator for the overalthe CBY formalism is also not a serious drawback because
accuracy of the code. An invariant expression for the masghe equations are all of the same form, so they can all be
inside a spherical surface of symmetry{ 29| solved by the same method.

VII. DISCUSSION
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Unlike a previous worK4] in which we forced the hori- center is irrelevant for AHBC methods, many of the same
zon to sit at a particular grid point, here we allow the horizonmethods should apply to both cases.
to lie at some arbitrary location on the grid. This is a closer The code as described here tends to lose accuracy at times
approximation to what we expect in the three-dimensionapgreater than 10 or 20, whereM is the mass of the black
case, where one would most likely use Cartesian coordinatd¥le. Because this behavior is relatively independent of nu-
to describe a spherical hole. Likewise, in the same work wénerical details such as grid resolution, we believe that it may
imposed explicit boundary conditions on the apparent horiP€ due to either gauge modes or unphysical rapidly growing
zon in order to solve elliptic constraint equations outside theolutions of the evolution equations that do not satisfy the
hole. Here we do not impose explicit boundary conditionsconstraints. One way of solving this problem is to enforce
[except for the shift via Eq(48)] because in the three- several of the constraint equations after each time step. With

dimensional case it is not only difficult to impose such con-thls modllflca'uon, we can integrate pastl_OOO\/I. However,
tlhe details of constraint-violating solutions, gauge modes,

ditions on a nonspherical boundary, but also the number o d methods for deali ith th b d th ;
boundary conditions needed for solving all of the constraint&N® methods Tor dealing with them are beyond the scope o

in three dimensions exceeds the number of boundary cond‘h's paper and will be dealt with elsewhekr].
tions available at the horizon.

A key milestone in three-dimensional black hole simula-
tions is the ability to stably move a hole through the numeri- We thank Manish Parashar for his help with theGH
cal grid. This is arguably a necessary precursor to simulatingystem, and Andrew Abrahams, Charles Evans, Ed Seidel,
binary orbits. Techniques for moving holes through the gridwai-Mo Suen, and James York for helpful discussions. This
could be tested in spherical symmetry using our code, andiork was supported by the NSF Binary Black Hole Grand
we plan such tests in the future. To preserve spherical synChallenge Grant No. NSF PHY 93-18152/ASC 93-18152
metry, the motion in this case would be the expansion oARPA supplemented NSF Grant No. PHY 94-08378 at
contraction(in coordinate spageof the hole rather than the Cornell, and NSF Grant No. AST 96-18524 and NASA
translation of the hole’s center, but since the location of theGrant No. NAG 5-3420 at lllinois.
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