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Using the Kaluza-Klein structure of stationary spacetimes, a framework for analyzing stationary perturba-
tions of static Einstein-Yang-Mills configurations with bosonic matter fields is presented. It is shown that the
perturbations giving rise to a nonvanishing ADM angular momentum are governed by a self-adjoint system of
equations for a set of gauge-invariant scalar amplitudes. The method is illustrated for SU~2! gauge fields,
coupled to a Higgs doublet or a Higgs triplet. It is argued that slowly rotating black holes arise generically in
self-gravitating non-Abelian gauge theories with bosonic matter, whereas, in general, soliton solutions do not
have rotating counterparts.@S0556-2821~97!04122-2#

PACS number~s!: 04.20.Cv, 04.40.Nr

I. INTRODUCTION

In the presence of a~stationary! Killing symmetry, the
Einstein-Maxwell ~EM! equations reduce to as-model
coupled to three-dimensional gravity@1#. This property is, in
fact, shared by a large class of theories with scalar fields and
Abelianvector fields~see@2# for a classification and@3,4# for
some recent applications and references!. If spacetime admits
an additional~axial! Killing symmetry, then thes-model
structure gives rise to total integrability of the field equa-
tions, provided that the target space is a symmetric space.
This has been known for quite some time for the EM system
@5#, and was recently demonstrated by Gal’tsov for EM-
dilaton-axion models@6#.

Since scalar magnetic potentials fail to exist innon-
Abelian gauge theories, thes-model structure — and, in
particular, the property of integrability — are spoiled for
self-gravitating Yang-Mills fields. Moreover, the circularity
theorem@7# ~which guarantees that spacetime admits a folia-
tion by two-surfaces orthogonal to the integral trajectories of
the two Killing fields! does not extend to the Einstein-Yang-
Mills ~EYM! system@8# ~see also@9#!. The familiar Papape-
trou metric@10# does, therefore, not take account ofall sta-
tionary and axisymmetric degrees of freedom of the EYM
equations.

In view of these problems, an analytic approach to the full
EYM equations with two Killing fields is likely to be ex-
tremely difficult. Motivated by recent work of Volkov and
Straumann@11#, we pursue a more modest aim in this paper;
that is, we consider stationarydeviationsof static EYM con-
figurations with bosonic matter fields. For the pure SU~2!
EYM system, Volkov and Straumann@11# were able to re-
duce the relevant perturbation equations to a three-
dimensional set. In this paper, we present a systematic inves-
tigation of stationary perturbations, which reveals that the
decoupling of a specific set of perturbation amplitudes is a
general featureof a large class of bosonic matter fields
coupled to the EYM system with an arbitrary gauge group.
We argue that stationary perturbations are most appropriately
handled by means of a ‘‘311’’ — rather than a ‘‘212’’ —
decomposition of spacetime.~This does, in particular, avoid

the circularity issue, since the metric is not required to be
axially symmetric in the first place.! Hence, we use the
Kaluza-Klein ~KK ! structure of a stationary spacetime to
analyzearbitrary stationaryperturbations of static configu-
rations. Within this approach, thenonstaticdeviations are
encoded in the KK connection, which is related to~the dual
of! the twist of the stationary Killing field.

The KK reduction of the Einstein-Hilbert action yields a
three-dimensional gravitational theory coupled to the KK
scalar field and the the KK connection@12#. The latter is
described by a gauge potential, which enters the effective
action only quadratically and only via the field strength. Us-
ing a suitable KK decomposition of the YM gauge potential,
these features are preserved if gauge fields and additional
bosonic matter are coupled to gravity. More precisely, it
turns out that the linear terms in the KK connection enter the
reduced action via a~nonminimal! coupling to the electric
components of the YM field. These observations imply the
following two conclusions:~i! The stationary EYM equa-
tions ~coupled to bosonic fields! admit a generalized scalar
twist potential, and~ii ! the nonstatic, nonmagnetic deviations
of a static, purely magnetic solution to the EYM equations
form a consistent subset of all stationary perturbations.
Moreover, it is exactly this subset of perturbations, hence-
forth calledpurely stationaryperturbations, which gives rise
to a nonvanishing Arnowitt-Deser-Misner~ADM ! angular
momentum.

By virtue of the crucial features~i! and ~ii !, the relevant
perturbations~as far as angular momentum is concerned! of a
static, purely magnetic EYM-Higgs configuration form a for-
mally self-adjointsystem for a set ofgauge-invariantscalar
amplitudes. For a spherically symmetric SU~2! background,
these amplitudes, consisting of the generalized twist poten-
tial and the~Lie-algebra-valued! electric YM potential, can
be expanded in terms of ‘‘isospin’’ harmonicsCjm

l . Since
only j 51 contributes to the ADM angular momentum, one
finally obtains a standard Sturm-Liouville problem for three
radial functions. For the twist channel one hasj 5l 51,
whereas the orbital angular momenta in the two YM chan-
nels arel 50 andl 52. The Higgs fields enter the pertur-
bation equations only via a background potential, which
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gives mass to either one~triplet! or both ~doublet! YM per-
turbations.

For a stationary background, the horizon is a regular sin-
gular point of the perturbation equations, which admit four
acceptable solutions, whereas the corresponding number is
three in the asymptotic regime. The fact that the perturbation
equations admit a six-dimensional fundamental system then
yields the conclusion that slowly rotating black hole solu-
tions to the EYM-Higgs equations do exist. The correspond-
ing solutions for the pure EYM system were recently discov-
ered by Volkov and Straumann@11#, who also argued that
these configurations cannot be electrically neutral. The per-
turbation equations show that the coupling of isospin and
orbital momentum, which is responsible for the ‘‘charging
up’’ due to rotation, does not need to be effective if bosonic
matter is coupled to the EYM equations.

For solitonic background solutions the origin is a regular
singular point of the perturbation equations. The number of
physically acceptable modes at the center is, however, not
sufficiently large to allow for ‘‘generic’’ rotational degrees
of freedom of self-gravitating bosonic matter coupled to non-
Abelian gauge fields. The situation does, however, change in
the absenceof bosonic fields@13#.

II. KALUZA-KLEIN REDUCTION

We consider the action for self-gravitating non-Abelian
gauge fields coupled to bosonic matter:

S52
1

16pGE @LG1k~LYM1LB!#, ~1!

where k58pG/g2, G is Newton’s constant, andg is the
gauge coupling. The four-formsLG and LYM are the
Einstein-Hilbert and the YM Lagrangians, respectively:

LG5* ~4!R~4!, LYM52 Tr$F ~4!`* ~4!F ~4!%. ~2!

Here, R(4) and *(4) denote the Ricci scalar and the Hodge
dual with respect to the spacetime metricg(4). The one-form
A(4) is the Lie-algebra-valued YM gauge potential with field
strengthF (4)5dA(4)1A(4)`A(4). For the bosonic matter we
shall, for instance, consider a Higgs fieldH @with potential
P(H)# which transforms according to some representationU
of the gauge group,D (4)H5dH1U!(A(4))H. In particular,

LB522 Tr$~D ~4!H !†`* ~4!D ~4!H%2* ~4!P~H ! ~3!

for a Higgs doublet or a triplet in matrix representation@see
also Eq.~21!#.

Our first aim is to perform the KK reduction of the above
action ~1!. At least locally, a stationary spacetime (M ,g(4))
@with Killing field ] t and corresponding one-form
k52s(dt1a)# has the structureR3S and admits a metric
of KK type:

g~4!52s~dt1a! ^ ~dt1a!1s21g. ~4!

Here,s anda are, respectively, a scalar field and a one-form
on the three-dimensional Riemannian space (S,g). Under
coordinate transformations the one-forma transforms like an
Abelian gauge potential. The corresponding field strengthda

is proportional to the dual of the twist one-form,
v[1/2*(4)(k`dk) 5 2s2/2*da. ~Here and in the follow-
ing * denotes the Hodge dual with respect to the Riemannian
metric g.! The canonical decomposition of the gauge field
A(4) in terms of a stationary functionf and a stationary
one-formA ~both Lie algebra valued! on (S,g) is

A~4!5f~dt1a!1A. ~5!

In the following it will be crucial thatA(4) is decomposed
with respect to the orthonormal tetrad fieldu05As(dt1a)
~rather thanAsdt). The reduction of the Einstein-Hilbert
action with respect to the stationary metric~4! gives
*LG5*(dt`LG), where the three-formLG is the Lagrang-
ian for the KK scalar fields and the Abelian gauge fielda,
effectively coupled to three-dimensional gravity. Up to an
exact differential, one finds

LG5* R~g!2
1

2s2
ds`* ds1

s2

2
da`* da. ~6!

The dimensional reduction of the YM action yields an effec-
tive YM-Higgs theory, with effective Higgs fieldf and YM
field strengthF[dA1A`A. With *LYM5*(dt`LYM) one
has

LYM52 TrH s~F1fda!`* ~F1fda!2
1

s
Df`* DfJ ,

~7!

whereD denotes the gauge-covariant exterior derivative with
respect to the one-formA on S. Introducing a field strength
vector with componentsda andF, the above formulas imply
that the stationary EYM system reduces to a three-
dimensional EYM theory which is nonminimally coupled to
a two-component vector of scalar fields~comprising combi-
nations of the KK scalars and the YM scalarf). Finally,
the evaluation of the Higgs action with respect to the gauge
potential~5! results in an additional potential term, involving
the coupling between the actual Higgs fieldH and the effec-
tive Higgs fieldf:

LB522 TrH ~DH !†`* DH2
1

s2
@U!~f!H#†`* U!~f!HJ

2
1

s
* P@H#. ~8!

The vacuum Einstein equations are obtained from varia-
tions of *LG with respect tog, s, and a. Since LG is a
quadratic expression in terms ofda, both the effective three-
dimensional Einstein equation forg and the equation fors
contain no linear terms inda. In the presence of YM and
Higgs fields this property generalizes in the sense that the
effective action continues to be quadratic in combinations of
da and f. Hence, the only equations which contain linear
terms in da and/or f are those which are obtained from
variations of the effective action,*S@LG1k(LYM1LB)#,
with respect to these quantities:

d* @s2da14ks Tr$f~F1fda!%#50, ~9!
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D* @s21Df#1sda`* ~F1fda!5s22* JB~f!, ~10!

whereJB(f) is the bosonic current~zero-form!. In particu-
lar, one has

JB~f!52@H,@H,f## and JB~f!5 1
2 ~fH†H1H†Hf!

~11!

for a Higgs triplet and a Higgs doublet~in matrix represen-
tation!, respectively, provided that the latter transforms by
left multiplication under the action of SU~2!.

Equation~10! is the electric part of the YM equation. The
twist Eq. ~9! assumes the form of a differential conservation
law. This is due to the fact that the connectiona is an Abe-
lian gauge field which — for reasons of gauge invariance —
enters the effective action only via the field strengthda. All
stationary self-gravitating matter models give, therefore, rise
to a generalized twist potentialx, say. It is well known that
the twist potential for the Einstein-Maxwell system involves
the electricand the magnetic potential. The above reasoning
implies that the twist potential continues to exist in the EYM
system, although scalar magnetic potentials cease to do so in
non-Abelian gauge theories. In fact, Eq.~9! implies the ex-
istence of a functionx, such that

~114ks21Tr$f2%!da5s22* dx24ks21Tr$fF%.
~12!

~It may be worthwhile mentioning that an explicit expression
for the twist potential does not exist for a rotating boson star.
This is a consequence of the fact that the effective action
does contain terms ina itself, since the model is not station-
ary in the strict sense and is, therefore, only gauge invariant
under a combined transformation involvinga and the time
coordinate.!

III. STATIONARY PERTURBATIONS
OF STATIC SPACETIMES

Let us now consider stationary perturbations of a static
~i.e., a50) EYM configuration. The above reasoning im-
plies that the perturbationsda anddf do not couple to the
remaining metric and matter perturbations, provided that the
static configuration ispurely magnetic. ~In this case botha
andf are first order quantities.! The stationary perturbations
of a static, purely magnetic spacetime therefore fall into two
complementary sets, henceforth calledstatic perturbations
and purely stationaryperturbations. The static set involves
only perturbations of fields~metric and matter! which are
already present in the equilibrium configuration. It is obvious
that the restriction to perturbations of this kind gives rise to a
consistent set of first order equations. The purely stationary
perturbations involve those fields which vanish for static,
purely magnetic configurations. It is an interesting conse-
quence of the above KK reduction that the purely stationary
perturbations form a consistent subset as well; that is, the
twist channel and the electric channel donot cause perturba-
tions of the remaining fields.

It is very intuitive ~and will be shown below! that it is
precisely the set of purely stationary perturbations which
gives rise to angular momentum. Hence, we shall now focus
on these perturbations; that is, we consider

dg50, ds50, dA50, dH50 ~13!

and

a5da, f5df. ~14!

The arguments presented above imply that the static equa-
tions for g, s, A, and H remain unchanged in first order
perturbation theory. The perturbation equations forda and
df are obtained from Eqs.~9! and ~10!, respectively. How-
ever, it turns out to be more convenient to use the linearized
twist potentialdx, rather thanda itself. The perturbation
equation fordx is derived from Eq.~12! by linearizing the
integrability conditiond (da)50, whereas the perturbation
equation fordx is obtained from Eqs.~10! and ~12!. One
easily finds~to first order indx anddf)

2
1

4k
dS 1

s2
* ddx D 1dS 1

s
Tr$Fdf% D50, ~15!

DS 1

s
* Ddf D1

1

s
F`ddx

54k Tr$Fdf%`* F1
1

s2
* JB~df!. ~16!

The above equations for the scalar perturbationsdx anddf
form a formallyself-adjointsystem. This is manifest for the
second order differential operators and for the diagonal po-
tential terms on the right-hand side of Eq.~16!. The two
off-diagonal parts on the left-hand sides are easily seen to be
symmetric as well. Moreover,dx and df are gauge-
invariant perturbation amplitudes: This is obvious fordx,
since it is obtained from the Abelian field strengthd(da).
The invariance ofdf follows from the infinitesimal transfor-
mation lawdf→df1U!(f)d f and the fact thatf vanishes
for the background solution.@We recall that under an infini-
tesimal gauge transformationd f one has dA(4)→dA(4)

1D (4)(d f ).# Before we proceed, we shall argue that the an-
gular momentum of a stationary spacetime involves only the
purely stationary set of perturbations, governed by Eqs.~15!
and ~16!.

Apart from stationarity, no symmetry requirements have
been imposed so far. We shall now assume that spacetime
admits a second, axial Killing field,]w , and compute the
Komar expression for the angular momentumJ. Asymptotic
flatness implies that only the terms which are linear ina
contribute to the Komar integral:

J5
1

16pGE
S`

2
* ~4!dc~4!5

1

16pGE
S`

2
@a`* dc2c`* da#.

~17!

Here,c (4)5gwm
(4)dxm is the axial Killing one-form andc its

projection onS. Since in the asymptotic regimes→1 and
c→r 2sin2qdw, the first integrand in Eq.~17! becomes equal
to 22 times the second one. Hence, the angular momentum
becomes
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J52
3

16pGE
S`

2
c`* da5

3

16pGE
S`

2
ra`d~cosq!.

~18!

Let us now consider arbitrary stationary, axisymmetric per-
turbations of a static and axisymmetric spacetime. In this
case,a is a first order quantity, and the expression forJ
involves neither perturbations of the three-metricg nor of the
KK scalar fields. Hence, only the purely stationary modes,
governed by Eqs.~15! and ~16!, contribute to the angular
momentum.

IV. MULTIPOLE EXPANSION

We now restrict ourselves to spherically symmetric back-
ground configurations and perform a multipole expansion of
the relevant first order quantities~which, for simplicity, are
assumed to be axisymmetric!. In the unperturbed spacetime
(R3S,g(4)), we use standard Schwarzschild coordinates and
parametrize the metricg(4)52sdt21s21g in the familiar
form

s5NS2, s21g5N21dr21r 2dV2, ~19!

where N and S are functions of the coordinater . In the
‘‘canonical gauge,’’ the static, spherically symmetric, purely
magnetic background YM potential assumes the form

A5@12w~r !# *̂ dt r , ~20!

where *̂ denotes the Hodge dual with respect to the standard
metric onS2, andt r ,tq , andtw are the spherical generators
of SU~2! ~normalized such that@tq ,tw#5t r). ~See also@14#
for a discussion of symmetric gauge fields with a higher rank
gauge group.! For a static, spherically symmetric Higgs field
we have

H ~3!5h~r !t r , H ~2!5 1
2 h~r !1, ~21!

where, as before,H (3) andH (2) denote a Higgs field in the
adjoint ~triplet! and the fundamental~doublet! representation
of SU~2!, respectively.@We recall that the general spherically
symmetric ansatz for a Higgs doublet is
H (2)51/2h(r )12g(r )t r , and that the magnetic gauge po-
tentialA involves the additional termw̃(r )dt r . However, in
the static case, the field equations imply that one may con-
sistently setg(r )5w̃(r )50; see, e.g.,@15#.#

Let us now consider the multipole expansion for the per-
turbations. We first observe that the perturbations of the met-
ric potentiala which contribute to the ADM angular momen-
tum belong to the sector with~total! angular momentum
j 51. In fact, asda is an axisymmetric one-form on the
spherically symmetric manifoldS, this has an expansion of
the form

da5(
j

@a j *̂ dYj1b jYjdr1g jdYj #, ~22!

where the coefficients are functions of the radial coordinate
r , andYj is shorthand for the spherical harmonicsYj 0. Since
the integrand in the Komar expression~18! is proportional to

dY1, the orthogonality of the spherical harmonics implies that
only the term proportional to *ˆ dY1 in the expansion forda
gives a nontrivial contribution. Hence, as claimed, the sector
describing infinitesimal rotations consists of the purely sta-
tionary perturbations with total angular momentumj 51.

Next, we evaluate the perturbation equations~15! and
~16! for the background fieldsA andH @given in Eqs.~20!
and~21!, respectively#, which are easily seen to be symmet-
ric under parity. To this end, we first expand the electric YM
perturbationdf in terms of the ‘‘isospin’’ harmonicsCjm

l ,
which, after suitable identifications, are proportional to the
standard vector harmonicsYjm

l :

Cjm
j 5tA«AB¹̂BYjm ,

Cjm
j 6157 1

2 ~2 j 1161!t rYjm1tAdAB¹̂BYjm , ~23!

where capital Latin letters refer to indices with respect to the
orthonormal frameuq5dq, uw5sinqdw on S2. The har-
monics Cjm

l have parity (21)l and are, of course, eigen-

functions of the LaplacianD̂5 *̂ d*̂ d on S2 with eigenvalues
2l (l 11). It is not hard to see that the symmetry under a
parity transformation implies that the odd parity component
of df decouples. Moreover, this does not contribute to the
ADM angular momentum, since the parity of the correspond-
ing variation ofa is also odd@see Eq.~12!#. Thus, the axial
perturbations which are relevant to infinitesimal rotations can
be parametrized in terms of three scalar functionsx(r ), y(r ),
andz(r ):

dx5A2kx~r !Y1 , df5y~r !t rY11z~r !
1

A2
tq]qY1 .

~24!

At this point, it is a straightforward task to derive the
perturbation equations for the vector-valued function
v5(x,y,z)T from Eqs.~15! and ~16!. The rotational devia-
tions are governed by the following Sturm-Liouville equa-
tion:

$2] r 2A ]1J1B ]2] BT1P% v50, ~25!

where] denotes the differential operator,

] f [ f 8[
1

S

d f

dr
, ~26!

and S is defined in Eq.~19!. The first two terms originate
from the differential operators D(s21* Ddf) and
d(s22* ddx), which give rise to the matrix-valued back-
ground functions

A5S 2s21 0 0

0 1 0

0 0 1
D ,

~27!

J5
1

sS 22s21 0 0

0 2~w211! 22A2w

0 22A2w w211
D .
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~Note that forw→1 ands→1 the eigenvalues ofJ become
22, 0, and 6, which reflects the fact that the twist channel
has angular momentumj 5l 51, whereas the orbital angular
momentum of the YM perturbations is 0 and 2.! For the
differential coupling between the twist potential and the
gauge fields we obtain~in units with k/254pG/g251)

B ]2] BT52S 0 ] s21~w221! 0

2s21~w221!] 0 0

0 0 0
D .

~28!

Finally, the potential matrixP is given by

P52
2

sS 0 0 A2w8

0 2~w221!2r 22 0

A2w8 0 2sw82
D 1Ph ,

~29!

where the background Higgs field enters the perturbation
equations only via the matrixPh , which becomes

Ph
~3!5

r 2

s S 0 0 0

0 0 0

0 0 h2
D and Ph

~2!5
r 2

4sS 0 0 0

0 h2 0

0 0 h2
D
~30!

for a Higgs triplet and a Higgs doublet, respectively.
In order to discuss the pulsation equations one needs the

behavior of the background quantitiesN, S, w, andh. These
are subject to the static, spherically symmetric EYM-Higgs
equations, which are most conveniently obtained from the
effective Lagrangian. For the gravitational part one finds~up
to an exact differential! * (4)R(4)54S(dm/dr)dt`dr`dV,
where 2m(r )5r @12N(r )#; see, e.g.,@16#. Also evaluating
the effective Lagrangians~7! and~8! ~with a50 andf50)
immediately gives the static, spherically symmetric action
~using againk/251)

S5
1

GF2
dm

dr
1NS dw

dr D 2

1N
r 2

2 S dh

dr D
2

1
~w221!2

2r 2

1
r 2

2
P~h!1Q~w,h!G Sdr, ~31!

whereP(h) denotes the Higgs potential, and the interaction
potentialQ(w,h) is given by

Q~3!~w,h!5h2w2 and Q~2!~w,h!5 1
4 h2~12w!2

~32!

for a Higgs triplet and a Higgs doublet, respectively. Varia-
tion of S with respect tom andS yields the relevant Einstein
equations, whereas variation with respect tow and h gives
the magnetic YM-Higgs equations. Using the background
equations enables one now to analyze the perturbation equa-
tions in the vicinity of the origin, the horizon, and in the
asymptotic regime. In the following section we present the
results of a systematic discussion.

V. ROTATING BLACK HOLES

We start by discussing the behavior of perturbations near
the horizon,r H , of a given black hole background. If the
unperturbed solutions are analytic in a neighborhood of the
horizon, thenr H is a regular singular point of the perturba-
tion equations. Local properties of the solutions can, there-
fore, be analyzed by means of standard techniques. In par-
ticular, the number of physically acceptable solutions is
easily determined: The perturbation equations for the EYM
system coupled to a Higgs doublet or a Higgs triplet admit
precisely four independent solutions which are admissible
near the horizon~provided that the unperturbed black hole is
not extreme!.

Next we consider the asymptotic regimer→`. Near in-
finity, the background solutions with a Higgs field in the
adjoint representation approach the embedded Reissner-
Nordström solution with magnetic chargeP251: w'0 and
uhu'v, where v is the vacuum expectation value of the
Higgs field. Similarly, the unperturbed solutions with a
Higgs field in the fundamental representation approach the
embedded Schwarzschild solution:uwu'1 anduhu'v. ~The
Abelian nature of the matter fields becomes manifest after a
suitable gauge transformation.! It is straightforward to verify
that the leading asymptotic behavior of the perturbations re-
mains unchanged if a given background solution is replaced
by its ‘‘asymptotic Abelian part.’’ Within this approxima-
tion, the perturbation equations simplify considerably in the
asymptotic regime: For a Higgs triplet, the ‘‘massive’’ per-
turbation channel decouples, and the remaining two equa-
tions have a regular singular point at infinity. For a Higgs
doublet, the asymptotic system can even be decoupled com-
pletely. For both types of Higgs fields it is, therefore, readily
verified that preciselythree independent solutions exist
which are physically acceptable near infinity.

Since the background configurations are continuous for
r H,r ,`, the above-defined local solutions have extensions
with a range of definition containing the whole interval
r H,r ,`. By construction, these extensions span the sub-
spaces of global solutions which are acceptable near the in-
ner and the outer boundary points, respectively. Since these
solution subspaces have dimension 3 and 4, respectively, and
since the dimension of the total solution space is 6, the in-
tersection of the subspaces is~at least! one dimensional.
Thus, in the black hole case, physically acceptable global
solutions of the perturbation equations always exist for the
EYM-Higgs system.

VI. ROTATING SOLITONS

Like in the black hole case, the perturbation equations for
soliton background solutions have a regular singular point at
the inner boundary point,r 50, provided that the unper-
turbed solutions are analytic in a neighborhood of the origin.
In the vicinity of this point, the leading behavior of pertur-
bations is completely fixed by the ‘‘centrifugal barrier,’’
Jr 22. It is, therefore, straightforward to verify that precisely
three independent solutions exist which are globally defined
and physically acceptable near the origin. In the asymptotic
regime,r→`, the behavior of perturbations is the same as in
the black hole case. Hence, the global solutions of the per-
turbation equation which are admissible near both boundary
points are given by the intersection of two solution sub-
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spaces, each of which isthreedimensional. Since the inter-
section of two three-dimensional subspaces of a six-
dimensional linear space generically is trivial, we are led to
the conclusion that soliton solutions of the EYM-Higgs sys-
tem generically do not admit rotational excitations.

VII. CONCLUDING REMARKS

Both the general structure and the main features of the
perturbation equations are dominated by the EYM part of the
system. It is, therefore, natural to expect that the above re-
sults, derived for the SU~2! EYM-Higgs system, continue to
hold for a class of EYM systems with higher rank gauge
groups and more general bosonic matter fields. Hence, we
conjecture that bosonic EYM black holes always have rotat-
ing counterparts, whereas bosonic EYM solitons generically

do not admit infinitesimal rotations. The approach presented
in this paper offers the possibility for asystematicstudy of
these conjectures, which, in case they should turn out to be
correct, raise the important question about the physical
mechanism preventing bosonic solitons from rotating.

We emphasize that the asymptotic behavior of the pertur-
bations changes qualitatively in the absence of bosonic
fields. As a consequence of this, thepure EYM system does
admit slowly rotating solitons@13#.

ACKNOWLEDGMENTS

It is a pleasure to thank Norbert Straumann and Michael
Volkov for stimulating discussions. This work was supported
by the Swiss National Science Foundation.

@1# G. Neugebauer and D. Kramer, Ann. Phys.~Leipzig! 24, 62
~1969!.

@2# P. Breitenlohner, D. Maison, and G. Gibbons, Commun. Math.
Phys.120, 295 ~1988!.

@3# D. V. Gal’tsov and P. S. Letelier, Class. Quantum Grav.14, L9
~1997!.

@4# M. Heusler, Phys. Rev. D56, 961 ~1997!.
@5# R. Geroch, J. Math. Phys.13, 394~1972!; W. Kinnersley,ibid.

14, 651 ~1973!; 18, 1529 ~1977!; D. Maison, ibid. 20, 871
~1979!.

@6# D. V. Gal’tsov, Phys. Rev. Lett.74, 2863~1995!.
@7# B. Carter, Commun. Math. Phys.17, 233 ~1970!; General

Relativity: An Einstein Centenary Survey~Cambridge Univer-
sity Press, Cambridge, England, 1979!.

@8# M. Heusler, Helv. Phys. Acta69, 501 ~1996!; Class. Quantum
Grav.12, 2021~1995!; M. Heusler and N. Straumann,ibid. 10,
1299 ~1993!.

@9# M. Heusler, Black Hole Uniqueness Theorems~Cambridge
University Press, Cambridge, England, 1996!.

@10# A. Papapetrou, Proc. R. Irish Acad.51, 191~1945!, Ann. Phys.
~Leipzig! 12, 309 ~1953!.

@11# M. S. Volkov and N. Straumann, Phys. Rev. Lett.79, 1428
~1997!.

@12# J. Ehlers,Les Theories Relativistes de la Gravitation~CNRS,
Paris, 1959!.

@13# O. Brodbeck, M. Heusler, N. Straumann, and M. Volkov,
‘‘Rotating Solitons and Nonrotating, Nonstatic Black Holes,’’
Phys. Rev. Lett.~to be published!, gr-qc/9707057.

@14# O. Brodbeck, Helv. Phys. Acta69, 321 ~1996!; O. Brodbeck
and N. Straumann, J. Math. Phys.34, 2412~1993!.

@15# P. Boschung, O. Brodbeck, F. Moser, N. Straumann, and M.
Volkov, Phys. Rev. D50, 3842~1994!.

@16# O. Brodbeck, M. Heusler, and N. Straumann, Class. Quantum
Grav.53, 754 ~1996!.

56 6283STATIONARY PERTURBATIONS AND INFINITESIMAL . . .


