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The stability of the cosmological event horizons found recently by Gregory@Phys. Rev. D54, 4955~1996!#
for a class of nonstatic global cosmic strings is studied. It is shown that they are not stable to both test particles
and physical perturbations. In particular, the back reaction of the perturbations of null dust fluids will turn them
into spacetime singularities. The resulting singularities are strong in the sense that the distortion of test particles
diverges logarithmically when these singular hypersurfaces are approaching.@S0556-2821~97!02622-2#

PACS number~s!: 98.80.Cq, 04.20.Jb, 04.40.Nr

I. INTRODUCTION

Topological defects which may have been formed in the
early Universe have been studied extensively@1# since the
pioneering work of Kibble@2#. They may have been formed
during phase transitions of the Universe, where the degener-
ated vacua acquired nonzero expectation values. Depending
on the topology of the vacua, the defects could be domain
walls, cosmic strings, monopoles, textures, or the hybrids of
them. Among these defects, cosmic strings have received
particular attention mainly because of their cosmological im-
plications: They might provide the seeds for the formations
of galaxies and the large-scale structure of the Universe@1#.

Cosmic strings are further classified as local~gauge! and
global strings, depending on whether they arise from a local
symmetry breaking or a global symmetry breaking. These
two kinds of strings have very different properties. In par-
ticular, the spacetime of a local~static! string is well behaved
and asymptotically approaches a conical spacetime@3#, while
the spacetime of a global static string is necessarily singular
at a finite distance from the symmetric axis, and its deficit
angle diverges logarithmically@4#. It is this undesirable prop-
erty that makes global strings very difficult to use, and most
studies of cosmic strings have been restricted only to local
strings@1#.

However, local strings are tightly constrained by their
contribution to the gravitational radiation background@5,6#,
while global cosmic strings circumvent this constraint and
may have similar cosmological implications@7#. Lately, Ban-
erjee et al. @8# and Gregory@9# studied nonstatic global
strings, and some interesting results were found. In particu-
lar, Gregory showed that the spacetime singularities usually
appearing in the static case can be replaced by cosmological

event horizons~CEH’s!.1 This result is very important, as it
may make the structure formation scenario of cosmic strings
more likely, and may open a new avenue to the study of
global strings.

In this paper, we shall study the stability of the CEH’s
found above by Gregory, and shall show that in general they
are not stable against physical perturbations, instead are
turned into spacetime singularities. It should be noted that
this does not mean that the hope that the spacetimes of non-
static global cosmic strings might be free of spacetime sin-
gularities is already found negative? In fact, Gregory consid-
ered a very particular case: the energy-momentum tensor of
the string is still time independent. As a result, no gravita-
tional and particle radiation exists. For a more general case,
one would expect that CEH’s may not be formed at all, or
even they are formed but stable. As we know, in the cylin-
drical case gravitational and particle radiation in general al-
ways exists. It is plausible to expect that in some situations
the radiation is so strong that the gravitational field is well
dilated before any spacetime singularity or horizon is
formed. In this respect, it would be very interesting to study
nonstatic global cosmic strings in a more general case.

The rest of the paper is organized as follows: In Sec. II we
shall briefly review the main properties of the spacetimes
studied by Gregory@9#, while in Sec. III null dust fluids of
test particles are studied, which indicate some singularity
behavior of the spacetimes near the CEH’s. In Sec. IV we
consider ‘‘physical’’ perturbations of real particles, and con-
firm the results obtained in Sec. III. Here ‘‘physical’’ is in
the sense that the back reaction of the perturbations are taken
into account. Finally in Sec. V we derive our main conclu-
sions.

II. SPACETIME FOR NONSTATIC GLOBAL
COSMIC STRINGS

For a straight cosmic string, we can always choose a co-
ordinate system that is comoving with the string so that the
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1Note that Gregory called the horizons event horizons. However,
to be distinguishable with the ones of black holes, following Gib-
bons and Hawking@10#, we call them cosmological event horizons.
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spacetime in this system has a cylindrical symmetry. If ad-
ditionally we require that the string has no rotation, the met-
ric for such a spacetime takes the general form@11#

ds25e2~g2c!~dt22dR2!2e2cdz22a2e22cdu2,
~2.1!

whereg, c, anda are functions oft andR only, andt, R, z,
andu are the usual cylindrical coordinates.

By requiring that the string have fixed proper width and
that the spacetime have boost symmetry in the (t,z) plane,
Gregory managed to show that the spacetime for a U~1! glo-
bal string~vortex! is given by@9#

g52a~R!1b~ t !, c5a~R!1b~ t !, a5c~R!ea~R!1b~ t !,
~2.2!

wherea(R) andc(R) are two arbitrary functions, andb(t) is
given by

b~ t !5H ln@cosh~bt !#,6bt,
b1 ln t,
ln@cos~bt !#,

b0.0,
b050,
b0,0,

~2.3!

whereb0 andb1 are arbitrary constants, andb[Aub0u. From
Eqs. ~2.1! and ~2.2! we can see that by introducing a new
radial coordinater via the relation

r 5E r

ea~R!dR, ~2.4!

the metric~2.1! can be written in the form

ds25e2A~r !dt22dr22e2@A~r !1b~ t !#dz22C2~r !du2,
~2.5!

whereA(r )[a@R(r )# and C(r )[c@R(r )#. This is exactly
the form used by Gregory@9#. As shown by herself, the
spacetime inside the core of a string is always singular at a
finite distance for the casesb0<0, and has a CEH forb0.0.
In the following, we shall consider only the caseb0.0. In
this case the metric coefficients have the asymptotic behavior
@9#

eA~r !;b~r 02r !, C~r !;C01O~r 02r !2, ~2.6!

asr→r 0
2 , whereC0 is a constant@cf. Eq. ~3.14! in Ref. @9##.

For the choiceb(t)5 ln@cosh(bt)#, the corresponding metric
takes the form

ds25b2~r 02r !2@dt22cosh2~bt !dz2#2dr22C0
2du2,

~2.7!

in the neighborhood of the hypersurfacer 5r 0 . One can
show that the singularity appearing atr 5r 0 in Eq. ~2.7! is a
coordinate one. This can be seen, for example, by making the
following coordinate transformations:

X5~r 02r !cosh~bt !cos~bz!,

Y5~r 02r !cosh~bt !sin~bz!,

T5~r 02r !sinh~bt !; ~2.8!

then the metric~2.7! is brought to the form

ds25dT22dX22dY22C0
2du2, ~2.9!

which is locally Minkowski. Thus, the singularity atr 5r 0 in
the coordinates$t,r ,z,u% is indeed a coordinate singularity
and represents a conelike CEH in the coordinates
$T,X,Y,u%, as one can see from Eq.~2.8! that the hypersur-
face r 5r 0 is mapped to

X21Y25T2, ~r 5r 0!. ~2.10!

For the details, we refer readers to@9#.
For b(t)56bt, the corresponding metric takes the form

ds25b2~r 02r !2@dt22e6btdz2#2dr22C0
2du2.

~2.11!

One can show that the singularities appearing atr 5r 0 in the
above metric also represent CEH’s. In fact, if we make the
coordinate transformations

T5
1

2
~r 02r !@b2z2ebt12 sinh~bt !#,

X5
1

2
~r 02r !@b2z2ebt22 cosh~bt !#,

Y5b~r 02r !zebt, ~2.12!

for b(t)51bt, the metric~2.11! will be brought to the exact
form of Eq.~2.9!, while if we make the same transformations
as those of Eq.~2.12! but with t being replaced by2t for
b(t)52bt, the metric ~2.11! will be also brought to the
same form, Eq.~2.9!. Therefore, in the latter two cases the
hypersurfacer 5r 0 all represents a CEH. The topology of it
is also conical in the Minkowski-like coordinates
(T,X,Y,u), as one can show from Eq.~2.12! that Eq.~2.10!
is satisfied, too.

Before proceeding further, we would like to note the fol-
lowing: ~a! For the coordinate transformations given by Eq.
~2.8!, the mapping between (t,r ,z) and (T,X,Y) is not one-
to-one, while the one given by Eq.~2.12! is. ~b! The nature
of the CEH’s in all three cases is quite similar to that of the
extreme Reissner-Nordstro¨m black hole@12#, in the sense
that acrossr 5r 0 the coordinatet remains timelike, whiler
remains spacelike.~c! In the neighborhoodr 5r 0 but with
r .r 0 , Eq. ~2.6! should be replaced by

eA~r !;b~r 2r 0!, C~r !;C01O~r 2r 0!2, ~r .r 0!.
~2.13!

Substituting Eqs.~2.6! and ~2.13! into Eq. ~2.4!, we find

R5H 1

b
ln@b~r 2r 0!#, r .r 0

2
1

b
ln@b~r 02r !#, r ,r 0

~2.14!

which shows thatR is a monotonically increasing function of
r , except for the pointr 5r 0 , at whichR diverges.

In the following, we shall consider the stability of these
CEH’s in two steps: First, in the next section we shall con-
sider test particles near the CEH’s along a line suggested by
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Helliwell and Konkowski~HK! in the study of the stability
of quasiregular singularities@13#, at the aim of generalizing
the HK conjecture to the case of CEH’s. Second, in Sec. IV
we shall consider perturbations of null dust fluids. These
perturbations are different from the ones studied in Sec. III,
in the sense that the back reaction of them to the spacetime
backgrounds will be taken into account.

III. TEST NULL DUST FIELDS NEAR THE CEH’S

In a series of papers@13#, HK studied the stability of
quasiregular singularities by using test fields. In particular,
they conjectured thatif one introduces a test field whose
energy-momentum tensor (EMT) calculated in a free falling
frame mimics the behavior of the Riemann tensor compo-
nents that indicate a particular type of singularity (quasi-
regular, nonscalar curvature, or scalar curvature), then a
complete nonlinear back-reaction calculation would show
that this type of singularity actually occurs. Recently, this
conjecture was further generalized to the stability of Cauchy
horizons@14#. Clearly, if this conjecture is true, the stability
analysis of spacetime singularities would be considerably
simplified. In this section, using HK’s ideas we shall study
test null dust fields near the CEH’s.

For a null dust fluid moving along the outgoing null geo-
desics defined bynm in the regionr<r 0 ~cf. the Appendix!,
the EMT takes the form

Tmn
2out5r2

outnmnn , ~3.1!

wherenm is a null vector defined as that in Eq.~A9!. Then,
from the conservation equationsTmn;l

2outgnl50, we find

eAS r2
out,r

rout 13A8~r ! D 1S r2
out,t

r2
out 1b8~ t ! D 50, ~3.2!

which has the solution

r2
out5

r2
out~0!ea1t2b~ t !

~r 02r !32a1 /b , ~3.3!

where (),x5]/]x, a prime denotes the ordinary derivative
with respect to the indicated argument, anda1 andr2

out(0) are
two constants, whileA(r ) and b(t) are given, respectively,
by Eqs. ~2.6! and ~2.3!. ProjectingTmn

2out onto the PPON
frame defined by Eqs.~A3! and ~A4!, we find that the non-
vanishing components are given by

T~0!~0!
2out 5T~1!~1!

2out 5T~0!~1!
2out 5

r2
out~0!ea1t2b~ t !

~r 02r !32a1 /b H E2

b2~r 02r !2

2
E@E22b2~r 02r !2#1/2

@b~r 02r !#2 2
1

2J .

~3.4!

Clearly, forb(t)5 ln@coshbt#, bt, we have to choosea15b
in order to have the perturbations be finite initially (t52`),
while for b(t)52bt, we have to choosea152b, namely,

a15 Hb,
2b,

b~ t !5 ln@coshbt#,bt,
b~ t !52bt. ~3.5!

Equations~3.4! and ~3.5! show that all the components di-
verge asr→r 0

2 for all three different choices ofb(t), which
indicates that if we take the back reaction of the null dust
fluid into account, the CEH’s appearing on the hypersurface
r 5r 0 in the solutions~2.7! and ~2.11! will be turned into
spacetime singularities, provided that the HK conjecture still
holds here. Since all the corresponding scalars made ofTmn

2out

are zero in the present case, the resulted singularities would
be expected to be nonscalar curvature singularities, when the
back reaction of the null dust fluid is taken into account. The
back reaction will be considered in the next section, and it
will be shown that it is indeed the case.

In addition to the outgoing null dust fluid, if there also
exists an ingoing null fluid moving along the null geodesics
defined byl m, i.e.,

Tmn
2 in5r2

in l ml n , ~3.6!

wherel m is defined by Eq.~A9!, then, from the conservation
equationsTmn;l

2 in gnl50, one can show thatr2
in is given by

r2
in5

r2
in~0!ea0t2b~ t !

~r 02r !31a0 /b , ~3.7!

where a0 and r2
in(0) are other two integration constants.

Then, the nonvanishing tetrad components ofTmn
2 in are given

by

T~0!~0!
2 in 5T~1!~1!

2 in 52T~0!~1!
2 in 5

r2
in~0!ea0t2b~ t !

~r 02r !31a0 /b H E2

b2~r 02r !2

1
E@E22b2~r 02r !2#1/2

@b~r 02r !#2 2
1

2J .

~3.8!

Similar to the outgoing case, to have the perturbations be
finite initially ( t52`), we have to choosea05a1 , where
a1 is given by Eq.~3.5!. Then, from Eq.~3.8! we can see that
these components also diverge. Since now we have

T2mnTmn
2 52r2

outr2
in52r2

out~0!r2
in~0!

e2[a0t2b~ t !]

~r 02r !6 , ~3.9!

which always diverges asr→r 0
2 , we can see that the result-

ing singularities should be scalar curvature ones, when the
back reaction of the two null dust fluids are taken into ac-
count, where

Tmn
2 [Tmn

2out1Tmn
2 in . ~3.10!

Similarly, we can consider test null dust fields in the re-
gion r>r 0 , and will obtain the same conclusions. Thus, the
above considerations suggest that all the CEH’s appearing in
the solutions~2.7! and~2.11! are not stable against perturba-
tions for all the three different choices ofb(t) with b0.0.

IV. PERTURBATIONS NEAR THE CEH’S

In this section, let us consider perturbations of null dust
fluids near the CEH’s. For the sake of convenience, we shall
work with the coordinatest and R, in terms of which the
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metrics~2.7! and ~2.11! can be cast in the form

ds25e2V~0!~dt22dR2!2e2h~0!@eF~0!dz21e2F~0!du2#,
~4.1!

where

V~0!52bR, h~0!5bR2b~ t !2 ln C0 ,

F~0!52bR1b~ t !2 ln C0 , ~4.2!

for r<r 0 , and

V~0!522bR, h~0!52@bR1b~ t !1 ln C0#,

F~0!5bR1b~ t !2 ln C0 , ~4.3!

for r>r 0 , and the functionb(t) is given by Eq.~2.3!.
As shown in@15#, the null dust fluids given by

Tmn5r inl ml n1routnmnn , ~4.4!

have contributions only to the metric coefficientsgtt and
gRR. Specifically, if we set

$V,h,F%5$V~0!1 f ~u!1g~v !,h~0! ,F~0!%, ~4.5!

the metric

ds25e2V~dt22dR2!2e2h~eFdz21e2Fdu2!, ~4.6!

will satisfy the Einstein field equationsRmn2gmnR/25Tmn ,
with rout andr in being given, respectively, by

rout5g8~v !h,v , r in5 f 8~u!h,u , ~4.7!

and now

l m5e2V/2~dm
t 1dm

R!, nm5e2V/2~dm
t 2dm

R!,

u[
t1R

&
, v[

t2R

&
, ~4.8!

and f (u) andg(v) are arbitrary functions of their indicated
arguments. Note that althoughTmn now takes the same form
as that considered in the last section, it has a fundamental
difference: now it acts as a source of the spacetime. As a
result, the back reaction of it is automatically fully taken into
account. Whenf (u), g(v), and their first derivatives are
very small, the two dust fluids can be considered as pertur-
bations of the spacetime given by Eqs.~4.1!–~4.3!. In the
following, let us consider the three casesb(t)5 ln@cosh(bt)#,
1bt, 2bt, separately.

~A! b(t)5 ln@cosh(bt)#. In this case, Eqs.~4.2!–~4.5!
yield

V5 f 2~u!1g2~v !12bR,

h5bR2 ln@cosh~bt !#2 ln C0 ,

F52bR1 ln@cosh~bt !#2 ln C0 , ~4.9!

for r<r 0 , and

V5 f 1~u!1g1~v !22bR,

h52$bR1 ln@cosh~bt !#1 ln C0%,

F5bR1 ln@cosh~bt !#2 ln C0 , ~4.10!

for r>r 0 . Substituting Eqs.~4.9! and ~4.10! into Eq. ~4.7!,
we find

r2
out52

bebtg28~v !

& coshbt
, r2

in5
be2bt f 28~u!

& coshbt
~r<r 0!,

r1
out5

be2btg18~v !

& coshbt
, r1

in52
bebt f 18~u!

& coshbt
~r>r 0!.

~4.11!

Note that it is not necessary to takef 2(u) and g2(v) the
same forms asf 1(u) andg1(v), since now we consider the
perturbations in both sides of the hypersurfacer 5r 0 inde-
pendently. However, to have physically reasonable perturba-
tions, we require

g28~v !,0, g18~v !.0,

f 28~u!.0, f 18~u!,0, ~4.12!

so thatr6
out andr6

in are all not negative.
When f 6(u), g6(v), and their first derivatives are very

small, the radial timelike geodesics given by Eq.~A3! would
be a very good approximation of the corresponding ones of
the metric~4.6!. Consequently, the tetrad frames given by
Eqs. ~A3! and ~A4! would serve well as the corresponding
PPON of the solutions given by Eqs.~4.9! and ~4.10!. Pro-
jecting the EMT onto this frame, we find that the nonvanish-
ing tetrad components of it are given by

T~0!~0!
6 5T~1!~1!

6 5
1

2
$D1~A!r6

in1D2~A!r6
out%,

T~0!~1!
6 5T~1!~0!

6 5
1

2
$D1~A!r6

in2D2~A!r6
out%, ~4.13!

wherer6
in , r6

out are given by Eqs.~4.11!, and

D6~A!5F E

eA 6eS E2

e2A 21D 1/2G2

, ~4.14!

with A being given by Eqs.~2.6! and ~2.13!. Clearly, as
r→r 0 , these components all diverge. Note that in writing the
above expressions we have used the fact thatf 6(u) and
g6(v) are very small to set exp$f6(u)1g6(v)%51. This will
be also the case for two other cases to be considered below.
Combining Eqs.~4.11! with Eqs. ~4.13! and ~4.14!, we can
see that the perturbations are finite at the initialt52`, but
all will focus into a spacetime singularity when they arrive at
r 5r 0 . That is, the perturbations turn the CEH’s into space-
time curvature singularities. The nature of the singularity is a
scalar one. This can be seen, for example, from the
Kretschmann scalar,
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R5RabgdRabg55 2
4b2e2@2bR1 f 2~u!1g2~v !#

cosh2 bt
f 28~u!g28~v !, r<r 0 ,

4b2e22@2bR2 f 1~u!2g1~v !#

cosh2 bt
f 18~u!g18~v !, r>r 0 ,

~4.15!

which diverges like (t02t)21, asr→r 0 , as long asf 68(u)g68(v)Þ0, as one can show from Eqs.~A6! and~A7!. When only
the outgoing null dust fluid exists, the singularity degenerates to a nonscalar curvature singularity, as it can be shown that now
all 14 scalars made out of the Riemann tensor are zero. However, in any case the singularity is strong in the sense that the
distortion, which is equal to the twice integral of the tetrad components of the Riemann tensor, becomes unbounded, for
example,

E E R~0!~2!~0!~2!
6 dtdt

56
&b

4 E E 1

coshbt
@D1~A!e6b~ t22R! f 68~u!2D2~A!e7b~ t12R!g68~v !#dtdt;g68~v !ln~t02t!, ~4.16!

as r→r 0 . It is interesting to note that, although the tetrad
components ofTmn are singular asr→r 0 , the scalarTmnTmn

is not. In fact, from Eq.~4.13! it can be shown that

Tmn
6 T6mn5T~a!~b!

6 T6~a!~b!52r6
inr6

out52
b2f 68~u!g68~v !

2 cosh2bt

;~t02t!,
~4.17!

asr→r 0 . Thus, the formation of the spacetime singularity is
mainly due to the focus of the corresponding gravitational
fields. This is different from what we can get from Eq.~3.9!
for the test particles.

~B! b(t)51bt. When b(t)51bt, from Eqs. ~4.2!–
~4.5! we find that

V5 f 2~u!1g2~v !12bR,

h52b~ t2R!2 ln C0 ,

F5b~ t2R!2 ln C0 ~4.18!

for r<r 0 , and

V5 f 1~u!1g1~v !22bR,

h52b~ t1R!2 ln C0 ,

F5b~ t1R!2 ln C0 ~4.19!

for r>r 0 . Substituting Eqs.~4.18! and~4.19! into Eq. ~4.7!,
we find that

r2
out52&bg28~v !, r2

in50 ~r<r 0!,

r1
out50, r1

in52&b f 18~u! ~r>r 0!. ~4.20!

The above expressions show that in the regionr<r 0 now
there exists only an outgoing dust cloud, while in the region
r>r 0 only ingoing. With the same arguments as those given
in the last subsection, we take the tetrad frames given by

Eqs. ~A3! and ~A4! as a good approximation to the corre-
sponding PPON of the solutions given by Eqs.~4.18! and
~4.19!, when f 6(u), g6(v), and their first derivatives are
very small. Then, projecting the EMT onto this frame, we
find that the nonvanishing tetrad components of it are given
by

T~0!~0!
2 5T~1!~1!

2 52T~0!~1!
2 52

b

&
D2~A!g28~v ! ~r<r 0!,

T~0!~0!
1 5T~1!~1!

1 5T~0!~1!
1 52

b

&
D1~A! f 18~u! ~r>r 0!,

~4.21!

with A being given by Eqs.~2.6! and ~2.13!, and D6 are
defined by Eq.~4.14!. Clearly, asr→r 0 , these components
all diverge, although at the initialt52`, rÞr 0 they are
finite. That is, the perturbations, similar to the last subcase,
turn the CEH’s into spacetime curvature singularities. The
nature of the singularity is a nonscalar one, as one can show
that now all 14 scalars built from the Riemann tensor are
zero. However, the singularity is strong in the sense that the
distortion diverges like ln(t02t) as r→r 0 , as we can see
from the following integrations:

E E R~0!~2!~0!~2!
2 dtdt5

1

&b
E E g28~v !

~r 02r !2
D2~A!dtdt

; ln~t02t!,

E E R~0!~2!~0!~2!
1 dtdt5

1

&b
E E f 18~u!

~r 2r 0!2 D1~A!dtdt

; ln~t02t!. ~4.22!

~C! b(t)52bt. When b(t)52bt, Eqs. ~4.2!–~4.5!
yield
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V5 f 2~u!1g2~v !12bR,

h5b~ t1R!2 ln C0 ,

F52b~ t1R!2 ln C0 , ~4.23!

for r<r 0 , and

V5 f 1~u!1g1~v !22bR,

h5b~ t2R!2 ln C0 ,

F52b~ t2R!2 ln C0 , ~4.24!

for r>r 0 . Substituting Eqs.~4.23! and~4.24! into Eq. ~4.7!,
we find

r2
out50, r2

in5&b f 28~u! ~r<r 0!,

r1
out5&bg18~v !, r1

in50 ~r>r 0!. ~4.25!

Thus, in the present case in the regionr<r 0 there exists only
an ingoing dust cloud, while in the regionr>r 0 only outgo-

ing. Therefore, now the dust clouds cannot be considered as
perturbations, but rather as emission of null fluids from the
CEH’s. To study the stability of the CEH’s in this case we
have to consider other solutions. However, the following
considerations indicate that they may not be stable, too. Pro-
jecting the EMT onto the frame given by Eqs.~A3! and~A4!,
we find that

T~0!~0!
2 5T~1!~1!

2 5T~0!~1!
2 5

b

&
D1~A! f 28~u! ~r<r 0!,

T~0!~0!
1 5T~1!~1!

1 52T~0!~1!
1 5

b

&
D1~A!g18~v ! ~r>r 0!.

~4.26!

From Eq.~4.14! and the above expressions we can see that
the back reaction of the emission also turns the CEH’s into
spacetime singularities. Similar to the last subcase, the nature
of the singularity is a nonscalar one but strong, as the distor-
tion also diverges asr→r 0 ,

E E R~0!~2!~0!~2!
2 dtdt52

1

&b
E E f 28~u!

~r 02r !2 D1~A!dtdt; ln~t02t!,

E E R~0!~2!~0!~2!
1 dtdt52

1

&b
E E g18~v !

~r 2r 0!2 D2~A!dtdt; ln~t02t!. ~4.27!

Thus, for the perturbations that have nonvanishing compo-
nents along the ingoing null geodesics defined byl m in the
regionr<r 0 , or for the perturbations that have nonvanishing
components along the outgoing null geodesics defined bynm
in the regionr>r 0 , we would expect that the CEH’s will be
turned into spacetime singularities.

V. CONCLUDING REMARKS

In this paper, we have considered the stability of the
CEH’s for a class of nonstatic global cosmic strings found
recently by Gregory@9#, and found that they are not stable
against perturbations. In particular, the back reaction of null
dust fluids will turn them into spacetime singularities. Thus
resulted singularities are strong in the sense that the distor-
tion of test particles diverges when these singular hypersur-
faces are approaching.

Recently, we have shown that the CEH’s of topological
domain walls are also not stable against massless scalar field
@16# and null dust fluids@17#. Thus, a natural question is are
all the cosmological event horizons not stable? If some are
but others not, what are the criteria for them? It was exactly
this consideration that motivated us to study the test particles
in Sec. III, at the aim of generalizing the HK conjecture to
the study of the stability of the CEH’s. Comparing the results
obtained in Sec. III with the ones obtained in Sec. IV, it is
really remarkable to see that the HK conjecture can be used

directly to the study of the stability of CEH’s~as far as the
examples considered in this paper are concerned!, except for
the case whereb(t)5 ln@cosh(bt)#. In the latter case, al-
though the study of the test particles gives a correct predic-
tion for the nature of the resulted singularities, but the quan-
tity TmnTmn for the test particle diverges, while for the real
perturbations it does not. As a matter of fact, the divergence
of the Kretschmann scalar is due to the nonlinear interaction
of gravitational fields. Thus, to properly extend the HK con-
jecture to the case of CEH’s, we need also to take the gravi-
tational interaction among gravitational waves into account,
a case which is now under our investigation.

Finally, we would like to note that although the CEH’s
found by Gregory are not stable, and after the back reaction
of perturbations is taken into account, they will be turned
into spacetime singularities, the hope that the time depen-
dence of the spacetimes for global cosmic strings may be
free of spacetime singularities has not been negated com-
pletely. As we mentioned in the Introduction, the class of
spacetimes considered by Gregory is not the most general
spacetimes for nonstatic global cosmic strings. For some
other cases, one may expect that the gravitational and par-
ticle radiation is so strong that the gravitational field of a
global string may be well dilated before any spacetime sin-
gularity or event horizon is formed. Spacetimes with cylin-
drical symmetry are quite different from those with spherical
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symmetry. In the former case gravitational radiation in gen-
eral always exists.
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APPENDIX

In this appendix, we shall briefly review some main prop-
erties of the spacetimes given by

ds25e2A~r !dt22dr22e2@A~r !1b~ t !#dz22C2~r !du2,
~A1!

whereA, b, andC are arbitrary functions of their indicated
arguments.

It can be shown that the corresponding radial timelike
geodesics have the first integral

ṫ5
E

e2A~r ! , ṙ 5eS E2

e2A~r ! 21D 1/2

, ~A2!

wheree511 corresponds to the outgoing geodesics, while
e521 to the ingoing geodesics.

Denoting the tangent vector to the geodesics byl (0)
m ,

l~0!
m [

dxm

dt
5 ṫd t

m1 ṙd r
m5 ṫd t

m1e2a~R!ṙdR
m , ~A3!

we can construct other three orthogonal spacelike vectors

l~1!
m 5e2A~r !ṙd t

m1eA~r ! ṫd r
m5e2a~R!ṙd t

m1 ṫdR
m ,

l~2!
m 5e2@A~r !1b~ t !#dz

m , l~3!
m 5C21~r !du

m . ~A4!

Then, it can be shown that

l~ i !
m l~ j !m5h i j , l~ i !;n

m l~0!
n 50 ~ i , j 50,1,2,3!, ~A5!

where h i j is the Minkowski metric. The above equations
show that the four unit vectorsl ( i )

m form a free falling frame
or parallel-propagated orthogonal frame~PPON! along the
timelike geodesics.

For the particular solutions ofA(r ) given by Eqs.~2.6!
and ~2.13!, Eq. ~A2! has the following integration:

e22bR5b2~r 02r !25b2~t0
22t2!,

e2bt5
t01t

t02t
~r<r 0! ~A6!

for r<r 0 , and

e2bR5b2~r 2r 0!25b2~t0
22t2!,

e2bt5
t01t

t02t
~r>r 0! ~A7!

for r>r 0 , wheret0 is chosen such that whenr→r 0 , we
havet→t0 .

On the other hand, the corresponding Kretschmann scalar
to the metric~A1! is given by

R[RabglRabgl54H S C9

C D 2

12S A8C8

C D 2J 14$2~A9

1A82!21@A822~b91b82!e22A#2%. ~A8!

Choosing a null tetrad frame, on the other hand, as

l m5
1

&
~eA~r !dm

t 1dm
r !5

ea~R!

&
~dm

t 1dm
R!,

nm5
1

&
~eA~r !dm

t 2dm
r !5

ea~R!

&
~dm

t 2dm
R!,

mm5
1

&
@eA~r !1b~ t !dm

z 1 iC~r !dm
u #,

m̄m5
1

&
@eA~r !1b~ t !dm

z 2 iC~r !dm
u #, ~A9!

we find that the nonvanishing Weyl scalars are given by

C252
1

2
Cmnld@ l mnnl lnd2 l mnnmlm̄d#5

1

12 H 2
C9

C
1A9

1
C8

C
A81~b91b82!e22AJ ,

C052Cmnldl mmnl lmd523C2 ,

C452Cmnldnmm̄nnlm̄d523C2 . ~A10!

Thus, we have

C0C459C2
2 . ~A11!

Then, according to the theorem given in@18#, we find that
the metric~A1! is always Petrov typeD, except for the de-
generate case whereC250, which is Petrov typeO.

Finally, we would like to note thatl m(nm) defines an in-
going ~outgoing! radial null geodesic congruence@15#.
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