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R. Gómez, R. L. Marsa, and J. Winicour
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

~Received 22 May 1997!

We present a new method for treating the inner Cauchy boundary of a black hole spacetime by matching to
a characteristic evolution. We discuss the advantages and disadvantages of such a scheme relative to Cauchy-
only approaches. A prototype code, for the spherically symmetric collapse of a self-gravitating scalar field,
shows that matching performs at least as well as other approaches to handling the inner boundary.
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I. INTRODUCTION

In many physical systems, boundary conditions are both
the most important and the most difficult part of a theoretical
treatment. In computational approaches, boundaries pose fur-
ther difficulties. Even with an analytic form of the correct
physical boundary condition in hand, there are usually many
more unstable numerical implementations than stable ones.
Nowhere is the boundary problem more acute than in the
computation of gravitational radiation produced in the coa-
lescence of two black holes. In order to avoid the topological
complications introduced by the black holes, the proposed
strategy for attacking this problem, initially suggested by
Unruh @1#, is to excise an interior region surrounded by an
apparent horizon. These are uncharted waters and there are
many different tactics that can be pursued to attain an appar-
ent horizon boundary condition@2–13#. One common feature
of all current approaches to this problem is the use of a
Cauchy evolution algorithm in the interior region bordering
the apparent horizon. In this paper we present an alternative
tactic based upon a characteristic evolution in that inner re-
gion, and we present a simple model of its global implemen-
tation.

In order to provide orientation, we begin with a synopsis
of the apparent horizon boundary condition and its computa-
tional difficulties. An apparent horizon is the boundary of the
region on a Cauchy hypersurface containing trapped surfaces
@14#. This explicit reference to a Cauchy hypersurface in the
definition gives an apparent horizon an elusive nature. In-
deed, there are Cauchy hypersurfaces in the extended
Schwarzschild spacetime which come arbitrarily close to the
final singularity but do not contain an apparent horizon@15#.
There is strong reason to believe that the same is true in any
spherically symmetric black hole spacetime. On the other
hand, when they exist, apparent horizons are useful space-
time markers because they must lie inside the true event
horizon @14#. Consequently, signals cannot propagate caus-
ally from the apparent horizon to future null infinityI1.
Thus truncation of the interior spacetime at the apparent ho-
rizon does not affect the gravitational waves radiated to in-
finity. This is the physical rationale behind the apparent ho-
rizon boundary condition.

There is a gauge ambiguity in the inner boundary defined
by an apparent horizon which is associated with the choice
of Cauchy foliation. Such an ambiguity is not associated

with the event horizon. However, the event horizon is of no
practical use in a Cauchy evolution since it can only be con-
structed in retrospect, after the global geometry of the space-
time has been determined. A better alternative is the trapping
horizon @16#, defined as the boundary of the spacetime re-
gion containing trapped surfaces. Here the reference to
Cauchy hypersurfaces is dropped while retaining the quasilo-
cal concept of trapped surfaces. Trapping horizons exist in
any black hole spacetime whereas the existence of apparent
horizons is dependent on the choice of Cauchy foliation.

In practice, the problem of locating trapped surfaces is
partially solved in the process of setting initial data. For the
three-dimensional problem of two inspiraling black holes,
there are several numerical approaches for determining ap-
propriate initial Cauchy data@17#. An apparent horizon,
when it exists, is a marginally trapped surface and lies on the
trapping horizon. Once the initial Cauchy hypersurface cuts
across a trapping horizon in this way, the scenario for patho-
logical foliations is not present initially, and a reasonable
choice of lapse should guarantee that future Cauchy hyper-
surfaces continue to contain that component of the apparent
horizon. However, in the two-black-hole problem, besides
the two disjoint apparent horizons present initially, an outer
apparent horizon~surrounding them! is expected to form at a
later time. Finding and locating this outer apparent horizon
can make the computational problem enormously easier by
using it as the new inner boundary at this stage. Excellent
progress has been made in designing apparent horizon find-
ers and trackers for this purpose. However, it is not known
what lapse condition on a Cauchy foliation would guarantee
that an outer apparent horizon form at the earliest possible
time.

Besides these geometrical issues there are a number of
serious computational difficulties in implementing an appar-
ent horizon boundary condition. In order to obtain gravita-
tional waveforms, the computational domain must cover a
time interval of the order of several hundredM in the exte-
rior region whereas typically a singularity forms on a time of
orderM in the region close to the apparent horizon. Thus a
slicing which avoids the singularity for several hundredM
will necessarily develop coordinate singularities. In addition,
the inner boundary traced out by an apparent horizon is ge-
nerically spacelike~at best lightlike!. Thus if the coordinates
defining the numerical grid were to remain constant in time
on the boundary~‘‘apparent horizon locking’’!, then the co-
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ordinate trajectories would have to be superluminal. While
horizon locking works in the spherically symmetric case
@2–5#, it is difficult to implement in a Cartesian three-
dimensional grid. The alternative is to let the apparent hori-
zon move through the coordinate grid. At the same time, the
location of the apparent horizon must be determined by solv-
ing an elliptic equation or an equivalent extremum problem.
The requirements on the grid are further complicated when
the black hole is spinning. On top of all these difficulties, the
computational techniques must ensure that the strong fields
inside the apparent horizon boundary do not severely leak
into the exterior due to finite difference approximations.
Causal differencing@2# and algorithms based upon a strictly
hyperbolic version of the initial value problem@18# have
been proposed to avoid this. However, no three-dimensional
Cauchy code has yet been successful in evolving a
Schwarzschild black hole.

It is clear that the three-dimensional coalescence of black
holes challenges the limits of computational know-how. We
wish to present here a new approach for excising an interior
trapped region which might provide enhanced flexibility in
tackling this important problem. In this approach, we locate
the interior boundary of the Cauchy evolutionoutside the
apparent horizon. Across this inner Cauchy boundary we
match to a characteristic evolution based upon an ingoing
family of null hypersurfaces. It is the inner boundary condi-
tion for the characteristic evolution which is then given by a
null hypersurface version of the apparent horizon boundary
condition. In the case of two black holes, the inner boundary
would consist of two disjoint topological spheres, chosen so
that their inner directed null normals are converging. Figure
1 provides a schematic picture of the global strategy. Two
disjoint characteristic evolutions, based upon ingoing null
hypersurfaces, are matched across world tubesA andB to a
Cauchy evolution of the shaded region. The interior bound-
ary of each of these characteristic evolutions borders a region
containing trapped surfaces. The outer boundary of the
Cauchy region is another world tubeC, which matches to an
exterior characteristic evolution based upon outgoing null
hypersurfaces extending to null infinity.

This strategy offers several advantages in addition to the
possibility of restricting the Cauchy evolution to the region

outside the black holes. Although finding a marginally
trapped surface on the ingoing null hypersurfaces remains an
elliptic problem, there is a natural radial coordinate system
(r ,u,f) to facilitate its solution. However, it is also possible
to locate a trapped surface on the ingoing null hypersurface
by a purely algebraic condition. Since this trapped surface
~when it exists! lies in the region invisible toI1, it can be
used to replace the trapping horizon as the inner boundary. In
either case, moving the black hole through the grid reduces
to a one-dimensional radial motion, leaving the angular grid
intact and thus reducing the complexity of the computational
masks which excise the inner region.~The angular coordi-
nates can even rotate relative to the Cauchy coordinates in
order to accommodate spinning black holes.! The chief prob-
lem of this approach is that a caustic may be encountered on
the ingoing null hypersurface before entering the trapped re-
gion. This is again a problem whose solution lies in choosing
the right initial data and also the right geometric shape of the
two-surface across which the Cauchy and characteristic evo-
lutions are matched. There is a great deal of flexibility here
because of the important feature that initial data can be posed
on a null hypersurface without constraints.

The strategy of matching an interior Cauchy evolution to
an exterioroutgoing characteristic evolution has been de-
scribed@19–21# and implemented to provide a computational
Cauchy outer boundary condition in various cases, ranging
from one- and two-dimensional simulations@22–25# to
three-dimensional simulations that includeI1 @26,27#. A
slight modification allows changing an outgoing null formal-
ism ~and its evolution code! to an ingoing one. This is briefly
reviewed in Sec. II. By matching Cauchy and characteristic
algorithms at both an inner and outer boundary, the ability to
include I1 facilitates locating the true event horizon while
excising an interior trapped region. In Sec. III, we discuss the
problem of locating trapped surfaces on an ingoing null hy-
persurface. In Sec. IV, we present an implementation of
these ideas to the global evolution of spherically symmetric,
self-gravitating scalar waves propagating in a black hole
spacetime. In this case, the performance of the matching ap-
proach equals that of previous Cauchy-only schemes that
have been applied to this problem@3–5,28#.

II. CAUCHY-CHARACTERISTIC MATCHING

A. Null formalism

We introduce a unified formalism for coordinates based
upon either ingoing or outgoing null hypersurfaces. Letw
label these hypersurfaces,xA (A52,3) be labels for the null
rays and r be a surface area distance. In the resulting
xa5(w,r ,xA) coordinates, the metric has the Bondi-Sachs
form @29,30#

ds25gwwdw212gwrdwdr12gwAdwdxA1gABdxAdxB,
~2.1!

where det(gAB)5r 2det(qAB)5r 2q, with qAB a unit sphere
metric. In the outgoing case, writingw5u, it is convenient
to express the metric variables in the form

ds252S e2b
V

r
2r 2hABUAUBDdu222e2bdudr

FIG. 1. A schematic of how matching to ingoing null cones
could be used with two black holes. The inner Cauchy evolution is
matched at an outer world tubeC to a null evolution on outgoing
null cones, and at two interior world tubesA andB, to null evolu-
tions on ingoing null cones. The evolutions on the ingoing null
cones stop at the apparent horizons~dotted lines! which surround
the two black holes.
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22r 2hABUBdudxA1r 2hABdxAdxB, ~2.2!

wherehABhBC5dC
A . This yields the standard outgoing null

coordinate version of the Minkowski metric by setting
b5UA5V2r 5hAB2qAB50. In the ingoing case, writing
w5v, the only component of the Minkowski metric which
differs is gvr52gur . This can be effected by the substitu-
tion

b→b1 ip/2 ~2.3!

in the outgoing form of the metric.
The substitution~2.3! can also be used in the curved space

case to switch from outgoing to ingoing coordinates, in
which case it is equivalent to an imaginary shift in the inte-
gration constant for the Einstein equation determiningb @see
Eq. ~2.5! below#. This leads to the ingoing version of the
metric:

ds25S e2b
V

r
1r 2hABUAUBDdv212e2bdvdr

22r 2hABUBdvdxA1r 2hABdxAdxB. ~2.4!

Of course, at a given spacetime point the values of the coor-
dinatesr andxA and the metric quantitiesb, UA, V, andhAB
are not the same in the ingoing and outgoing cases, but since
we do not consider transformations between outgoing and
ingoing coordinates, there is no need to introduce any special
notation to distinguish between them.

This same substitution also provides a simple switch from
the outgoing to the ingoing version of Einstein equations
Gab58pTab written in null coordinates. This is consistent
becauseb contains a free integration constant which can be
chosen to be complex~as long as it leads to a real metric!. In
order to see how this works consider the outgoing version of
the null hypersurface equations@31,32#:

b ,r5
1

16
rhAChBDhAB,rhCD,r12prTrr , ~2.5!

~r 4e22bhABU ,r
B ! ,r52r 4~r 22b ,A! ,r2r 2hBCDChAB,r

116pr 2TrA , ~2.6!

2e22bV,r5R22DADAb22DAbDAb

1r 22e22bDA~r 4UA! ,r2
1

2
r 4e24bhABU ,r

AU ,r
B

18pr 2~T2gABTAB!, ~2.7!

where DA is the covariant derivative andR the curvature
scalar of the two-metrichAB . The b equation~2.5! allows
the substitution~2.3! to be regarded as a change in integra-
tion constant. Then carrying out this substitution in Eqs.
~2.5!–~2.7! leads to the ingoing version of the null hypersur-
face equations:

b ,r5
1

16
rhAChBDhAB,rhCD,r12prTrr , ~2.8!

2~r 4e22bhABU ,r
B ! ,r52r 4~r 22b ,A! ,r2r 2hBCDChAB,r

116pr 2TrA , ~2.9!

22e22bV,r5R22DADAb22DAbDAb

2r 22e22bDA~r 4UA! ,r2
1

2
r 4e24bhABU ,r

AU ,r
B

18pr 2~T2gABTAB!. ~2.10!

This formal substitution also applies to the dynamical equa-
tions and provides a simple means to switch between evolu-
tion algorithms based upon ingoing and outgoing null cones.

As we have already noted, although the same coordinate
labelsr andxA are used for notational simplicity in both the
outgoing metric~2.2! and the ingoing metric~2.4!, they rep-
resent different fields. An exception occurs for spherical
symmetry where the surface area coordinater can be defined
uniquely in terms of the same two-spheres of symmetry used
in both the ingoing and the outgoing coordinates. In this
case, the spacelike or timelike character of ther 5const hy-
persurfaces is consistent under the substitution~2.3! because
the change involved in going from Eq.~2.7! to Eq. ~2.10!
implies thatV changes sign in switching from outgoing to
ingoing coordinates. As a result we obtain a consistent value
for gabr ,ar ,b56e22bV/r , with the1 (2) sign holding for
outgoing~ingoing! coordinates.

In the absence of spherical symmetry, the surface area
coordinater used in the Bondi-Sachs formalism has a gauge
ambiguity associated with the changes in ray labels
xA→yA(xB), under which it transforms as a scalar density.
On any null hypersurface with a preferred compact spacelike
slice S0 , this coordinate freedom inr may be fixed by re-
quiring thatr 5const onS0 . This then determines a unique
r 5const foliation on either the ingoing or outgoing null hy-
persurface emanating fromS0 .

B. Matching

Cauchy-characteristic matching can be used to replace ar-
tificial boundary conditions which are otherwise necessary at
the outer boundary of a finite Cauchy domain. The exterior
characteristic evolution can then be extended to null infinity
to form a globally well-posed initial value problem. In tests
of nonlinear three-dimensional scalar waves, Cauchy-
characteristic matching dramatically outperforms the best
available artificial boundary condition both in accuracy and
computational efficiency@26,27#.

We now describe how this matching strategy can be used
at the inner boundary of a Cauchy evolution which is joined
to an ingoing null evolution. On the initial Cauchy hypersur-
face, denoted by timet0 , letS0 be a~topological! two-sphere
forming the inner boundary of the region being evolved by
Cauchy evolution. LetW represent the future evolution ofS0
under the flow of the vector fieldta5ana1ba, wherena is
the unit vector field normal to the Cauchy hypersurfaces
t5const anda and ba are the lapse and shift. Given the
initial Cauchy data ont0 , boundary data must be given on
the world tubeW in order to determine its future evolution.
The Cauchy hypersurfaces foliate this world tube into
spheresSt . The boundary data are obtained by matching
acrossW to an interior null evolution based upon the null
hypersurfacesv5const emanating inward from the spheres
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St . The evolutions are synchronized by settingv5t onW.
The combination of initial null data onv0 and initial

Cauchy data ont0 determines the future evolution in their
combined domain of dependence as illustrated in Fig. 2. In
order to avoid dealing with caustics we terminate the null
hypersurfacesv t on an inner boundaryQ whose location is
determined by a trapping condition, as discussed below. This
inner boundary plays a role analogous to an apparent horizon
inner boundary in a pure Cauchy evolution. The region in-
sideQ is causally disjoint from the domain of dependence
which is evolved from the initial data. In the implementation
of this strategy in the model spherically symmetric problem
of Sec. IV, we describe in detail how data is passed back and
forth acrossW to supply an outer boundary value for the null
evolution and an inner boundary value for the Cauchy evo-
lution. In the remainder of this section, we discuss how some
of the key underlying issues might be handled in the absence
of symmetry.

In order to ensure that an inner trapping boundary exists it
is necessary to choose initial data which guarantees black
hole formation. Such data can be obtained from initial
Cauchy data ont0 for a black hole. However, rather than
extending the Cauchy hypersurface inward to the apparent
horizon, it could instead be truncated at an initial matching
surfaceS0 located sufficiently far outside the apparent hori-
zon to avoid computational problems with the Cauchy evo-
lution. The initial Cauchy data would then be extended into
the interior ofS0 as null data onv0 until a trapping boundary
is reached. Two ingredients are essential in order to arrange
this. First,S0 must be chosen to be convex, in the sense that
its outward null normals uniformly diverge and its inner null
normals uniformly converge. Given any physically reason-
able matter source, the focusing theorem then guarantees that
the null hypersurfacev0 emanating inward fromS0 contin-
ues to converge until reaching a caustic. Second, initial null
data must be found which leads to trapped surfaces onv0
before such a caustic is encountered. The existence of
trapped surfaces depends upon the divergence of the outward
normals to slices ofv0 . Given the appropriate choice ofS0
the existence of such null data is guaranteed by the evolution
of the extended Cauchy problem. However, it is not neces-
sary to actually carry out such a Cauchy evolution to deter-
mine this null data. It is the data onS0 which are most
critical in determining whether a black hole can form. This
can be phrased in terms of the trapping gravity ofS0 , intro-
duced below. In the spherically symmetric Einstein-Klein-
Gordon model~see Sec. IV!, if S0 has sufficient trapping
gravity to form a trapped surface onv0 in the absence of
scalar waves crossingv0 , then a trapped surface also forms

in the presence of scalar waves. In the absence of symmetry,
this suggests that given appropriate initial Cauchy data for
horizon formation that the simplest and perhaps physically
most relevant initial null data for a black hole would corre-
spond to no gravitational waves crossingv0 . The initial null
data onv0 can be posed freely, i.e., are not subject to any
elliptic or algebraic constraints other than continuity require-
ments with the Cauchy data atS0 . In the vacuum case, the
absence of gravitational waves in the null data has a natural
~although approximate! formulation in terms of setting the
ingoing null component of the Weyl tensor to zero onv0 .

The key to the success of this approach is the proper
trapping behavior, i.e., the convergence of both sets of null
vectors normal to a set of slices ofv0 located between the
caustics and the matching boundary. By construction, the
ingoing null hypersurfaceN0 , given byv5v0 , is converg-
ing along all raysxA, leaving the initial sliceS0 coordina-
tized by r 5R0 . @Here (v,r ,xA) are ingoing null coordi-
nates.# In order to investigate the trapping ofN0 we must
determine the divergence of slicesS of N0 defined by
r 5R(xA). Let na be tangent to the generators ofN0 , with
normalization na52gvrv ,a . Then nav ,a5nax,a

A 50 and
nar ,a521. Let l a be the outgoing normal toS, normalized
by nal a521. Then

l a52 lv ,a1r ,a2R,Ax,a
A , ~2.11!

where

l 5 1
2 gvr~grr 22grAR,A1gABR,AR,B!. ~2.12!

Its contravariant components are

l v5gvr , ~2.13!

l r5 1
2 grr 2 1

2 gABR,AR,B ~2.14!

and

l A5grA2gABR,B . ~2.15!

Let gb
a5gb

a1nal b1 l anb be the projection tensor into the
tangent space ofS and definegab and gab by raising and
lowering indices withgab . Its contravariant components are
gav50, gAB5gAB, g rA5gABR,B, andg rr 5gABR,AR,B , and
its covariant components aregar50, gAB5gAB ,
gvA5gvrR,A1gvA , and gvv5gAB(gvrR,A1gvA)(gvrR,B
1gvB).

The outward divergence ofS is given byQ l52gab¹al b .
~The conventions are chosen so thatQ52/r for a r 5const
slice of an outgoing null cone in Minkowski space.! Then a
straightforward calculation yields

1

2
Q l5

1

r
grr 2

gvr

Aq
@AqgAB~gvrR,B1gvB!# ,A

2
gvr

r
~rgvrg

AB! ,rR,AR,B2gvrR,B~gABgvA! ,r ,

~2.16!

FIG. 2. The shaded region is the domain of dependence of initial
data which is given on a Cauchy slicet0 and an ingoing null slice
v0 . Q is the apparent horizon.W is the matching world tube.
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which is to be evaluated onS after the derivatives are taken.
The divergence of the generators tangent toN0 is given by
Qn5gab¹anb . ThenQn522/r so thatN0 is converging in
accord with our construction.

III. TRAPPING

A slice ofN0 is trapped ifQ l,0. In terms of the ingoing
Bondi metric variables defined in Eq.~2.4!, Eq. ~2.16! gives

r 2e2b

2
Q l52V2

1

Aq
@Aq~e2bhABR,B2r 2UA!# ,A

2r ~r 21e2bhAB! ,rR,AR,B1r 2R,AU ,r
A . ~3.1!

Setting Q l50 in Eq. ~3.1! gives a two-dimensional~2D!
Laplace equation for the functionR(xA) which locates a
marginally trapped surfaceA. Such a surface lies on a trap-
ping horizon and is~a component of! the apparent horizon of
any Cauchy hypersurface which contains it.

For a marginal surface to lie on anouter trapping horizon
its trapping gravity, defined as@16#

k5A2
1

8
LnQ l , ~3.2!

must be real and positive, so thatk>0. The trapping gravity
generalizes the concept of the surface gravity of an event
horizon to trapping horizons. In our coordinate system,
na]a52] r . Thus, if the surfacer 5R(xA) is marginally
trapped, then positive trapping gravity implies that the sur-
face r 5R(xA)2Dr is trapped for smallDr . We use Eq.
~3.2! to generalize the definition of trapping gravity to an
arbitrary slice of a inwardly converging null hypersurface.
Then slices of positive trapping gravity tend toward trapping
as r decreases. However, in general, there seems to be no
purely local criterion which guarantees the existence of a
trapped surface before encountering a caustic asr→0.

In the special case of a spherically symmetric slice of a
spherically symmetric null cone, the Laplace equation for a
marginally trapped slice reduces to the algebraic condition
thatV50, which is satisfied where ther 5const hypersurface
becomes null. The vacuum Schwarzschild metric in ingoing
null coordinates@which are equivalent to ingoing Eddington-
Finkelstein ~IEF! coordinates# is given by b50,
V52(r 22M ), UA50 andhAB5qAB . In this case,V50
determines the location of the event horizon~which coin-
cides with the apparent horizon! and the surface gravity re-
duces tok5(4M )21. In the nonvacuum spherically sym-
metric case,V50 determines the apparent horizon.

In the absence of spherical symmetry,Q l vanishes on a
slice of the formR5const at points for whichQ50, where

Q52V1
r 2

Aq
~AqUA! ,A . ~3.3!

We will refer to the largestr 5const slice ofN0 on which
Q<0 as a ‘‘Q boundary’’Q, relative toS0 . (S0 enters here
because it provides the reference forr 5const slices.! Such a
slice is everywhere trapped or marginally trapped so that the
Q boundary provides a simple algebraic procedure for locat-

ing an inner boundary inside an event horizon. A
Qboundary, when it exists, will always lie inside~smallerr )
or tangent to the trapping horizon. Letr 5RQ describe the
Qboundary and letRmin (Rmax) be the smallest~largest!
value of r on the trapping horizon. Then on the trapping
horizon R,A50 at Rmin and Rmax so that Eq.~2.16! implies
Q>0 atRmin ~andQ<0 atRmax). Consequently,RQ<Rmin ,
with equality holding only whenD2R50 at Rmin .

There are thus two possible strategies for positioning an
inner boundary, both of which ensure that the ignored por-
tion of spacetime cannot causally effect the exterior space-
time: ~I! Use the trapping horizon, in which case the 2D
elliptic equation~2.16! must be solved on a sphere in order
to determine its location, or~II ! use theQ boundary which is
determined by a simple algebraic condition.

Strategy~I! is similar to approaches used to locate an
apparent horizon on a Cauchy hypersurface. The advantage
in the null cone case is that there is a natural radial coordi-
nate defined by the coordinate system to reduce the elliptic
problem to two angular dimensions and to define a mask for
moving the excised region through the computational grid.
Strategy~II ! carries no essential computational burden since
the quantitiesV andU are obtained by means of an inward
radial integral as part of the evolution scheme. One merely
stops the integration when the inequality defining theQ
boundary is satisfied. Thus strategy~II ! is preferable unless
either caustics or singularities appear before reaching theQ
boundary. It is easy to choose black hole initial data so that
the Q boundary and trapping horizon agree at the beginning
of the evolution but whether theQ boundary will move too
far inward to be useful is a critical question which would
depend upon choices of lapse, shift, and geometry of the
matching world tube. Further research is necessary to decide
if strategy ~II ! is viable on geometric grounds in a highly
asymmetric spacetime.

IV. COLLAPSE OF A SPHERICALLY SYMMETRIC
SCALAR WAVE

Our purpose here is to present a spherically symmetric
model demonstrating the feasibility of a stable global algo-
rithm based upon three regions which cover the spacetime
exterior to a single black hole. Figure 3 illustrates one-
dimensional radial geometry. The innermost region is
evolved using an ingoing null algorithm whose inner bound-
ary Q lies at the apparent horizon and whose outer boundary

FIG. 3. This figure shows the two matching world tubes and the
three coordinate patches.
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R0 lies outside the black hole at the inner boundary of a
region evolved by a Cauchy algorithm. Data are passed be-
tween these regions using a matching procedure which is
detailed below. The outer boundaryR1 of the Cauchy region
is handled by matching to an outgoing null evolution. The
details of the outgoing null algorithm@33# and of the Cauchy
evolution @5# are not discussed since they have been pre-
sented elsewhere. We will discuss the matching conditions
since they differ from those used previously@25# due to dif-
ferent choices of gauge conditions. We will also present the
field equations since they are important for understanding the
matching procedure.

The Cauchy evolution is carried out in IEF coordinates.
The metric in this coordinate system is

ds25 ã2~2b̃21!d t̃ 212 ã2b̃d t̃ d r̃ 1 ã2d r̃ 21 r̃ 2dV2.
~4.1!

The set of equations used in the evolution are

Ku
u81

Ku
u2Kr

r

r̃
2

4pFP

ã
50, ~4.2!

b̃5
r̃ ãKu

u

11 r̃ ãKu
u

, ~4.3!

ȧ̃52 ã2~12b̃ !Kr
r1~ ãb̃ !8, ~4.4!

K̇u
u5b̃Ku

u81 ã~12b̃ !Ku
u~Kr

r12Ku
u!1

12b̃

r̃ 2 S ã2
1

ã
D

1
b̃8

ã r̃
, ~4.5!

Ḟ5@ b̃F1~12b̃ !P#8, ~4.6!

Ṗ5
1

r̃ 2
$ r̃ 2@ b̃P1~12b̃ !F#%8, ~4.7!

where the overdot represents partial with respect tot̃ , a
prime denotes partial with respect tor̃ , and the scalar field
variables are defined by

F[f8, P[
1

12b̃
~ ḟ2b̃f8!. ~4.8!

The outgoing null metric is

ds252e2b
V

r
du222e2bdudr1r 2dV2. ~4.9!

The outgoing hypersurface equations~2.5! – ~2.7! reduce to

b ,r52prf ,r
2 , ~4.10!

V,r5e2b, ~4.11!

with UA50 andhAB5qAB , and the outgoing version of the
scalar wave equation is

2~rf! ,ru5
1

r
~rVf ,r ! ,r . ~4.12!

An ingoing null evolution algorithm can be obtained from
the outgoing algorithm by the procedure described in Sec. II.
Given the ingoing null metric

ds25e2b
V

r
dv212e2bdvdr1r 2dV2, ~4.13!

an independent set of equations are the hypersurface equa-
tions

b ,r52prf ,r
2 , ~4.14!

V,r52e2b, ~4.15!

and the scalar wave equation

2~rf! ,rv5
1

r
~rVf ,r ! ,r . ~4.16!

Given data forf onN0 and on the world tubeR0 , defined
by r 5R0 , and integration constants forb and V on R0
evolution proceeds to null hypersurfacesNv , defined by
v5const, by an inward radial march along the null rays ema-
nating inward fromR0 .

A. Initial data

The initial data consist of a Schwarzschild black hole of
massM which is well separated from a Gaussian pulse of
~mostly! ingoing scalar radiation. Initially there is no scalar
field present on the ingoing null patch, and so the initial data
there are simply

f50, ~4.17!

b50, ~4.18!

V52M2r . ~4.19!

Similarly, initially there is no scalar field on the outgoing
null patch, and so we havef50. The values forb andV are
determined by matching to the Cauchy data at the world tube
~see below! and integrating the hypersurface equations~4.14!
and ~4.15!.

In the Cauchy region, the scalar field is given by

f5A r̃ exp@2~ r̃ 2c!d/sd#, ~4.20!

F5fF 1

r̃
2

d~ r̃ 2c!d21

sd G , ~4.21!

P5fF 22b̃

r̃ ~12b̃ !
2

d~ r̃ 2c!d21

sd G , ~4.22!

where A, c, d, and s are scalars representing the pulse’s
amplitude, center, shape, and width, respectively. The geo-
metric variables are initialized using an iterative procedure,
as detailed in@5#.

56 6315BLACK HOLE EXCISION WITH MATCHING



B. Matching conditions

Since the IEF coordinate system is based on ingoing null
cones, it is possible to construct a simple coordinate trans-
formation which maps the IEF Cauchy metric to the ingoing
null metric, namely,

t̃ 5v2r , r̃ 5r . ~4.23!

This results in the following transformations between the
two metrics:

b51/2ln@ ã2~12b̃ !#, ~4.24!

V5r
2b̃21

12b̃
, ~4.25!

b̃5
V1r

V12r
, ~4.26!

ã5ebAV/r 12. ~4.27!

The extrinsic curvature components can be found using
only the Cauchy metric,

Ku
u5

b̃

r̃ ã~12b̃ !
, ~4.28!

Kr
r5

1

ã~12b̃ !
S b̃81b̃

ã8

ã
2

ȧ̃

ã
D . ~4.29!

Note that these transformation equations are valid every-
where in the spacetime, not just at the world tube.

The matching conditions at the outer world tube are more
complicated. Both the Cauchy and characteristic systems
share the same surface area coordinater but there is no uni-
versal transformation between their corresponding time co-
ordinates. However, we can construct a coordinate transfor-
mation which is valid everywhere on the world tube. To do
this, we start with a general, differential coordinate transfor-
mation, whose unknown functionF is to be determined from
the matching conditions

d ū5F~ t̃ !d t̃ 2d r̃ , dr5d r̃ . ~4.30!

To keep the notation simpler, we will write the Cauchy
metric as

ds25g00d t̃ 212g01d t̃ d r̃ 1g11d r̃ 21 r̃ 2dV2. ~4.31!

Inverting Eq.~4.30! and substituting, we get

ds25g00

1

F2
d ū212S 1

F
g011

1

F2
g00D d ūdr

1S g111
2

F
g011

1

F2
g00D dr21r 2dV2. ~4.32!

On the world tube, we requireu5 t̃ , so thatdu5d t̃ .
Thus, we setdu5d ū/F. For the metric, we get

ds25g00du212S g011
1

F
g00Ddudr

1S g111
2

F
g011

1

F2
g00D dr21r 2dV2. ~4.33!

The condition that ther direction be null implies that

g111
2

F
g011

1

F2
g0050. ~4.34!

Upon substitution of the IEF metric functions, this deter-
mines that

F5122b̃ . ~4.35!

The matching conditions are then

b51/2ln@ ã2~12b̃ !#, ~4.36!

V5r
122b̃

12b̃
, ~4.37!

b̃5
V2r

V22r
, ~4.38!

ã5ebA22V/r . ~4.39!

C. Finite difference implementation

As is typical with finite difference calculations, the con-
tinuum functions are discretized spatially and placed on grids
with N points. In our case we have three regions. The inner
null variables are placed on grids withNi points, the Cauchy
variables on grids withNc points, and the outer null variables
on grids with No points. On each grid, the spatial indexi
runs from 1 toNi , Nc or No , respectively, with 1 represent-
ing the smallestr value.

In addition to the spatial discretization, each function
needs two or more time levels. While both the Cauchy and
null evolution schemes use only two time levels, we keep an
extra level in each to facilitate the matching. Figure 4 shows
how the finite difference grids match at the inner world tube.
The two grids are aligned in bothr and t̃ . This means no
interpolations are necessary. The world tube is ati 51 on the
Cauchy grid andi 5Ni21 on the ingoing null grid. The
Cauchy variables need boundary values on time leveln11
at i 51. The metric values come from the null variables at
level n11, with i 5Ni21, using the transformation equa-
tions ~4.26! and ~4.27!. These relations are algebraic and
straightforward to implement. Boundary values for the ex-
trinsic curvature components come from Eqs.~4.28! and
~4.29!. Ku

u is computed algebraically andKr
r is computed

using second-order, centered-in-time, forward-in-space de-
rivatives in the Cauchy grid.

The transformation of the scalar field requires transform-
ing derivatives between the two coordinate patches. At the
world tube, the relationships among the derivatives are

] r5] r̃ 2] t , ~4.40!
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] r̃ 5] r1]v , ~4.41!

]v5] t . ~4.42!

These lead to the following equations forF andP:

F1
n115

1

r̃ 1

gNi21
n12 2gNi21

n

2dv
1

1

r̃ 1

gNi

n112gNi22
n11

2dr
2

gNi21
n11

r̃ 1
2

~4.43!

and

P1
n115

1

12b̃1
n11S 1

r̃ 1

gNi21
n12 2gNi21

n

2dv
2b̃1

n11F1
n11D .

~4.44!

The null variables need boundary values atn12, i 5Ni .
The metric values come from the Cauchy variables at level
n, with i 52, using Eqs.~4.24! and ~4.25!. The evolution
equation forg at the world tube is

gNi

n125gNi

n121r Ni
dvF S 12

b̃2
n1b̃2

n21

2
DP2

n1P2
n21

2

1
b̃2

n1b̃2
n21

2

F2
n1F2

n21

2
G . ~4.45!

The situation at the outer world tube is shown in Fig. 5.
Here, the grids align in space at two values ofr but in time
only at the world tube. The Cauchy metric boundary values
at i 5Nc come directly from the null variables ati 52 using
the transformation equations~4.38! and ~4.39!. Since the
grids do not align in time as they do at the inner world tube,
we use a different procedure for the scalar field boundary
values. We use the derivative transformation

] r5
1

122b̃
] t1] r̃ ~4.46!

to get an evolution equation forf at the world tube. We then
set F and P using their definitions~4.8! and backward
second-order derivatives.

The boundary values for the null variables must be inter-
polated in time using the Cauchy variables atn and n21.
Given values for a functionf at time levelsn andn21, we
can get its valuef s at the beginning of the null cone using

f s5 f nS 32
dr

dt

1

122b̃Nc21
n12 D

1 f n21S 221
dr

dt

1

122b̃Nc21
n12 D . ~4.47!

Notice that this expression requires a value forb̃ at level
n12, something that will not be known until the next time
step. We have found it sufficient to extrapolate from the
previous time levels using

b̃Nc21
n12 53b̃Nc21

n11 23b̃Nc21
n 1b̃Nc21

n21 . ~4.48!

Thus, to get values forb and V we use the matching
conditions~4.36! and ~4.37! along with the above interpola-
tion. For the scalar field, we interpolate the value ofg from
the Cauchy grid, usingg5rf.

The apparent horizon is found on the ingoing null cones
using the apparent horizon equation which reduces simply to
V50. When the scalar field passes into the black hole, the
horizon grows outward and we simply stop evolving the grid
points that are now inside.

FIG. 4. This diagram shows the finite difference grids around
the inner world tube. The squares represent the Cauchy grid, while
the circles are the null grid. The diagonal lines are the ingoing null
cones, and the vertical lineR0 is the inner world tube. The inner-
most points of the Cauchy grid lie on the world tube, while the null
grid extends outside the world tube. Notice that the grids align in
space and time.

FIG. 5. This diagram shows the finite difference grids around
the outer world tube. The squares represent the Cauchy grid, while
the circles are the null grid. The diagonal curves are the outgoing
null cones, and the vertical lineR1 is the outer world tube. The
outermost points of the Cauchy grid lie on the world tube, while the
null grid extends inside the world tube. Notice that the grids align in
time only on the world tube, but in space at the world tube and just
inside.
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D. Performance

To evaluate the performance of this approach, we com-
pare it to a second-order accurate, purely Cauchy evolution
in IEF coordinates, as presented in@5#. For the comparison
shown here, we place the outer boundary of the Cauchy evo-
lution at r 562M and evolve tot540M to prevent any outer
boundary effects from influencing the comparison. The sca-
lar field pulse is centered atr 522M and has a mass of
0.5M .

Figure 6 shows the mutual convergence between the
Cauchy variables in the two codes. This demonstrates that
the two programs are solving the same problem, and pro-
vides evidence that the matching approach generates the cor-
rect spacetime.

The reason that the convergence rate appears to drop to
first order when the scalar field hits the horizon is an artifact
arising from the motion of the horizon. As mass falls into the
hole, there is a critical amount which causes the horizon to
move out by one grid point. If at the coarsest resolution the
horizon moves a distancedr, then on the next finer grid it
only moves bydr/2, and so on. Thus, at different resolu-
tions, the black holes have slightly different locations. The
resulting shift in the location of the inner boundary causes
convergence between successively finer numerical solutions

to drop from second-order to first order. This is an unavoid-
able diagnostic effect due to the comparison of numerical
solutions. We believe that the numerical solution would con-
verge at second order to an exact solution of the physical
problem. No exact solutions are known to use for a check of
this, but for a weak scalar field the horizon does not move
and we do measure second-order convergence throughout the
evolution. Further, we see the same convergence order drop
for strong fields in Cauchy-only or null-only evolutions, and
thus are certain it is not due to the matching procedure.

V. CONCLUSIONS

Our work shows that the matching approach provides as
good a solution to the black hole excision problem in spheri-
cal symmetry as previous treatments@3–5,28#. It also has
some advantages over the pure Cauchy approach, namely, it
is computationally more efficient~fewer variables! and is
much easier to implement. We achieved a stable evolution
simply by transforming the outgoing null evolution scheme
to work on ingoing null cones and implementing it. Achiev-
ing stability with a purely Cauchy scheme in the region of
the apparent horizon is trickier, involving much trial and
error in choosing difference schemes. It should be noted,
however, that implementing the matching may be tricky, es-
pecially in higher dimensions. Whether it is easier than
implementing Cauchy differencing near the horizon remains
to be seen.

Also, using the ingoing null formulation, we have
achieved the stable evolution of a Schwarzschild black hole
in three-dimensions~the details will be presented elsewhere!
and are working on rotating and moving black holes. Long-
term stable evolution of a 3D black hole has yet to be dem-
onstrated with a Cauchy evolution.
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