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We consider preheating in the theory1
4 lf41

1
2 g2f2x2, where the classical oscillating inflaton fieldf(t)

decays intox particles andf particles. The parametric resonance which leads to particle production in this
conformally invariant theory is described by the Lame´ equation. It significantly differs from the resonance in
the theory with a quadratic potential. The structure of the resonance depends in a rather nontrivial way on the
parameterg2/l. We find an ‘‘unnatural selection’’ rule: the most efficient creation of particles occurs not for
particles which have the strongest coupling to the inflaton field, but for those which have the greatest charac-
teristic exponentm. We construct the stability-instability chart in this theory for arbitraryg2/l. We give simple
analytic solutions describing the resonance in the limiting casesg2/l!1 andg2/l@1, and in the theory with
g253l, and withg25l. From the point of view of parametric resonance forx, the theories withg253l and
with g25l have the same structure, respectively, as the theory1

4 lf4, and the theory (l/4N)(f i
2)2 of an

N-component scalar fieldf i in the limit N→`. We show that in some of the conformally invariant theories
such as the simplest model1

4 lf4, the resonance can be terminated by the back reaction of produced particles
long before^x2& or ^f2& become of the orderf2. We analyze the changes in the theory of reheating in this
model which appear if the inflaton field has a massm. In this case the conformal invariance is broken, and the
resonance may acquire the features of stochasticity and intermittancy even if the mass is very small, so that
(m2/2)f2!(l/4)f4. We give a classification of different resonance regimes for various relations between the
coupling constants, masses, and the amplitude of the oscillating inflaton fieldf in a general class of theories
6(m2/2)f21(l/4)f41(g2/2)f2x2. @S0556-2821~97!05122-9#

PACS number~s!: 98.80.Cq

I. INTRODUCTION

The theory of reheating of the universe is one of the most
important and least developed parts of inflationary cosmol-
ogy. Recently it was found that in many realistic versions of
chaotic inflation reheating begins with a stage of parametric
resonance@1#. At this stage the energy is rapidly transferred
from the inflaton field to other scalar and vector fields inter-
acting with it. This process occurs far away from thermal
equilibrium, and therefore we called itpreheating. The
theory of preheating is rather complicated. In@1# we gave
only a brief summary of its basic features. A detailed inves-
tigation of preheating in the simplest chaotic inflation model
describing a massive inflaton fieldf interacting with a mass-
less scalar fieldx was contained in our recent paper@2#. It
was found, in particular, that the resonance in such theories
can be efficient only if it is extremely broad. In such a situ-
ation preheating in an expanding universe looks like a sto-
chastic process.

In this paper we will concentrate on the theory of preheat-
ing in a class of conformally invariant theories such as
(l/4)f41(g2/2)f2x2. Different aspects of preheating in
such theories have been studied in Refs.@1,3–11#. A specific
feature of these models is that by a conformal transformation

one can reduce the investigation of preheating in these theo-
ries in an expanding universe to a much simpler theory of
preheating in Minkowski space-time@1#. As a result, the
parametric resonance does not exhibit the stochasticity found
in @2#. However, stochastic resonance may appear again at
the late stages of preheating if the fieldsf andx have bare
masses which break conformal invariance.

We will investigate preheating in the theories of the type
of (l/4)f41(g2/2)f2x2 for various relations between the
coupling constantsg2 and l. During this investigation~see
specifically Secs. V and XII!, we will discuss how the results
of the previous papers on this subject are related to the pic-
ture which emerges from the current study. We will show
that the development of the resonance in the various confor-
mally invariant theories can be very different, depending on
the particular values of parameters and the structure of the
theory. For example, the model (l/4)f41(g2/2)f2x2 with
g25l or g253l has only one instability band, but the struc-
ture of the bands and the characteristic exponentsmk are
completely different. It is enough to change the ratiog2/l
only slightly, and the number of the instability bands imme-
diately becomes infinitely large. For this reason, it is danger-
ous to extrapolate the results obtained for a theory with one
choice of parameters to a theory with another choice of pa-
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rameters. As we will see, not only is the structure of the
resonances different in different models, but the self-
consistent dynamical evolution with an account taken of the
back reaction of produced particles can also be qualitatively
different.

The main purpose of the present paper is to study the
structure of the parametric resonance in the conformally in-
variant theories. These theories may describe many bose
fields x interacting with the inflaton fieldf with different
coupling constants:

L52
M p

2

16p
R1

1

2
f ,if

,i2
l

4
f4

1
1

2(m ~xm,ixm
,i2gm

2 f2xm
2 2jmRxm

2 !. ~1!

Herexm stands for themth scalar field interacting with the
inflaton field with the coupling constantgm , and interacting
with curvatureR with the coupling constantjm .

Strictly speaking, this model is conformally invariant only
for a specific choice of the parametersjm : jm5 1

6. Neverthe-
less, in this paper we will consider the simplest models with
jm50. As we will see shortly, this difference is not going to
be very important because the average value ofR vanishes
when ufu!M p .

We will see that for the conformally invariant theories the
only parameter actually responsible for the structure of the
resonance for the fieldxm is the ratiogm

2 /l. Furthermore, we
will find that the strength of the resonance and the number
and widths of the instability bands for the fieldxm in the
theory~1! depends ongm

2 /l nonmonotonically. To get a gen-
eral picture, we will construct the stability-instability chart
for the equation for fluctuations on the two-dimensional
plane (k2,g2/l), see Fig. 4. The stability-instability chart
gives us insight into the structure of the resonances in the
conformally invariant theories. From this it will immediately
be clear which of the fieldsxm of Eq. ~1! will be most am-
plified during preheating. The stability-instability chart uni-
fies our knowledge of the resonance for the various confor-
mal models thus far considered in the literature.

Note that the class of theories we are going to investigate
include in particular the theory (l/4)(( i 51

N f i
2)2 of an

N-component scalar fieldf i . This theory has O(N) symme-
try. One can identify the inflaton fieldf in this theory with
the fieldf1. Then the quantum fluctuations of this field, just
like the quantum fluctuations in the theory of a one-
component field (l/4)f4, will have effective mass squared
3lf2, whereas the fluctuations of all other components will
have effective mass squaredlf2. Therefore, the equation for
the growth of the fluctuations of the fieldf5f1 ~neglecting
backreaction! will coincide with the equation for the growth
of fluctuations of the fieldx coupled to the fieldf with the
coupling constantg253l. Meanwhile, the equation for the
growth of the fluctuations of the fieldsf i , iÞ1, will coin-
cide with the equation for the growth of fluctuations of the
field x with the coupling constantg25l. This regime is
especially important in the limitN→`, where the main con-
tribution to particle production is given by the modes with
iÞ1. Thus, the casesg25l and g253l are especially in-
teresting and deserve careful investigation.

This paper is organized as follows. In Sec. II we will
describe the evolution of the background inflaton fieldf(t)
after inflation in the theory with the effective potential
V(f)5 1

4 lf4. We will give an analytic solution for the mo-
tion of the field f(t) in the regime of oscillations, when
ufu!M p . Then, in Sec. III, we derive the equations for fluc-
tuations of the fieldsx and f in the conformally invariant
theory, and reduce these to equations in Minkowski space-
time. We show that these equations can ultimately be re-
duced to a single Lame´ equation with just one parameter,
g2/l. In Sec. IV we solve the Lame´ equation numerically for
an arbitraryg2/l and arbitrary momentum,k, of fluctuations.
This allows us to produce the main result of our paper; we
construct the stability/instability chart for fluctuations in the
conformally invariant theories. In Sec. V we discuss the par-
ticular ranges and values of the parameterg2/l where the
analytic methods for the description of the resonance can be
developed. In Secs. VI–IX we perform an analytic investi-
gation of the resonance for some particular values ofg2/l.
For different values ofg2/l different analytic approaches
will be developed. We report a new method to treat the reso-
nance wheng2/l5n(n11)/2, wheren is an integer. We
show that the solutions forg2/l5n(n11)/2 can be found in
closed form, in terms of integrals of algebraic functions, in-
stead of complicated theta functions. This is done explicitly
for the most interesting cases,n51 andn52 ~i.e., for g2

5l and g253l), in Secs. VI, VII, and the Appendix. We
also consider the two opposite limitsg2/l!1 andg2/l@1
in Secs. VIII and IX, respectively. Section X contains a dis-
cussion of the self-consistent dynamics of the system includ-
ing backreaction of the created particles. In Sec. XI we de-
scribe the restructuring of the resonance which occurs when
the back reaction is incorporated into the equations for fluc-
tuations. We show that this is the leading effect which ter-
minates the resonance in the theory (l/4)f4. In Sec. XII we
discuss the modifications of the theory of preheating which
appear when the inflaton fieldf is massive. This allows us to
unify the results obtained in this paper with the results of our
preceding investigation of preheating in the theory of a mas-
sive inflaton field@2#. We find out that even a very small
mass,m!AlF, whereF is the amplitude of oscillations of
the fieldf, may change the nature of the resonance, making
it stochastic as in the theory of a massive inflaton field con-
sidered in Ref.@2#. This is a rather surprising result, which
was not anticipated in the earlier studies of this issue. Indeed,
one could expect that the presence of a term (m2/2)f2 can-
not influence the nature of the resonance if this term is much
smaller than (l/4)f4. We give a classification of different
resonance regimes for various relations between the coupling
constants, masses, and the amplitude of the oscillating infla-
ton field f in a general class of theories with the effective
potential6(m2/2)f21(l/4)f41(g2/2)f2x2. In Sec. XIII,
we give a summary of our results and discuss their possible
implications.

II. EVOLUTION OF THE INFLATON FIELD

We consider chaotic inflation with the potentialV(f)
5 1

4 lf4. During inflation the leading contribution to the
energy-momentum tensor is given by the inflaton scalar field
f. The evolution of the~flat! Friedmann-Robertson-Walker
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~FRW! universe is described by the Friedmann equation

H25
8p

3M p
2S 1

2
ḟ21

lf4

4 D , ~2!

whereH5ȧ/a. Let us note one more useful relationship be-
tweenH(t) andf(t) which follows from the Einstein equa-
tions

Ḣ52
4pḟ2

M p
2

. ~3!

The equation for the classical fieldf(t) is

f̈13Hḟ1lf350. ~4!

For sufficiently large initial values off.M p , the friction
term, 3Hḟ, in Eq. ~4! dominates overf̈ and the potential
term in Eq.~2! dominates over the kinetic term. This is the
inflationary stage, where the universe expands quasiexponen-
tially, a(t)5a0exp@*dtH(t)#, and the fieldf slowly decays,
f;M pexp@2(Al/A6p)M Pt#. With a decrease of the field
f belowM p , the ‘‘drag’’ term 3Hḟ gradually becomes less
important and inflation terminates atf;M p/2. After a short
stage of fast rolling down, the inflaton field rapidly oscillates
around the minimum ofV(f) with the initial amplitudeF0
;0.1M p . Although this value is below the magnitude
needed for inflation, it is still very large.

The character of the classical oscillations of the homoge-
neous scalar field depends on the shape of its potentialV(f).
In Ref. @2# we considered the theory with the quadratic po-
tential V(f)5 1

2 mf2. In that theory the fluctuations are har-
monic,f(t)5F(t)sinmt, with the amplitude decreasing like
F(t)'(M p /A3pmt)}a23/2. The scale factor at the stage of
oscillations isa(t)'a0t2/3, and the energy density of the
inflaton field decreases in the same way as the energy density
of nonrelativistic matter}a23.

In the theory with the potentialV(f)5 1
4 lf4, which we

consider in this paper, the inflaton oscillations are not sinu-
soidal. The amplitudeF of the oscillations of the scalar field
f in the limit t→` approaches the asymptotic regime

F~ t !'
1

At
S 3M p

2

8pl D 1/4

;
M p

10N
, ~5!

whereN is the number of oscillations after the end of infla-
tion, see Fig. 1.

To make calculations in this theory, and in particular, to
find the form of the oscillations, it is convenient to make a
conformal transformation of the space-time metric and the
fields. For this we use the conformal time

h5E dt

a~ t !
, ~6!

and the conformal field

w5af. ~7!

In the coordinates (h,x) the Klein-Gordon equation~4! for w
is

w91lw32
a9

a
w50, ~8!

where 8 stands for the derivative with respect to the confor-
mal time,d/dh. The Friedmann equation~2! in these vari-
ables is

a825
8p

3M p
2F1

2S w82w
a8

a D 2

1
lw4

4 G . ~9!

As one can see from Eq.~8!, the equation of motion for
the fieldw in the time variableh does not look exactly as the
equation for the theory (l/4)w4 in Minkowski space. In or-
der to achieve it one would need to add the term (f2/12)R to
the Lagrangian. However, this subtlety is not very important.
First of all, soon after the end of inflation one has (l/4)f4

@(f2/12)uRu, and lw3@(a9/a)w. Moreover, it is known
that the energy-momentum tensor of the fieldf in the theory
(l/4)f4, when averaged over several oscillations, is trace-
less (p5r/3) @12#. In this case one hasR50, a(h);h, and
a950, so that the last term in Eq.~8! vanishes:

w91lw350. ~10!

The Friedmann equation~9! averaged over several oscil-
lations of the fieldf in the regimef!M p also takes a very
simple form:

a825
8p

3M p
2S 1

2
w821

lw4

4 D[
8prw

3M p
2 , ~11!

where we have introduced the conformal energy density,
rw5 1

2 w821(l/4)w4.
It is convenient to expressrw in terms of the amplitudew̃

of the oscillations of the fieldw: rw5(l/4)w̃4. Equation
~10! has an oscillatory solution with a constant amplitude
and the conformal energyrw . Then from Eq.~11! we find

a~h!5A2pl

3

w̃2

M p
h, t5Apl

6

w̃2

M p
h2. ~12!

FIG. 1. Oscillations of the fieldf after inflation in the theory
lf4/4. The value of the scalar field here and in all other figures in
this paper is measured in units ofM p , time is measured in units of
(AlM p)21.
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As we expected, in this regime the last term (a9/a)w in Eq.
~10! vanishes.

Equation~10! can be reduced to the canonical equation
for an elliptic function. Indeed, let us use a dimensionless
conformal time variable

x[Alw̃h5S 6lM p
2

p D 1/4

At. ~13!

Then we can rescale the functionw[af5w̃ f (x). The func-
tion f (x) has an amplitude equal to unity and obeys the
canonical equation for the elliptic function. The integral of
this equation,f 825 1

2 (12 f 4), has the solution in terms of an
elliptic cosine

f ~x!5cnS x2x0 ,
1

A2
D . ~14!

As claimed, oscillations in this theory are not sinusoidal but
are given by an elliptic function. The energy density of the
field f decreases in the same way as the density of radiation,
i.e., asa24.

The solution~14! has some interesting properties which
are not usually elucidated in the literature. It matches the
solution describing the slow rolling of the fieldw at the end
of inflation if one takesx0'2.44. The period of the oscilla-
tions ~in units of x) is T54K(1/A2)5G2(1/4)/Ap'7.416,
K stands for the complete elliptic integral of the first kind.
The effective frequency of oscillations is 2p/T'0.8472@1#.
The value off 4 averaged over a period is13. The potential
energy density14 lw4 averaged over a period of oscillation is
equal to1

3 rw , and the average kinetic energy1
2 w82 is given

by 2
3 rw .
The elliptic cosine can be represented as follows:

f ~x!5
8pA2

T (
n51

`
e2p~n21/2!

11e2p~n21/2!cos
2p~2n21!x

T
. ~15!

The amplitude of the first term in this sum is 0.9550; the
amplitude of the second term is much smaller, 0.043 05. The
full solution ~14! is plotted in Fig. 2~solid curve!, alongside

the leading harmonic term in the series~15!, cos0.8472x
~dotted curve!. Although the first harmonic term is very close
to the actual form of oscillations, it will be important for the
investigation of the general structure of stability-instability
bands in this theory thatf (x) is not exactly equal to
cos(2px/T).

III. EQUATIONS FOR QUANTUM FLUCTUATIONS
OF THE FIELDS f AND x

We will consider here the interaction between theclassi-
cal inflaton field,f, and the massless,quantumscalar field,
x̂, with the Lagrangian~1!. The Heisenberg representation of
the quantum scalar fieldx̂ is

x̂~ t,x!5
1

~2p!3/2E d3k@ âkxk~ t !e2 ik•x1âk
1xk* ~ t !eik•x#,

whereâk andâk
1 are the annihilation and creation operators.

For a flat Friedmann background with scale factora(t), the
temporal part of the eigenfunction with comoving momen-
tum k obeys the following equation:

ẍk13
ȧ

a
ẋk1S k2

a2 1g2f2Dxk50. ~16!

As we mentioned in the previous section, at the stage of
oscillations whenf!M p the average value of the curvature
R vanishes, so one can neglect the term;jf2R.

The self-interaction1
4 lf4 also leads to the generation of

fluctuations of the fieldf. The equation for the eigenmodes
fk(t) is

f k̈13
ȧ

a
ḟk1S k2

a2 13lf2Dfk50. ~17!

Note that this equation is identical to Eq.~16! with g253l.
Therefore, the study of the fluctuationsfk in the 1

4 lf4

model is a particular case of the general equation for fluc-
tuations~16!.

The physical momentum,p5k/a(t), in Eq. ~16! is red-
shifted in the same manner as the background field ampli-
tude, f(t)5w/a(t). Therefore, the redshifting of momenta
can be eliminated from the evolution ofxk . Indeed, let us
use the conformal transformation of the mode function
Xk(t)5a(t)xk(t) and rewrite the mode equation forXk(t)
with the dimensionless conformal timex @see Eq.~13!#:

Xk91Fk21
g2

l
cn2S x,

1

A2
D GXk50, ~18!

where for simplicity we drop the initial value ofx052.44. In
this form the equation for fluctuations does not depend on
the expansion of the universe and is completely reduced to
the similar problem in Minkowski space-time. This is a spe-
cial feature of the conformally invariant theory14 lf4

1 1
2 g2f2x2.
For the fluctuations of the fieldw5af one has

FIG. 2. The exact solution~14! for the oscillations of the infla-
ton field after inflation in the conformally invariant theory14 lf4.
We show the field in rescaled conformal field and time variables,

f (x)5w/w̃ ~solid curve! and the first term, cos(0.8472x), in its
harmonic expansion~15! ~dotted curve!.
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wk91Fk213cn2S x,
1

A2
D Gwk50. ~19!

Equation~18! will be the master equation for our investi-
gation of the resonance in the conformally invariant theory.
The comoving momentumk enters the equation in the com-
bination

k25
k2

lw̃2
. ~20!

Therefore the natural units of the momentak is Alw̃ . Equa-
tion ~18! describes oscillators,Xk , with a variable frequency

vk
25k21

g2

l
cn2S x,

1

A2
D , ~21!

which periodically depends on time,x. It is well known that
in this case the solutionsXk are exponentially unstable:
Xk(x)}emkx. If we choose the vacuum positive-frequency
initial condition,Xk(x).e2 ikx/A2k, we then expect the ex-
ponentially fast creation ofx particles (nk}e2mkx) as the
inflaton field oscillates. The strength of interaction with the
periodic oscillationscn2(x,1/A2) is given by the dimension-
less coupling parameterg2/l. This means that the condition
of a broad parametric resonance does not require a large
initial amplitude of the inflaton field,F0, as in the case of the
quadratic potential@1#. As we will see, the combination of
parametersg2/l ultimately defines the structure of the para-
metric resonance in the theory. It turns out that the strength
of the resonance depends rather nontrivially~nonmonotoni-
cally! on this parameter.

From a mathematical point of view, the mode equation
~18! belongs to the class of Lame´ equations@13#. In the
context of preheating this was first noticed in@1#, and then
thoroughly studied for the O(N) symmetric theory in the
limit N→` ~i.e., for g25l) in @7# and for the1

4 lf4 theory
(g253l) in @8#. In this paper we perform a numerical and
analytical investigation of the parametric amplification of
fluctuations in the conformally invariant theory14 lf4

1 1
2 g2f2x2 for an arbitrary parameterg2/l. In the next sec-

tion, we present the two-dimensional chart of the stability-
instability bands for the Lame´ equation~18! in terms of vari-
ablesk2 and g2/l. In subsequent sections, we give a new
analytic treatment of the Lame´ equation in the caseg2/l
5n(n11)/2 with integern. We will also perform an ana-
lytical investigation of the resonance forg2/l!1 and for
g2/l@1.

IV. STABILITY-INSTABILITY CHART
IN THE CONFORMAL THEORY

As was shown in the previous section, the equation for
vacuum fluctuations interacting with the inflaton oscillations
in the conformal theories can be reduced to the similar prob-
lem in the Minkowski space. The equation for fluctuations
~18! in this case contains only two parameters. The first pa-
rameter isg2/l, which characterizes the strength of the in-
teraction. The second parameter is the momentum of vacuum
fluctuationsk in units of the frequency of the inflaton oscil-

lations. As is well known, the solutionsXk of this equation
may be stable or unstable depending on the particular values
for k andg2/l considered. At the stage of the free resonance
when we do not take into account the back reaction of the
unstable fluctuations, Eq.~18! is an equation with periodic
coefficients, which belongs to the class of the Lame´ equa-
tions. The stability-instability chart of another equation with
periodic coefficients, the Mathieu equation, is well known
and can be found in many textbooks, see, e.g.,@14#. We are
unaware of the stability-instability charts for the Lame´ equa-
tion, which describes preheating in the conformally invariant
theories. Therefore in this section we present the stability-
instability chart Eq.~18! in variables (k2,g2/l), which we
obtained by solving this equation numerically.

Figure 3 shows a typical resonant solution of Eq.~18!.
Though we have plotted the particular casek251.6, g2/l
53, the form of the resonant solution is generic. The upper
plot demonstrates the amplification of the real part of the
eigenmodeXk(x) ~solid curve! in the oscillating inflaton
background~dotted curve!.

In addition to the investigation of the rapidly oscillating
functionsXk(x), it is convenient for analytical and numerical
work to consider the evolution of the comoving number den-
sity of createdx particles,nk , with comoving momentumk.
This can be defined from the comoving energy density and
the energy per particle,vk :

FIG. 3. The typical resonant production of particles at the par-
ticular choice of rescaled comoving momentumk251.6, and the
parameterg2/l53. The upper plot shows the amplification of the
real part of the eigenmodeXk(x). The lower plot shows the loga-
rithm of the comoving particle number density,nk , calculated with
formula ~22!. The number of particles grows exponentially, lnnk

'2mkx. In this case,mk'0.035.
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nk5
vk

2 S uXku21
uẊku2

vk
2 D 2

1

2
. ~22!

The lower plot of Fig. 3 shows the evolution of the loga-
rithm of nk ~solid curve! and the inflaton field~dotted curve!.
For the growing solutions after an initial transitional period
the number of particles increases exponentially, lnnk'2mkx,
wheremk is the characteristic exponent of the unstable solu-
tion. In the particular case shown,mk'0.035.

For arbitrary values ofk and g2/l, we can obtain a nu-
merical solution of Eq.~18! and exploit the simple relation
lnnk'2mkx to extract the characteristic exponent for the
growing modes. For the regions of stability the characteristic
exponent formally is imaginary. In this way, the stability-
instability chart for the Lame´ equation, Fig. 4, is constructed.
Shaded~unshaded! regions of the chart indicate values ofk2

and g2/l for which the solutions are unstable~stable!. For
the instability bands, a darker shade indicates a larger char-
acteristic exponent. An immediate result is that, for a given
range ofg2/l, the largest characteristic exponent will occur
for k250 between the integer valuesg2/l5n(n11)/2 with
n integer.

This is demonstrated in Fig. 5, where slices of the
stability-instability chart show the characteristic exponent as
a function ofk2 for various values ofg2/l. The top panel of
Fig. 5 plots the casesg2/l51.0,1.5,2.0,2.5,3.0, labeleda
through e, respectively. g2/l51 corresponds ton51,
g2/l53 corresponds ton52. As claimed, we see that the
largest value of the characteristic exponent occurs fork2

50 at a value ofg2/l between the limits 1 and 3~curvec).
Similarly, the lower panel of Fig. 5 plots the casesg2/l

56.0,7.0,8.0,9.0,10.0, labeleda throughe, respectively. The
valuesg2/l56 and 10 correspond ton53 and 4. Again we
see that the largest value of the characteristic exponent oc-
curs fork250 at a value ofg2/l between the limits 6 and
10 ~curvec).

This stability-instability chart is very similar to the
stability-instability chart of the Mathieu equation, but there
are important differences as well. For the Mathieu equation
there are infinitely many instability bands corresponding to
each value of the parameterq, which is analogous to our
parameterg2/l. Meanwhile for the Lame´ equation some of
the instability bands may occasionally shrink to a point. As a
result, forg2/l51 and forg2/l53 ~Fig. 5, curvesa ande,
respectively! there is only one instability band. This will be
shown analytically in Secs. VI and VII. From the stability-
instability chart for the Lame´ equation, Fig. 4, we see that,
topologically, this occurs because all the higher instability
bands shrink to nodes asg2/l approaches 1 and 3.

Similarly, there are a finite number of instability bands for
positivek2 wheneverg2/l5n(n11)/2. Again, it occurs as
other higher instability bands shrink to nodes. However, as
for the Mathieu equation, all other values ofg2/l have an
infinite number of instability bands. This is true in particular
for g2/l!1 where, as we will show in Sec. VIII, the Lame´
equation~18! may be formally transformed into the Mathieu
equation ~43! with the parametersA'1.3932k2 and q
'0.3464g2/l!1. Thus, with this change of variables and in
the limit g2/l!1, the stability-instability chart for the Lame´
equation is found to coincide exactly with that for the
Mathieu equation@1,2#.

As we have shown in@1,2#, the maximum value of the
characteristic exponentmmax for the Mathieu equation~43!
~for A>2q) is mmax'0.28. As we will see below, similarly,
the maximum value of the characteristic exponent for the
Laméequation~18! is mmax'0.2377. This limit can be easily
related to that of the Mathieu equation. Indeed, 0.2377
50.28(TM /TL), where TM and TL are the periods of the
harmonic oscillations cosx and the oscillationsf (x) given by
Eq. ~14!, correspondingly;TM52p andTL'7.416, see Sec.
II.

FIG. 4. The stability-instability chart for the Lame´ equation for
fluctuationsXk(x) in the variables (k2,g2/l), obtained from the
numerical solution of Eq.~18!. Shaded~unshaded! areas are regions
of instability ~stability!. For instability bands, the darker shade im-
plies a larger characteristic exponentmk . Altogether, there are 10
color steps. One color step corresponds to the incrementDmk

50.0237, so the darkest shade corresponds to maximalmk50.237,
the least dark shade in the instability bands corresponds tomk

50.009. For positivek2, there is only one instability band for the
particular values of the parameterg2/l51 and 3. This occurs be-
cause the higher bands shrink into nodes asg2/l approaches 1 and
3.

FIG. 5. Slices of the stability-instability chart, Fig. 4, reveal the
dependence of the characteristic exponent,mk , on k2 for several
particular values ofg2/l. For the top panelg2/l51.0, 1.5, 2.0, 2.5,
and 3.0, labeleda throughe, respectively. The numerical curvesa
ande for g2/l51 andg2/l53 are identical to the analytic predic-
tions ~34! of Sec. VI and~40! of Sec. VII. For the lower panel
g2/l56.0, 7.0, 8.0, 9.0, and 10, labeleda throughe, respectively.

6180 56GREENE, KOFMAN, LINDE, AND STAROBINSKY



As we noticed in Sec. II, oscillationsf (x) only insignifi-
cantly differ from the leading harmonic term cos0.8472x of
the series~15!. Meanwhile, in general the solutions of the
Lamé equation cannot be obtained by perturbative correc-
tions to the solutions of the Mathieu equation. Overall, the
stability-instability chart of the Lame´ equation, Fig. 4, is
quite different from that of the Mathieu equation. This is one
of the manifestations of the nonperturbative nature of the
parametric resonance.

We now proceed to develop the new analytic results for
preheating in the physically interesting theories withg2/l
5n(n11)/2, which as we have seen, are hinted at by the
stability-instability chart for the Lame´ equation, Fig. 4.

V. ANALYSIS OF THE EQUATION FOR FLUCTUATIONS

In this section we begin the analytic investigation of the
Laméequation~18! for the fluctuationsXk(x). In particular,
in the next two sections we will try to find the values of the
parameterg2/l for which analytical solutions can be obtain
in closed form, and construct these solutions.

We will also investigate the resonance in two limiting
cases:g2/l!1 andg2/l@1. In the first case one can use
perturbation theory in the small parameterg2/l!1, see Sec.
VIII @16#. In the opposite limit,g2/l@1, we can implement
the method of successive parabolic scattering@2#, see Sec.
IX.

It is known that the Lame´ equation can be solved in terms
of the transcendental Jacobi functions, which in turn are
given by series expansions. Earlier we reported the result for
the characteristic exponentm50.0359 forlf4 theory@15,4#.
Analytic investigation of the resonance using these transcen-
dental functions gives the width of the unstable zone and the
maximum of the characteristic exponent,mk , in the physi-
cally interesting cases of the O(N) symmetric theory in the
limit N→` ~which is equivalent tog2/l51 in our conven-
tion! and the1

4 lf4 self-interacting theory (g2/l53) @7,8#.
However, calculations involving these transcendental

functions are extremely tedious. Fortunately, it turns out that
for

g2

l
5

n~n11!

2
, ~23!

with n an integer, one can obtain simple, closed-form solu-
tions to the master equation~18!. This includes in particular
the most interesting casesg25l andg253l.

To find the solutions of the fluctuation equation~18! for
g2/l5n(n11)/2, wewill rewrite Eq. ~18! in the so-called
algebraic form. We will use the ‘‘time’’ variablez instead of
x:

z~x!5cn2S x,
1

A2
D ,

d

dx
52A2z~12z2!

d

dz
, ~24!

Equation~18! for fluctuations becomes

2z~12z2!
d2Xk

dz2 1~123z2!
dXk

dz
1S k21

g2

l
zDXk50.

~25!

Omitting the lower indexk for simplicity, let X1(z) and
X2(z) be two linearly independent solutions of Eq.~25!. One
of them exponentially grows, another exponentially de-
creases during the resonance. Let us also introduce the bilin-
ear combinationsX1

2, X2
2, andX1X2. From Eq.~25! it follows

that these bilinear combinations obey a third-order equation

2z~z221!
d3M

dz3 1~9z223!
d2M

dz2 22F S 2
g2

l
23D z

12k2GdM

dz
22

g2

l
M50. ~26!

The three solutions,M (z), of this equation correspond to the
three bilinear combinations ofX1 andX2. The crucial obser-
vation is that forg2/l5n(n11)/2 Eq. ~26! admits a poly-
nomial solution of degreen. In the particular casesn51 and
n52, we have

n51: M 1~z!5z22k2,

n52: M2~z!5z22
2

3
k2z211

4

9
k4. ~27!

Obviously, the polynomial functionM (z) must be the prod-
uct of an exponentially growing solution and an exponen-
tially decreasing one, i.e.,M (z)5X1(z)X2(z) in the reso-
nance zone. From this, as we will show in the next two
sections, one can construct the closed-form solutionsX(z).1

Therefore, in the physically interesting casesn51 andn
52 we will obtain simple closed-form solutions instead of
the complicated transcendental functions. This significantly
simplifies the study of preheating in these cases. In particu-
lar, we will find the form of the characteristic exponentmk as
a function ofk2 in each case.

VI. CLOSED FORM SOLUTION FOR g2/l51

In the caseg25l Eq. ~26! in the resonance band gives

X1~z!X2~z!5M1~z!, ~28!

where

M1~z!5z22k2. ~29!

The Wronskian of Eq.~25! for X(z) is

X1

dX2

dz
2X2

dX1

dz
5

C

Az~12z2!
, ~30!

1The solutionsX(z) involve a normalization factorN to be de-
fined by the physical initial conditions. The auxiliary functions
M (z) are also defined up to a normalization factorN2. For sake of
simplicity we setN51 in Eq.~27! and in the rest of the paper. This
does not affect the calculation of the characteristic exponent, which
is our primary interest in this paper. Determination of the factorN
is a straightforward operation, see Ref.@20#, where it was shown
that for the vacuum initial conditionN5uM (1)u21/2.
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whereC is some constant,C5C1, to be defined. From Eqs.
~28! and ~30! we immediately obtain the closed-form solu-
tions

X1,2~z!5AuM1~z!uexpS 6
C1

2 E dz

Az~12z2!M1~z!
D .

~31!

Now, substituting this solution back into Eq.~25! for X(z),
we find the constantC1:

C15A2k2~124k4!. ~32!

For exponentially growing solutions,C1 must be real; there-
fore the exponentially growing solutions for fluctuations with
k2.0 take place in a single instability band for which

0,k2,
1

2
, ~33!

in agreement with the result of@7#. The growing solution of
Eq. ~18! has the formX(x)5emkxP@z(x)#, whereP@z(x)# is
a periodic function of the conformal timex. Using Eq.~31!,
we can now find the characteristic exponentmk as a function
of k. The technical details can be found in the Appendix.

The final answer is

mk~k!5
2

T
A2k2~124k4!I ~k!, ~34!

where an auxiliary functionI (k) is

I ~k!5E
0

p/2

du
sin1/2u

112k2sinu
. ~35!

Recall thatT'7.416. Equation~34! is one of the most im-
portant analytic results of our paper. Some numerical values
of mk as function ofk2 for g2/l51 calculated with Eq.~34!
are listed in the upper half of Table I below.

The analytic form~34! is in excellent agreement with the
numerical results for this case plotted in the top panel of Fig.
5 as curvea. The maximum value of the characteristic ex-
ponent forg2/l51 is mmax'0.1470 atk2'0.228, in agree-
ment with the numerical value formmax of Fig. 6.

VII. CLOSED FORM SOLUTION FOR g2/l53

The method of obtaining a closed-form analytic solution,
Xk(z), in the caseg253l is similar to that of the previous
section. In the resonance zone withg253l, Eq. ~26! gives

X1~z!X2~z!5M2~z!, ~36!

where now

M2~z!5z22
2

3
k2z211

4

9
k2. ~37!

The Wronskian of equation~25! is the same as in Eq.~30!,
but with a new constant,C5C2. Therefore, the closed form
solutions are the same as in Eq.~31!, but withM2(z) in place
of M1(z). Substituting this solution into Eq.~25!, we find the
constantC2 in this case:

C25A32

81
k2S k42

9

4D ~32k4!. ~38!

Therefore, in the caseg2/l53 for k2.0, there is also only
a single instability band corresponding to

3

2
,k2,A3, ~39!

in agreement with@8#.
For illustration, we plot the resonant solutionXk(x) in the

top panel of Fig. 3. Notice thatXk(x) oscillates twice within
one inflaton oscillation. Using solution~31! with M2(z) and
C2, we can findmk in this case; see the Appendix for details.

The resulting characteristic exponent forg2/l53 is

mk5
8A2

9T
Ak2S k42

9

4D ~32k4!J~k!, ~40!

where the auxiliary functionJ(k) is

TABLE I. Numerical values ofmk for variousg2/l andk2.

g2/l k2 mk

1 0.0 0.000

1 0.1 0.1238

1 0.2 0.1460

1 0.21 0.1466

1 0.22 0.1469

1 0.228 0.1470

1 0.23 0.1470

1 0.24 0.1468

1 0.25 0.1465

1 0.3 0.1411

1 0.4 0.1117

1 0.5 0.000

3 1.5 0.000

3 1.55 0.02981

3 1.60 0.03570

3 1.61 0.03595

3 1.615 0.03598

3 1.62 0.03594

3 1.625 0.03583

3 1.65 0.03427

3 1.70 0.02460

3 1.732 0.00
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J~k!5E
0

p/2

du
sin3/2u

11~2/3!k2sinu1@~4/9!k421#sin2u
~41!

in this case. Formula~40! is another important result of our
paper. Some numerical values ofmk as a function ofk2 for
g2/l53 calculated with Eq.~40! are listed in the lower half
of Table I. The analytic form~40! is in agreement with the
numerical results for this case plotted in the top panel of Fig.
5 as curvee. The maximum value of the characteristic ex-
ponent for g2/l53 is mmax'0.035 98 atk2'1.615, in
agreement with the numerical value formmax of Fig. 6.

VIII. SOLUTION FOR g2/l!1

In this section we investigate the equation for fluctuations
~18! in the limiting caseg2/l!1. Let us recall thatf (x) is
given by the series~15!, and hence,f 2(x) in Eq. ~18! can be
decomposed as

f 2~x!5F01F1cosS 4px

T D1F2cosS 8px

T D1•••, ~42!

whereF050.4570,F150.4973,F250.042 90 and so on, but
(k50

` Fk51. One can seekXk(x) in the form of a harmonic
series of terms cos(2npx/T) with slowly varying coefficients.
If g2/l is a small parameter, one can develop an iterative
solution with respect tog2/l. It is easy to show that the
leading contribution toXk(x) comes from the lower har-
monic: cos(4px/T). Keeping only this term, the equation for
Xk(x) can be reduced to the Mathieu equation

d2Xk

dt2 1~A12qcos2t!Xk50, ~43!

where t52px/T, A5(Tk/2p)2, and q5(g2/2l)(T/
2p)2F1. Thus, our theory is effectively reduced to the
Mathieu equation only in the limitq!1, where it has insta-
bilities in very narrow resonant bands aroundk252pm/T,

m51,2, . . . . Theresults of the numerical investigation of
the instability zones plotted in Fig. 4 indeed show that for
g2/l!1 the parametric resonance corresponds to that of the
Mathieu equation.

The exponentially growing solution of the Mathieu equa-
tion, Xk(x)}emkx, has a maximum characteristic exponent
~in the first zone!

mmax5
g2

4lS T

2p D 2

F1'0.1467
g2

l
. ~44!

In Fig. 6 we plot the maximum value of the characteristic
exponent as a function ofg2/l together with the prediction
~44! for mmax from the Mathieu equation. As one can see
from Fig. 6, Eq. ~44! works extremely well even up to
g2/l.1.

IX. ANALYTIC SOLUTION FOR g2/l@1

In this section we consider the limiting case when the
parameterg2/l is very large. In the upper panel of Fig. 7 we
plot the time evolution of fluctuationsXk(x) in this case. In

FIG. 6. The maximum value of the characteristic exponentmmax

extracted from the stability-instability chart, Fig. 4, is plotted as a
function of g2/l ~solid curve!. The functionmmax(g

2/l) is non-
monotonic. The universal upper limit ofmmax is 0.2377. The local
minima of the function are gradually increasing withg2/l, and
asymptotically approach 0.2377. The dotted line is the prediction
mmax'0.1467(g2/l) for g2/l!1, when the mode equation~18! is
effectively reduced to the Mathieu equation~43!.

FIG. 7. The same as in Fig. 3 but for a large valueg2/l@1,
here for the particular choiceg2/l55050 andk2529.0. The upper
plot shows the time dependence of the real part of the eigenmode
Xk(x), which demonstrates the adiabatic~semiclassical! behavior
between zeros of the inflaton oscillations~dotted line!, where the
comoving occupation numbernk of created particles is constant
~lower plot!. The lower plot shows lnnk as a function of timex.
Particle creation occurs in a steplike manner only in the vicinity of
the zeros of the inflaton field, where the adiabaticity is broken. The
envelope of lnnk is approximated by 2mkx. The characteristic expo-
nent for this example ismk'0.1.
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the lower panel of Fig. 7 we plot the number of particles
nk(x) in a given mode as a function of timex calculated
from Xk(x) with Eq. ~22!.

The basic observation is that, forg2/l@1, the evolution
of the modesXk(x) is adiabatic and the number of particles
nk(x) is constant between the zeros of the background field.
Changes in the number density of particles occur only near
timesx5xj when the amplitude of the inflaton field crosses
zero, i.e.,w(xj )50. To describe the effect of a single kick at
x5xj , it is enough to consider the evolution ofXk(x) in the
interval whenw2(x) is small and can therefore be repre-
sented by its quadratic part}(x2xj )

2. This process looks
like wave propagation in a parabolic potential. Outside of
these time intervals,Xk(x) has a simple, semiclassical~adia-
batic! form. We can combine the action of the subsequent
parabolic potentials to find the net effect of particle creation.
This method of successive parabolic scattering was formu-
lated and applied to the broad parametric resonance for the
quadratic inflaton potential in@2#. This method, as we see,
can also be applied to the conformally invariant theory for
g2/l@1.

We expect that the semiclassical solution is valid every-
where but aroundxj . Thus, prior to scattering atxj , the
mode functionXk(x) has the adiabatic form

Xk
j ~x!5

ak
j

A2vk

expS 2 i E
0

x

vkdxD 1
bk

j

A2vk

expS 1 i E
0

x

vkdxD ,

~45!

where the coefficientsak
j and bk

j are constant forxj 21,x
,xj , ak

051, bk
050, and normalization yieldsuaku22ubku2

51. After scattering whenx5xj , Xk(x) in the intervalxj
,x,xj 11 again has the adiabatic form of Eq.~45! but with
new constant coefficients,ak

j 11 andbk
j 11 .

The form is essentially the asymptotic expression of the
incoming waves~for x,xj ) and similarly for the outgoing
waves ~for x.xj ) scattered from a parabolic potential (x
2xj )

2 at the momentxj . Therefore, the outgoing ampli-
tudes,ak

j 11 andbk
j 11 , can be expressed in terms of the in-

coming amplitudes,ak
j and bk

j , with the help of the reflec-
tion and transmission amplitudes for scattering at a parabolic
potential@2#. For this we need the mode equation around a
single parabolic potential atx5xj . In the vicinity of xj ,
cn(x,1/A2)'(1/A2)(x2xj ). Then Eq.~18! aroundxj is re-
duced to the simple equation

d2Xk

dx2 1S k21
g2

2l
~x2xj !

2DXk50. ~46!

The mapping ofak
j , bk

j into ak
j 11 , bk

j 11 in terms of pa-
rameters in Eq.~46! reads

S ak
j 11

bk
j 11D 5S A11e2pe2

ei zk ie2 ~p/2! e212iuk
j

2 ie2 ~p/2! e222iuk
j A11e2pe2

e2 i zk
D S ak

j

bk
j D , ~47!

wherezk5argG@(11 i e2)/2#1(e2/2)@11 ln(2/e2)#, and e25A2l/g2k25k2/Al/2w̃2g. The phase accumulated by the mo-
mentxj is uk

j 5*0
xjdxvk(x)5 j uk , whereuk52*0

T/4dxAk21(g2/l) f 2(x) is the phase accumulating within half of a period of
the inflaton oscillation.

In the regime when a large number of particles have been created,nk
j 5ubk

j u2@1, we haveuak
j u'ubk

j u, so ak
j and bk

j are
distinguished by their phases only. In this case there is a simple solution of the matrix equation~47!:

ak
j 5

1

A2
expF S mk

T

2
1 iukD • j G , bk

j 5
1

A2
eiqexpF S mk

T

2
2 iukD • j G , ~48!

whereq is a constant phase andmk is the characteristic exponent.T'7.416 is the period of oscillations of the inflaton field
in the variablex, so the number of particles grows ase2mkx. Another solution is similar to Eq.~48! but with the substitution
uk→uk1p.

Substituting solution~48! into Eq. ~47!, we get an equation for the parametersmk anduk :

emk~T/2!5ucos~uk2zk!uA11e2pe2
1A~11e2pe2

!cos2~uk2zk!21. ~49!

In the instability zones, the parametermk of Eq. ~49! should be real. From this we obtain the condition

utan~uk2zk!u<e2~p/2!e2
. ~50!

for the momentumk to be in a resonance band.
To further analyze the conditions for the strength~50! and widths~49! of the resonance, one should calculate the phase

uk2zk . For g2/l@1 we have

uk2zk52E
0

T/4

dxAk21
g2

l
f 2~x!2argGS 11 i e2

2 D2
e2

2 S 11 ln
2

e2D'pAg2

2l
1k2A l

8g2ln
g2

l
. ~51!
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Using Eqs.~51!, ~50!, and~49!, we find the characteristics of
the resonance in the regimeg2/l@1. From Eq.~50! it fol-
lows that the resonance is efficient fore2<p21, i.e., for

k2<A g2

2p2l
. ~52!

Equation ~50! transparently shows that, for a giveng2/l,
there will be a sequence of stability-instability bands as a
function of k. The width of an instability band, where the
resonance occurs, isDk2.Ag2/2l. Let the integer part of
the large numberAg2/2l be l . From Eq.~51! it follows that
if we vary k2 within the range 2p2Ag2/2p2l@ ln(g2/l)#21,
then within this interval ofk2 the phaseuk2zk reaches
either lp or (l 11)p. Then within this resonance band we
get the maximum valuemmax defined by Eq.~49! with
ucos(uk2zk)u51:

e~T/2!mmax5A11e2pe2
1e2pe2/2. ~53!

The characteristic exponentmmax is a nonmonotonic function
of g2/l. If the value of the parameterg2/l is exactly equal
to 2l 2 where l is an integer, then the strongest resonance
occurs atk250,2 and from Eq.~53! we get

mmax5
2

T
ln~11A2!'0.2377. ~54!

This is actually a general result for the upper limit ofmmax
for an arbitraryg2/l, see Fig. 6. One may compare it with a
similar result formmax for the harmonic oscillations in the
case of the Mathieu equation, whereT52p and mmax

5(1/p)ln(11A2)'0.28 @1#. If g2/l is not exactly equal to
2l 2, then mmax occurs at a nonzerok2 and is smaller than
0.2377. It is interesting that in the formal limitg2/l→` the
function mmax(g

2/l) asymptotically approaches the value
0.2377 for arbitraryg2/l. To see this, we have to check that
a variation ofk2;2p2Ag2/2p2l@ ln(g2/l)#21 is compatible
with the condition for an efficient resonance,e2<p21. In
Fig. 6 we see that the minimal value ofm as a function of
g2/l very slowly increases towards 0.2377. Therefore, al-
thoughmmax is not a monotonic function ofg2/l, for g2/l
@1 the resonance is stronger both in terms of the character-
istic exponentmmax and the widthk2.

X. BACK REACTION OF CREATED PARTICLES

Thus far we have considered the parametric resonance in
the conformally invariant theory~1! in an expanding uni-
verse neglecting the back reaction of the amplified fluctua-
tions of the fieldsf andx. In the next two sections we will
study the effects related to the back reaction.

In the theory1
4 lf41 1

2 g2f2x2, the equation of motion for
the inflaton fieldf(t) looks as follows:

f̈13Hḟ1lf313l^f2&f1g2^x2&f50. ~55!

The two additional terms are due to the one-loop Hartree
diagrams;̂ f2& and ^x2& stand for the quantum fluctuations
of the fieldsf and x, respectively. There are also higher-
loop corrections such as 2g2^fx2& and 6l^f3&, which are
not necessarily negligible at the end of preheating when we
may expectnx;1/g2 and nf;1/l ~or even higher, if one
takes into account rescattering!. Here we will work in the
one-loop approximation.

If again we use the conformal transformationh
5*(dt/a), xk5Xk /a and similarly fk5wk /a, then the
equation for the background fieldw(h) is

w91lw313l^w2&w1g2^X2&w50, ~56!

with the comoving vacuum expectation values forX and w
correspondingly

^X2&5
1

~2p!3E d3kuXku2, ^w2&5
1

~2p!3E d3kuwku2.

~57!

The integral of Eq.~56! coincides with the energy density

r tot5
1

2
w821

l

4
w41rw1rX . ~58!

The first two terms describe the energy of the classical field
w, rw , and rX correspond to the energy density ofw par-
ticles andX particles, respectively:

rw5
1

~2p!3E d3kAk213lw2nk
w , ~59!

rx5
1

~2p!3E d3kAk21g2w2nk
X . ~60!

Herenk
w andnk

X correspond to the occupation numbers of the
w particles andX particles. It is easy to show thatrx8
5g2^x2&ww8 and rw853l^w2&ww8, and therefore Eq.~58!
is an integral of Eq.~56!.

To close the set of self-consistent equations we need the
equations for the modeswk(x) andXk :

wk9~h!1@k21Pw13lw2~h!#wk50, ~61!

Xk9~h!1@k21PX1g2w2~h!#Xk50. ~62!

The polarization operatorPw consists of Pw
153l^w2&

1g2^X2& and the nonlocal termPw
2 which emerges in the

one-loop approximation beyond the Hartree diagram, see
Fig. 8.

The calculation of the polarization operatorPw
2 in the

regime of parametric resonance is rather complicated. Esti-
mates ofPw

2 performed in@2# indicate that it can be of the
same order of magnitude as the standard Hartree polarization
operatorPw

1 . The polarization operatorPw
2 was not taken

into account in the previous treatment of the self-consistent
equations for the eigenmodes in the 1/N approximation@6,7#,
but in fact it may survive in the limitN→` @2#. This may
imply that in the context of the theory of preheating the
standard 1/N approximation breaks down.

2It is easy to see from Eq.~51! that the modek250 is within the
resonance band if 2l 22 l ,g2/l,2l 21 l .
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Similarly, the polarization operatorPX is equal to
g2^w2&, plus an additional nonlocal termPX

2 . We expect that
Pw>0, PX>0, as suggested by the Hartree approximation.

A complete calculation of the polarization operatorsPw

andPX is outside the scope of this paper. Fortunately, as we
will see in the next section, one need not really know exact
expressions forPw andPX in order to make an estimate of
the density of produced particles at the time when the feed-
back of the amplified fluctuations terminates the parametric
resonance.

XI. DYNAMICAL RESTRUCTURING
OF THE RESONANCE

In this paper we found that the structure of the parametric
resonance in terms of its strength and width strongly depends
on the parameters of the model. For example, the parametric
resonance in the simplest conformally invariant theory
1
4 lf41 1

2 g2f2x2 is very different from that in the theory
1
2 mff21 1

2 g2f2x2 @2#. In the simplest conformally invariant
theories which we consider in this paper the structure of the
resonance is determined by the combinationg2/l.

How does the resonance develop if the back reaction of
the accumulating fluctuations is taken into account? The an-
swer to this question also strongly depends on the parameter
g2/l.

For illustration we consider the model of the self-
interacting inflaton field1

4 lf4, nox field is involved. In this
case we shall takeg250 in all the equations~56!, ~61!, ~62!.
As we already mentioned, if one neglects the back reaction,
the equations describing the resonance for the modeswk in
this theory coincide with the equations for the modesxk in
the theory withg253l. Thus, we can use the results of the
investigation of the theory withg253l obtained in Sec. VII
for our analysis.

Historically, the model14 lf4 was one of the first models
illustrating the general idea of preheating. The investigation
of the stability-instability chart for the Lame´ equation has

shown that this model in a certain sense is the least favorable
for the development of the resonance: it has only one reso-
nance band, and the characteristic exponentm for this theory
is anomalously small, see Figs. 4 and 6. Originally it was
expected that preheating in this model would rapidly transfer
about half of the energy of the oscillating scalar field to the
f particles, after which the decay of the fieldf would con-
tinue at a much slower pace. However, the results of com-
puter simulations of preheating in this theory indicated that
the stage of efficient preheating ends as soon as the fluctua-

tions of produced particleŝw2& grow to 0.05f̃2 @5#. The
interpretation of this result, however, was not quite clear. It
was conjectured that the resonance terminates because of re-
scattering of thef particles. It was not clear also whether the
decay of the fieldf continues at a slower pace until this field
completely decays, or its decay eventually shuts down.

A complete investigation of this issue is rather difficult.
First of all, the theory of rescattering is not fully developed:
various approximations often break down near the end of
preheating when the occupation numbers of particles are
anomalously large (nk;l21) @1,2#. Even in the Hartree ap-
proximation ~or in the 1/N-approximation! an investigation
is very complicated@7,8# because it is very difficult to work
with the solutions of equations for the growing modes in
terms of the transcendental Jacobi functions. It may be easier
to work with the solutions obtained in Secs. VI and VII. We
will not perform a full investigation of this issue here be-
cause, as we argued in the previous section, one may need to
calculate the polarization operator beyond the Hartree ap-
proximation, see@2#. Instead, we will make some simple
estimates which will allow us to elucidate the mechanism
which terminates the resonance in the theory1

4 lf4.
As we will see, the main reason for the termination of the

resonance in the theory14 lf4 is the restructuring of the reso-
nance band due to the back reaction of created particles. This
process occurs at̂w2&!w2 because the resonance band is
very narrow. In the beginning of preheating in the theory
1
4 lf4 the instability band is given by the condition 1.5lw̃0

2

,k2,1.73lw̃0
2, wherew̃0 is the initial amplitude of the os-

cillations of the fieldw ~39!. It is sufficient to shift the posi-
tion of the resonance band in momentum space by few per-
cent, and the leading resonant modesxk which have been
growing since the start of the parametric resonance will not
grow anymore. This will effectively shut down the reso-
nance.

There are two different effects which lead to a restructur-
ing of the resonance band, and these effects act in opposite
directions. First of all, particle production reduces the energy
of the scalar field, and therefore reduces the amplitude of its
oscillations. This effect tends to reduce the frequency of the
oscillations and to move the resonance band towards smaller
k. On the other hand, the effective mass of the fieldw grows
due to its interaction with thef particles. This effect in-
creases the frequency of oscillations and tends to shift the
resonance band towards largerk. We will consider here both
of these effects.

To investigate the decrease of the amplitude of the oscil-
lations due to particle production, one should compare the
total energy of the system before and after the appearance of
^f2&:

FIG. 8. The diagrams for the polarization operator of the field
wk . Thin and thick lines represent the fieldsf andx, respectively.
Vertical lines correspond to the oscillating background fieldw(t).
Pw

1 corresponds to the Hartree approximation which takes into ac-
count the contribution of̂X2& and ^w2&. The contributions ofPw

1

and Pw
2 to the effective mass ofw particles can be comparable to

each other.
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l

4
w̃0

4'
l

4
w̃4~h!1

1

~2p!3E d3kAk213lw̃2nk . ~63!

Here we calculate the energy density at the moment when
w850, and the oscillating field is equal to its amplitude
w̃(h). This amplitude is smaller thanw̃0 due to the transfer
of energy to the created particles.

The resonance is most efficient in a small vicinity ofk2

'1.6lw̃2. Therefore, the leading contribution torf is given
by integration neark251.6lw̃2:

rf'
1

~2p!3E d3kA4.6lw̃2nk5A4.6lw̃nf . ~64!

Equations~63! and ~64! give

w̃~h!'w̃02
A4.6lnf

w̃2
. ~65!

Thus, the creation ofw particles diminishes the frequency
of oscillations, because the frequency of oscillations of the
field w in the theorylf4 is proportional to its amplitude. To
evaluate the significance of this effect one may express it in
terms of^f2& calculated atw(h)5w̃ :

^f2&'
1

~2p!3E d3knk

Ak213lw̃2
'

nf

A4.6lw̃
. ~66!

From the last two equations one obtains

w̃2~h!

w̃0
2

'129.2
^f2&

w̃0
2

, ~67!

which leads to a proportional shift of the resonance band
towards smallerk2. This indicates that even a very small
amount of fluctuationŝ f2&;1022w̃0

2 may shift the reso-
nance band away from its original position, which may ter-
minate the resonance for the leading modeswk .

This effect is partially compensated by the growth of the
effective mass of the fieldw. We will analyze this effect in
the Hartree approximation, in which the fieldw acquires the
effective mass squaredPf53l^w2&. One may relatePf
53l^w2& to the number density off-particles in the follow-
ing way:

Pf'
3l

~2p!3E d3knk~h!

Ak213lw2~h!

'
3l

~2p!3E d3knk

A1.6w̃213lw2
5

3lnf~h!

A1.6w̃213lw2~h!
.

~68!

Note, that this quantity is time dependent. It oscillates; its
magnitude changes considerably several times within a
single oscillation of the inflaton field, and it also grows ex-
ponentially during the resonance. The number density ofw
particles also oscillates and grows exponentially, but typi-
cally its oscillations are less wild than the oscillations of

^w2&. In the first approximation, we will neglect the oscilla-
tions ofnf(h). Also, we are trying to find the time when the
resonance terminates, and at that time the average number
density of particlesnf becomes nearly constant. It is still
difficult to find an analytic solution forwk with the time-
dependent polarization operator~68!, but one can easily find
the solution numerically.

The result of the combined investigation of the two ef-
fects discussed above shows that the resonance on the lead-
ing modeswk effectively terminates as soon as^f2& grows
up to

^f2&'0.05f̃2. ~69!

Note that even after this moment the resonance may continue
for a while for the new modes which can be amplified in the
restructured resonance band. However, this process is much
less efficient. Thus, in the purelf4 theory the rapid devel-
opment of the resonance ends when the dispersion of ampli-
fied fluctuations is about 20% of the amplitude of the infla-
ton field, which corresponds to only 0.2% of the total energy.
This result is based on rather rough estimates neglecting re-
scattering. It is interesting, however, that it is in complete
agreement with the result of the lattice simulation of the
parametric resonance in the theorylf4 @5#.

We should emphasize that there are several specific rea-
sons why the resonance in the particular case of the theory
lf4 is relatively inefficient. First of all, the resonance band
in this theory is narrow and the characteristic exponentm is
very small. This is no longer the case when one considers,
for example, the theory describing ax field with g25l or
with g252l. In these theories the characteristic exponent is
much greater, the resonance band is rather broad, and it be-
gins atk50. As a result, it is much more difficult to shut
down the resonance in such theories.

In the theories with a massive inflaton field there is an
additional effect which makes the resonance more stable.
Broad parametric resonance in such theories is stochastic,
which makes it more difficult to shut down@2#. Now we are
going to study what happens to the resonance in the confor-
mally invariant theories if this invariance is broken by a
small mass term. As we will see, stochastic resonance may
appear in such theories as well.

XII. PREHEATING IN THE THEORY OF A MASSIVE
SELF-INTERACTING INFLATON FIELD

In our previous paper@2# we investigated parametric reso-
nance in the theory (m2/2)f21(g2/2)f2x2. We have found
that reheating can be efficient in this theory only ifgF@m,
whereF is the amplitude of oscillations of the inflaton field.
This amplitude is extremely large immediately after infla-
tion, f;1021M p , and later it decreases as

F;
M p

3mt
. ~70!

Due to this decrease, the ratiogf/m rapidly changes. As a
result, the broad parametric resonance regime in this theory
is a stochastic process, which we calledstochastic reso-
nance.
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Here we studied the theory (l/4)f41(g2/2)f2x2 for
various relations between the coupling constantsg2 andl. In
this theory the amplitude of the fieldf also decreases in an
expanding universe, but it does not make the resonance sto-
chastic because all parameters of the resonance scale in the
same way asF due to the conformal invariance. One may
wonder, what is the relation between these two theories?
Indeed, neither of these two theories is completely general.
In the theory of the massive scalar field one may expect
terms;(l/4)f4 to appear because of radiative corrections.
On the other hand, in many realistic theories the effective
potential is quadratic with respect tof near the minimum of
the effective potential.

To address this question, let us study the theory
(m2/2)f21(l/4)f41(g2/2)f2x2. One may expect that for
f@m/Al parametric resonance in this theory occurs in the
same way as in the model (l/4)f41(g2/2)f2x2, whereas
for f!m/Al the resonance develops as in the theory
(m2/2)f21(g2/2)f2x2. Let us check whether this is really
the case, ignoring for simplicity the effects of back reaction
of created particles, which is always possible in the begin-
ning of the resonance regime.

First of all, one should remember that at the beginning of
the stage of oscillations in this theory one hasF
;1021M p . Therefore there are two basic possibilities. If
m/Al@1021M p , then the term (l/4)f4 never plays any
role in determining the frequency of oscillations of the field
f. Also, in this regime the particlesf are not produced by
parametric resonance, because the conditionAlf.m
~analogous to the conditiongf.m for the production ofx
particles@2#! is violated. In such a casex particles can be
produced if 1021gMp@m. The theory of this process is de-
scribed in@2#; we do not have anything new to add here.

Another possibility, which we are going to study here in
more detail, is thatm/Al!1021M p . Then in the beginning
the mass term (m2/2)f2 does not affect the frequency of the
oscillating scalar fieldf. Therefore, one could expect that as
the amplitudeF decreases from 1021M p to m/Al, the
theory of parametric resonance coincides with the one de-
scribed in this paper.

However, for largeg2/l the situation is more compli-
cated. Even though the mass term for 1021M p.F@m/Al
does not affect the frequency of oscillations, it may affect the
nature of the broad parametric resonance by inducing an ad-
ditional rotation of the phaseu of the modesxk ~see Sec.
IX !.

The reason why the broad resonance in the theory
(m2/2)f21(g2/2)f2x2 was stochastic can be explained as
follows. The x particles are produced when the fieldf(t)
comes close to the pointf50, which happens once during
each time periodDt5p/m. During this time the phase of
each modexk grows approximately bygF(t)pm21. During
the next half of a period of an oscillation it changes by
gF(t1p/m)pm21'gF(t)pm211gḞ(t)p2m22. This de-
stroys the phase coherence required for the ordinary reso-
nance and makes the resonance stochastic if
ugḞ(t)p2m22u*1.

The condition for the stochastic resonance in the theory
(m2/2)f21(g2/2)f2x2 can be obtained from Eq.~70!:

F*AmMp

g
. ~71!

In particular, forF5m/Al it gives g/Al*AlM p /m. Note
that by our assumptionAlM p /m@1.

The generalization of this result for the theory (m2/2)f2

1(l/4)f41(g2/2)f2x2 is straightforward, but the result is
somewhat unexpected. As a rough estimate of the timeDt
one can takep(2lF21m2)21/25p@2lw2a22(t)1m2#21/2,
wherew[Fa21(t) is the time-independent amplitude. The
phase shift during this time is given bygwp@2lw2

1m2a2(t)#21/2. Thus, form50 this quantity is time inde-
pendent, and one can have a regular stable resonance. In the
limit F@m/Al one can represent the phase shift as
(gp/A2l)@12m2a2(t)/4lw2#. The change in this shift dur-
ing one oscillation is gp2m2H/4l2F3, where H5ȧ/a
5A2plF2/A3M p . This gives the following condition for
stochastic resonance:

F&
g

Al

p2m2

3lM p
. ~72!

Again, for F5m/Al it gives g/Al*AlM p /m.
This conclusion is illustrated by Fig. 9, where we show

the development of the resonance both for the massless
theory with g2/l;5200, and for the theory with a small
massm. As we see, in the purely massless theory the loga-
rithm of the number densitynk for the leading growing mode
increases linearly in timex, whereas in the presence of a
massm, which we took to be much smaller thanAlf during
the whole process, the resonance becomes stochastic.

In fact, the development of the resonance is rather com-
plicated even for smallerg2/l. The resonance for a massive
field with m!Alf in this case is not stochastic, but has a
feature of intermittancy: it may consist of stages of regular
resonance separated by the stages without any resonance, see
Fig. 10.

FIG. 9. Development of the resonance in the theory (m2/2)f2

1(l/4)f41(g2/2)f2x2 for g2/l55200. The upper curve corre-
sponds to the massless theory, the lower curve describes stochastic
resonance with a theory with a massm which is chosen to be much
smaller thanAlf during the whole period of calculations. Never-
theless, the presence of a small mass term completely changes the
development of the resonance.
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Thus we see that the presence of the mass term (m2/2)f2

can modify the nature of the resonance even if this term is
much smaller than (l/4)f4. This is a rather unexpected con-
clusion, which is an additional manifestation of the nonper-
turbative nature of preheating. This subject deserves separate
investigation.

Different regimes of parametric resonance in the theory
(m2/2)f21(l/4)f41(g2/2)f2x2 are shown in Fig. 11. We
suppose that immediately after inflation the amplitudeF of
the oscillating inflaton field is greater thanm/Al. If g/Al
&AlM p /m, the x particles are produced in the regular
stable resonance regime until the amplitudeF(t) decreases
to m/Al, after which the resonance occurs as in the theory
(m2/2)f21(g2/2)f2x2 @2#. The resonance never becomes
stochastic.

If g/Al*AlM p /m, the resonance originally develops as
in the conformally invariant theory (l/4)f41(g2/2)f2x2,
but with a decrease ofF(t) the resonance becomes stochas-
tic. Again, for F(t)&m/Al the resonance occurs as in the
theory (m2/2)f21(g2/2)f2x2. In all cases the resonance
eventually disappears when the fieldF(t) becomes suffi-
ciently small. As we already mentioned in@1,2#, reheating in
this class of models can be complete only if there is a sym-
metry breaking in the theory, i.e.,m2,0, or if one adds
interaction of the fieldf with fermions. In both cases the last
stages of reheating are described by perturbation theory
@17,18#.

Adding fermions does not alter the description of the
stage of parametric resonance. Meanwhile the change of sign
of m2 does lead to substantial changes in the theory of pre-
heating, see Fig. 12. We will investigate preheating in the
theory 2(m2/2)f21(l/4)f41(g2/2)f2x2 in a separate
publication@19#. Here we will briefly describe the structure
of the resonance for variousg2 and l neglecting effects of
back reaction. This will give us a more general perspective
on the theory of reheating.

First of all, atF@m/Al the fieldf oscillates in the same
way as in the massless theory (l/4)f41(g2/2)f2x2. More-
over, the condition for the resonance to be stochastic remains
the same as before:F&(g/Al)(p2m2/3lM p), see Eq.~72!.

However, as soon as the amplitudeF drops down to
m/Al, the situation changes dramatically. First of all, de-
pending on the values of parameters the field rolls to one of
the minima of its effective potential atf56m/Al. The de-
scription of this process is rather complicated. Depending on
the values of parameters and on the relation betweenA^f2&,
A^x2&, ands[m/Al, the universe may become divided into
domains withf56s, or it may end up in a single state with
a definite sign off. We will describe this bifurcation period
in @19#. After this transitional period the fieldf oscillates
near the minimum of the effective potential atf56m/Al
with an amplitudeF!s5m/Al. These oscillations lead to
parametric resonance withx-particle production which can

FIG. 10. Development of the resonance in the theory
(m2/2)f21(l/4)f41(g2/2)f2x2 with m2!lf2 for g2/l5240.
In this particular case the resonance is not stochastic. As timex
grows, the relative contribution of the mass term to the equation
describing the resonance also grows. This shifts the mode from one
instability band to another.

FIG. 11. Schematic representation of different regimes which
are possible in the theory (m2/2)f21(l/4)f41(g2/2)f2x2 for
m/Al!1021M p and for various relations betweeng2 andl in an
expanding universe. The theory developed in this paper describes
the resonance in the white area above the lineF5m/Al. The
theory of preheating forF,m/Al is given in @2#. A complete
decay of the inflaton is possible only if additional interactions are
present in the theory which allow one inflaton particle to decay to
several other particles, for example, an interaction with fermions

c̄cf.

FIG. 12. Schematic representation of different regimes which
are possible in the theory2(m2/2)f21(l/4)f41(g2/2)f2x2.
White regions correspond to the regime of a regular stable reso-
nance, a small dark region in the left corner near the origin corre-
sponds to the perturbative decayf→xx. Unless additional interac-
tions are included~see the previous figure!, a complete decay of the
inflaton field is possible only in this small area.
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be ~approximately! described as a narrow resonance in the
first instability band of the Mathieu equation withAk
54(k21g2s2)/m2, q54g2sF/m2. For definiteness we will
consider here the regimel3/2M p,m!l1/2M p . The reso-
nance in this instability band is possible only ifg2/l, 1

2; the
resonance in higher instability bands is very inefficient and
rapidly shuts down due to the expansion of the universe.
Using the results of@2# one can show that the resonance in
the first band also terminates atF,lm2/g4M p . By taking
the upper limit of this inequality atF;m/Al one concludes
that this resonance is possible only forg/Al
*(m/AlM p)1/4. ~The resonance may terminate somewhat
earlier if the particles produced by the parametric resonance
give a considerable contribution to the energy density of the
universe.! However, this is not the end of reheating, because
the perturbative decay of the inflaton field remains possible.
It occurs with the decay rateG(f→xx)5g4m/8pl. This is
the process which is responsible for the last stages of the
decay of the inflaton field. It occurs only if onef particle
can decay into twox particles, which implies thatg2/l, 1

2.

XIII. DISCUSSION

In this paper we investigated the development of paramet-
ric resonance in the conformally invariant theories of the
type of (l/4)f41(g2/2)f2x2. We have found that the de-
velopment of parametric resonance in these theories does not
depend on the expansion of the universe, and can be classi-
fied in terms of the ratiog2/l. This ratio determines the
structure of the stability-instability bands for the equations
describing the resonance.

We have found that the behavior of the resonance with
respect tox-particle production is a nonmonotonic function
of g2/l. For example, forg25l and for g253l equation
for the perturbations of the fieldx has only one instability
band, forg2/l5n(n11)/2 there is only a finite number of
instability bands, whereas for all other values ofg2/l the
number of instability bands is infinite.

It is interesting thatx-particle production is least efficient
for g2!l and for g253l. For example, the characteristic
exponentmmax for g252l and forg258l is almost 7 times
greater thanmmax for g253l, see Fig. 6. Meanwhile the
characteristic exponent for the production off particles in
the theory (l/4)f4 coincides with that of the fieldx for g2

53l. Thereforex-particle production is typically more ef-
ficient than the production off particles~unlessg2!l). The
nonmonotonic dependence ofm on the ratiog2/l suggests
that there exists an ‘‘unnatural selection’’ rule: The particles
which are especially intensively produced during preheating
are not the ones which have the strongest coupling to the
inflaton field, but those for which the characteristic exponent
m is the greatest.

In the conformally invariant theories the expansion of the
universe does not hamper the resonance, so it ends only due
to the back reaction of the produced particles. There are sev-
eral different mechanisms which may terminate the paramet-
ric resonance. First of all, creation of particles leads to a
decrease in the amplitude of oscillations of the fieldw5af,
which otherwise would remain constant. This leads to a pro-
portional decrease in the frequency of oscillations in terms of
the conformal timeh, which may shift the position of the

instability band towards smaller momenta. There is also an
opposing effect which increases the frequency of oscillations
due to the interaction of the homogeneous inflaton field with
the produced particles. Finally, quantum fluctuations of the
fields f andx acquire contributions to their masses, which
changes their spectra. A combination of all these effects
leads to restructuring of the instability bands. This terminates
the amplification of the leading modes which have been
growing from the very beginning of preheating. Addition-
ally, one may envisage effects related to rescattering of pro-
duced particles, which may terminate the resonance even
somewhat earlier. In this respect it is interesting that our
estimates ignoring the process of rescattering give results
which are in a very good numerical agreement with the re-
sults of computer simulations of reheating in the theorylf4

performed in@5# where all of these effects including rescat-
tering have been taken into account.

Rescattering may be more important forg2@l @9–11#.
However, in this regime one may need to take into account
possible small mass terms which should be present in realis-
tic versions of the theory. As we have found, forg2@l these
mass terms lead to a radical change in the structure of the
resonance not atF&m/Al, as one could naively expect, but
much earlier, atF&(g/Al)(p2m2/3lM p). In this regime
the resonance becomes stochastic, the effective width of the
resonance band increases, making it much more stable with
respect to various back reaction effects including rescattering
@2#.

We should emphasize again that preheating is but the first
stage of reheating, which does not lead to a complete decay
of the inflaton field in any models which we studied so far.
The last stages of preheating are always described by the
perturbation theory@17#, which will be developed further in
our subsequent publication@18#. To illustrate this point, we
described the development of the parametric resonance in the
general class of models with the effective potentialV(f,x)
56(m2/2)f21(l/4)f41(g2/2)f2x2. We have found that
in these theories~without any other fields being added! the
inflaton field can completely decay only if the sign of the
term (m2/2)f2 is negative, which corresponds to spontane-
ous symmetry breaking. Moreover, this process is completed
only for g2/l, 1

2, see Figs. 11 and 12.
A complete inflaton decay is possible forg2/l. 1

2 as well,
even without spontaneous symmetry breaking, but only if the
inflaton field has some other interactions, such as an interac-
tion with fermions c̄cf with massmc,m/A2 @18#. This
conclusion implies that the decay of the inflaton field is by
no means automatic even if it is heavy and strongly interacts
with other fields. Generically, the inflaton field accumulates
an enormously large energy density, which can be com-
pletely released only if it interacts with other particles in a
very specific way@1#.

To understand how these results may change our point of
view on the thermal history of the universe, let us suppose
for a moment that the inflaton field does not have any inter-
actions with light fermions, and that it has an effective po-
tential 2(m2/2)f21(l/4)f41(g2/2)f2x2 with l;g2

;10213 and with a small massm;102 GeV protected by
supersymmetry. Then the final stage of reheating of the uni-
verse will begin only after the symmetry breaking in this
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theory, and the reheating temperature estimated in accor-
dance with@2# will be smaller than 1022103 GeV. In such a
theory the electroweak phase transition may never happen, or
it may occur in an entirely different way. From the end of
inflation until the symmetry breaking and the final stage of
reheating, the universe will remain far away from thermal
equilibrium, and various nonthermal phase transitions and
explosive processes of particle production may occur. In
such a model one should reconsider all issues related to the
primordial gravitino problem, moduli field problem, baryo-
genesis, etc.

The main conclusion of our investigation can be formu-
lated as follows. The first stages of the process of the inflaton
decay may occur much more efficiently than was previously
thought, due to the effect of parametric resonance. The last
stage of this process may be completely inefficient even if
the coupling of the inflaton field to matter is very strong, or
it may be efficient only in a very narrow range of parameters,
see Figs. 11 and 12. As a result, the complete thermal~and
nonthermal! history of the universe in the context of the
inflationary universe scenario may be dramatically different
from the standard lore of the hot Big Bang cosmology.
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APPENDIX

Here we show how one can derive Eq.~34! or ~40! for the
characteristic exponentmk from the analytic solution~31!.
We will first consider here the caseg25l. Equation~31!
describes both solutions,X1(z) andX2(z). The resonant so-
lution X(z) consists of four monotonic parts within a single
period of the inflaton oscillation, see Fig. 3. It turns out that
at different quarters of the period eitherX1(z) or X2(z) cor-
respond to the exponentially growing solution. Indeed, the
square of the resonant solution within the first quarter of a
period is

X2~z!5X0
2expF E

0

z dz

M1~z!S 12
C1

Az~12z2!
D G , ~A1!

whereM1(z) is given by Eq.~29!, C1 is given by Eq.~32!,
andX0

2 is the square of the resonant solution in the beginning
of the period whenz50.

Within the second quarter of the period one has

X2~z!5X1/4
2 expF E

1

z dz

M1~z!S 11
C1

Az~12z2!
D G , ~A2!

where X1/4 is the value ofXz after the first quarter of the
periodX1/4[X(z51).

Then the value ofX2 after half of a period is

X1/2
2 5X0

2expS 22C1E
0

1 dz

M1~z!Az~12z2!
D , ~A3!

where the integral is understood as its principal value. The
resonant solution has the generic formX@z(x)#
5P@z(x)#emx, whereP(z) is a periodic function. SinceP
has a period equal to half of the period of the inflaton oscil-
lation, Eq.~A3! is sufficient to findm:

mT

2
52C1E

0

1 dz

M1~z!Az~12z2!
.0. ~A4!

The integral in this equation can be reduced toI (k2) given
by Eq. ~35!:

2E
0

1 dz

M1~z!Az~12z2!
5E

0

p/2 dusin1/2u

112k2sinu
[I ~k2!.

~A5!

Similar calculations can be repeated for the caseg253l
considered in Sec. VII.

The square of the resonant solution within the first quarter
of a period is

X2~z!5X0
2expF E

0

z dz

M2~z!S 2x2
2

3
k21

C2

Az~12z2!
D G ,

~A6!

whereM2(z) is given by Eq.~37!, C2 is given by Eq.~38!,
andX0

2 is the square of the resonant solution in the beginning
of the period whenz50.

Within the second quarter one has

X2~z!5X1/4
2 expF E

1

z dz

M2~z!S 2x2
2

3
k22

C2

Az~12z2!
D G .

~A7!

Then the value ofX2 after half of a period is

X1/2
2 5X0

2expS 2C2E
0

1 dz

M2~z!Az~12z2!
D , ~A8!

where the integral is understood as its principal value.
The equation for the characteristic exponent in this case

follows from Eq.~A8!:

mT

2
5C2E

0

1 dz

M2~z!Az~12z2!
.0. ~A9!

The integral in Eq.~A9! can be reduced toJ(k2) given by
Eq. ~41!:

E
0

1 dz

M2~z!Az~12z2!

5E
0

p/2

du
sin3/2u

11~2/3!k2sinu1@~4/9!k421#sin2u

[J~k2!. ~A10!
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