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Black hole excision with matching
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We present a new method for treating the inner Cauchy boundary of a black hole spacetime by matching to
a characteristic evolution. We discuss the advantages and disadvantages of such a scheme relative to Cauchy-
only approaches. A prototype code, for the spherically symmetric collapse of a self-gravitating scalar field,
shows that matching performs at least as well as other approaches to handling the inner boundary.
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[. INTRODUCTION with the event horizon. However, the event horizon is of no
practical use in a Cauchy evolution since it can only be con-
In many physical systems, boundary conditions are botlstructed in retrospect, after the global geometry of the space-
the most important and the most difficult part of a theoreticaltime has been determined. A better alternative is the trapping
treatment. In computational approaches, boundaries pose funerizon [16], defined as the boundary of the spacetime re-
ther difficulties. Even with an analytic form of the correct gion containing trapped surfaces. Here the reference to
physical boundary condition in hand, there are usually manyauchy hypersurfaces is dropped while retaining the quasilo-
more unstable numerical implementations than stable onesal concept of trapped surfaces. Trapping horizons exist in
Nowhere is the boundary problem more acute than in the@ny black hole spacetime whereas the existence of apparent
computation of gravitational radiation produced in the coa-horizons is dependent on the choice of Cauchy foliation.
lescence of two black holes. In order to avoid the topological In practice, the problem of locating trapped surfaces is
complications introduced by the black holes, the proposegartially solved in the process of setting initial data. For the
strategy for attacking this problem, initially suggested bythree-dimensional problem of two inspiraling black holes,
Unruh[1], is to excise an interior region surrounded by anthere are several numerical approaches for determining ap-
apparent horizon. These are uncharted waters and there gmopriate initial Cauchy dat4l7]. An apparent horizon,
many different tactics that can be pursued to attain an appawhen it exists, is a marginally trapped surface and lies on the
ent horizon boundary conditid@2—-13. One common feature trapping horizon. Once the initial Cauchy hypersurface cuts
of all current approaches to this problem is the use of across a trapping horizon in this way, the scenario for patho-
Cauchy evolution algorithm in the interior region bordering logical foliations is not present initially, and a reasonable
the apparent horizon. In this paper we present an alternativehoice of lapse should guarantee that future Cauchy hyper-
tactic based upon a characteristic evolution in that inner resurfaces continue to contain that component of the apparent
gion, and we present a simple model of its global implemenhorizon. However, in the two-black-hole problem, besides
tation. the two disjoint apparent horizons present initially, an outer
In order to provide orientation, we begin with a synopsisapparent horizofisurrounding themis expected to form at a
of the apparent horizon boundary condition and its computakater time. Finding and locating this outer apparent horizon
tional difficulties. An apparent horizon is the boundary of thecan make the computational problem enormously easier by
region on a Cauchy hypersurface containing trapped surfacessing it as the new inner boundary at this stage. Excellent
[14]. This explicit reference to a Cauchy hypersurface in theprogress has been made in designing apparent horizon find-
definition gives an apparent horizon an elusive nature. Iners and trackers for this purpose. However, it is not known
deed, there are Cauchy hypersurfaces in the extendeshat lapse condition on a Cauchy foliation would guarantee
Schwarzschild spacetime which come arbitrarily close to théhat an outer apparent horizon form at the earliest possible
final singularity but do not contain an apparent horigp].  time.
There is strong reason to believe that the same is true in any Besides these geometrical issues there are a number of
spherically symmetric black hole spacetime. On the otheserious computational difficulties in implementing an appar-
hand, when they exist, apparent horizons are useful spacent horizon boundary condition. In order to obtain gravita-
time markers because they must lie inside the true everitonal waveforms, the computational domain must cover a
horizon [14]. Consequently, signals cannot propagate caustime interval of the order of several hundriti in the exte-
ally from the apparent horizon to future null infinity". rior region whereas typically a singularity forms on a time of
Thus truncation of the interior spacetime at the apparent hosrder M in the region close to the apparent horizon. Thus a
rizon does not affect the gravitational waves radiated to inslicing which avoids the singularity for several hundied
finity. This is the physical rationale behind the apparent howill necessarily develop coordinate singularities. In addition,
rizon boundary condition. the inner boundary traced out by an apparent horizon is ge-
There is a gauge ambiguity in the inner boundary definedherically spacelikéat best lightlikg. Thus if the coordinates
by an apparent horizon which is associated with the choicéefining the numerical grid were to remain constant in time
of Cauchy foliation. Such an ambiguity is not associatedon the boundary“apparent horizon locking), then the co-
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outside the black holes. Although finding a marginally
//x trapped surface on the ingoing null hypersurfaces remains an

elliptic problem, there is a natural radial coordinate system
\_// (r, 0, ) to facilitate its solution. However, it is also possible

to locate a trapped surface on the ingoing null hypersurface

c by a purely algebraic condition. Since this trapped surface
Feee - (when it exist$ lies in the region invisible t&™", it can be

/ i fa N \ used to replace the trapping horizon as the inner boundary. In

either case, moving the black hole through the grid reduces

w to a one-dimensional radial motion, leaving the angular grid
intact and thus reducing the complexity of the computational
masks which excise the inner regiofThe angular coordi-
FIG. 1. A schematic of how matching to ingoing null cones nates can even rotate relative to the Cauchy coordinates in
could be used with two black holes. The inner Cauchy evolution isyrder to accommodate spinning black hol&@he chief prob-
matched at an outer wprld _tuh[é to a null evolution on outgoing  |em of this approach is that a caustic may be encountered on
null cones, and at two interior world tubésandB, to null evolu- 6 ingging null hypersurface before entering the trapped re-
tions on ingoing null cones. The evolutions on the ingoing null iy This s again a problem whose solution lies in choosing
fk?;ttevsvostt;)lgcitr:g;ee:pparent horizdustted line$ which surround the right initial data and also the right geometric shape of the
' two-surface across which the Cauchy and characteristic evo-
eIutions are matched. There is a great deal of flexibility here
because of the important feature that initial data can be posed
on a null hypersurface without constraints.

ordinate trajectories would have to be superluminal. Whil
horizon locking works in the spherically symmetric case
[2-5], it is difficult to implement in a Cartesian three- . o .
dimensional grid. The alternative is to let the apparent hori- The strategy O_f matching an interior C_auchy evolution to
zon move through the coordinate grid. At the same time, th n exterioroutgoing characteristic evolution has been de-

location of the apparent horizon must be determined by So|v§cribed[19—2]] and implemented to provide a computational

ing an elliptic equation or an equivalent extremum problem S@uchy outer boundary condition in various cases, ranging

The requirements on the grid are further complicated wher!om one- a_nd twq-d|me_n3|onal S|_mulat|or{§2—2£'i o

the black hole is spinning. On top of all these difficulties, theth.ree'd'mens'onal simulations Fhat mcludé’_ [26.27. A
computational techniques must ensure that the strong fielddight modification allows changing an outgoing null formal-
inside the apparent horizon boundary do not severely leale™ (and Its evolution codeto an ingoing one. This is brlefly .
into the exterior due to finite difference approximations.'€Viewed in Sec. Il. By matching Cauchy and characteristic

Causal differencing2] and algorithms based upon a strictly algorithms at both an inner and outer boundary, the ability to
hyperbolic version of the initial value problefil8] have include Z* facilitates locating the true event horizon while

been proposed to avoid this. However, no three-dimension&Xcising an interi'or trapped region. In Sec. I, We'discuss the
Cauchy code has yet been successful in evolving &roblem of locating trapped surfaces on an ingoing null hy-
Schwarzschild black hole. persurface. In Sec. IV, we present an implementation of

It is clear that the three-dimensional coalescence of black'€Se ideas to the global evolution of spherically symmetric,

holes challenges the limits of computational know-how. WeSelf-gravitating scalar waves propagating in a black hole

wish to present here a new approach for excising an interiopPacetime. In this case, the performance of the matching ap-
trapped region which might provide enhanced flexibility in Proach equals that of previous Cauchy-only schemes that

tackling this important problem. In this approach, we locate@ve been applied to this problei$-5,28.

the interior boundary of the Cauchy evoluti@utside the
apparent horizon. Across this inner Cauchy boundary we Il. CAUCHY-CHARACTERISTIC MATCHING
match to a characteristic evolution based upon an ingoing
family of null hypersurfaces. It is the inner boundary condi-
tion for the characteristic evolution which is then given by a We introduce a unified formalism for coordinates based
null hypersurface version of the apparent horizon boundarypon either ingoing or outgoing null hypersurfaces. et
condition. In the case of two black holes, the inner boundaryabel these hypersurface€, (A=2,3) be labels for the null
would consist of two disjoint topological spheres, chosen sgays andr be a surface area distance. In the resulting
that their inner directed null normals are converging. Figurex®*=(w,r,x*) coordinates, the metric has the Bondi-Sachs
1 provides a schematic picture of the global strategy. Twdorm [29,3(
disjoint characteristic evolutions, based upon ingoing null 5 ALB
hypersurfaces, are matched across world tuWesidB to a ds?=g,wdW?+ 29, dwdr+ 29, ,dwdxX*+ gasdx dx5,
Cauchy evolution of the shaded region. The interior bound- 2.0
ary of each of these characteristic evolutions borders a region ) ) _ )
containing trapped surfaces. The outer boundary of th&/here detgag)=r-detas)=r-q, with gag a unit sphere
Cauchy region is another world tuk® which matches to an Metric. In the outgoing case, writing=u, it is convenient
exterior characteristic evolution based upon outgoing nulf® €XPress the metric variables in the form
hypersurfaces extending to null infinity.

This strategy offe.rs several advantage; in addition to the ds?= — e2ﬁ!_r2hABUAUB du?—2e2fdudr
possibility of restricting the Cauchy evolution to the region r

A. Null formalism
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—2r2hagUBdudx+r2h,gdx*dxB, (2.2 + 167 2T, p, (2.9

whereh”Bhg = 6¢. This yields the standard outgoing null —2e~2AV  =R—2D"D,B—2D*BD B
coordinate version of the Minkowski metric by setting 1
B=UA=V—-r=h,g—qag=0. In the ingoing case, writing 1—2e72BD ,(r4UA) . — = r4e—4fh Ap (B
w=uv, the only component of the Minkowski metric which re ArUT) = 5re ThagUi Uy
differs is g,,= —g,,. This can be effected by the substitu-

tion +8mr3(T—g"BTap). (2.10
B— B+iml2 2.3 This formal substitution also applies to the dynamical equa-
tions and provides a simple means to switch between evolu-
in the outgoing form of the metric. tion algorithms based upon ingoing and outgoing null cones.

The substitutior{2.3) can also be used in the curved space As we have already noted, although the same coordinate
case to switch from outgoing to ingoing coordinates, inlabelsr andx* are used for notational simplicity in both the
which case it is equivalent to an imaginary shift in the inte-outgoing metrig2.2) and the ingoing metri€2.4), they rep-
gration constant for the Einstein equation determinngee  resent different fields. An exception occurs for spherical
Eqg. (2.5 below]. This leads to the ingoing version of the Symmetry where the surface area coordimaten be defined
metric: uniquely in terms of the same two-spheres of symmetry used
in both the ingoing and the outgoing coordinates. In this
case, the spacelike or timelike character of theconst hy-
persurfaces is consistent under the substitutibB because
the change involved in going from Eq2.7) to Eq. (2.10
—2r?hpgUPdudx*+r2h,pdx*dx°. (24 implies thatV changes sign in switching from outgoing to

. . . ingoing coordinates. As a result we obtain a consistent value
Of course, at a given spacetime point the values of the coor;

af — +a 2B i Y s i
dinatesr andx” and the metric quantitie8, U”, V, andh,g for g*or or p=*e Vér_, with the + (=) sign holding for
are not the same in the ingoing and outgoing cases, but Sinc()éjtgomg(mgomg) coordinates.
' In the absence of spherical symmetry, the surface area

we do not consider transformations between outgoing and . . : .
S : : . .cPordmater used in the Bondi-Sachs formalism has a gauge
ingoing coordinates, there is no need to introduce any specig

notation to distinguish between them. a/r;nblg/l\utyB assomated- Wllth the changes in ray Iapels
x*—y~(x%), under which it transforms as a scalar density.

This same substitution also provides a simple switch fromOn anv null hvpersurface with a preferred compact spacelike
the outgoing to the ingoing version of Einstein equations y yp P b b

G,.p=87T,p written in null coordinates. This is consistent slllj?ﬁnsoiht:tlrs:cggrr](iltng;t%fre_?gg Thgnnéae);e?ziggzdabgnire;e
because3 contains a free integration constant which can beq_ 9 . 0 L ; q
chosen to be completas long as it leads to a real mejtitn r =const foliation on either the ingoing or outgoing null hy-
order to see how this works consider the outgoing version Opersurface emanating frosh.

the null hypersurface equatioh31,32:

V
ds?= ezf’TJrrzhABUAUB dv?+2e?Advdr

B. Matching

ﬁ’r:%srhAchBDhmaJhCD’rJr27_rr-|—rr ’ (2.5 . .C.:auchy—characteri.s'gic matc_hing can be us_ed to replace ar-
tificial boundary conditions which are otherwise necessary at

the outer boundary of a finite Cauchy domain. The exterior

(r*e™2PhpgU%) ,=2r*%(r=28.4) ,—r’hBDchag, characteristic evolution can then be extended to null infinity
16712 2.6 to form a globally WeII_-posec_j initial value problem. In tests

A ' of nonlinear three-dimensional scalar waves, Cauchy-

characteristic matching dramatically outperforms the best
available artificial boundary condition both in accuracy and

computational efficiency26,27].

2e %PV =R—2D"D,B—2D"BD B

+r72%e72PDA(r'UA)  — EVAG_ABhABU,ArU,E? We now describe how this matching strategy can be used
at the inner boundary of a Cauchy evolution which is joined
+8mrA(T—g"BTAp), (2.77  to an ingoing null evolution. On the initial Cauchy hypersur-

face, denoted by timg), let Sy be a(topologica) two-sphere
where D, is the covariant derivative an® the curvature forming the inner boundary of the region being evolved by
scalar of the two-metritiag. The g equation(2.5) allows  Cauchy evolution. LeyV represent the future evolution 6§
the substitution2.3) to be regarded as a change in integra-under the flow of the vector fielth= an?+ 82, wheren? is
tion constant. Then carrying out this substitution in Egs.the unit vector field normal to the Cauchy hypersurfaces
(2.9—(2.7) leads to the ingoing version of the null hypersur- t=const ande and 82 are the lapse and shift. Given the

face equations: initial Cauchy data orty, boundary data must be given on
1 the world tubeWV in order to determine its future evolution.

B, =—rhAChBPh o hep  +2rT,, (2.9 The Cauchy hypersurfaces foliate this. world tube into

© 16 ‘ ’ spheresS;. The boundary data are obtained by matching

4y 5 P o BC across)V to an interior null evolution based upon the null
—(r*e ?PhagU}) (=2r*(r 28 ) ,—r*h®“Dchpg, hypersurfaces = const emanating inward from the spheres
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FIG. 2. The shaded region is the domain of dependence of initi
data which is given on a Cauchy slitgand an ingoing null slice
vo. Q is the apparent horizony is the matching world tube.

S;. The evolutions are synchronized by settivgt on W.
The combination of initial null data om, and initial
Cauchy data or determines the future evolution in their

in the presence of scalar waves. In the absence of symmetry,
this suggests that given appropriate initial Cauchy data for
horizon formation that the simplest and perhaps physically
most relevant initial null data for a black hole would corre-
spond to no gravitational waves crossing The initial null
data onv, can be posed freely, i.e., are not subject to any
elliptic or algebraic constraints other than continuity require-
ments with the Cauchy data &}. In the vacuum case, the
spbsence of gravitational waves in the null data has a natural
(although approximajeformulation in terms of setting the
ingoing null component of the Weyl tensor to zero on

The key to the success of this approach is the proper
trapping behavior, i.e., the convergence of both sets of null
vectors normal to a set of slices of located between the
caustics and the matching boundary. By construction, the

combined domain of dependence as illustrated in Fig. 2. Iingoing null hypersurfaceVy, given byv =uv, is converg-

order to avoid dealing with caustics we terminate the nulling along all raysx®, leaving the initial sliceS, coordina-

hypersurfaces, on an inner boundar® whose location is  tized by r=R,. [Here @,r,x*) are ingoing null coordi-

determined by a trapping condition, as discussed below. Thigates] In order to investigate the trapping df, we must

inner boundary plays a role analogous to an apparent horizotetermine the divergence of slices of N, defined by

inner boundary in a pure Cauchy evolution. The region in+ =R(x*). Let n* be tangent to the generators &}, with

side Q is causally disjoint from the domain of dependencenormalizationn,=—-g,v ,. Then n“v,a=n“x'Aa=0 and

which is evolved from the initial data. In the implementation n“r ,=—1. Letl, be the outgoing normal t8, normalized

of this strategy in the model spherically symmetric problemby n“l ,=—1. Then

of Sec. IV, we describe in detail how data is passed back and

forth across/ to supply an outer boundary value for the null ly=—1v o1 ,—R X5, (211

evolution and an inner boundary value for the Cauchy evo-

lution. In the remainder of this section, we discuss how somé&vhere

of the key underlying issues might be handled in the absence

of symmetry. I=39,(9"—29"RA+g"°RARE). (212
In order to ensure that an inner trapping boundary exists it

is necessary to choose initial data which guarantees blagls contravariant components are

hole formation. Such data can be obtained from initial

Cauchy data oriy for a black hole. However, rather than lv=gr, (2.13

extending the Cauchy hypersurface inward to the apparent

horizon, it could instead be truncated at an initial matching

surfaceS, located sufficiently far outside the apparent hori-

zon to avoid computational problems with the Cauchy evo-

lution. The initial Cauchy data would then be extended into@"d

Fhe interior ofS, as null Qata o, until a t.rapping boundary A tA_ AB

is reached. Two ingredients are essential in order to arrange 1"=g"-g™Rg. (215

this. First,S, must be chosen to be convex, in the sense that

its outward null normals uniformly diverge and its inner null ~ Let y3=gz+n“l 5+1“ng be the projection tensor into the

normals uniformly converge. Given any physically reason-tangent space of and definey*# and y,, by raising and

able matter source, the focusing theorem then guarantees tHawvering indices withg,, . Its contravariant components are

the null hypersurface, emanating inward frons, contin-  y*=0, Y=g, y"*=g"®R g, andy""=g*®*R sR 5, and

ues to converge until reaching a caustic. Second, initial nulits ~covariant components arey, =0, Yag=0ag,

data must be found which leads to trapped surfaces Pn Yoa=0orRa+0,a, and v,,=9"*8(g, R a+0,4)(9,\R &

before such a caustic is encountered. The existence ofg,g)-

trapped surfaces depends upon the divergence of the outward The outward divergence & is given by®,=2y”ﬁvalﬁ.

normals to slices of ;. Given the appropriate choice 8  (The conventions are chosen so tkat 2/r for a r =const

the existence of such null data is guaranteed by the evolutioslice of an outgoing null cone in Minkowski spac&hen a

of the extended Cauchy problem. However, it is not necesstraightforward calculation yields

sary to actually carry out such a Cauchy evolution to deter-

mine this null data. It is the data of, which are most 1 1 g’

critical in determining whether a black hole can form. This §®|=F9"— T[\/EQAB(QMR,B”L gve)]l A

can be phrased in terms of the trapping gravitySgf intro- q

duced below. In the spherically symmetric Einstein-Klein- or

Gordon model(see Sec. IV, if S, has sufficient trapping —T(rgurgAB),,R,AR,B—g”’R,B(gABgvA),r,

gravity to form a trapped surface an, in the absence of

scalar waves crossing,, then a trapped surface also forms (2.19

I'=29" - 39"°R AR5 (2.14
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which is to be evaluated ofi after the derivatives are taken.
The divergence of the generators tangentMpis given by
0,= y“ﬁvanﬁ. Then®,=— 2/ so that\ is converging in
accord with our construction.

Ill. TRAPPING

A slice of \; is trapped if®,<0. In terms of the ingoing
Bondi metric variables defined in E(R.4), Eq. (2.16) gives
r2e?f 1
——0=—V— —=[Ja(e®h**Rg—r2UN] »
2 Va

—r(r e?h"B) RARg+r?R UG, (3.

Setting ®,=0 in Eq. (3.1 gives a two-dimensiona{2D)
Laplace equation for the functioR(x”) which locates a
marginally trapped surfacd. Such a surface lies on a trap-
ping horizon and iga component gfthe apparent horizon of
any Cauchy hypersurface which contains it.

For a marginal surface to lie on amtertrapping horizon
its trapping gravity, defined d46]

1
K= _§£n®|,

must be real and positive, so that0. The trapping gravity
generalizes the concept of the surface gravity of an eve
horizon to trapping horizons. In our coordinate system
n%j,=—4,. Thus, if the surface =R(x") is marginally
trapped, then positive trapping gravity implies that the sur
face r=R(x")—Ar is trapped for smallAr. We use Eq.
(3.2) to generalize the definition of trapping gravity to an
arbitrary slice of a inwardly converging null hypersurface.

(3.2

Then slices of positive trapping gravity tend toward trapping ;
asr decreases. However, in general, there seems to be ﬁq
purely local criterion which guarantees the existence of &

trapped surface before encountering a caustic-as$.

In the special case of a spherically symmetric slice of
spherically symmetric null cone, the Laplace equation for
marginally trapped slice reduces to the algebraic conditio
thatV =0, which is satisfied where thre= const hypersurface
becomes null. The vacuum Schwarzschild metric in ingoin
null coordinategwhich are equivalent to ingoing Eddington-
Finkelstein (IEF) coordinate$ is given by B=0,
V=—(r—2M), UA=0 andhpag=Qug. In this caseV=0
determines the location of the event horizemhich coin-
cides with the apparent horizpand the surface gravity re-
duces tok=(4M) 1. In the nonvacuum spherically sym-
metric case =0 determines the apparent horizon.

In the absence of spherical symmety, vanishes on a
slice of the formR=const at points for whiclQ=0, where

Q (3.3

r2
—v+—q(fquA),A.

el

We will refer to the largest =const slice ofA; on which
Q=0 as a 'Q boundary” Q, relative t0S,. (S, enters here
because it provides the reference ffer const sliceg.Such a
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FIG. 3. This figure shows the two matching world tubes and the
three coordinate patches.
ing an inner boundary inside an event horizon. A
Qboundary, when it exists, will always lie insidgemallerr)
or tangent to the trapping horizon. Let Ry describe the
Qboundary and letR,,iy (Rnay be the smalles{larges}
value of r on the trapping horizon. Then on the trapping
horizonR =0 at R, and Ry« SO that Eq.(2.16) implies
Q=0 atRpn (andQ=0 atRy,,). ConsequentlyRo<Rpn,
with equality holding only wheD?R=0 at Ry,

There are thus two possible strategies for positioning an
inner boundary, both of which ensure that the ignored por-
tion of spacetime cannot causally effect the exterior space-
t{'me: (I) Use the trapping horizon, in which case the 2D
elliptic equation(2.16 must be solved on a sphere in order

to determine its location, dtl) use theQ boundary which is

determined by a simple algebraic condition.

Strategy(l) is similar to approaches used to locate an
apparent horizon on a Cauchy hypersurface. The advantage
in the null cone case is that there is a natural radial coordi-
nate defined by the coordinate system to reduce the elliptic
oblem to two angular dimensions and to define a mask for
oving the excised region through the computational grid.
trategy(ll) carries no essential computational burden since
the quantitiesv andU are obtained by means of an inward

Zradial integral as part of the evolution scheme. One merely

stops the integration when the inequality defining Qe

rE>oundary is satisfied. Thus strate@l) is preferable unless

either caustics or singularities appear before reachinglthe

gooundary. It is easy to choose black hole initial data so that

the Q boundary and trapping horizon agree at the beginning
of the evolution but whether th® boundary will move too

far inward to be useful is a critical question which would
depend upon choices of lapse, shift, and geometry of the
matching world tube. Further research is necessary to decide
if strategy (Il) is viable on geometric grounds in a highly
asymmetric spacetime.

IV. COLLAPSE OF A SPHERICALLY SYMMETRIC
SCALAR WAVE

Our purpose here is to present a spherically symmetric
model demonstrating the feasibility of a stable global algo-
rithm based upon three regions which cover the spacetime
exterior to a single black hole. Figure 3 illustrates one-
dimensional radial geometry. The innermost region is

slice is everywhere trapped or marginally trapped so that thevolved using an ingoing null algorithm whose inner bound-
Q boundary provides a simple algebraic procedure for locatary Q lies at the apparent horizon and whose outer boundary



56 BLACK HOLE EXCISION WITH MATCHING 6315

Ry lies outside the black hole at the inner boundary of a 1

region evolved by a Cauchy algorithm. Data are passed be- 2(rg) =, (Ve ). (4.12
tween these regions using a matching procedure which is

detailed below. The outer boundaRy of the Cauchy region An ingoing null evolution algorithm can be obtained from

is handled by matching to an outgoing null evolution. Thethe outgoing algorithm by the procedure described in Sec. Il.
details of the outgoing null algorithfi83] and of the Cauchy  Gijven the ingoing null metric

evolution [5] are not discussed since they have been pre-

sented elsewhere. We will discuss the matching conditions 23\/ ) 2p 2 2

since they differ from those used previou§Bb] due to dif- ds’=e T dvt+2e*dudr+rodQ”, (4.13
ferent choices of gauge conditions. We will also present the

field equations since they are important for understanding than independent set of equations are the hypersurface equa-

matching procedure. tions
The Cauchy evolution is carried out in IEF coordinates.
The metric in this coordinate system is B.=27r $3, (4.14
ds?’=a?(2B—1)dt?+2a%Bdtdr +a%dr?+r2dQ2. vV, =—¢e?, (4.19
4.7

_ _ _ and the scalar wave equation
The set of equations used in the evolution are

1
Kf—K"  4ndIl 2(rg) o=, (Vo). (4.16
K+ ————-——=—=0, (4.2
r a
Given data for¢ on Ny and on the world tub&, defined
~  Tak’, by r=Ry, and integration constants fg8 and V on R,
B=———=="7" (4.3  evolution proceeds to null hypersurfacdg , defined by
1+raK? v =const, by an inward radial march along the null rays ema-
L _ . nating inward fromR,.
a=-a*1-B)K'+(ap)’, (4.4
_ A. Initial data
kga:EK("gﬂLa(l—E)K”a(Krﬁ2K00)+ 1:'8(5_ i) The initial data consist of a Schwarzschild black hole of
r2 a massM which is well separated from a Gaussian pulse of
~, (mostly) ingoing scalar radiation. Initially there is no scalar
N B 5 field present on the ingoing null patch, and so the initial data
ar’ ' there are simply
- ~ = 4.1
b=[Bo+(1- B, 49 ?=0 @17
1 B=0, (4.18
T — T2rn n ’
== {T? B+ (1-B)ely, @7 VoMt 419

where the overdot represents partial with respectt toa Similarly, initially there is no scalar field on the outgoing

: ; ; = ' null patch, and so we hawe=0. The values fo andV are
522;%'22”::: S(’j gﬁl:g(ajl t\;\;th respect to and the scalar field determined by matching to the Cauchy data at the world tube

(see belowand integrating the hypersurface equati¢hd 4

1 and(4.15.
d=¢', I=—=(¢p—B¢'). 4.9 In the Cauchy region, the scalar field is given by
1_
. . $p=ATexd — (T —c)¥a], (4.20
The outgoing null metric is
Vv 1 d(r—c)*
ds’=—e? —du’-2e?dudr+r’d0% (4.9 P=¢ ST | (4.20)
The outgoing hypersurface equatiai@sb) — (2.7) reduce to e 2-B d(f—c)d-t .22
Bo=2mr ¢, (4.10 T(1-5) o ] '
V,=e?b, (4.1 where A, ¢, d, and o are scalars representing the pulse’s

amplitude, center, shape, and width, respectively. The geo-
with UA=0 andh”B=q,g, and the outgoing version of the metric variables are initialized using an iterative procedure,
scalar wave equation is as detailed irf5].
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B. Matching conditions

1
- 2 -
Since the IEF coordinate system is based on ingoing null ds’=gogdU* +2| gor + F goo)dudr
cones, it is possible to construct a simple coordinate trans-
formation which maps the IEF Cauchy metric to the ingoing 2 1 21 242
null metric, namely, | 9ut F 90t Egoo dre+r-dQc. (4.33
t=v-r, T=r. (4.23 The condition that the direction be null implies that
This results in the following transformations between the 2 1
two metrics: g1+ Eg°1+ Egooz 0. (4.39
=1/2Ia%(1-B)], 4.2
A a’(1i-4)] (424 Upon substitution of the IEF metric functions, this deter-
2B-1 mines that
V= —, (4.295 -
1-p F=1-28. (4.39
~ V+r The matching conditions are then
B=yior (4.26
V+2r - ~
B=12Ia*(1-B)], (4.36
a=ef\Vir+2. (4.27) -
1-28
The extrinsic curvature components can be found using V=r 1-3 ' (4.37)
: -B
only the Cauchy metric,
B Bt 4.3
Kog:ﬁ, (4.2& '8_ V—-2r' ( ’ &
ra(l1-p)
L a=ef\2—VIr. (4.39
P (4.29
' a(1-pB) p '8};{ a ' C. Finite difference implementation

Note that these transformation equations are valid every- As is typical with finite difference calculations, the con-
9 Yinuum functions are discretized spatially and placed on grids

where in the spacetime, not just at the world tube. . ; ! ;
; . with N points. In our case we have three regions. The inner
The matching conditions at the outer world tube are more

complicated. Both the Cauchy and characteristic systemrs]uII variables are placed on grids with points, the Cauchy

share the same surface area coordinatet there is no uni- variables on grids witiN. points, and the outer null variables

versal transformation between their corresponding time con grids withN, points. On each gnd, the_ spatial index
uns from 1 toN;, N, or N, respectively, with 1 represent-

ordinates. However, we can construct a coordinate transfor-
mation which is valid everywhere on the world tube. To do'M9 the Sm?‘"GSt value. . . o .

this, we start with a general, differential coordinate transfor- In addition to thg spatial dlscr9t|zat|on, each function
mation, whose unknown functidn is to be determined from needs two or more time levels. While both the Cauchy and

. o null evolution schemes use only two time levels, we keep an
the matching conditions extra level in each to facilitate the matching. Figure 4 shows
du= F(T)dT—dT, dr=dT. (4.30 how the finite difference grids match at the inner world tube.

The two grids are aligned in bothandt. This means no
To keep the notation simpler, we will write the Cauchy interpolations are necessary. The world tube is=at on the
metric as Cauchy grid andi=N;—1 on the ingoing null grid. The
Cauchy variables need boundary values on time lavel
ds?=god t2+200,d tdT +g.,dT2+T72d02 (4.31) ati=1. The metric values come from the null variables at
level n+1, with i=N;—1, using the transformation equa-

Inverting Eq.(4.30 and substituting, we get tions (4.26 and (4.27. These relations are algebraic and
straightforward to implement. Boundary values for the ex-

42— dqi@+ol o Lo | duar trinsic curvature components come from E@4.28 and

goo|:2 F Yot Fzgoo (4.29. K, is computed algebraically and’, is computed

using second-order, centered-in-time, forward-in-space de-
s oo rivatives in the Cauchy grid.
dre+rdQc. (4.32 The transformation of the scalar field requires transform-
ing derivatives between the two coordinate patches. At the
world tube, the relationships among the derivatives are

+

2 1
gut Egm+ Egoo

On the world tube, we requira=t, so thatdu=dt.
Thus, we sedu=du/F. For the metric, we get ;=07 — o, (4.40
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Ry
1 2 3 Nc—2 N C-l NC
M O n+2 n+2 U 3
N.-2
! O O n+l n+1 U
0, n O
il 0O ol O
N.-1
1
N.
1

1
FIG. 4. This diagram shows the finite difference grids around
the inner world tube. The squares represent the Cauchy grid, while FIG. 5. This diagram shows the finite difference grids around
the circles are the null grid. The diagonal lines are the ingoing nulthe outer world tube. The squares represent the Cauchy grid, while
cones, and the vertical linR, is the inner world tube. The inner- the circles are the null grid. The diagonal curves are the outgoing
most points of the Cauchy grid lie on the world tube, while the nullnull cones, and the vertical linR, is the outer world tube. The
grid extends outside the world tube. Notice that the grids align inoutermost points of the Cauchy grid lie on the world tube, while the

space and time. null grid extends inside the world tube. Notice that the grids align in
time only on the world tube, but in space at the world tube and just
Fr=0d,+d,, (4.41) inside.
d,= 0. 4.4 1
o (442 Gy =——m d+ 07 (4.46
1-2p8

These lead to the following equations férandIT:
to get an evolution equation fab at the world tube. We then

ne1 1 grlzlrle_grlllifl 1 gwl—gﬁitlz g&:rfll set ® and II using their definitions(4.8) and backward
@) :—F_ T 2dv + 'rv_ 2dr - =2 second-order derivatives.
1 1 1

44 The boundary values for the null variables must be inter-
(4.43 polated in time using the Cauchy variablesnagnd n—1.
Given values for a functior at time levelsn andn—1, we

and
can get its valud® at the beginning of the null cone using
n+2 _ .n
i 1 /igNifl gNifl_Equ)Tl L dr 1
AT, 2d R R ey
(4.44 Net
The null variables need boundary valuesat2, i=N;. +-1 —oy ﬂ - (4.47)
The metric values come from the Cauchy variables at level dt 1-280"2, '
Cc

n, with i=2, using Egs.(4.24 and (4.25. The evolution

equation forg at the world tube is Notice that this expression requires a value Bt level
~n  ~=n—1\ wn no1 n+ 2, something that will not be known until the next time
n+2_on+2, ol B2t B2 2113 step. We have found it sufficient to extrapolate from the
9N =9 Ni 2 2 previous time levels using
Zn, pn-1 -1 ~ ~ ~ ~n—
| Bot Byt 0t dp } .45 N2 =3BN -8B +AV L. (448
5 5 . .

Thus, to get values foB and V we use the matching

The situation at the outer world tube is shown in Fig. 5.conditions(4.36 and(4.37) along with the above interpola-
Here, the grids align in space at two values dfut in time  tion. For the scalar field, we interpolate the valuegdirom
only at the world tube. The Cauchy metric boundary valueghe Cauchy grid, using=r ¢.
ati=N; come directly from the null variables at 2 using The apparent horizon is found on the ingoing null cones
the transformation equation@.38 and (4.39. Since the using the apparent horizon equation which reduces simply to
grids do not align in time as they do at the inner world tube,V=0. When the scalar field passes into the black hole, the
we use a different procedure for the scalar field boundarhorizon grows outward and we simply stop evolving the grid
values. We use the derivative transformation points that are now inside.
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to drop from second-order to first order. This is an unavoid-

o able diagnostic effect due to the comparison of numerical

3 —— B solutions. We believe that the numerical solution would con-
4 . verge at second order to an exact solution of the physical
T Ky problem. No exact solutions are known to use for a check of

this, but for a weak scalar field the horizon does not move
and we do measure second-order convergence throughout the
evolution. Further, we see the same convergence order drop
— T for strong fields in Cauchy-only or null-only evolutions, and
thus are certain it is not due to the matching procedure.

w2

Convergence Factor

(3]

—_
T
|

0 5 10 15 20 25 30 35 40 V. CONCLUSIONS

Our work shows that the matching approach provides as
FIG. 6. This plot shows the mutual convergence of the Cauchygood a solution to the black hole excision problem in spheri-
variables from the matching evolution and the pure Cauchy evolucal symmetry as previous treatmen®-5,2§. It also has
tion. The evolutions are for a strong, ingoing scalar pulseNl).5 some advantages over the pure Cauchy approach, namely, it
outside a black hole. A convergence factor near 4 indicates secongs computationally more efficienffewer variables and is
order convergence, while one near 2 indicates first-order conveimuch easier to implement. We achieved a stable evolution
gence. simply by transforming the outgoing null evolution scheme
D. Performance to work on ingoing null cones and implementing it. Achiev-

] ing stability with a purely Cauchy scheme in the region of
To evaluate the performance of this approach, we come apparent horizon is trickier, involving much trial and

pare it to a second-order accurate, purely Cauchy evolutiogrror in choosing difference schemes. It should be noted,
in IEF coordinates, as presented[Bl. For the comparison however, that implementing the matching may be tricky, es-
shown here, we place the outer boundary of the Cauchy evQsecially in higher dimensions. Whether it is easier than

lution atr =62M and evolve td=40M to prevent any outer jmplementing Cauchy differencing near the horizon remains
boundary effects from influencing the comparison. The scagg pe seen.

05M achieved the stable evolution of a Schwarzschild black hole
Figure 6 shows the mutual convergence between thg, three-dimensiongéhe details will be presented elsewhere
Cauchy variables in the two codes. This demonstrates thg{nd are working on rotating and moving black holes. Long-

the two programs are solving the same problem, and proerm stable evolution of a 3D black hole has yet to be dem-
vides evidence that the matching approach generates the c@jnstrated with a Cauchy evolution.

rect spacetime.

The reason that the convergence rate appears to drop to
first order when the scalar field hits the horizon is an artifact
arising from the motion of the horizon. As mass falls into the
hole, there is a critical amount which causes the horizon to This work has been supported by NSF Grant No. PHY
move out by one grid point. If at the coarsest resolution thed510895 to the University of Pittsburgh and by the Binary
horizon moves a distanadr, then on the next finer grid it Black Hole Grand Challenge Alliance, NSF Grant No.
only moves bydr/2, and so on. Thus, at different resolu- PHY/ASC 9318152ARPA supplemented Computer time
tions, the black holes have slightly different locations. Thefor this project has been provided by the Pittsburgh Super-
resulting shift in the location of the inner boundary causesomputing Center under Grant No. PHY860023P. We thank
convergence between successively finer numerical solutiorR. A. Isaacson for helpful comments on the manuscript.
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