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Stationary perturbations and infinitesimal rotations
of static Einstein-Yang-Mills configurations with bosonic matter
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Using the Kaluza-Klein structure of stationary spacetimes, a framework for analyzing stationary perturba-
tions of static Einstein-Yang-Mills configurations with bosonic matter fields is presented. It is shown that the
perturbations giving rise to a nonvanishing ADM angular momentum are governed by a self-adjoint system of
equations for a set of gauge-invariant scalar amplitudes. The method is illustrated @r géluge fields,
coupled to a Higgs doublet or a Higgs triplet. It is argued that slowly rotating black holes arise generically in
self-gravitating non-Abelian gauge theories with bosonic matter, whereas, in general, soliton solutions do not
have rotating counterpartsS0556-282(197)04122-2

PACS numbe(s): 04.20.Cv, 04.40.Nr

I. INTRODUCTION the circularity issue, since the metric is not required to be
axially symmetric in the first place.Hence, we use the
In the presence of &stationary Killing symmetry, the Kaluza-Klein (KK) structure of a stationary spacetime to
Einstein-Maxwell (EM) equations reduce to a-model analyzearbitrary stationaryperturbations of static configu-
coupled to three-dimensional gravity]. This property is, in  rations. Within this approach, theonstatic deviations are
fact, shared by a large class of theories with scalar fields anencoded in the KK connection, which is related(tioe dual
Abelianvector fields(seg[2] for a classification anf3,4] for ~ of) the twist of the stationary Killing field.
some recent applications and referencéspacetime admits The KK reduction of the Einstein-Hilbert action yields a
an additional(axial) Killing symmetry, then thec-model three-dimensional gravitational theory coupled to the KK
structure gives rise to total integrability of the field equa-scalar field and the the KK connectigd?]. The latter is
tions, provided that the target space is a symmetric spacelescribed by a gauge potential, which enters the effective
This has been known for quite some time for the EM systenaction only quadratically and only via the field strength. Us-
[5], and was recently demonstrated by Gal'tsov for EM-ing a suitable KK decomposition of the YM gauge potential,
dilaton-axion model$6]. these features are preserved if gauge fields and additional
Since scalar magnetic potentials fail to exist imon-  bosonic matter are coupled to gravity. More precisely, it
Abelian gauge theories, the-model structure — and, in turns out that the linear terms in the KK connection enter the
particular, the property of integrability — are spoiled for reduced action via &onminima) coupling to the electric
self-gravitating Yang-Mills fields. Moreover, the circularity components of the YM field. These observations imply the
theorem[ 7] (which guarantees that spacetime admits a foliafollowing two conclusions:(i) The stationary EYM equa-
tion by two-surfaces orthogonal to the integral trajectories ofions (coupled to bosonic fieldsadmit a generalized scalar
the two Killing fields does not extend to the Einstein-Yang- twist potential, andii) the nonstatic, nonmagnetic deviations
Mills (EYM) system[8] (see alsq9]). The familiar Papape- Of a static, purely magnetic solution to the EYM equations
trou metric[10] does, therefore, not take accountadf sta- form a consistent subset of all stationary perturbations.
tionary and axisymmetric degrees of freedom of the EYMMoreover, it is exactly this subset of perturbations, hence-
equations. forth calledpurely stationaryperturbations, which gives rise
In view of these problems, an analytic approach to the fullto @ nonvanishing Arnowitt-Deser-Misn¢ADM) angular
EYM equations with two Killing fields is likely to be ex- momentum.
tremely difficult. Motivated by recent work of Volkov and By virtue of the crucial feature§) and (ii), the relevant
Straumanri11], we pursue a more modest aim in this paper;perturbationgas far as angular momentum is concejnafca
that is, we consider stationadeviationsof static EYM con-  static, purely magnetic EYM-Higgs configuration form a for-
figurations with bosonic matter fields. For the pure(®U mally self-adjointsystem for a set ofauge-invariantscalar
EYM system, Volkov and Straumarfi1] were able to re- amplitudes. For a spherically symmetric @Jbackground,
duce the relevant perturbation equations to a threethese amplitudes, consisting of the generalized twist poten-
dimensional set. In this paper, we present a systematic inve§al and the(Lie-algebra-valuedelectric YM potential, can
tigation of stationary perturbations, which reveals that thebe expanded in terms of “isospin” harmoni@/m. Since
decoupling of a specific set of perturbation amplitudes is anly j=1 contributes to the ADM angular momentum, one
general featureof a large class of bosonic matter fields finally obtains a standard Sturm-Liouville problem for three
coupled to the EYM system with an arbitrary gauge groupradial functions. For the twist channel one has/=1,
We argue that stationary perturbations are most appropriatelyhereas the orbital angular momenta in the two YM chan-
handled by means of a “81"” — rather than a “2+2" — nels are/’=0 and/=2. The Higgs fields enter the pertur-
decomposition of spacetiméThis does, in particular, avoid bation equations only via a background potential, which
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gives mass to either ongriplet) or both (double} YM per-  is proportional to the dual of the twist one-form,
turbations. w=1/2*P(kN\dk) = —o?/2*da. (Here and in the follow-
For a stationary background, the horizon is a regular sining * denotes the Hodge dual with respect to the Riemannian
gular point of the perturbation equations, which admit fourmetric g.) The canonical decomposition of the gauge field
acceptable solutions, whereas the corresponding number /%) in terms of a stationary functiogp and a stationary

three in the asymptotic regime. The fact that the perturbatiomne-formA (both Lie algebra valuedon (2,g) is
equations admit a six-dimensional fundamental system then

yields the conclusion that slowly rotating black hole solu- 5)
tions to the EYM-Higgs equations do exist. The correspond-
ing solutions for the pure EYM system were recently discov-In the following it will be crucial thatA®) is decomposed
ered by Volkov and Straumarfii1], who also argued that With respect to the orthonormal tetrad fie#d= \o(dt+a)
these configurations cannot be electrically neutral. The perather thany/odt). The reduction of the Einstein-Hilbert
turbation equations show that the coupling of isospin andaction with respect to the stationary metrid) gives
orbital momentum, which is responsible for the “charging f Ls= f(dt/\Lg), where the three-fornh is the Lagrang-
up” due to rotation, does not need to be effective if bosonician for the KK scalar fieldr and the Abelian gauge fiela,
matter is coupled to the EYM equations. effectively coupled to three-dimensional gravity. Up to an
For solitonic background solutions the origin is a regularexact differential, one finds
singular point of the perturbation equations. The number of
physically acceptable modes at the center is, however, not
sufficiently large to allow for “generic” rotational degrees
of freedom of self-gravitating bosonic matter coupled to non-

Abelian gauge fields. The situation does, however, change ifthe dimensional reduction of the YM action yields an effec-

AW =g(dt+a)+A.

2

1
Le=*RO~ ——do/\*do+ %da/\*da. ©6)

20

the absenceof bosonic fieldd13].

Il. KALUZA-KLEIN REDUCTION

We consider the action for self-gravitating non-Abelian
gauge fields coupled to bosonic matter:

1
S=-16-6 f [Lo+ k(L + Le)], (1)
where k=87G/g?, G is Newton’s constant, and is the
gauge coupling. The four-form&s and Ly, are the
Einstein-Hilbert and the YM Lagrangians, respectively:

)

Here, R® and ** denote the Ricci scalar and the Hodge
dual with respect to the spacetime megit). The one-form
A is the Lie-algebra-valued YM gauge potential with field
strengthF =dA® + AMAAM, For the bosonic matter we
shall, for instance, consider a Higgs figttd[with potential
P(H)] which transforms according to some representation
of the gauge grou@H=dH+U,(A®)H. In particular,

)

for a Higgs doublet or a triplet in matrix representat[see
also Eq.(21)].

Our first aim is to perform the KK reduction of the above
action (1). At least locally, a stationary spacetimi (g'¥)
[with Kiling field ¢, and corresponding one-form
k= —o(dt+a)] has the structur®x 3, and admits a metric
of KK type:

Lo=*WRY Lyy=2 THF@NA*DEDL

Lg=—2 T{(DWH)TA*ODHH} —*@p(H)

Y= —o(dt+a)®(dt+a)+ o lg. (4)

tive YM-Higgs theory, with effective Higgs fiel¢p and YM
field strengthtF=dA+ANAA. With [Lyy=/(dt/\Lyy) one
has

Lyw=2 Tr| o(F+ ¢da)/\* (F+ pda) — %D¢/\*D¢},
(7)

whereD denotes the gauge-covariant exterior derivative with
respect to the one-foriA on X. Introducing a field strength
vector with componentda andF, the above formulas imply
that the stationary EYM system reduces to a three-
dimensional EYM theory which is nonminimally coupled to
a two-component vector of scalar fiel@somprising combi-
nations of the KK scalarr and the YM scalakp). Finally,

the evaluation of the Higgs action with respect to the gauge
potential(5) results in an additional potential term, involving
the coupling between the actual Higgs fi¢ldand the effec-
tive Higgs field ¢:

1
_[UL($HITA*U,($)H

o

Lg=—2Tr (DH)TA*DH—

1
~ ~*P[H]. ®

The vacuum Einstein equations are obtained from varia-
tions of [Lg with respect tog, o, anda. Sincelg is a
quadratic expression in terms @&, both the effective three-
dimensional Einstein equation fgrand the equation foor
contain no linear terms ida. In the presence of YM and
Higgs fields this property generalizes in the sense that the
effective action continues to be quadratic in combinations of
da and ¢. Hence, the only equations which contain linear
terms inda and/or ¢ are those which are obtained from

Here,o anda are, respectively, a scalar field and a one-formyariations of the effective actionfs[Lg+ x(Lyw+Lg)],

on the three-dimensional Riemannian spalegj. Under
coordinate transformations the one-foantransforms like an
Abelian gauge potential. The corresponding field streugth

with respect to these quantities:

d*[o?da+4ko Tr{$(F+ ¢da)}]=0, 9
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D*[o D ¢]+ oda/\* (F+ ¢pda)= o 2*Jg(¢), (10) 59=0, 80=0, 5A=0, SH=0 (13
whereJg(¢) is the bosonic currenizero-fornj. In particu-  and
lar, one has
a=sda, $p=056d¢. 14)
Jg(¢)=—[H,[H,0]] and Jg(¢p)=2(¢H'H+HH¢) $=o0 (

(11) The arguments presented above imply that the static equa-

tions for g, o, A, andH remain unchanged in first order
perturbation theory. The perturbation equations éar and

¢ are obtained from Eq€9) and (10), respectively. How-
ever, it turns out to be more convenient to use the linearized
twist potential 5y, rather thanda itself. The perturbation
equation fordy is derived from Eq(12) by linearizing the

lian gauge field which — for reasons of gauge invariance —ntégrability conditiond (daj=0, whereas the perturbation
enters the effective action only via the field strendtn Al €guation fordy is obtained from Eqs(10) and (12). One

stationary self-gravitating matter models give, therefore, ris€asily finds(to first order inéy and 6¢)
to a generalized twist potentigl, say. It is well known that

the twist potential for the Einstein-Maxwell system involves .

the electricand the magnetic potential. The above reasoning B ﬂd o2 dox
implies that the twist potential continues to exist in the EYM

system, although scalar magnetic potentials cease to do so in

_non—AbeIian gauge theories. In fact, H§) implies the ex- D(i* D&¢
istence of a functiory, such that o

for a Higgs triplet and a Higgs doublén matrix represen-
tation), respectively, provided that the latter transforms by
left multiplication under the action of S8).

Equation(10) is the electric part of the YM equation. The
twist Eq. (9) assumes the form of a differential conservation
law. This is due to the fact that the connectiams an Abe-

1

+d ;Tr{F&Z)}):O, (15

1

(1+4ko 1T ¢p?)da= o~ 2 dy—4ko 1Tr{$F}. 1
(12 =4k THF 8@}/\*F+—*Jp(5). (16)
g

(It may be worthwhile mentioning that an explicit expression

for the twist potential does not exist for a rotating boson starThe above equations for the scalar perturbatidgsand 8¢

This is a consequence of the fact that the effective actiofiorm a formally self-adjointsystem. This is manifest for the
does contain terms ia itself, since the model is not station- second order differential operators and for the diagonal po-
ary in the strict sense and is, therefore, only gauge invariantential terms on the right-hand side of E@.6). The two
under a combined transformation involviegandthe time  off-diagonal parts on the left-hand sides are easily seen to be

coordinate). symmetric as well. Moreoversy and 8¢ are gauge-
invariant perturbation amplitudes: This is obvious fély,
ll. STATIONARY PERTURBATIONS since it is obtained from the Abelian field strengifda).

OF STATIC SPACETIMES The invariance oB¢ follows from the infinitesimal transfor-

. _ ) _mation lawd¢p— d¢+ U, () f and the fact tha# vanishes
_ Let us now consider stationary perturbations of a staliGy, the hackground solutiofWe recall that under an infini-
(|.§., a=0) EYM conflguratlon. The above reasoning im- tesimal gauge transformatiodf one has SA(4— sA(4)
plies that the perturbationda and ¢ do not couple to the D()(5f).] Before we proceed, we shall argue that the an-

remaining metric and matter perturbations, provided that th%ular momentum of a stationary spacetime involves only the

static configuration igpurely magnetic(In this case botta purely stationary set of perturbations, governed by EtfS.
and ¢ are first order quantitiesThe stationary perturbations 54 (16).

of a static, purely magnetic spacetime therefore fall into two Apart from stationarity, no symmetry requirements have
complementary sets, henceforth callstatic perturbations  peen imposed so far. We shall now assume that spacetime
and purely stationaryperturbations. The static set involves ,ymits a second. axial Killing field7,, and compute the
only perturbations of field¢émetric and matterwhich are o -r expression for the angular mgmentu”f.msymptotic

already present in the equilibrium configuration. Itis 0bviousg,iness implies that only the terms which are linearain
that the restriction to perturbations of this kind gives rise to 3ontribute to the Komar integral:

consistent set of first order equations. The purely stationary

perturbations involve those fields which vanish for static, 1 1

purely magnetic configurations: It is an interesting conse- j:m 2*(4)d¢<4):mf z[a/\*dz,b— y/\*da].
guence of the above KK reduction that the purely stationary TS, S,

perturbations form a consistent subset as well; that is, the 17
twist channel and the electric channel ot cause perturba-
tions of the remaining fields. Here, w(“):gfp‘gdxf‘ is the axial Killing one-form andy its

It is very intuitive (and will be shown beloyvthat it is  projection on,. Since in the asymptotic regime—1 and
precisely the set of purely stationary perturbations whichy— r2sir?dde, the first integrand in Eq(17) becomes equal
gives rise to angular momentum. Hence, we shall now focuso —2 times the second one. Hence, the angular momentum
on these perturbations; that is, we consider becomes
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3 3 dY;, the orthogonality of the spherical harmonics implies that
J== 1677GL2 y/\*da= 167TGLZra/\d(cosﬂ). only the term proportional todY; in the expansion fosa
- - (18) gives a nontrivial contribution. Hence, as claimed, the sector
describing infinitesimal rotations consists of the purely sta-
Let us now consider arbitrary stationary, axisymmetric perdionary perturbations with total angular momentgim1.
turbations of a static and axisymmetric spacetime. In this Next, we evaluate the perturbation equatiqi$) and
case,a is a first order quantity, and the expression fgr (16) for the background field& andH [given in Egs.(20)
involves neither perturbations of the three-metyicor of the ~ and(21), respectively, which are easily seen to be symmet-
KK scalar fieldo. Hence, only the purely stationary modes, ric under parity. To this end, we first expand the electric YM
governed by Eqgs(15) and (16), contribute to the angular perturbationd¢ in terms of the “isospin” harmonicSZj/m,
momentum. which, after suitable identifications, are proportional to the
standard vector harmoniog/m:
IV. MULTIPOLE EXPANSION _ R
. . . CJ = TASABVBYm y
We now restrict ourselves to spherically symmetric back- m J
ground configurations and perform a multipole expansion of 1 g A
the relevant first order quantitig€svhich, for simplicity, are Cln =F2(2i+1£ 1) 7Y+ 7a0™VeYjm, (23
assumed to be axisymmetridn the unperturbed spacetime
(Rx=,g™), we use standard Schwarzschild coordinates an
parametrize the metrig®)= — odt?>+ o~ g in the familiar
form

&vhere capital Latin letters refer to indices with respect to the
orthonormal frame¢?=d®d, 6°=sindde on S?. The har-
monicst/rn have parity 1)” and are, of course, eigen-

functions of the Laplaciad =* d* d on S? with eigenvalues
o=N&, o lg=N"1dr2+r2dQ? (19 —/(/+1). ltis not hard to see that the symmetry under a
parity transformation implies that the odd parity component
where N and S are functions of the coordinate. In the  of 5¢ decouples. Moreover, this does not contribute to the
“canonical gauge,” the static, spherically symmetric, purely ADM angular momentum, since the parity of the correspond-

magnetic background YM potential assumes the form ing variation ofa is also oddsee Eq(12)]. Thus, the axial
. perturbations which are relevant to infinitesimal rotations can
A=[1-w(r)]*dr, (200 be parametrized in terms of three scalar functiofry, y(r),
andz(r):

where * denotes the Hodge dual with respect to the standard

metric onS?, andr, 7, and 7, are the spherical generators 1

of SU(2) (normalized such thdtr, ,7,]=7,). (See alsq14] SX=V2kxX(1)Yy, S=y(r) 7Y+ 2 7ol
for a discussion of symmetric gauge fields with a higher rank

gauge group.For a static, spherically symmetric Higgs field

we have At this point, it is a straightforward task to derive the
(3)_ 2)_1 perturbation equations for the vector-valued function
H™=h(r)7, HZ=zh(r)], (22) v=(x,y,2)" from Egs.(15) and (16). The rotational devia-
tions are governed by the following Sturm-Liouville equa-
tion:

(24)

where, as befored®) andH® denote a Higgs field in the
adjoint (triplet) and the fundamentatouble} representation
of SU(2), respectively[We recall that the general spherically {—dr2A 9+3+B d—a BT+P} v=0, (25)
symmetric ansatz for a Higgs doublet is -
H@=1/2n(r)1—g(r)7,, and that the magnetic gauge po- whered denotes the differential operator,
tential A involves the additional terw(r)dr, . However, in
the static case, the field equations imply that one may con- afzf’zi ﬂ (26)
sistently seg(r)=w(r)=0; see, e.g[15].] Sdr

Let us now consider the multipole expansion for the per- . ' . ' -
turbations. We first observe thatt%e pertﬂrbations of the F?ne gnds is defined in Eq.(19). The first twgltfrms originate
ric potentiala which contribute to the ADM angular momen- romﬁZ*the dlfferenthl operators D(o . Dog) and
tum belong to the sector witfftotal) angular momentum d(o"*ddy), which give rise to the matrix-valued back-

j=1. In fact, asda is an axisymmetric one-form on the ground functions

spherically symmetric manifold, this has an expansion of —o 1 0 0
the form
A= 0 1 0],
sa=> [afdY+ B Ydr+ydY 22 0 01
aj[“J i+ B;Yidr+ y;d Y], (22) (27)
-207! 0 0

where the coefficients are functions of the radial coordinate 1 0 2AW2+1) —2\/§W
r, andY; is shorthand for the spherical harmonig. Since J= p
the integrand in the Komar expressi@8) is proportional to 0 —22w  w?+1
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(Note that forw— 1 ando—1 the eigenvalues of become V. ROTATING BLACK HOLES
—2, 0, and 6, which reflects the fact that the twist channel

has angular momentur=/=1, whereas the orbital angular the horizon,r, of a given black hole background. If the

momentum of the YM perturbations is 0 and) For the nherturbed solutions are analytic in a neighborhood of the
differential coupling between the twist potential and thepgrizon, therry, is a regular singular point of the perturba-
gauge fields we obtaifin units with /2=47G/g°=1) tion equations. Local properties of the solutions can, there-
1o fore, be analyzed by means of standard techniques. In par-
0 do “(w—1) 0 ticular, the number of physically acceptable solutions is
Bo—gBT=2| —o w2-1)9 0 0]l. easily determined: The perturbation equations for the EYM
system coupled to a Higgs doublet or a Higgs triplet admit
0 0 0 precisely four independent solutions which are admissible
28 nhear the horizoriprovided that the unperturbed black hole is
not extreme
Next we consider the asymptotic regime-«. Near in-

We start by discussing the behavior of perturbations near

Finally, the potential matriP is given by

0 0 J2w’ fini_ty_, the backgrou_nd solutions with a Higgs field in_the
2 adjoint representation approach the embedded Reissner-
Pp=—2| 0 2w?*-1)%? 0 +P,, Nordstran solution with magnetic charge?=1: w~0 and
7 N 0 20’2 |h|~v, wherev is the vacuum expectation value of the

Higgs field. Similarly, the unperturbed solutions with a
(29 . L )
Higgs field in the fundamental representation approach the

where the background Higgs field enters the perturbatiogmbedded Schwarzschild solutigm|~1 and|h|~v. (The

equations only via the matriR,, which becomes Abelian nature of the matter fields becomes manifest after a
suitable gauge transformatignt is straightforward to verify
, 0 0 O ) 0O 0 O thaF the leading asymptptic behavior of the pgrturpations re-
Pﬁg):r_ 00 0l and Pﬁf):r— 0 n?2 o lr)nal_ns ‘L‘mchange_d if a given baclﬁgro_un_d sol_utlon is replaced
y its “asymptotic Abelian part.” Within this approxima-
0 0 h? 0 0 h? tion, the perturbation equations simplify considerably in the

(30 asymptotic regime: For a Higgs triplet, the “massive” per-
) ] ] ) turbation channel decouples, and the remaining two equa-
for a Higgs triplet and a Higgs doublet, respectively. tions have a regular singular point at infinity. For a Higgs
In o_rder to discuss the pulsat|o_n_ equations one needs tr@oumet’ the asymptotic system can even be decoupled com-
behavior of the background quantitiis S, w, andh. These  petely. For both types of Higgs fields it is, therefore, readily
are subject to the static, spherically symmetric EYM-Higgsyerified that preciselythree independent solutions exist
equations, which are most conveniently obtained from th&ynich are physically acceptable near infinity.
effective Lagrangian. For the gravitational part one fifwis Since the background configurations are continuous for
to an exact differential* VR =4s(dm/dr)dt/\drAd€,  ,<r<cx, the above-defined local solutions have extensions
where In(r)=r[1—-N(r)]; see, e.g.[16]. Also evaluating jth a range of definition containing the whole interval
the effective Lagrangian&) and(8) (with a=0 and¢$=0) <r<e. By construction, these extensions span the sub-
immediately gives the static, spherically symmetric actionspaces of global solutions which are acceptable near the in-

(using againk/2=1) ner and the outer boundary points, respectively. Since these
solution subspaces have dimension 3 and 4, respectively, and
1 dm dw\? r?(dh\? (w*-1)? since the dimension of the total solution space is 6, the in-
SZE N W+N dr N? dr] o2 tersection of the subspaces (st least one dimensional.

Thus, in the black hole case, physically acceptable global
solutions of the perturbation equations always exist for the
Sdr, (31)  EYM-Higgs system.

2
+ %P(h)-}—Q(W,h)

. . . . VI. ROTATING SOLITONS
whereP(h) denotes the Higgs potential, and the interaction

potentialQ(w,h) is given by Like in the black hole case, the perturbation equations for
soliton background solutions have a regular singular point at
Q®(w,h)=h2w? and Q@ (w,h)=1h%(1—w)? the inner boundary point;=0, provided that the unper-

(32)  turbed solutions are analytic in a neighborhood of the origin.
In the vicinity of this point, the leading behavior of pertur-
for a Higgs triplet and a Higgs doublet, respectively. Varia-bations is completely fixed by the “centrifugal barrier,”
tion of S with respect tan andS yields the relevant Einstein Jr ~2. It is, therefore, straightforward to verify that precisely
equations, whereas variation with respectm@nd h gives  threeindependent solutions exist which are globally defined
the magnetic YM-Higgs equations. Using the backgroundand physically acceptable near the origin. In the asymptotic
equations enables one now to analyze the perturbation equeegime,r —«, the behavior of perturbations is the same as in
tions in the vicinity of the origin, the horizon, and in the the black hole case. Hence, the global solutions of the per-
asymptotic regime. In the following section we present theturbation equation which are admissible near both boundary
results of a systematic discussion. points are given by the intersection of two solution sub-
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spaces, each of which three dimensional. Since the inter- do not admit infinitesimal rotations. The approach presented
section of two three-dimensional subspaces of a sixin this paper offers the possibility for systematicstudy of

dimensional linear space generically is trivial, we are led tathese conjectures, which, in case they should turn out to be
the conclusion that soliton solutions of the EYM-Higgs sys-correct, raise the important question about the physical

tem generically do not admit rotational excitations. mechanism preventing bosonic solitons from rotating.
We emphasize that the asymptotic behavior of the pertur-
VIl. CONCLUDING REMARKS bations changes qualitatively in the absence of bosonic

) fields. As a consequence of this, there EYM system does
Both the general structure and the main features of theqgmit siowly rotating soliton§13].

perturbation equations are dominated by the EYM part of the

system. It is, therefore, natural to expect that the above re-

sults, derived for the S@) EYM—nggs' syst'em, continue to ACKNOWLEDGMENTS
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