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Instability of cosmological event horizons of nonstatic global cosmic strings

Anzhong Wang
Departamento de Bica Tewica, Universidade do Estado do Rio de Janeiro, Riia Seancisco Xavier 524, Maracana
20550-013 Rio de Janeiro, RJ, Brazil

JoseA. C. Nogale$
Instituto de Fsica, Universidade Federal Fluminense, Av. Litoea s/n-Boa Viagen, CEP 24210-340 NiieiRJ, Brazil
and Instituto de Rica, Universidad Mayor de San Andres (UMSA), Casilla 3553, La Paz, Bolivia
(Received 23 June 1997

The stability of the cosmological event horizons found recently by Grefdeinys. Rev. 064, 4955(1996) ]
for a class of nonstatic global cosmic strings is studied. It is shown that they are not stable to both test particles
and physical perturbations. In particular, the back reaction of the perturbations of null dust fluids will turn them
into spacetime singularities. The resulting singularities are strong in the sense that the distortion of test particles
diverges logarithmically when these singular hypersurfaces are approach@ih6-282(97)02622-3

PACS numbegps): 98.80.Cq, 04.20.Jb, 04.40.Nr

[. INTRODUCTION event horizon§CEH’s).! This result is very important, as it
may make the structure formation scenario of cosmic strings

. ] . more likely, and may open a new avenue to the study of
Topological defects which may have been formed in thegiobal strings.

early Universe have been studied extensivd since the In this paper, we shall study the stability of the CEH'’s

pioneering work of Kibblg2]. They may have been formed found above by Gregory, and shall show that in general they
during phase transitions of the Universe, where the degene@re not stable against physical perturbations, instead are
ated vacua acquired nonzero expectation values. Dependiﬁﬁ,med into spacetime singularities. It should be noted that
on the topology of the vacua, the defects could be domairrl is does not mean that the hope that the spacetimes of non-

I i stri les. text the hvbrid tatic global cosmic strings might be free of spacetime sin-
walls, cosmic strings, monopoles, textures, or the hybrids Ogularities is already found negative? In fact, Gregory consid-

them. Among these defects, cosmic strings have receivegied a very particular case: the energy-momentum tensor of
particular attention mainly because of their cosmological im-the string is still time independent. As a result, no gravita-
plications: They might provide the seeds for the formationgional and particle radiation exists. For a more general case,
of galaxies and the large-scale structure of the UnivEtge one would expect that CEH's may not be formed at all, or
Cosmic strings are further classified as loggduge and ~ €ven they are formed but stable. As we know, in the cylin-

global strings, depending on whether they arise from a locafific@! case gravitational and particle radiation in general al-
symmetrv breaking or a alobal svmmetry breaking. These &S exists. It is plausible to expect that in some situations
y y 9 9 Y y 9- &he radiation is so strong that the gravitational field is well

two kinds of strings have very different properties. In par-giated before any spacetime singularity or horizon is
ticular, the spacetime of a locedtatig string is well behaved  formed. In this respect, it would be very interesting to study
and asymptotically approaches a conical spacef8hevhile  nonstatic global cosmic strings in a more general case.

the spacetime of a global static string is necessarily singular The rest of the paper is organized as follows: In Sec. Il we
at a finite distance from the symmetric axis, and its deficitshall briefly review the main properties of the spacetimes

angle diverges logarithmicalfy]. It is this undesirable prop- Studied by Gregory9], while in Sec. Ill null dust fluids of

. e est particles are studied, which indicate some singularity
erty that makes global strings very difficult to use, and mos‘a&ehavior of the spacetimes near the CEH's. In Sec. IV we

studies of cosmic strings have been restricted only to localynsider “physical” perturbations of real particles, and con-

strings[1]. . _ _ _firm the results obtained in Sec. Ill. Here “physical” is in
However, local strings are tightly constrained by theirthe sense that the back reaction of the perturbations are taken
contribution to the gravitational radiation backgrourgé, into account. Finally in Sec. V we derive our main conclu-

while global cosmic strings circumvent this constraint andsions.
may have similar cosmological implicatiofig]. Lately, Ban-

erjee et al. [8] and Gregory[9] studied nonstatic global
strings, and some interesting results were found. In particu- ) ] _
lar, Gregory showed that the spacetime singularities usually FOr @ straight cosmic string, we can always choose a co-

appearing in the static case can be replaced by cosmologic lenate system that is comoving with the string so that the

Il. SPACETIME FOR NONSTATIC GLOBAL
COSMIC STRINGS

INote that Gregory called the horizons event horizons. However,
*Electronic address: wang@symbcomp.uerj.br to be distinguishable with the ones of black holes, following Gib-
Electronic address: jnogales@portela.if.uff.br bons and Hawking10], we call them cosmological event horizons.
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spacetime in this system has a cylindrical symmetry. If ad- dSZZdTZ_dXZ_dYZ_ng 62, (2.9
ditionally we require that the string has no rotation, the met-
ric for such a spacetime takes the general foirh which is locally Minkowski. Thus, the singularity at=r g in
N N the coordinategt,r,z, 6} is indeed a coordinate singularity
ds?=e*""/(dt*—dR?) —e*/dZ*— a’e"2/d¢?, and represents a conelike CEH in the coordinates
(2.3) {T,X,Y, 6}, as one can see from E.8) that the hypersur-

wherey, ¢, anda are functions of andR only, andt, R, z,  [@Cer=ro is mapped to

and 6 are the usual cylindrical coordinates.
By requiring that the string have fixed proper width and
that the spacetime have boost symmetry in the)(plane,  For the details, we refer readers[@.

Gregory managed to show that the spacetime foB glo- For b(t)= = Bt, the corresponding metric takes the form
bal string(vortex is given by[9]

X2+Y2=T2, (r=rg). (2.10

ds?=B%(ro—r)2[di2—e*F'dZ2]—dr?— C2d6>.
y=28(RTB, =alR)+b(), a=eREM 0 " en
One can show that the singularities appearing=at, in the

wherea(R) andc(R) are two arbitrary functions, arialt) is above metric also represent CEH’s. In fact, if we make the

given by coordinate transformations
In[cosi{Bt)],=Bt, by>0, 1
b(t)=4 by Int, bo=0, (2.3 T=E(ro—r)[ﬁzzzeﬁtJrZsinr(,Bt)],
In[cog Bt) ], bo<0,
: 1
whereb, andb, are arbitrary constants, agE \/|bg|. From X= §(r°_ £)[ 222”2 coshi Bt)],

Egs.(2.1) and (2.2) we can see that by introducing a new
radial coordinate via the relation

Y=pB(ro—r)ze*, (2.12
;
r= f e*PdR, (2.4 for b(t)= + Bt, the metric(2.11) will be brought to the exact
form of Eq.(2.9), while if we make the same transformations
the metric(2.1) can be written in the form as those of Eq(2.12 but with t being replaced by-t for
b(t)=—pt, the metric(2.11) will be also brought to the
ds?=e?Adt2—dr2— e AN *bMIg 72— C2(r)d 62, same form, Eq(2.9). Therefore, in the latter two cases the

(2.9 hypersurface =r all represents a CEH. The topology of it

L i Iso conical in the Minkowski-like coordinates
where A(r)=a[R(r)] and C(r)=c[R(r)]. This is exactly IS a
the form used by Gregory9]. As shown by herself, the (TXtYfa)d 6:3 one can show from E@.12) that Eq.(2.10
spacetime inside the core of a string is always singular at ip satished, too. :
finite distance for the casdég =<0, and has a CEH fds,>0. Before proceeding fur;her, we would I|k_e to note the fol-
In the following, we shall consider only the casg>0. In lowing: (a) For the coordinate transformations given by Eq.

. ; - ; . (2.8), the mapping betweert,f,z) and (T,X,Y) is not one-
'Egl]s case the metric coefficients have the asymptotic behavu%_one, while the one given by E6.12) is. (b) The nature

of the CEH'’s in all three cases is quite similar to that of the
e~ B(ro—r), C(r)~Co+O(ro—r)%, (2.6) extreme Reissner-Nordstroblack hole[12], in the sense

that across =r the coordinateé remains timelike, whiler
asr—r, , whereC, is a constanfcf. Eq.(3.14) in Ref.[9]]. remains spacelike(c) In the neighborhood =rj but with
For the choiceb(t) =In[cosh(@t)], the corresponding metric r>rq, Eq.(2.6) should be replaced by
takes the form

erD~B(r—ry), C(r)~Co+0O(r—rg)?, (r>ro).

ds?= B2(ro—r) Y dt>— cosi(Bt)d 2] —dr2— C3d ¢?, (2.13

@D Substituting Eqs(2.6) and(2.13 into Eq. (2.4), we find
in the neighborhood of the hypersurfacesr,. One can
show that the singularity appearingratrg in Eq. (2.7) is a Eln _ <
coordinate one. This can be seen, for example, by making the B [B(r—rg)], r>rg
following coordinate transformations: R= 1 (2.149
—=In[B(rg—r)], r<rg
X=(ro—r)cosh Bt)cog Bz), B
Y=(ro—r)cosh Bt)sin( 8z), which shows thaR is a monotonically increasing function of
r, except for the point=r,, at whichR diverges.
T=(ro—r)sinh(Bt); (2.9 In the following, we shall consider the stability of these

CEH’s in two steps: First, in the next section we shall con-
then the metrig2.7) is brought to the form sider test particles near the CEH's along a line suggested by
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Helliwell and Konkowski(HK) in the study of the stability
of quasiregular singularitigsl 3], at the aim of generalizing

6219

Equations(3.4) and (3.5 show that all the components di-
verge ag —r for all three different choices di(t), which

the HK conjecture to the case of CEH’s. Second, in Sec. IMndicates that if we take the back reaction of the null dust
we shall consider perturbations of null dust fluids. Thesefluid into account, the CEH’s appearing on the hypersurface
perturbations are different from the ones studied in Sec. llly=r in the solutions(2.7) and (2.11) will be turned into

in the sense that the back reaction of them to the spacetimgpacetime singularities, provided that the HK conjecture still

backgrounds will be taken into account.

Ill. TEST NULL DUST FIELDS NEAR THE CEH’'S

In a series of paperfl3], HK studied the stability of

quasiregular singularities by using test fields. In particular
they conjectured thaif one introduces a test field whose
energy-momentum tensor (EMT) calculated in a free faIIingexi
frame mimics the behavior of the Riemann tensor COMPOog,
nents that indicate a particular type of singularity (quasi-
regular, nonscalar curvature, or scalar curvature), then a
complete nonlinear back-reaction calculation would show

that this type of singularity actually occurfecently, this

holds here. Since all the corresponding scalars made $f

are zero in the present case, the resulted singularities would
be expected to be nonscalar curvature singularities, when the
back reaction of the null dust fluid is taken into account. The
back reaction will be considered in the next section, and it

will be shown that it is indeed the case.

In addition to the outgoing null dust fluid, if there also
sts an ingoing null fluid moving along the null geodesics
fined byl#, i.e.,

—in_ _in
To=p-l.l,,

(3.6

wherel , is defined by Eq(A9), then, from the conservation

conjecture was further generalized to the stability of CaUCh)équationsT;‘V']Ag””zO, one can show that" is given by

horizons[14]. Clearly, if this conjecture is true, the stability
analysis of spacetime singularities would be considerably
simplified. In this section, using HK'’s ideas we shall study

test null dust fields near the CEH's.

. pif(meaot—b(t)

P g o7

For a null dust fluid moving along the outgoing null geo- yhere a, and p™© are other two integration constants.

desics defined by* in the regionr<r, (cf. the Appendi,
the EMT takes the form
(3.1

—out_ _ou
T, =p> ‘nMn,,,

wheren,, is a null vector defined as that in EGA9). Then,

from the conservation equatioﬁ'if}fg”’fo, we find

out

+ %an’(t)) —0, (32

pout
eA(pTu’tr +3A’(r)

which has the solution

out(0) ja t—b(t)
out:p_ e

ST &3

where (),=d/dx, a prime denotes the ordinary derivative

with respect to the indicated argument, adand p®© are
two constants, whilé(r) andb(t) are given, respectively,
by Egs.(2.6) and (2.3. ProjectingT/:,‘fUt onto the PPON
frame defined by EqQYA3) and (A4), we find that the non-
vanishing components are given by

out(0) gagt~b(t) 2
(ro_r)s_allﬁ(ﬂz(ro_r)z
E[E2— B2(ro—1)2]2 1]
[B(ro—1)]? 2}’
(3.9

—out __ —out __ —out __
Too=Taym=Twow=

Clearly, forb(t) =In[coshpt], Bt, we have to choosa;= 3
in order to have the perturbations be finite initialty«(— =),
while for b(t) = — Bt, we have to choosa;= — B, namely,

B, b(t)=In[coshpt], Bt,

“7[-p b=-pt (39

Then, the nonvanishing tetrad componenté';)j,n are given
by
in(0) t—Db(t) 2
T*in :T*in :_T*in — pIE eao E
00~ 1 (1)(1) O™ (¢ —p)3*aols | f(ro—r)?
E[E*- B(ro—1)"]" 1]
[B(ro—1)T? 2)
(3.8

Similar to the outgoing case, to have the perturbations be
finite initially (t=—<), we have to choosey,=a,, where

a, is given by Eq(3.5). Then, from Eq(3.8) we can see that
these components also diverge. Since now we have

e2lagt—b(v)]

T #T,,= 2p°Utn =2 pOut0) ;in(0) N7

(3.9
which always diverges as—r, , we can see that the result-
ing singularities should be scalar curvature ones, when the
back reaction of the two null dust fluids are taken into ac-
count, where

(3.10

Similarly, we can consider test null dust fields in the re-
gionr=rg, and will obtain the same conclusions. Thus, the
above considerations suggest that all the CEH’s appearing in
the solutiong2.7) and(2.11) are not stable against perturba-
tions for all the three different choices bft) with by>0.

— _T—out —in
T=T TT,, -

IV. PERTURBATIONS NEAR THE CEH'S

In this section, let us consider perturbations of null dust
fluids near the CEH’s. For the sake of convenience, we shall
work with the coordinate$ and R, in terms of which the
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metrics(2.7) and(2.11) can be cast in the form

ds’=e ®o(dt?—dR?) —e o[ e®0dZ+ e ®0d§?],

(4.7
where
Q©)=2BR, hg=BR—b(t)—InCy,
®(g=—BR+b(t)—In Cy, (4.2
for r<rgy, and
Q)=—2BR, h=—[BR+b(t)+In Cy],
®(g)=BR+b(t)—In Cy, (4.3
for r=rg, and the functiorb(t) is given by Eq.(2.3).
As shown in[15], the null dust fluids given by
=P+ 2N, (4.4

have contributions only to the metric coefficiergg and
Orr- Specifically, if we set

{Q,h,@}={Q )+ f(U)+9(v),h), P}, (4.5
the metric
ds?=e Y(dt2—dR?) —e "(ePdZ+e *d6?), (4.6

will satisfy the Einstein field equatior®,,—g,,R/2=T,,
with p®“tandp™ being given, respectwely, by

pout:g/(v)h‘uy p'n=f'(u)h,u, (47)
and now
—_ a2 st R —_ A 0/2/ &t R
|, =e (5, +6,), n,=e Y45,—5,),
t+R t—
=, y=—1, 4.9
V2 V2
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Q=f"(u)+g"(v)-28R,
h=—{BR+In[cosi Bt)]+In Cg},
&= BR+In[cosh Bt)]—

In Co, (4.10

for r=r,. Substituting Eqs(4.9 and(4.10 into Eq. (4.7),
we find

Bty—1 —Btg—1
e BEOTW) L gt
v2 coshpgt v2 cosh Bt
—Btyt7 Btg+r
p‘i”t=—'8e : (U), pT=——Be LW (r=ro).
v2 coshpgt v2 coshpgt

Note that it is not necessary to také (u) andg (v) the
same forms a$* (u) andg™(v), since now we consider the
perturbations in both sides of the hypersurfaeer, inde-
pendently. However, to have physically reasonable perturba-
tions, we require

9 '(v)<0, g"'(v)>0,

f~/(u)>0, f*'(u)<0, (4.12

o) thatpOUt andp™ are all not negative.

When f*(u), g*(v), and their first derivatives are very
small, the radial timelike geodesics given by E43) would
be a very good approximation of the corresponding ones of
the metric(4.6). Consequently, the tetrad frames given by
Egs. (A3) and (A4) would serve well as the corresponding
PPON of the solutions given by Eqgt.9) and (4.10. Pro-
jecting the EMT onto this frame, we find that the nonvanish-
ing tetrad components of it are given by

To0=Tyw= {D+<A>p +D_(A)p

andf(u) andg(v) are arbitrary functions of their indicated
arguments. Note that althoudh,, now takes the same form . . 1
as that considered in the last section, it has a fundamental  T(o)1)= T(no) =5 {D+(A)p
difference: now it acts as a source of the spacetime. As a
result, the back reaction of it is automatically fully taken into wherep+ , pgut are given by Eqgs(4.11), and
account. Whenf(u), g(v), and their first derivatives are
E E2 1/2
2 =E E( F - 1)

-D_(A)p%, (413

2

, (4.19

very small, the two dust fluids can be considered as pertur-
bations of the spacetime given by Edd4.1)—(4.3). In the
following, let us consider the three cad®4) = In[cosh@t)],

D.(A)=

+ Bt, — Bt, separately. with A being given by Egs(2.6) and (2.13. Clearly, as
(A) b(t)=In[cosh@t)]. In this case, Eqs(4.2—(4.5 r—rg, these components all diverge. Note that in writing the
yield above expressions we have used the fact figu) and

g™ (v) are very small to set exp"(u)+g=(v)}=1. This will
be also the case for two other cases to be considered below.
Combining Egs(4.11) with Egs.(4.13 and (4.14), we can
see that the perturbations are finite at the initial— <, but

Q=f"(u)+g (v)+2BR,

h=BR—In[cosh Bt)]—In Cy, all will focus into a spacetime singularity when they arrive at
r=rgq. That is, the perturbations turn the CEH’s into space-
®=— BR+In[cosk Bt)]—In Cq, (4.9  time curvature singularities. The nature of the singularity is a

scalar one. This can be seen, for example, from the

forr=<rg,, and Kretschmann scalar,
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4822 28R+ (W+g” ()]
cosltt Bt
482 22BR- 1T (W-g" ()]
coslt gt

f='(ug '(v), T<fo.

R=R,p,sR*7= (4.19

frr(ug™'(v), T"=ro

which diverges like ,— 7) "1, asr—r,, as long as =’ (u)g*='(v) #0, as one can show from Eq#6) and(A7). When only

the outgoing null dust fluid exists, the singularity degenerates to a nonscalar curvature singularity, as it can be shown that now
all 14 scalars made out of the Riemann tensor are zero. However, in any case the singularity is strong in the sense that the
distortion, which is equal to the twice integral of the tetrad components of the Riemann tensor, becomes unbounded, for

example,

f f Ri0)(2)0)2d7d7

=i‘/%ff —Coslhﬂt[D+(A)eiﬂ<t—2R>fi'(u)—D_(A)e1/3<t+2R>gi'(v)]deT~gi'(v)|n(To—T), (4.16

asr—rg. It is interesting to note that, although the tetrad Egs. (A3) and (A4) as a good approximation to the corre-
components of ,, are singular as—r, the scalaT“"T,,  sponding PPON of the solutions given by E¢4.18 and

is not. In fact, from Eq(4.13 it can be shown that (4.19, when f*(u), g*(v), and their first derivatives are
et Y, very small. Then, projecting the EMT onto this frame, we
TE TEmv=T% T*@b)=o n out_ _ Bt~ (u)g='(v) find that the nonvanishing tetrad components of it are given
u (a)(b) PP+ T 2coskRat Bt by
N(TO_ 7-)1 _ 3 _ B
asr—rg. Thus, the formation of the spacetime singularity is
mainly due to the focus of the corresponding gravitational 8
fields. This is different from what we can get from E§.9) + T+ T+ /
for the test particles. Too=Too=Tow= ED+(A)f+ (W) (r=ro),
(B) b(t)=+pBt. When b(t)=+pt, from Egs. (4.2- (4.20

(4.5 we find that

with A being given by Egs(2.6) and (2.13, andD.. are
defined by Eq(4.14). Clearly, asr—r, these components
all diverge, although at the initisl= —o, r#r, they are
finite. That is, the perturbations, similar to the last subcase,

Q=f"(u)+g (v)+2BR,

h=—B(t—R)—In Co,

d=B(t—R)—In C, (4.18 turn the CEH’§ into s_pa_cetime curvature singularities. The
nature of the singularity is a nonscalar one, as one can show
for r=<rgy, and that now all 14 scalars built from the Riemann tensor are
zero. However, the singularity is strong in the sense that the
Q=f"(u+g9*(v)— 28R, distortion diverges like Inf,—7) asr—r,, as we can see

from the following integrations:
h=—-pB(t+R)—In Cy,

_ _ _ 1 g '(v)
d=8(t+R)—In C, (4.19 ff R(O)(Z)(O)(Z)deT:‘/ﬁIBJJ D_(A)drdr

(ro—r)?
for r=r,. Substituting Eqs(4.18 and(4.19 into Eq. (4.7),
we find that ~In(7o—1),

pM'=—V2Bg~'(v), p"=0 (r=ry), L 1)
) j f R drdr= j f 5D, (A)drdr
piut: 0, pII‘] _ _‘/iﬂf+l(u) (I’BI‘O). (42® (0)(2)(0)(2) ‘/EB (r — ro)

L=

The above expressions show that in the regisfr, now ~In(7o— 7). (4.22
there exists only an outgoing dust cloud, while in the region

r=r, only ingoing. With the same arguments as those given (C) b(t)=—p8t. When b(t)=—t, Egs. (4.2-(4.5
in the last subsection, we take the tetrad frames given byield



6222 ANZHONG WANG AND JOSEA. C. NOGALES 56

Q=f"(u)+g9 (v)+28R, ing. Therefore, now the dust clouds cannot be considered as
perturbations, but rather as emission of null fluids from the
h=pB(t+R)—In Cy, CEH'’s. To study the stability of the CEH’s in this case we
have to consider other solutions. However, the following
®=—-B(t+R)—In Cy, (4.23  considerations indicate that they may not be stable, too. Pro-
jecting the EMT onto the frame given by Ed#3) and(A4),
forr<ro, and we find that
Q=f"(u)+g"(v)— 28R, P
h=B(t-R)—In Cy, T00=Tww=Tow=zP+AF W (r<ro),
d=-8(t—R)—In C,, (4.29
B :
for r=r,. Substituting Eqs(4.23 and(4.24) into Eq.(4.7), Too=Twm= —T@)(1)=5D+(A)g+ (v) (r=rp).

we find

(4.26
p2'=0, p"=v2BtT'(u) (r=ry), _
From Eq.(4.14) and the above expressions we can see that
p2M=v2Bg* (v), pPT=0 (r=ry). (4.25 the bapk rea_lction C,’f, the gm.ission also turns the CEH's into
spacetime singularities. Similar to the last subcase, the nature
Thus, in the present case in the regiear, there exists only  of the singularity is a nonscalar one but strong, as the distor-
an ingoing dust cloud, while in the regioe=r, only outgo- tion also diverges as—r,

ff R deT=—iff W D,.(A)drd7~In(7y— 1)
(0)(2)(0)(2) \Qﬁ m + 0 )

+ 1 g’ (v)
f f R(O)(ZXOMZ)deT:—EB f f ﬁD_(A)dTMWIH(TO—T). 4.27)

Thus, for the perturbations that have nonvanishing compodirectly to the study of the stability of CEH'&s far as the
nents along the ingoing null geodesics defined pyn the  examples considered in this paper are conceyredept for
regionr=<r,, or for the perturbations that have nonvanishingthe case wherd(t)=In[cosh@t)]. In the latter case, al-
components along the outgoing null geodesics defined, by though the study of the test particles gives a correct predic-
in the regionr =r,, we would expect that the CEH’s will be tion for the nature of the resulted singularities, but the quan-

turned into spacetime singularities. tity T,, T+ for the test particle diverges, while for the real
perturbations it does not. As a matter of fact, the divergence
V. CONCLUDING REMARKS of the Kretschmann scalar is due to the nonlinear interaction

of gravitational fields. Thus, to properly extend the HK con-

In,this paper, we have c_onsidered the.stab.ility of th(ejjecture to the case of CEH’s, we need also to take the gravi-
CEH's for a class of nonstatic global cosmic strings foun

tational interaction among gravitational waves into account
recently by Gregory9], and found that they are not stable o . o ’
against perturbations. In particular, the back reaction of nulfi CI?iiZI\INhI\(/:vZ I\?VQSIV(;/ ﬁggigonugt:an\t/ﬁ::gitrﬁt h the CEH's
dust fluids will turn them into spacetime singularities. Thus ound by’Gre orv are not stable. and after th% back reaction
resulted singularities are strong in the sense that the distoF- y gory ' :

tion of test particles diverges when these singular hypersuLQf perturba_ﬂons IS take_n. into account, they W'”.be tumned
faces are approaching. into spacetime smgqlarmes, the hope thaF the.t|me depen-
Recently, we have shown that the CEH’s of topologicaldence of the ;pace‘gmes f.o.r global cosmic strings may be
domain walls are also not stable against massless scalar fidkge Of spacetime singularities has not been negated com-
[16] and null dust fluid§17]. Thus, a natural question is are pletely. As we mentioned in the Introduction, the class of
all the cosmological event horizons not stable? If some arépacetimes considered by Gregory is not the most general
but others not, what are the criteria for them? It was exactlypacetimes for nonstatic global cosmic strings. For some
this consideration that motivated us to study the test particlesther cases, one may expect that the gravitational and par-
in Sec. lll, at the aim of generalizing the HK conjecture toticle radiation is so strong that the gravitational field of a
the study of the stability of the CEH'’s. Comparing the resultsglobal string may be well dilated before any spacetime sin-
obtained in Sec. Ill with the ones obtained in Sec. IV, it isgularity or event horizon is formed. Spacetimes with cylin-
really remarkable to see that the HK conjecture can be usedrical symmetry are quite different from those with spherical
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symmetry. In the former case gravitational radiation in genfor r<rg,, and
eral always exists.
2
e?PR=p%(r—rg)%=p(15— 1),
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APPENDIX On the other hand, the corresponding Kretschmann scalar

_ ) _ ) ) to the metric(Al) is given by
In this appendix, we shall briefly review some main prop-

erties of the spacetimes given by

dSZZ e2A(r)dt2_ dr2— eZ[A(r)+b(t)]d22_ CZ(r)dGZ'

n

R= Raﬁy}\Raﬁy)\ZA'{ <_ +4{2(A"

2 A'C’ 2
2| o2

(Al) +A12)2+[A12_(bn+er)esz]Z}' (A8)

whereA, b, andC are arbitrary functions of their indicated Choosing a null tetrad frame, on the other hand, as
arguments.

It can be shown that the corresponding radial timelike (N e® .
geodesics have the first integral lli:%(e s 5,u)_ (5 +6 )
) E E2 1/2
- . _ (R)
t= eZA(r)’ r= 6( eZA(r) 1) ! (AZ) n :i(eA(f)at -5 ): e (5t _ 5R)
s I V3 R Tl
wheree= +1 corresponds to the outgoing geodesics, while
e=—1 to the ingoing geodesics. 1 A0 2 4 )
Denoting the tangent vector to the geodesics\ fy, m,ﬁ%[e 6, +iC(r)o,],
N7 il tol+rot=tsl+e *Pisk,  (A3) 1
=——= rét= e r ok, —
0) dr t r t R mM ‘/_[eA(I’ +b(t |C(r)50] (Ag)

we can construct other three orthogonal spacelike vectors . o .
we find that the nonvanishing Weyl scalars are given by
Ny =e A st +ertsr=e 2R s+ 15,

1 ”
v,= |I—LnV|)\n5 [“nY m)\—g _ [——+A”
)\(2) ef[A(r)er(t)]éé‘L' )\f’é)chl(r)g/é. (A4) 2 2 ,U,V)\ts[ ] 12 C

!

C
+EA’+(b"+b’2)e‘2A],

Then, it can be shown that

)\ﬁ))\(j)/.bz 77” y )\'ﬁ):v)\(yo):o (i,j:0,1,2,3, (AS)
\IIO: ,w)\gl'“m”l m —_3\1’2,

where 7;; is the Minkowski metric. The above equations o
show that the four unit vectobs(}, form a free falling frame V,=—C, "M n*m’=—3¥,. (A10)
or parallel-propagated orthogonal frarflRPON along the
timelike geodesics.

For the particular solutions o%(r) given by Egs.(2.6) ‘I’o‘l’4=9‘1’§- (A11)
and(2.13, Eq. (A2) has the following integration:

Thus, we have

Then, according to the theorem given[it8], we find that

e 2PR=p2(ry—r1)?=pA(15— 1), the metric(Al) is always Petrov typ®, except for the de-
generate case whetk,=0, which is Petrov typ®©.
e2Bt=TO+ T (r<ro) (A6) .F|nally, we woulq like to note thalt (n,) defines an in-
To— T going (outgoing radial null geodesic congruengg5s].
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