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We consider preheating in the theoky ¢*+ 2g2$2x2, where the classical oscillating inflaton fiel(t)
decays intoy particles andg particles. The parametric resonance which leads to particle production in this
conformally invariant theory is described by the Laeguation. It significantly differs from the resonance in
the theory with a quadratic potential. The structure of the resonance depends in a rather nontrivial way on the
parameteig?/\. We find an “unnatural selection” rule: the most efficient creation of particles occurs not for
particles which have the strongest coupling to the inflaton field, but for those which have the greatest charac-
teristic exponenj.. We construct the stability-instability chart in this theory for arbitrgfy . We give simple
analytic solutions describing the resonance in the limiting cgd8s<1 andg?\>1, and in the theory with
g?=3\, and withg?=\. From the point of view of parametric resonance foithe theories withg?= 3\ and
with g2=\ have the same structure, respectively, as the thémn;ﬁ“, and the theory )(/4N)(<bi2)2 of an
N-component scalar fielgh; in the limit N—«. We show that in some of the conformally invariant theories
such as the simplest modgh ¢*, the resonance can be terminated by the back reaction of produced particles
long before( x2) or (#%) become of the ordep?. We analyze the changes in the theory of reheating in this
model which appear if the inflaton field has a masdn this case the conformal invariance is broken, and the
resonance may acquire the features of stochasticity and intermittancy even if the mass is very small, so that
(m212)p?< (N 14)¢*. We give a classification of different resonance regimes for various relations between the
coupling constants, masses, and the amplitude of the oscillating inflatonffielda general class of theories
+(m?12) 2+ (N 4) p*+ (g12) 2 x?. [S0556-282(197)05122-9

PACS numbd(s): 98.80.Cq

I. INTRODUCTION one can reduce the investigation of preheating in these theo-
ries in an expanding universe to a much simpler theory of
The theory of reheating of the universe is one of the mospreheating in Minkowski space-timgl]. As a result, the
important and least developed parts of inflationary cosmolparametric resonance does not exhibit the stochasticity found
ogy. Recently it was found that in many realistic versions ofin [2]. However, stochastic resonance may appear again at
chaotic inflation reheating begins with a stage of parametrithe late stages of preheating if the fieldlsand y have bare
resonancgl]. At this stage the energy is rapidly transferred masses which break conformal invariance.
from the inflaton field to other scalar and vector fields inter- We will investigate preheating in the theories of the type
acting with it. This process occurs far away from thermalof (\/4)¢*+ (g?/2)$2x? for various relations between the
equilibrium, and therefore we called jtreheating The  coupling constantg? and \. During this investigatior(see
theory of preheating is rather complicated.[ll] we gave specifically Secs. V and X)] we will discuss how the results
only a brief summary of its basic features. A detailed inves-of the previous papers on this subject are related to the pic-
tigation of preheating in the simplest chaotic inflation modelture which emerges from the current study. We will show
describing a massive inflaton fieltlinteracting with a mass- that the development of the resonance in the various confor-
less scalar fielgy was contained in our recent pag@j. It  mally invariant theories can be very different, depending on
was found, in particular, that the resonance in such theoriethe particular values of parameters and the structure of the
can be efficient only if it is extremely broad. In such a situ-theory. For example, the mode\#4)¢*+ (g%/2) p2x? with
ation preheating in an expanding universe looks like a stog?=X\ or g?=3\ has only one instability band, but the struc-
chastic process. ture of the bands and the characteristic exponentsare
In this paper we will concentrate on the theory of preheatcompletely different. It is enough to change the rajfa\
ing in a class of conformally invariant theories such asonly slightly, and the number of the instability bands imme-
(MA)p*+ (9%12) p*x2. Different aspects of preheating in diately becomes infinitely large. For this reason, it is danger-
such theories have been studied in REfs3—11. A specific  ous to extrapolate the results obtained for a theory with one
feature of these models is that by a conformal transformatiochoice of parameters to a theory with another choice of pa-
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rameters. As we will see, not only is the structure of the This paper is organized as follows. In Sec. Il we will
resonances different in different models, but the self-describe the evolution of the background inflaton fieit)
consistent dynamical evolution with an account taken of thefter inflation in the theory with the effective potential
back reaction of produced particles can also be qualitatively¥/($) =X ¢*. We will give an analytic solution for the mo-
different. tion of the field ¢(t) in the regime of oscillations, when
The main purpose of the present paper is to study thés|<M,. Then, in Sec. Ill, we derive the equations for fluc-
structure of the parametric resonance in the conformally intuations of the fieldgy and ¢ in the conformally invariant
variant theories. These theories may describe many bosheeory, and reduce these to equations in Minkowski space-
fields y interacting with the inflaton fieldp with different  time. We show that these equations can ultimately be re-

coupling constants: duced to a single Lamequation with just one parameter,
2 1 N g?/\. In Sec. IV we solve the Lamequation numerically for
L=— ﬁRJr §¢ = Z¢4 an arbitraryg?/\ and arbitrary momentunk, of fluctuations.

This allows us to produce the main result of our paper; we
1 construct the stability/instability chart for fluctuations in the
_— (XmiXm' — 92P2xXE— EmRXZ)- (1)  conformally invariant theories. In Sec. V we discuss the par-
2'm ticular ranges and values of the paramejét\ where the
) ) analytic methods for the description of the resonance can be
Here x, stands for themth scalar field interacting with the developed. In Secs. VI-IX we perform an analytic investi-
inﬂaton field with t_he coupling constagt, , and interacting gation of the resonance for some particular valuegh .
with curvatureR with the coupling constarg,. For different values ofg?/\ different analytic approaches
Strictly speaking, this model is conformally invariant only i pe developed. We report a new method to treat the reso-
for a specific choice of the parametéfs: £,=5. Neverthe- nance wheng?/A=n(n+1)/2, wheren is an integer. We
less, in this paper we will consid'er t'he simplgst mode'ls Withshow that the solutions f@?/\ =n(n+1)/2 can be found in
ém=0. As we will see shortly, this difference is not going to ¢jpsed form, in terms of integrals of algebraic functions, in-
be very important because the average valu® ofanishes  stead of complicated theta functions. This is done explicitly

When|¢|_<Mp- _ _ ) for the most interesting cases=1 andn=2 (i.e., for g°
We will see that for the conformally invariant theories the — \ angg2=3)), in Secs. VI, VII, and the Appendix. We

only parameter actually responsible for the structure of thegysg consider the two opposite limigg/A<1 andg?/\>1
resonance for the fielgly is the ratiog?/\. Furthermore, we  in Secs. VIII and IX, respectively. Section X contains a dis-
will find that the strength of the resonance and the numbeguyssion of the self-consistent dynamics of the system includ-
and widths of the instability bands for the fiejg, in the  ing backreaction of the created particles. In Sec. XI we de-
theory(1) depends o’/ nonmonotonically. To get a gen- scribe the restructuring of the resonance which occurs when
eral picture, we will construct the stability-instability chart the back reaction is incorporated into the equations for fluc-
for the equation for fluctuations on the two-dimensionaltuations. We show that this is the leading effect which ter-
plane &?,g%/\), see Fig. 4. The stability-instability chart minates the resonance in the theoky4) *. In Sec. XII we
gives us insight into the structure of the resonances in theiscuss the modifications of the theory of preheating which
conformally invariant theories. From this it will immediately appear when the inflaton fieltl is massive. This allows us to
be clear which of the fieldg, of Eq. (1) will be most am-  unify the results obtained in this paper with the results of our
plified during preheating. The stability-instability chart uni- preceding investigation of preheating in the theory of a mas-
fies our knowledge of the resonance for the various conforsive inflaton field[2]. We find out that even a very small
mal models thus far considered in the literature. mass,m< \/X(p, whered is the amplitude of oscillations of
Note that the class of theories we are going to investigaténhe field ¢, may change the nature of the resonance, making
include in particular the theory MN(4)(E[L;¢?)? of an it stochastic as in the theory of a massive inflaton field con-
N-component scalar fielgy; . This theory has Q) symme-  sidered in Ref[2]. This is a rather surprising result, which
try. One can identify the inflaton fielgh in this theory with  was not anticipated in the earlier studies of this issue. Indeed,
the field ¢,. Then the quantum fluctuations of this field, just one could expect that the presence of a tem3/2)$? can-
like the quantum fluctuations in the theory of a one-not influence the nature of the resonance if this term is much
component field X/4)¢*, will have effective mass squared smaller than X/4)¢*. We give a classification of different
3\ ¢?, whereas the fluctuations of all other components willresonance regimes for various relations between the coupling
have effective mass squarkg?. Therefore, the equation for constants, masses, and the amplitude of the oscillating infla-
the growth of the fluctuations of the fiell= ¢, (neglecting ton field ¢ in a general class of theories with the effective
backreactiopwill coincide with the equation for the growth potential = (m?/2) ¢+ (N /4) $*+ (g%/2) p2x>. In Sec. XllI,
of fluctuations of the fieldy coupled to the fieldp with the  we give a summary of our results and discuss their possible
coupling constant?=3\. Meanwhile, the equation for the implications.
growth of the fluctuations of the fieldg;, i #1, will coin-

c_ide with_the equation. for the grovv;h of quqtuatio_ns of_ the Il. EVOLUTION OF THE INFLATON EIELD
field y with the coupling constang“=\. This regime is
especially important in the limil— oo, where the main con- We consider chaotic inflation with the potentigk ¢)

tribution to particle production is given by the modes with =3\ ¢*. During inflation the leading contribution to the
i#1. Thus, the caseg’=\ andg?=3\ are especially in- energy-momentum tensor is given by the inflaton scalar field
teresting and deserve careful investigation. ¢. The evolution of theflat) Friedmann-Robertson-Walker
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e (5)
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whereN is the number of oscillations after the end of infla-

/\ /\ tion, see Fig. 1.
/\ /\ VANBVANEVANIY AN To make calculations in this theory, and in particular, to
! \f° \/ \VARVARAR find the form of the oscillations, it is convenient to make a
\/'_t conformal transformation of the space-time metric and the
fields. For this we use the conformal time

[ dt
-0.1

"_f a(t)’ ©
FIG. 1. Oscillations of the field) after inflation in the theory

N ¢*4. The value of the scalar field here and in all other figures in
this paper is measured in units i, , time is measured in units of

(\/XMp)_l. p=aad. (7)

) ) _ ) ) In the coordinates#,x) the Klein-Gordon equatiot#) for ¢
(FRW) universe is described by the Friedmann equation g

2_ 8772(
M2

-0.05}

and the conformal field

1. \¢* a"
T2 " 3 —
2¢ +t ) 2 ¢ Ao - —o 0, 8

where ' stands for the derivative with respect to the confor-

whereH = a/a. Let us note one more useful relationship be- ; ; . . .
P mal time, d/d#». The Friedmann equatiof2) in these vari-

tweenH (t) and ¢(t) which follows from the Einstein equa-

tions ables is
: 87 |1 a'\? ae?
4 LR o
H=— f (3) SMSZ(’D “a 4 ©
M
p . .
As one can see from E@8), the equation of motion for
The equation for the classical fielfl(t) is the field¢ in the time variablep does not look exactly as the
equation for the theory\/4)¢* in Minkowski space. In or-
d+3Hp+Np3=0. (4) der to achieve it one would need to add the teghd/(2)R to

the Lagrangian. However, this subtlety is not very important.
. . . 4
For sufficiently large initial values ofy>M,, the friction First of all, soon after the end of inflation one hag4)¢

2 3 n H
term, 3Hé, in Eq. (4) dominates overb and the potential > (® /12)|R], and Ag®>(a"/a)¢. Moreover, it is known
term in Eq.(2) dominates over the kinetic term. This is the that the4 energy-momentum tensor of the f|¢_lah Fhe th_eory
inflationary stage, where the universe expands quasiexpone \/4)$”, when averaggd over several oscillations, is trace-
tially, a(t) =agexd/dtH(t)], and the fieldp slowly decays, ©5° g):f”? [12r3- 'I“ this case one heB= OH a(77)~ 7, and
$~Mex{—(JA/V6m)Mpt]. With a decrease of the field & 0 SO that the last term in E¢8) vanishes:

¢ belowM, the “drag” term 3Hq,’> gradually becomes less o"+rp3=0. (10)
important and inflation terminates &t~ M /2. After a short

stage of fast rolling down, the inflaton field rapidly oscillates  The Friedmann equatiof®) averaged over several oscil-
around the minimum o¥(¢) with the initial amplituded, lations of the field in the regime$<M, also takes a very
~0.1M,. Although this value is below the magnitude simple form:

needed for inflation, it is still very large.

The character of the classical oscillations of the homoge- L, 8w (1 \e'| 8mp, 11
neous scalar field depends on the shape of its potania). a = am2 2% T4 3m ?p : (12)
P

In Ref. [2] we considered the theory with the quadratic po-
tential V() =zme¢?. In that theory the fluctuations are har- where we have introduced the conformal energy density,
monic, ¢(t) = ®(t) sinmt, with the amplitude decreasing like po= 10'2+ (N4 "
~ -3/ ~

O(t)~(Mp/ ,V37Tmt)°‘a2/z . The scale factor at the stage of |t s convenient to express, in terms of the amplitude
oscillations isa(t)=~ayt“~, and the energy density of the f the oscillations of the fields: p,=(A/4)3%. Equation
inflaton field decreases in the same way as the energy densi 0) has an oscillator uti * Pe ¢ - = .

3 y solution with a constant amplitude

of nonrelativistic matterca™~. !
In the theory with the potentia¥($)=1x %, which we and the conformal energy, . Then from Eq.(11) we find

consider in this paper, the inflaton oscillations are not sinu- SN 32 N o2
soidal. The amplitudé of the oscillations of the scalar field aly)=| 229 NP 2
3

—n, t=\/—7=—77". (12
¢ in the limit t— o approaches the asymptotic regime Mpn 6 Mpn
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— the leading harmonic term in the seri€k5), cos0.8472
(dotted curve Although the first harmonic term is very close
to the actual form of oscillations, it will be important for the
investigation of the general structure of stability-instability
bands in this theory thaf(x) is not exactly equal to
CcoS(2mXIT).

i Ill. EQUATIONS FOR QUANTUM FLUCTUATIONS
OF THE FIELDS ¢ AND x

- We will consider here the interaction between thassi-
cal inflaton field, ¢, and the masslesguantumscalar field,

x X, With the Lagrangiaril). The Heisenberg representation of
FIG. 2. The exact solutiofl4) for the oscillations of the infla- the quantum scalar fielg is

ton field after inflation in the conformally invariant theo&y\qs“.
We show the field in rescaled conformal field and time variables, - 1

— 3T A —ik-xg A+ % ik-x
f(x)=¢l¢ (solid curvé and the first term, cos(0.84%p in its xX(t.X) (277)3;2f d k[ axk(t)e™ ™ *+ay xi (H)e™ ],
harmonic expansiofil5) (dotted curve

wherea, andé\;r are the annihilation and creation operators.
For a flat Friedmann background with scale facit), the

(10) vanishes. . : : ;
; . . temporal part of the eigenfunction with comoving momen-
Equation(10) can be reduced to the canonical equatlon,[um k obeys the following equation:

for an elliptic function. Indeed, let us use a dimensionless
conformal time variable

x= \/X?E?F(

As we expected, in this regime the last teraf/@) ¢ in Eq.

k2
;+gz¢2)xk=o. (16)

. a.
M2 1/4 Xk+ 3_Xk+
6)\77 p) £ 13 a
_ As we mentioned in the previous section, at the stage of
Then we can rescale the functigr=a¢= ¢f(x). The func-  oscillations whenp<M, the average value of the curvature
tion f(x) has an amplitude equal to unity and obeys theR vanishes, so one can neglect the terrig?R.
canonical equation for the elliptic function. The integral of  The self-interactiori A ¢* also leads to the generation of
this equationf’?=%(1—f*#), has the solution in terms of an fluctuations of the fieldp. The equation for the eigenmodes
elliptic cosine o (1) is

2

L .
f(X)=cn(x—Xo,E)- (14 &5k+3§¢k+(§z+3>\¢2)¢k=0- (17)

As claimed, oscillations in this theory are not sinusoidal buty; .o that this equation is identical to E4.6) with g2=3\.
are given by an elliptic function. The energy density of the

: ) _ . ' “Therefore, the study of the fluctuations, in the 3\ ¢*
field ¢ degfeases in the same way as the density of rad'a‘t'orl]nodel is a particular case of the general equatio;l\ for fluc-

le., asa " . . . . . tuations(16).
The solution(14) has some interesting properties which 14 physical momentunp=k/a(t), in Eq. (16) is red-
are not usually elucidated in the literature. It matches th%hifted in the same manner as the backgrbund field ampli-

solution describing the slow rolling of the field at the end _ P
. L ~ : . tude, ¢(t)=¢/a(t). Therefore, the redshifting of momenta
of inflation if one takes<g=~2.44. The period of the oscilla- can be eliminated from the evolution gf .. Indeed, let us

. . . . _ _ 2 N
tions (in units ofx) is T_4K(1_/\/_§)__F (1/4)/‘/;~7,'416: use the conformal transformation of the mode function
K stands for the complete elliptic integral of the first kind. X (t)=a(t) x,(t) and rewrite the mode equation o (t)

The effective frequency of oscillations is2T~0.8472[1]. |\ ith'the dimensionless conformal time[see Eq(13)]:
The value off* averaged over a period & The potential

energy density \ ¢* averaged over a period of oscillation is

2
equal to3p,, and the average kinetic energy’? is given " K2+g—Cﬂ2( x,—| [X,=0, (18)
by $p,- \ 2
The elliptic cosine can be represented as follows:
- where for simplicity we drop the initial value of=2.44. In
_877\/E g~ "1 _2m(2n-1)x this form the equation for fluctuations does not depend on
)= T =1 1+e‘”(”‘1/2>"°° T . (19 the expansion of the universe and is completely reduced to

the similar problem in Minkowski space-time. This is a spe-
The amplitude of the first term in this sum is 0.9550; thecial feature of the conformally invariant theory\ ¢*
amplitude of the second term is much smaller, 0.043 05. The- 39°¢*x>.
full solution (14) is plotted in Fig. 2(solid curve, alongside For the fluctuations of the fiel¢=a¢ one has
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ent| k?+3cn?| x o=0. (19

1 )
2
Equation(18) will be the master equation for our investi-

5
4
3
2
gation of the resonance in the conformally invariant theory. ! /\ /\ /\ /\ /\ /\ /\ {\
The comoving momenturk enters the equation in the com- Xt 0
bination 1\/V\/\/\/\/\/v
-2
3
4
5

k2
Kzzﬁ. (20)
¢

Therefore the natural units of the momektis \\ ¢. Equa- o5 015200 2 30 3 40 4
tion (18) describes oscillators, , with a variable frequency

_ 2 2
w=k"t—cn| X,—|, (21
A V2

which periodically depends on timg, It is well known that

in this case the solution¥X, are exponentially unstable: Inn,
X(x)ce**, If we choose the vacuum positive-frequency
initial condition, X, (x)=e~"**/\/2x, we then expect the ex-
ponentially fast creation ofy particles f,<e’*) as the

inflaton field oscillates. The strength of interaction with the T
periodic oscillationgn?(x,1/1/2) is given by the dimension- I N S V- S LI
less coupling parametg?/\. This means that the condition 0 5 10 15 2 25 30 35 40 45
of a broad parametric resonance does not require a larg z

initial amplitude of the inflaton fieldp,, as in the case of the
quadratic potential1]. As we will see, the combination of
parameterg?/\ ultimately defines the structure of the para-
metric resonance in the theory. It turns out that the strengt
of the resonance depends rather nontrivigitpnmonotoni- rithm of the comoving particle number density,, calculated with

caIII:y) on this p&rl]rameFer.l . f Vi h d . formula (22). The number of particles grows exponentiallynn
rom a mathematical point of view, the mode equatlonmzlukxl In this case u,~0.035.

(18) belongs to the class of Lamequations[13]. In the
context of preheating this was first noticed[it], and then lations. As is well known, the solution$, of this equation
thoroughly studied for the @{) symmetric theory in the may be stable or unstable depending on the particular values
limit N—o (i.e., forg2=N\) in [7] and for thelx ¢* theory  for x andg®/\ considered. At the stage of the free resonance
(g?=3\) in [8]. In this paper we perform a numerical and when we do not take into account the back reaction of the
analytical investigation of the parametric amplification of unstable fluctuations, Eq18) is an equation with periodic
fluctuations in the conformally invariant theorgh¢*  coefficients, which belongs to the class of the Laetpia-
+29°¢%x? for an arbitrary parametey®/\. In the next sec- tions. The stability-instability chart of another equation with
tion, we present the two-dimensional chart of the stability-periodic coefficients, the Mathieu equation, is well known
mstablllty bands for the Lamequation(18) in terms of vari- ~ and can be found in many textbooks, see, ¢1gt]. We are
ablesx? andg?/\. In Subsequent sections, we give a newunaware of the stability-instability charts for the Laegua-
analytic treatment of the Lamequation in the casg?\  tion, which describes preheating in the conformally invariant
=n(n+1)/2 with integern. We will also perform an ana- theories. Therefore in this section we present the stability-
lytical investigation of the resonance fg?/A<1 and for instability chart Eq.(18) in variables *g%/\), which we
g2A>1. obtained by solving this equation numerically.
Figure 3 shows a typical resonant solution of E#8).
V. STABILITY-INSTABILITY CHART Though we have plotted the particular case= 1.6, g?/\
IN THE CONFORMAL THEORY =3, the form of the resonan.t.solgtmn is generic. The upper
plot demonstrates the amplification of the real part of the
As was shown in the previous section, the equation foreigenmodeX,(x) (solid curve in the oscillating inflaton
vacuum fluctuations interacting with the inflaton oscillationsbackgrounddotted curve
in the conformal theories can be reduced to the similar prob- In addition to the investigation of the rapidly oscillating
lem in the Minkowski space. The equation for fluctuationsfunctionsX(x), it is convenient for analytical and numerical
(18) in this case contains only two parameters. The first pawork to consider the evolution of the comoving number den-
rameter isg?/\, which characterizes the strength of the in- sity of createdy particles,n,, with comoving momenturk.
teraction. The second parameter is the momentum of vacuuiThis can be defined from the comoving energy density and
fluctuationsk in units of the frequency of the inflaton oscil- the energy per particlay, :

FIG. 3. The typical resonant production of particles at the par-
ticular choice of rescaled comoving momentwf=1.6, and the
Harametegzlx 3. The upper plot shows the amplification of the
real part of the eigenmodg,(x). The lower plot shows the loga-
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FIG. 4. The stability-instability chart for the Laneguation for
fluctuationsX,(x) in the variables £2,g%/\), obtained from the
numerical solution of Eq(18). Shadedunshadeplareas are regions
of instability (stability). For instability bands, the darker shade im-
plies a larger characteristic exponent. Altogether, there are 10
color steps. One color step corresponds to the incremant
=0.0237, so the darkest shade corresponds to maxigal0.237,
the least dark shade in the instability bands correspondg,to
=0.009. For positive<?, there is only one instability band for the
particular values of the parametgf/\ =1 and 3. This occurs be-
cause the higher bands shrink into nodeg#a approaches 1 and
3.

1

5

| X2
o

Wk
= | X+ | = (22)
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FIG. 5. Slices of the stability-instability chart, Fig. 4, reveal the
dependence of the characteristic exponent, on x> for several
particular values of?/\. For the top panej?/A=1.0, 1.5, 2.0, 2.5,
and 3.0, labelea throughe, respectively. The numerical curvas
ande for g?/A=1 andg?\ =3 are identical to the analytic predic-
tions (34) of Sec. VI and(40) of Sec. VII. For the lower panel
gzl)\=6.0, 7.0, 8.0, 9.0, and 10, labeladthroughe, respectively.

=6.0,7.0,8.0,9.0,10.0, labeledthroughe, respectively. The
valuesg?/A =6 and 10 correspond to=3 and 4. Again we
see that the largest value of the characteristic exponent oc-
curs fork?=0 at a value ofg?/\ between the limits 6 and

10 (curvec).

This stability-instability chart is very similar to the
stability-instability chart of the Mathieu equation, but there
are important differences as well. For the Mathieu equation
there are infinitely many instability bands corresponding to
each value of the parametgr which is analogous to our
parameteig?/\. Meanwhile for the Lamequation some of
the instability bands may occasionally shrink to a point. As a

The lower plot of Fig. 3 shows the evolution of the loga- result, forg?/A =1 and forg?/x =3 (Fig. 5, curvesa ande,

rithm of n, (solid curve and the inflaton fielddotted curve

respectively there is only one instability band. This will be

For the growing solutions after an initial transitional period shown analytically in Secs. VI and VII. From the stability-

the number of particles increases exponentiallp, 42X,

instability chart for the Lamesquation, Fig. 4, we see that,

whereu is the characteristic exponent of the unstable soluiopologically, this occurs because all the higher instability

tion. In the particular case showp,~0.035.
For arbitrary values ok andg?/\, we can obtain a nu-
merical solution of Eq(18) and exploit the simple relation

bands shrink to nodes a&g/\ approaches 1 and 3.
Similarly, there are a finite number of instability bands for
positive k> wheneverg?/ A =n(n+1)/2. Again, it occurs as

Inn~2wXx to extract the characteristic exponent for theother higher instability bands shrink to nodes. However, as
growing modes. For the regions of stability the characteristidor the Mathieu equation, all other values @f/\ have an

exponent formally is imaginary. In this way, the stability-
instability chart for the Lamequation, Fig. 4, is constructed.
Shadedunshadefregions of the chart indicate values ot
and g?/\ for which the solutions are unstabistable. For

infinite number of instability bands. This is true in particular
for g?/A<1 where, as we will show in Sec. VIII, the Lame
equation(18) may be formally transformed into the Mathieu
equation (43) with the parametersA~1.393%? and q

the instability bands, a darker shade indicates a larger char=0.3464)%/\ <1. Thus, with this change of variables and in
acteristic exponent. An immediate result is that, for a giverthe limit g?/A <1, the stability-instability chart for the Lame
range ofg?/\, the largest characteristic exponent will occur equation is found to coincide exactly with that for the

for k=0 between the integer valugd/\ =n(n+1)/2 with
n integer.

Mathieu equationi1,2].
As we have shown if1,2], the maximum value of the

This is demonstrated in Fig. 5, where slices of thecharacteristic exponeni,,, for the Mathieu equatiori43)
stability-instability chart show the characteristic exponent agfor A=2q) is wma~0.28. As we will see below, similarly,

a function ofx? for various values 0§/ \. The top panel of
Fig. 5 plots the caseg?\=1.0,1.5,2.0,2.5,3.0, labeleal
through e, respectively. g2/ A=1 corresponds ton=1,
g?/\=3 corresponds tm=2. As claimed, we see that the
largest value of the characteristic exponent occurs &or
=0 at a value ofj?/\ between the limits 1 and &urvec).
Similarly, the lower panel of Fig. 5 plots the casg¥/\

the maximum value of the characteristic exponent for the
Lameequation(18) is uma=0.2377. This limit can be easily
related to that of the Mathieu equation. Indeed, 0.2377
=0.28(Ty/T.), whereTy and T, are the periods of the
harmonic oscillations casand the oscillation$(x) given by

Eq. (14), correspondinglyTy, =27 andT ~7.416, see Sec.

1.
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As we noticed in Sec. Il, oscillationgx) only insignifi-  Omitting the lower indexk for simplicity, let X;(z) and
cantly differ from the leading harmonic term cos0.84t  X,(z) be two linearly independent solutions of Eg5). One
the series(15). Meanwhile, in general the solutions of the of them exponentially grows, another exponentially de-
Lame equation cannot be obtained by perturbative correcereases during the resonance. Let us also introduce the bilin-
tions to the solutions of the Mathieu equation. Overall, theear combination¥?, X%, andX;X,. From Eq.(25) it follows
stability-instability chart of the Lamequation, Fig. 4, is that these bilinear combinations obey a third-order equation
quite different from that of the Mathieu equation. This is one

of the manifestations of the nonperturbative nature of the d*m d’m g°
parametric resonance. 22(22—1)53-“922—3)52-—2 2y—3) z
We now proceed to develop the new analytic results for
preheating in the physically interesting theories with A ,|dM g2
=n(n+1)/2, which as we have seen, are hinted at by the +2x E_ZTMZO' (26)

stability-instability chart for the Lamequation, Fig. 4.

The three solutiondyl(z), of this equation correspond to the
V. ANALYSIS OF THE EQUATION FOR FLUCTUATIONS three bilinear combinations of; andX,. The crucial obser-
vation is that forg?/A=n(n+1)/2 Eq.(26) admits a poly-
nomial solution of degreae. In the particular cases=1 and
n=2, we have

In this section we begin the analytic investigation of the
Lameequation(18) for the fluctuationsX,(x). In particular,
in the next two sections we will try to find the values of the
_parametelgzl)\ for which analytical solutio_ns can be obtain n=1: My(z)=2z—2«?
in closed form, and construct these solutions.
We will also investigate the resonance in two limiting 2 4
casesig’/A<1 andg?®/A>1. In the first case one can use n=2: My(2)=22— = k22— 1+ =«*. (27)
perturbation theory in the small paramegéf\ <1, see Sec. 3 9
VIII [16]. In the opposite limitg?/A>1, we can implement ) _ )
the method of successive parabolic scattefitil see Sec. OPviously, the polynomial functioM(z) must be the prod-
IX. uct of an exponentially growing solution and an exponen-
It is known that the Larequation can be solved in terms tially decreasing one, i.eM(2)=X(2)X;(2) in the reso-
of the transcendental Jacobi functions, which in turn ard'@nce zone. From this, as we will show in the ”eth two
given by series expansions. Earlier we reported the result fo?€Ctions, one can construct the closed-form solutk¢s .
the characteristic exponept=0.0359 forx ¢* theory[15,4]. Therefore, in the physically interesting cases1 andn
Analytic investigation of the resonance using these transceri= 2 We Will obtain simple closed-form solutions instead of
dental functions gives the width of the unstable zone and th&e complicated transcendental functions. This significantly
maximum of the characteristic exponept,, in the physi- S|mpI|f|e§ the study of preheating in the;e_ cases. In particu-
cally interesting cases of the 8 symmetric theory in the lar, we _W|II f|nd2the form of the characteristic exponentas
limit N— (which is equivalent t@?/x =1 in our conven- & function of«” in each case.
tion) and the:\ ¢* self-interacting theoryd?/x=3) [7,8].

However, calculations involving these transcendental VI. CLOSED FORM SOLUTION FOR g?/A=1
functions are extremely tedious. Fortunately, it turns out that . _
for y y In the caseg®=\ Eq. (26) in the resonance band gives

9®> n(n+1) X1(2)Xo(2)=M(2), (28
N2 (23)
A where
with n an integer, one can obtain simple, closed-form solu- M,(z)=2z—2K>. (29)
tions to the master equatiq8). This includes in particular
the most interesting casgg€=\ andg?=23\. The Wronskian of Eq(25) for X(2) is

To find the solutions of the fluctuation equati¢iB) for
g?/A=n(n+1)/2, wewill rewrite Eq. (18) in the so-called dx dx c
algebraic form. We will use the “time” variable instead of Xy = Xy el (30)
X: dz dz  [z(1-7%

1 d d
Z(X)=CHZ<X,—>, ax 22(1—22)d—z, (29 1The solutionsX(z) involve a normalization factoN to be de-
‘/E fined by the physical initial conditions. The auxiliary functions

) ) M(z) are also defined up to a normalization fadit#. For sake of
Equation(18) for fluctuations becomes simplicity we setN=1 in Eq.(27) and in the rest of the paper. This
) does not affect the calculation of the characteristic exponent, which
22(1_22)%4_(1_322)%4_ is our primary interest in this paper. Determination of the fadtor
dz? dz is a straightforward operation, see REI0], where it was shown
(250  that for the vacuum initial conditiohl=|M(1)|~ %2

2

g
K%+ TZ) X=0.
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whereC is some constanC=C,, to be defined. From Eqs. TABLE . Numerical values ofu, for variousg?\ and 2.
(28) and (30) we immediately obtain the closed-form solu-

tions g%/n K i
Clj dz 1 0.0 0.000
X1 2)=V|M1(2)|exp = | —————]|.
142)=\[Ma(2) ‘{ 2 ) Jz(1-22)My(2) 1 0.1 0.1238
(31
1 0.2 0.1460
Now_, substituting this solution back into E5) for X(z), 1 0.91 0.1466
we find the constant;:
0.22 0.1469
C,= V2k%(1—4K%). (32
0.228 0.1470
For exponentially growing solution§;; must be real; there-
fore the exponentially growing solutions for fluctuations with 1 0.23 0.1470
x*>0 take place in a single instability band for which 1 0.24 0.1468
1 1 0.25 0.1465
0< K2<§, (33
1 0.3 0.1411
in agreement with the result §7]. The growing solution of 0.4 0.1117
Eqg. (18) has the formX(x) = e#*P[z(x)], whereP[z(x)] is
a periodic function of the conformal time Using Eq.(31), 1 0.5 0.000
we can now find the characteristic expongntas a function 3 15 0.000
of x. The technical details can be found in the Appendix. ' i
The final answer is 3 1.55 0.02981
2 3 1.60 0.03570
i k)= =262(1= 4k (x0), (34)
T 3 1.61 0.03595
where an auxiliary functiom(«) is 3 1.615 0.03598
() w2 ) sint2g (35 3 1.62 0.03594
K)= T .
1+2k%sing 3 1.625 0.03583
Recall thatT~7.416. Equation(34) is one of the most im- 3 1.65 0.03427
portant analytic results of our paper. Some numerical valueg 170 0.02460
of uy as function ofx? for g%/ =1 calculated with Eq(34) : :
are listed in the upper half of Table | below. 3 1.732 0.00

The analytic form(34) is in excellent agreement with the
numerical results for this case plotted in the top panel of Fig.
5 as curvea. The maximum value of the characteristic ex- 32 9
ponent forg?/A =1 is uma~0.1470 atk?>~0.228, in agree- )= \/8—1K2( k4= 2
ment with the numerical value fqi,,,y Of Fig. 6.

)(3— k). (39

Therefore, in the casg?/\ =3 for k2>0, there is also only

2/ —
Vil. CLOSED FORM SOLUTION FOR  g*/A=3 a single instability band corresponding to

The method of obtaining a closed-form analytic solution, 3
X(2), in the casey?=23\ is similar to that of the previous S _ 5
section. In the resonance zone with=23\, Eq. (26) gives 2<K <\3, (39

X1(2)X2(2)=M3(2), (36 in agreement with8].
h For illustration, we plot the resonant soluti&R(x) in the
where now top panel of Fig. 3. Notice that,(x) oscillates twice within
2 4 one inflaton oscillation. Using solutiof31) with M,(z) and
My(z)=22— §K22— 1+g K2 (37)  C,, we can findu, in this case; see the Appendix for details.

The resulting characteristic exponent fg/\ =3 is

The Wronskian of equatiof25) is the same as in Eq30),
but with a new constanC=C,. Therefore, the closed form :ﬂi 2< 4_ 2)(3_ ) 3(k) (40)
solutions are the same as in Eg1), but withM,(z) in place Mo VKT U

of M(2). Substituting this solution into E¢25), we find the

constantC, in this case: where the auxiliary functiod(«) is
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FIG. 6. The maximum value of the characteristic exponeni,
extracted from the stability-instability chart, Fig. 4, is plotted as a
function of g%/x (solid curve. The function uma{g%/\) is non-
monotonic. The universal upper limit @f, . is 0.2377. The local
minima of the function are gradually increasing wig/x, and
asymptotically approach 0.2377. The dotted line is the predictior
max~0.14670%/\) for g2/A <1, when the mode equatidi8) is
effectively reduced to the Mathieu equatittB).

2 sin’’29
)= fo 40 (23 kZsind + [ (419) "~ 1]sir?6

(41)

In g

in this case. Formul&0) is another important result of our
paper. Some numerical values @f as a function of«? for
g%/\ =3 calculated with Eq(40) are listed in the lower half FIG. 7. The same as in Fig. 3 but for a large vabfér>1,
of Table |. The analytic form{40) is in agreement with the here for the particular choicg?/\ = 5050 andx?=29.0. The upper
numerical results for this case plotted in the top panel of Figplot shows the time dependence of the real part of the eigenmode
5 as curvee. The maximum value of the characteristic ex- X,(x), which demonstrates the adiabat&emiclassical behavior
ponent for gz/)\:3 IS Umax=0.03598 at K2~1_615, in between zeros of the inflaton oscillatiofdotted ling, where the
agreement with the numerical value fay,,, of Fig. 6. comoving occupation numbar, of created particles is constant
(lower ploYy. The lower plot shows Im as a function of timex.
Particle creation occurs in a steplike manner only in the vicinity of
the zeros of the inflaton field, where the adiabaticity is broken. The
In this section we investigate the equation for fluctuationsenvelope of Im is approximated by 2,x. The characteristic expo-
(18) in the limiting caseg?/\<1. Let us recall thaf(x) is ~ nent for this example ig,~0.1.

given by the serieél5), and hencef?(x) in Eq. (18) can be o o
decomposed as m=1,2,.... Theresults of the numerical investigation of

the instability zones plotted in Fig. 4 indeed show that for
87X g?/\<1 the parametric resonance corresponds to that of the
+cmos(? +---, (42 Mathieu equation.

The exponentially growing solution of the Mathieu equa-
whereF,=0.4570,F,=0.4973,F,=0.042 90 and so on, but tion, XK(X)“GMKX’ has a maximum characteristic exponent
S r-oFk=1. One can seeK,(x) in the form of a harmonic (in the first zong
series of terms cos(@x/T) with slowly varying coefficients. 92 2 2
If g?/\ is a small parameter, one can develop an iterative Mmaxz—( —) F1~O.1467g. (44
solution with respect tay?/\. It is easy to show that the 4r\ 2m A

leading contribution toX,(x) comes from the lower har- |5 Fig. 6 we plot the maximum value of the characteristic

monic: cos(4x/T). Keeping only this term, the equation for eynonent as a function @?/\ together with the prediction
Xi(x) can be reduced to the Mathieu equation (44) for wmax from the Mathieu equation. As one can see
2 from Fig. 6, Eq.(44) works extremely well even up to

d<x
FZKHAJF 2qcos2r) X,=0, (43 g*/A=1.

VIIl. SOLUTION FOR g%/A<1

f2(x)=Fo+F co{ﬂ
0 1 T

IX. ANALYTIC SOLUTION FOR 2IA>1
where 7=2mx/T, A=(Tx/2m)% and q=(g%2\)(T/ 9

2m)2F,. Thus, our theory is effectively reduced to the In this section we consider the limiting case when the
Mathieu equation only in the limig<<1, where it has insta- parameteg?/\ is very large. In the upper panel of Fig. 7 we
bilities in very narrow resonant bands arourt=27m/T,  plot the time evolution of fluctuationX,(x) in this case. In
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the lower panel of Fig. 7 we plot the number of particles ol " Bj .
. . . . - k : k :

n(x) in a given mode as a function of time calculated  X}(x)= —exp( —|J’ wdx |+ exp( +|J’ wkdx>,
from X, (x) with Eq. (22). V2wy 0 V2wy 0

The basic observation is that, fg¢/A>1, the evolution _ _ “9
of the modesX,(x) is adiabatic and the number of particles where the coefficients and B} are constant fow; _1<x
ne(X) is constant between the zeros of the background field<X;, ag=1, =0, and normalization yieldgx|?—| B/
Changes in the number density of particles occur only near 1. After scattering whex=Xx;, X,(x) in the intervalx;
timesx=x; when the amplitude of the inflaton field crosses =X<X;+1 again has the adiabatic form of E@5) but with

i jt+1 jt+1
zero, i.e.,¢(x;)=0. To describe the effect of a single kick at new constant coefflue_ntszk and . . .
x=xi, it is enough to consider the evolution Xf(x) in the - The form is essentially the asymptotic expression of the
N incoming waves(for x<x;) and similarly for the outgoing

interval whene?(x) is small and can therefore be repre- e (for x>x;) scattered from a parabolic potentiat (
sented by its quadratic past(x—x;)?. This process looks —x;)? at the momentx;. Therefore, the outgoing ampli-
like wave propagation in a parabolic potential. Outside oftudes,a{jl and ,3{<+1, can be expressed in terms of the in-
these time intervals,(x) has a simple, semiclassid@dia-  coming amplitudesg) and 8}, with the help of the reflec-
batic form. We can combine the action of the subsequention and transmission amplitudes for scattering at a parabolic
parabolic potentials to find the net effect of particle creationpotential[2]. For this we need the mode equation around a
This method of successive parabolic scattering was formusingle parabolic potential at=X;. In the vicinity of x;,
lated and applied to the broad parametric resonance for tHeN(X, 1\2)~(1/y2)(x—x;). Then Eq.(18) aroundy; is re-
quadratic inflaton potential ifi2]. This method, as we see, duced to the simple equation

can also be applied to the conformally invariant theory for d2X,, g2

g?I\>1. ot K>+ ﬁ(x—xm)xk:o. (46)
We expect that the semiclassical solution is valid every- o . _

where but aroundk;. Thus, prior to scattering at;, the The mapping ofal, B} into o™, Bl in terms of pa-

mode functionX,(x) has the adiabatic form rameters in Eq(46) reads

|
(a{(”) /1+e—w52ei§k e (72) e2+2i6) (a{()
_ § | iy
—ie” (m/2) EZ*ZIHL /1+efﬂ'ezeflgk Bk

where £, =ardl'[(1+i€?)/2]+ (€%/2)[1+In(2/€?)], and €= \2\/g%k?=k?/\\\I2¢?g. The phase accumulated by the mo-
mentx; is 6l zngdek(x)zj Oy, Whereek:2fg’4dx\/;<2+(gzl)\)fz(x) is the phase accumulating within half of a period of
the inflaton oscillation.

In the regime when a large number of particles have been cregted}|?>1, we havelal|~|Bl|, so al and B are
distinguished by their phases only. In this case there is a simple solution of the matrix edd@tion

Bl +

.J,

T
My 16k

. 1 T . - 1 .
ak—ﬁex Mk§+|0k ﬁk—ﬁe ex
where ¥ is a constant phase ang, is the characteristic exponefit=7.416 is the period of oscillations of the inflaton field
in the variablex, so the number of particles grows @&*. Another solution is similar to Eq48) but with the substitution
O— O+ .

Substituting solution48) into Eq. (47), we get an equation for the parametgrsand 6, :

e =|cog G L) V1+e "+ (1+e ™)coR(6— ) 1. (49)
In the instability zones, the parameteg of Eq. (49) should be real. From this we obtain the condition
tan(6,— )| <e” ("D, (50)

for the momentunk to be in a resonance band.
To further analyze the conditions for the stren¢B0) and widths(49) of the resonance, one should calculate the phase

0— L. Forg?/A>1 we have
2 9 L, /N g
1+ In?) ~TT —2)\+ K —nglny (51)

Ti4 92
0k—§k=2f dx K2+Tf2(x)—argf‘
0

1+i€? €2
2 2
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Using Egs(51), (50), and(49), we find the characteristics of The two additional terms are due to the one-loop Hartree
the resonance in the regingg/\>1. From Eq.(50) it fol- diagramsy ¢?) and(x?) stand for the quantum fluctuations

lows that the resonance is efficient fet<x 1, i.e., for of the fields¢ and y, respectively. There are also higher-
loop corrections such asg?(¢x?) and &\(¢%), which are
) / g2 not necessarily negligible at the end of preheating when we
K™ 22N (52 may expectnX~1/g2 andn,~1/\ (or even higher, if one

takes into account rescatterjngdiere we will work in the
Equation (50) transparently shows that, for a givef/x,  one-loop approximation. _
there will be a sequence of stability-instability bands as a If again we use the conformal transformation
function of k. The width of an instability band, where the =J(dt/a), xx=Xy/a and similarly ¢,=¢,/a, then the
resonance occurs, isx2=/gZ/2\. Let the integer part of €quation for the background fielg( ) is
the large numbe:/gzlzx bel. From Eq.(5)) it follows that ” 3 P 2,2
+ + + =
if we vary «? within the range 22\g%/272\[In(g?/\)] 2, ¢T3N e Tg (X% e=0, (56)
then within this interval of«” the phasefy—{ reaches ith the comoving vacuum expectation values Jomand ¢
eitherl# or (I+1)m. Then within this resonance band we correspondingly
get the maximum valueu,,, defined by Eq.(49) with
cos@—g)|=1: 1 1
s (X0)= o | FHIX, (1= cymra [ @l
;L (2m) (2m)
eTDkmax=\[1+ e~ " +e "7, (53) (57)

The characteristic exponept,,, is @ nonmonotonic function ~ The integral of Eq(56) coincides with the energy density
of g?/\. If the value of the parametey®/\ is exactly equal

to 212 wherel is an integer, then the strongest resonance
occurs atk?>=0,2 and from Eq.(53) we get

1 12 )\ 4
Pot=5 ¢+ 79 Pt px. (59)

2 The first two terms describe the energy of the classical field
Pma=FIn(1+ \2)~0.2377. (54 ¢, p,, andpx correspond to the energy density ofpar-
ticles andX particles, respectively:

This is actually a general result for the upper limit @f, 1
for an arbitraryg?/\, see Fig. 6. One may compare it with a p :_gf d3k\/mn,‘f, (59)
similar result for u,,, for the harmonic oscillations in the ¢ (2m)
case of the \/I\_/Iathieu equation, whefle=27 and pmax 1
=(1/7)In(1+/2)~0.28[1]. If g/\ is not exactly equal to _ f 3 k2 o2 2 X
212, then wmay OCCUrs at a nonzera? and is smaller than Px~(2m)? vk gTemnic. (€0
0.2377. It is interesting that in the formal lingt/\ — the
function wma{g%/\) asymptotically approaches the value Heren? andnff correspond to the occupation numbers of the
0.2377 for arbitranyg?/\. To see this, we have to check that ¢ particles andX particles. It is easy to show that,
a variation of k2~ 2m2\gZ2m\[In(g¥\)] * is compatible  =9%(x*)e¢’ andp,=3\(¢?)¢¢’, and therefore Eq(58)
with the condition for an efficient resonancé€<="1. In  is an integral of Eq(56).
Fig. 6 we see that the minimal value pf as a function of To close the set of self-consistent equations we need the
g?/\ very slowly increases towards 0.2377. Therefore, al-equations for the modeg,(x) and X:
though may i NOt @ monotonic function of?/\, for g%/x
>1 the resonance is stronger both in terms of the character- k() +[K2+ 11,4 3N 0?(7)] =0, (61)
istic exponentuma, and the widthx?.

X(m)+[K2+TTx+ g% (1) 1%, =0. (62)

X. BACK REACTION OF CREATED PARTICLES The polarization operatodl, consists of Hi=3)\<(p2>
Thus far we have considered the parametric resonance it g%(X?) and the nonlocal ternﬂfo which emerges in the
the conformally invariant theoryl) in an expanding uni- one-loop approximation beyond the Hartree diagram, see

verse neglecting the back reaction of the amplified fluctuaFig. 8.

tions of the fields¢p and y. In the next two sections we will The calculation of the polarization operatﬁfp in the

study the effects related to the back reaction. regime of parametric resonance is rather complicated. Esti-
In the theory: \ ¢*+ 2g2¢?x?, the equation of motion for mates ofl1% performed in[2] indicate that it can be of the

the inflaton field¢(t) looks as follows: same order of magnitude as the standard Hartree polarization

) _ operatorIl. The polarization operatofl2 was not taken
d+3HP+ NP>+ 3N (d2)p+9%(x?)p=0. (55 into account in the previous treatment of the self-consistent
equations for the eigenmodes in th&l Hpproximatior{6,7],
but in fact it may survive in the limiN—c [2]. This may
2lt is easy to see from E@51) that the modec?=0 is within the ~ imply that in the context of the theory of preheating the
resonance band ifl2— 1 <g?/A<2I%+1. standard M approximation breaks down.
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X ¢ shown that this model in a certain sense is the least favorable
for the development of the resonance: it has only one reso-
nance band, and the characteristic exponpefudr this theory

H(lp is anomalously small, see Figs. 4 and 6. Originally it was

g A expected that preheating in this model would rapidly transfer

about half of the energy of the oscillating scalar field to the
¢ particles, after which the decay of the fiefdwould con-
tinue at a much slower pace. However, the results of com-
puter simulations of preheating in this theory indicated that
the stage of efficient preheating ends as soon as the fluctua-

©
H2 | m . . 2 ~,
M tions of produced particleép<) grow to 0.0%“ [5]. The

©

interpretation of this result, however, was not quite clear. It
was conjectured that the resonance terminates because of re-
o(t) o(®) o(t) o) scattering of thep particles. It was not clear also whether the
decay of the fieldp continues at a slower pace until this field
FIG. 8. The diagrams for the polarization operator of the fie|dcompletely decays, or its decay eventually shuts down.
¢« Thin and thick lines represent the fielgsand x, respectively. A complete investigation of this issue is rather difficult.
Vertical lines correspond to the oscillating background figld). —  First of all, the theory of rescattering is not fully developed:
I, correspond; to_the Hagtree appzoxmatlon Whlch_ takes |nlto aCyarious approximations often break down near the end of
count the contribution ofX®) and(¢*). The contributions ofl,  reneating when the occupation numbers of particles are
andr?zptrt]o the effective mass ap particles can be comparable to anomalously Iarger(k~)\*1) [1,2]. Even in the Hartree ap-
each other. proximation (or in the 1N-approximation an investigation
- L . is very complicated7,8] because it is very difficult to work
ZS|£n|Ia:Iy, thedgf[)'lanzlatlonl opletratl%lglxwls equatl thtot with the solutions of equations for the growing modes in
%@ ) IQ[us>an additiona nodn kc;cah erH x- Weexpectinal o mg of the transcendental Jacobi functions. It may be easier
»=0,11x=0, as 5“9995te y the _artrge approximationy,, \ork with the solutions obtained in Secs. VI and VII. We
A complete calculation of the polarization operatdlg i not perform a full investigation of this issue here be-
andlly is outside the scope of this paper. Fortunately, as We5 se, as we argued in the previous section, one may need to

will see in the next section, one need not really know exactyicyjate the polarization operator beyond the Hartree ap-
expressions fofl,, andIIy in order to make an estimate of proximation, seg2]. Instead, we will make some simple

the density of produced particles at the time when the feedagtimates which will allow us to elucidate the mechanism

back of the amplified fluctuations terminates the parametri¢ hich terminates the resonance in the thebkyh?.
resonance. As we will see, the main reason for the termination of the
resonance in the theog ¢* is the restructuring of the reso-
XI. DYNAMICAL RESTRUCTURING nance band due to the back reaction of created particles. This
OF THE RESONANCE process occurs dlp?)<e? because the resonance band is

In this paper we found that the structure of the parametri¢’€"Y narrqw. In .t.he beg'ﬁ”'”g of preheating |-n. the ihzeory
resonance in terms of its strength and width strongly dependsh ¢* the instability band is given by the condition 165
on the parameters of the model. For example, the parametric k< 1.73\5(2), wherep, is the initial amplitude of the os-
resonance in the simplest conformally invariant theorycillations of the fielde (39). It is sufficient to shift the posi-
NP+ 39%¢x? is very different from that in the theory tion of the resonance band in momentum space by few per-
3my %+ 29%¢?x? [2]. In the simplest conformally invariant cent, and the leading resonant modgswhich have been
theories which we consider in this paper the structure of thgrowing since the start of the parametric resonance will not
resonance is determined by the combinatigh . grow anymore. This will effectively shut down the reso-
How does the resonance develop if the back reaction ofiance.
the accumulating fluctuations is taken into account? The an- There are two different effects which lead to a restructur-
swer to this question also strongly depends on the paramet@rg of the resonance band, and these effects act in opposite
g?/\. directions. First of all, particle production reduces the energy
For illustration we consider the model of the self- of the scalar field, and therefore reduces the amplitude of its
interacting inflaton fieldi A ¢*, no y field is involved. In this  oscillations. This effect tends to reduce the frequency of the
case we shall takg?=0 in all the equation$56), (61), (62). oscillations and to move the resonance band towards smaller
As we already mentioned, if one neglects the back reactiork. On the other hand, the effective mass of the figlgrows
the equations describing the resonance for the magés due to its interaction with thep particles. This effect in-
this theory coincide with the equations for the moggsin creases the frequency of oscillations and tends to shift the
the theory withg?=3\. Thus, we can use the results of the resonance band towards largetWe will consider here both
investigation of the theory with?=3\ obtained in Sec. VIl  of these effects.
for our analysis. To investigate the decrease of the amplitude of the oscil-
Historically, the modek\ ¢* was one of the first models lations due to particle production, one should compare the
illustrating the general idea of preheating. The investigatiortotal energy of the system before and after the appearance of
of the stability-instability chart for the Lamequation has ($?):
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Ae. Ao 1 — {¢?). In the first approximation, we will neglect the oscilla-
Z@é* Z<P4( n)+ WJ d*kVk?+3Ne®n,. (63 tions ofn (7). Also, we are trying to find the time when the
resonance terminates, and at that time the average number
Here we calculate the energy density at the moment wheflensity of particlesn, becomes nearly constant. It is still
¢'=0, and the oscillating field is equal to its amplitude difficult to find an analytic solution forp, with the time-
5(77)_ This amplitude is smaller thaEO due to the transfer dependent polarization operat@8), but one can easily find

of energy to the created particles. theT?]qutlonInurf’nehrlcally. bined i I f th f
The resonance is most efficient in a small vicinity kS e result of the combined investigation of the two ef-

~1 6\22 Therefore. the leadi tributi I fects discussed above shows that the resonance on the lead-
~1.6\¢". Therefore, the leading contribution £Q, Is giVen g modese, effectively terminates as soon 42) grows

by integration neak?= 1.6\ ¢*: up to
1 — — ~
pPy= WJ d3k \/4.6)\(p2nk: \/4.6)\(pn¢. (64) <¢2>%005¢2 (69)

Note that even after this moment the resonance may continue
for a while for the new modes which can be amplified in the
Ja6n restructured resonance band. However, this process is much
N YT P less efficient. Thus, in the pubeg” theory the rapid devel-
e(n)~eo— —=,;— (65 . ; .
@ opment of the resonance ends when the dispersion of ampli-
fied fluctuations is about 20% of the amplitude of the infla-
Thus, the creation af particles diminishes the frequency ton field, which corresponds to only 0.2% of the total energy.
of oscillations, because the frequency of oscillations of theThis result is based on rather rough estimates neglecting re-
field ¢ in the theory\ ¢* is proportional to its amplitude. To scattering. It is interesting, however, that it is in complete
evaluate the significance of this effect one may express it imgreement with the result of the lattice simulation of the
terms of( ¢?) calculated atp(7)=¢: parametric resonance in the theory* [5].
We should emphasize that there are several specific rea-
(62 1 f d3kny Ny . son4s why the resonance in the particular case of the theory
~ 3 =~ . N ¢” is relatively inefficient. First of all, the resonance band
(2m) Vk2+3Ng? V4.B\e in this theory is narrow and the characteristic exponeris
very small. This is no longer the case when one considers,
for example, the theory describingyafield with g2=\ or

Equations(63) and (64) give

From the last two equations one obtains

23(7) (?) with g?=2\. In these theories the characteristic exponent is
=~ ~1-9.2—-, (67) much greater, the resonance band is rather broad, and it be-
) o gins atk=0. As a result, it is much more difficult to shut

] ) . down the resonance in such theories.
which leads to a proportional shift of the resonance band |, the theories with a massive inflaton field there is an
towards smallek®. This indicates that even a very small 4qgitional effect which makes the resonance more stable.
amount of fluctuationg ¢?)~10 2¢3 may shift the reso- Broad parametric resonance in such theories is stochastic,
nance band away from its original position, which may ter-which makes it more difficult to shut dowji2]. Now we are
minate the resonance for the leading mogegs going to study what happens to the resonance in the confor-
This effect is partially compensated by the growth of themally invariant theories if this invariance is broken by a
effective mass of the fielg. We will analyze this effect in small mass term. As we will see, stochastic resonance may
the Hartree approximation, in which the fiejdacquires the appear in such theories as well.
effective mass squareH ,=3\(¢?). One may relatdl,,

= 3)\<QDZ> to the number density ap-particles in the follow- XIl. PREHEATING IN THE THEORY OF A MASSIVE
Ing way: SELF-INTERACTING INFLATON FIELD
3\ dkn(7) In our previous papdi2] we investigated parametric reso-
I1,~ @) e nance in the theoryni?/2) ¢?+ (g2/2) >x?. We have found
K™+ 3N ¢%(7) that reheating can be efficient in this theory onlyg{>m,
3\ d3knk 3nn,(7) Wh_ered> is_ the a_mplitude of oscillati(_)ns of t_he inflaton f_ield.
~ Sf _ o\ 77 This amplitude is extremely large immediately after infla-
(2m)°) 1,602+ 3\ 2 .652+ 3Ng%(7) tion, $~10"'M,, and later it decreases as
(68) M
. N . . ~ L (70)
Note, that this quantity is time dependent. It oscillates; its 3mt

magnitude changes considerably several times within a

single oscillation of the inflaton field, and it also grows ex- Due to this decrease, the ratigs/m rapidly changes. As a
ponentially during the resonance. The number density of result, the broad parametric resonance regime in this theory
particles also oscillates and grows exponentially, but typiis a stochastic process, which we callstbchastic reso-
cally its oscillations are less wild than the oscillations of nance
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Here we studied the theoryh(4)¢*+ (g%/2)p?x? for

various relations between the coupling constaitand\. In s
this theory the amplitude of the field also decreases in an
expanding universe, but it does not make the resonance stc sl

chastic because all parameters of the resonance scale in thy, ,,
same way asb due to the conformal invariance. One may
wonder, what is the relation between these two theories”
Indeed, neither of these two theories is completely general

In the theory of the massive scalar field one may expect
terms~ (N /4)¢* to appear because of radiative corrections.

On the other hand, in many realistic theories the effective n - pn = s
potential is quadratic with respect #near the minimum of
the effective potential.

To address this question, let us study the theory FIG. 9. Development of the resonance in the thean?/)¢?
(M212) %+ (N4) p*+ (g%/2) $2x2. One may expect that for +(N4)¢*+(g%2)$°x* for g?/\=5200. The upper curve corre-
¢>m/\/x parametric resonance in this theory occurs in thesponds to thg massless th_eory, the Iow_er curve describes stochastic
same way as in the mode}\(4)¢4+(92/2)¢2)(2’ whereas esonance with a theory with a masswhich is chosen to be much

. smaller thanyx ¢ during the whole period of calculations. Never-
for ¢<m/\\ the resonance develops as in the theorytheless‘ the presence of a small mass term completely changes the

(m2/2)¢2f(gzl_2)¢2X2. Let us check whether this is really geyelopment of the resonance.
the case, ignoring for simplicity the effects of back reaction
of created particles, which is always possible in the begin-
ning of the resonance regime. b=
First of all, one should remember that at the beginning of g
the stage of oscillations in this theory one has
~1O‘1Mp. Therefore there are two basic possibilities. If In particular, for®=m/\ it gives g/ A= \/XMp/m. Note
m/\/X>1O*1Mp, then the term X/4)¢* never plays any that by our assumptioR/XMp/m>1.
role in determining the frequency of oscillations of the field  The generalization of this result for the theomp#(2) ¢2
. Also, in this regime the particleg are not produced by +(\/4)¢*+(g%/2)¢*x? is straightforward, but the result is
parametric resonance, because the conditigh¢p>m  Somewhat unexpected. As a rough estimate of the e
(analogous to the conditiog>m for the production ofy ~ One can taker(2A®%+m?) 2= a2\ p%a ™ %(t) +m?] 12,
particles[2]) is violated. In such a casg particles can be Wherep=®a"'(t) is the time-independent amplitude. The
produced if 10'gM,>m. The theory of this process is de- Phase_shift during this time is given bgem{ 2\ ¢?
scribed in[2]; we do not have anything new to add here. +m?a®(t)]~*2 Thus, form=0 this quantity is time inde-
Another possibility, which we are going to study here in pendent, and one can have a regular stable resonance. In the
more detail, is that/\\<10" M. Then in the beginning limit ®>m/\ one can represent the phase shift as
the mass termr?/2) ¢2 does not affect the frequency of the (g/ V2M)[1—m?a?(t)/4N ¢?]. The change in this shift dur-
oscillating scalar fieldp. Therefore, one could expect that asing one oscillation isg#?m?H/4\?®3, where H=al/a
the amplitude® decreases from IGM, to m/\\, the =27\®?/\3M,. This gives the following condition for
theory of parametric resonance coincides with the one destochastic resonance:
scribed in this paper.
However, for largeg?/\ the situation is more compli-
cated. Even though the mass term for‘iﬂlp>fb>m/\/x b= _
does not affect the frequency of oscillations, it may affect the I\ 3AM,
nature of the broad parametric resonance by inducing an ad-

ditional rotation of the phasé@ of the modesy, (see Sec. Again, for ®=m/\ it givesg/\A= \/XMp/m.
1X). i This conclusion is illustrated by Fig. 9, where we show
;’he yeason Wgyzthe broad resonance in the theoryhe gevelopment of the resonance both for the massless
(m?/2)$”+(g7/2)¢"x~ was stochastic can be explained astheory with g2/\ ~5200, and for the theory with a small
follows. The x particles are produced when the fiefdt)  massm. As we see, in the purely massless theory the loga-
comes close to the poirt=0, which happens once during yithm of the number density, for the leading growing mode
each time period\t=s/m. During this time the phase of jncreases linearly in time, whereas in the presence of a
each modey, grows approximately bg®(t)7m™*. During  masem, which we took to be much smaller thafx ¢ during
the next half of a period of an oscillation it changes byhe whole process, the resonance becomes stochastic.
g® (t+m/m)mm~t=gd(t)mm~*+gd(t) w’m~2. This de- In fact, the development of the resonance is rather com-
stroys the phase coherence required for the ordinary resgiicated even for smalleg?/\. The resonance for a massive
nance and makes the resonance stochastic Keld with m<\ ¢ in this case is not stochastic, but has a
|g®(t) 7?m~?|=1. feature of intermittancy: it may consist of stages of regular
The condition for the stochastic resonance in the theoryesonance separated by the stages without any resonance, see
(m?12) p?+ (g%12) p?x? can be obtained from E¢70): Fig. 10.
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FIG. 10. Development of the resonance in the theory
(M?12) %+ (N14)p*+ (9%/2) p*x* with mP<\¢? for g?/\=240. FIG. 12. Schematic representation of different regimes which
In this particular case the resonance is not stochastic. AsXime are possible in the theory- (m2/2)¢2+ (N4)d*+ (g2/2) d2x2.
grows, the relative contribution of the mass term to the equationyhite regions correspond to the regime of a regular stable reso-
describing the resonance also grows. This shifts the mode from ongance, a small dark region in the left corner near the origin corre-
instability band to another. sponds to the perturbative decay- yx. Unless additional interac-

2100 2 tions are includedsee the previous figurea complete decay of the
Thus we see that the presence of the mass temf2) ¢ infiaton field is possible only in this small area.

can modify the nature of the resonance even if this term is
much smaller thanX/4) ¢*. This is a rather unexpected con-  If g/ A= AM p/m, the resonance originally develops as
clusion, which is an additional manifestation of the nonper-in the conformally invariant theory\(4)¢*+ (g%/2) $2x?,
turbative nature of preheating. This subject deserves separab@t with a decrease @b(t) the resonance becomes stochas-
investigation. tic. Again, for ®(t)=m/+/\ the resonance occurs as in the
Different regimes of parametric resonance in the theorytheory m?/2)¢%+(g%/2)$%x2. In all cases the resonance
(M?/2) ¢+ (N14)p*+(g°12) ¢°x* are shown in Fig. 11. We  eventually disappears when the fieli(t) becomes suffi-
suppose that immediately after inflation the amplitdéief  cjently small. As we already mentioned ib,2], reheating in
the oscillating inflaton field is greater than/\x. If g/\A  this class of models can be complete only if there is a sym-
s\/XMp/m, the x particles are produced in the regular metry breaking in the theory, i.em?<0, or if one adds
stable resonance regime until the amplitublét) decreases interaction of the field with fermions. In both cases the last
to m/+\/\, after which the resonance occurs as in the theorpstages of reheating are described by perturbation theory
(m?12)$p?+(g?/2) p*x? [2]. The resonance never becomes[17,18.

stochastic. Adding fermions does not alter the description of the
stage of parametric resonance. Meanwhile the change of sign
¢ of m? does lead to substantial changes in the theory of pre-
heating, see Fig. 12. We will investigate preheating in the
stable resonance stochastic theory —(m?/2)¢?+ (N 14)¢*+(9%/2)$°x? in a separate

resonance publication[19]. Here we will briefly describe the structure
of the resonance for varioug® and A neglecting effects of
back reaction. This will give us a more general perspective
stochastic resonance on the theory of reheating.

First of all, atd>m/\\ the field ¢ oscillates in the same
way as in the massless theory/4) ¢*+ (92/2) $2x?. More-
over, the condition for the resonance to be stochastic remains
the same as beford=(g/\) (7°m?/3\M ), see Eq(72).

However, as soon as the amplitude drops down to
VM, 9 m/J\, the situation changes dramatically. First of all, de-
m VA pending on the values of parameters the field rolls to one of

FIG. 11. Schematic representation of different regimes whichthe minima of its effective potential gk= * m/ \/X The de-

are possible in the theorym@/2)¢2+ (\/4)*+ (g2/2) 2x2 for scription of this process is rather complicqted. Depending on
m/\X<10"M, and for various relations betwee andx inan € values of parameters and on the relation bet‘{mz
expanding universe. The theory developed in this paper described(X°), ando=m//\, the universe may become divided into
the resonance in the white area above the linem/x. The domains with¢== o, or it may end up in a single state with
theory of preheating fo<m/\\ is given in[2]. A complete @ definite sign ok. We will describe this bifurcation period
decay of the inflaton is possible only if additional interactions arein [19]. After this transitional period the fielgp oscillates
present in the theory which allow one inflaton particle to decay tonear the minimum of the effective potential at= = m/\/x
several other particles, for example, an interaction with fermionsyith an amplitud@<a—:m/\/x_ These oscillations lead to
Y. parametric resonance with-particle production which can

VA

stable resonance

0 1
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be (approximately described as a narrow resonance in theinstability band towards smaller momenta. There is also an
first instability band of the Mathieu equation with,  opposing effect which increases the frequency of oscillations
=4(k*+g%0?)/m?, q=4g%cdP/m?. For definiteness we will due to the interaction of the homogeneous inflaton field with
consider here the regime¥M ,<m<\'2M,. The reso- the produced particles. Finally, quantum fluctuations of the
nance in this instability band is possible onlyg#/\ <3; the  fields ¢ and y acquire contributions to their masses, which
resonance in higher instability bands is very inefficient andchanges their spectra. A combination of all these effects
rapidly shuts down due to the expansion of the universeleads to restructuring of the instability bands. This terminates
Using the results of2] one can show that the resonance inthe amplification of the leading modes which have been
the first band also terminates @<\Am?/g*M,. By taking  growing from the very beginning of preheating. Addition-
the upper limit of this inequality ab ~m/\/\ one concludes ally, one may envisage effects related to rescattering of pro-
that this resonance is possible only fog/\N  guced particles, which may terminate the resonance even
=(m/\AMy)¥ (The resonance may terminate somewhatsomewhat earlier. In this respect it is interesting that our
earlier if the particles produced by the parametric resonancgsiimates ignoring the process of rescattering give results
give a considerable contribution to the energy density of th€hich are in a very good numerical agreement with the re-
universe) However, this is not the end of reheating, becausey is of computer simulations of reheating in the theo

the perturbative decay of the inflaton field remains pOSSibleperformed in[5] where all of these effects including rescat-
It occurs with the decay raté(¢— xx) =g*m/8m\. This is tering have been taken into account.

the process which is responsible for the last stages of the Rescattering may be more important fg#>\ [9—11].

decay of the inflaton field. It occurs only if ong particle . ; . .
can decay into twoy particles, which implies thag?/\x < 3. How_ever, in this regime one may need to take into account
possible small mass terms which should be present in realis-
tic versions of the theory. As we have found, &5\ these
mass terms lead to a radical change in the structure of the
In this paper we investigated the development of parametresonance not ab=<m/+/\, as one could naively expect, but
ric resonance in the conformally invariant theories of themuch earlier, attbs(g/\/f)(wsz/B)\Mp). In this regime
type of (\/4)¢*+(g%/2)p%x?. We have found that the de- the resonance becomes stochastic, the effective width of the
velopment of parametric resonance in these theories does nktsonance band increases, making it much more stable with
depend on the expansion of the universe, and can be classespect to various back reaction effects including rescattering
fied in terms of the ratiy?/\. This ratio determines the [2].
structure of the stability-instability bands for the equations We should emphasize again that preheating is but the first
describing the resonance. stage of reheating, which does not lead to a complete decay
We have found that the behavior of the resonance wittof the inflaton field in any models which we studied so far.
respect toy-particle production is a nonmonotonic function The last stages of preheating are always described by the
of g?/\. For example, fog?=\ and forg?=3\ equation perturbation theory17], which will be developed further in
for the perturbations of the fielg has only one instability our subsequent publicatidi8]. To illustrate this point, we
band, forg?/A =n(n+1)/2 there is only a finite number of described the development of the parametric resonance in the
instability bands, whereas for all other valuesgffx the  general class of models with the effective potentiép, x)
number of instability bands is infinite. =+ (m?12) 2+ (N/4) p*+ (9°%/2) %x?. We have found that
It is interesting thajy-particle production is least efficient in these theorieswithout any other fields being addethe
for g?<\ and forg?=3\. For example, the characteristic inflaton field can completely decay only if the sign of the
exponentumay for g2=2\ and forg?=8\ is almost 7 times  term (m?/2)¢? is negative, which corresponds to spontane-
greater thanuwma, for g2=3\, see Fig. 6. Meanwhile the 0us symmetry breaking. Moreover, this process is completed
characteristic exponent for the production dfparticles in ~ only for g?/\ <3, see Figs. 11 and 12.
the theory §/4)¢* coincides with that of the fielgy for g2 A complete inflaton decay is possible fgf/\ >3 as well,
=3\. Thereforey-particle production is typically more ef- €even without spontaneous symmetry breaking, but only if the
ficient than the production ap particles(unlessg?<\). The  inflaton field has some other interactions, such as an interac-
nonmonotonic dependence pf on the ratiog?/\ suggests tion with fermions ¢ with massm,, < m/\2 [18]. This
that there exists an “unnatural selection” rule: The particlesconclusion implies that the decay of the inflaton field is by
which are especially intensively produced during preheatingho means automatic even if it is heavy and strongly interacts
are not the ones which have the strongest coupling to theith other fields. Generically, the inflaton field accumulates
inflaton field, but those for which the characteristic exponentan enormously large energy density, which can be com-
u is the greatest. pletely released only if it interacts with other particles in a
In the conformally invariant theories the expansion of thevery specific way[1].
universe does not hamper the resonance, so it ends only due To understand how these results may change our point of
to the back reaction of the produced particles. There are sewview on the thermal history of the universe, let us suppose
eral different mechanisms which may terminate the parametor a moment that the inflaton field does not have any inter-
ric resonance. First of all, creation of particles leads to aactions with light fermions, and that it has an effective po-
decrease in the amplitude of oscillations of the figlda¢,  tential —(m?/2)p2+ (N4)p*+(g%12)p?x? with \~g?
which otherwise would remain constant. This leads to a pro~10** and with a small mass~10° GeV protected by
portional decrease in the frequency of oscillations in terms osupersymmetry. Then the final stage of reheating of the uni-
the conformal timezn, which may shift the position of the verse will begin only after the symmetry breaking in this

XIlI. DISCUSSION
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theory, and the reheating temperature estimated in accor- 1 dz
dance with2] will be smaller than 18- 10° GeV. In such a X3,=X3expg —2C, —2) , (A3
theory the electroweak phase transition may never happen, or 0 M1(2)Vz(1-2)

it may occur in an entirely different way. From the end of . . : o
inflation until the symmetry breaking and the final stage ofwhere the mtegr_al is understood as its _prlnC|paI value. The
reheating, the universe will remain far away from thermaléSonant MSXOIUt'On has. the generic f_orn)([;(x)]
equilibrium, and various nonthermal phase transitions an_P[Z(X)].e . whereP(2) is a per|o<_j|c f““°“°!"- Sinc® :
explosive processes of particle production may occur. | asa period equal to_ h_alf of th_e period of the inflaton oscil-
such a model one should reconsider all issues related to tH&!°": Eq.(A3) is sufficient to findu.:

primordial gravitino problem, moduli field problem, baryo-

genesis, etc. “T_ o J1L>O (Ad)
The main conclusion of our investigation can be formu- 2 0M,(2)Vz(1—2°)

lated as follows. The first stages of the process of the inflaton

decay may occur much more efficiently than was previouslyrhe integral in this equation can be reduced ¢?) given
thought, due to the effect of parametric resonance. The la&ty EQ. (35):

stage of this process may be completely inefficient even if

the coupling of the inflaton field to matter is very strong, or [t dz [ désin'?e 1)
it may be efficient only in a very narrow range of parameters, M,(2)Vz(1—2%) “Jo 1+2k2sing -
see Figs. 11 and 12. As a result, the complete thefarad (A5)
nonthermal history of the universe in the context of the
inflationary universe scenario may be dramatically differentSimilar calculations can be repeated for the cgée 3\
from the standard lore of the hot Big Bang cosmology. considered in Sec. VII.
The square of the resonant solution within the first quarter
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Within the second quarter one has

APPENDIX
. z dz 2 C,
Here we show how one can derive Eg4) or (40) for the Xz(z):X%Mexy{ f — | 2X— sk ——— 1
characteristic exponent, from the analytic solution31). 1M3(2) 3 Vz(1-27%)
We will first consider here the casg?=\. Equation(31) (A7)

describes both solutionX;(z) andX,(z). The resonant so-

5 N
lution X(z) consists of four monotonic parts within a single Then the value oK after half of a period is

period of the inflaton oscillation, see Fig. 3. It turns out that 1 dz

at different quarters of the period eith¥f(z) or X,(z) cor- xilzz Xéex;{ 2C2f —2) , (A8)
respond to the exponentially growing solution. Indeed, the 0 My(2)Vz(1—2°)

square of the resonant solution within the first quarter of a ) ) _ o

period is where the integral is understood as its principal value.

The equation for the characteristic exponent in this case
follows from Eq.(A8):

xz(z):xzexp[ f dz (G ) (A1)
0 oM\ T 1= | uT 1 dz
T_szo Mz(z)\/z(l—zz)>0' (A9)

whereM (2) is given by Eq.(29), C; is given by Eq.(32),
andX(z, is the square of the resonant solution in the beginningry,q integral in Eq(A9) can be reduced td(x?) given by
of the period wherz=0. Eq. (41):

Within the second quarter of the period one has

1 dz
. (A2) JO M(2)Vz(1-2°)
- FIZ sin*?9

X2(z)=X2,,ex fz dz /1+ C1 )
VT M\ T V(1= 2)

where X4, is the value ofX, after the first quarter of the
period X,,,=X(z=1).
Then the value oK? after half of a period is

o 90T (23 nZsing+ [(419) " — 1]siP0

J(K?). (A10)
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