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We calculate the baryon asymmetry created by the decay of a pseudo Nambu-Goldstone boson~PNGB!
whose interactions violate baryon number conservation. Our results are in disagreement with previous results
in the original spontaneous baryogenesis models for the asymmetry produced by the decay of an oscillating
scalar field withB-number-violating derivative couplings; we find that the net baryon number density is
proportional tou i

3, whereu i is the amplitude of the PNGB field in natural inflation at the onset of reheating.
While our calculation of the asymmetry is carried out in the context of natural inflation our approach is
generally valid for baryogenesis models using decaying classical fields. We include a complete derivation of
the number density of particles produced by the decay of a classical scalar field.@S0556-2821~97!07422-5#

PACS number~s!: 98.80.Cq, 11.30.Fs, 14.80.Mz

I. INTRODUCTION

In this paper, we calculate the baryon asymmetry obtained
during reheating in natural inflation by using an approach
that is generally valid for baryogenesis models with decaying
classical fields. Our results are in disagreement with the re-
sults presented in the original spontaneous baryogenesis pa-
pers.

In natural inflation the role of the inflation is played by a
pseudo Nambu-Goldstone boson, hereafter referred to asu,
with a potential of the form@1#

V~u!5L4~12cosu!. ~1.1!

This model was proposed to ‘‘naturally’’ provide the flat
potential required for inflation to work@2,3#. Hereu5F/ f ,
whereF is a complex scalar field andf is the scale at which
a global symmetry is spontaneously broken; soft explicit
symmetry breaking takes place at a lower scaleL. From Eq.
~1.1! one can see that the height of the potential is 2L4 while
the width is f . Since the scales of spontaneous and explicit
symmetry breaking can ‘‘naturally’’be separated by several
orders of magnitude, one can obtainL<1023f as required
for successful inflation@4#.

In Ref. @14# the results of an extensive study of the con-
ditions under which theu field can drive inflation are given.

After the period of inflationary expansion, the energy density
of the u field is converted to radiation during reheating
through its decay to other forms of matter as it oscillates in
its potential. Below we shall assume thatu is coupled only to
fermions. We treatu as a classical scalar field coupled to
quantized fermion fieldsQ andL via an interaction term of
the form Q̄Leiu1L̄Qe2 iu, whereQ carries baryon number
but L does not. We show that the decay ofu gives rise to a
net baryon number density (nb2nb̄) proportional to u i

3,
whereu i is the value of theu field at the onset of reheating.

Our result disagrees with the calculation in the original
spontaneous baryogenesis papers@15# where it was argued
that the asymmetry is proportional tou i to the first power,
independent of the details of the baryon number violating
couplings of theu field. Specifically, in previous work, Co-
hen and Kaplan@15# considered any theory in which a scalar
field is derivatively coupled to the baryon currentJm with a
term in the interaction Lagrangian of the formLint}]muJm,
and derived an expression for the baryon asymmetry pro-
duced by the decay of the scalar field as it oscillates about its
minimum. The pseudo Nambu-Goldstone boson~PNGB! in
natural inflation can serve as an example of such a scalar
field. Cohen and Kaplan obtaineduṅBu5G f 2uu̇u, whereG is
the decay rate of theu field andnB is the net baryon number
density. This gives

uDnBu5G f 2uDuu. ~1.2!

Below we discuss our concerns with this conclusion and
present calculations for the specific case of Eq.~1.1!; our
resultsdisagreewith Eq. ~1.2!.

The framework of this paper is as follows. In Sec. II, we
write down the Lagrangian density for the inflation field and
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present the equation of motion foru as it oscillates during the
reheating phase, as derived in Ref.@16#. In Sec. III we dis-
cuss our concerns with Eq.~1.2! as obtained in Ref.@15#
~these concerns were raised in an earlier paper@16# by
Dolgov and Freese!. We then proceed to calculate the total
baryon number and antibaryon number produced during the
decay of theu field, and find a net baryon number density
(nb2nb̄) proportional tou i

3. We also show that the energy
density of the produced particles is equal to the initial energy
density of theu field as a check on our calculation. In Sec.
IV, we discuss how constraints on parameters in natural in-
flation obtained in Ref.@14# affect the quantitative results for
baryogenesis. Finally we summarize our results. In the Ap-
pendixes we provide details of the calculations outlined in
the main body of the paper. In particular, in Appendixes A
and B, we include derivations of the number density of par-
ticles produced by the decay of a classical scalar field; the
number density of particles produced is proportional to the
integral over momenta of the one pair production amplitude.

II. THE MODEL

As in Ref. @16# we consider a simple model involving a
complex scalar fieldF and fermion fieldsQ andL with the
Lagrangian density1

L52]mF* ]mF2V~F* F!1 iQ̄gm]mQ1 i L̄gm]mL

2mQQ̄Q2mLL̄L1~gFQ̄L1H.c.!. ~2.1!

Note that, despite their names,Q and L cannot be actual
quarks and leptons, since the interaction term does not con-
serve color. They could, however, represent heavy fermions
with other interactions with the fields of the standard model
that fix the assignments of global charges. In particular, we
shall assume that the fieldQ carries baryon number while the
field L does not. The U~1! symmetry that corresponds to
baryon number is therefore identified as

F→eiaF, Q→eiaQ, L→L. ~2.2!

This assignment forQ could be enforced by effective
four-fermion interactions betweenQ and the usual quarksu
and d such asLint;Q̄uRd̄R

c dR . Such an interaction could
arise from exchange of heavy scalar or vector fields. Assign-
ing baryon number zero toL could be enforced by a renor-
malizable interaction such asLint;lL̄ l LH†, wherel L is the
neutrino-electron doublet, andH is the Higgs doublet of the
standard model. Of course, these interactions are rather ba-
roque; we will not worry about this, however, since our main
focus is on the quantum dynamics rather than the construc-
tion of an elegant model.

We assume that the global symmetry of Eq.~2.2! is spon-
taneously broken at an energy scalef via a potential of the
form

V~ uFu!5l~F* F2 f 2/2!2. ~2.3!

The resulting scalar field vacuum expectation value~VEV! is
^F&5 f eif/ f /&. Below the scalef , we can neglect the radial
mode of F since it is so massive that it is frozen out;
mradial5l1/2f . The remaining light degree of freedom isf,
the Goldstone boson of the spontaneously broken U~1!. For
simplicity of notation we introduce the dimensionless angu-
lar field u[f/ f . We then obtain an effective Lagrangian
density foru, Q, andL of the form

Leff52
f 2

2
]mu]mu1 iQ̄gm]mQ1 i L̄gm]mL2mQQ̄Q

2mLL̄L1S g

&
f Q̄Leiu1H.c.D . ~2.4!

The global symmetry is now realized in the Goldstone
mode:Leff is invariant under

Q→eiaQ, L→L, u→u1a. ~2.5!

With a rotation of the form in Eq.~2.5! with a52u, the
Lagrangian can alternatively be written as

Leff52
f 2

2
]mu]mu1 iQ̄gm]mQ1 i L̄gm]mL2mQQ̄Q

2mLL̄L1S g

&
f Q̄L1H.c.D 1]muJm, ~2.6!

where the fermion current derives from the U~1! symmetry;
here,Jm5Q̄gmQ.

We now assume that the symmetry~2.2! is also subject to
a small explicit breaking, which gives rise to a potential as in
Eq. ~1.1! and which provides a nonzero mass for the fieldu.
This explicit symmetry breaking could come from Planck
scale physics. Alternatively, one can imagine a scenario
similar to that involving the QCD axion where, at energy
scales of the order ofLQCD, instanton effects create the fer-
mion condensatêc̄c&;LQCD

3 , giving rise to a mass term
for the axion. Note that for the natural inflation model, the
required mass scales are much higher than for the QCD ax-
ion. The width of the potential must be roughly the Planck
mass in order to achieve enoughe-foldings of inflation, and
the height of the potential must be roughlyL4

;@1016 GeV#4 in order for density perturbations appropriate
for structure formation to be produced~see the Discussion
section at the end of the paper for more detail!. Consequently
the scale at which the relevant gauge group~not QCD! must
become strong is roughly the grand unified~GUT! scale.
These and other mechanisms such as those found in techni-
color and schizon models for generating a potential for
pseudo Nambu-Goldstone bosons are discussed in Refs.
@4,14#.

Initially, as theu field rolls down towards the minimum of
its potential, its potential energy drives inflation. Letu i be
the value of theu field at the beginning of the reheating
epoch, after inflationary expansion has ended.~We shall ig-
nore spatial variations in theu field.! During the reheating
epoch theu field oscillates about the minimum of its poten-
tial. While u oscillates it decays to the fieldsQ andL. The
interactions of the fermionic fields create a thermal bath1We use a metric (21,1,1,1).
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thereby reheating the Universe. Note that we must takeg
!1 so that fermion masses generated for the fermions from
the Yukawa coupling,mc;g f , are small enough that the
fermions can in fact be produced by decays of the pseudo
Nambu-Goldstone bosons. See Ref. 10 in Dolgov and Freese
@16# for further discussion of this point.

The equation of motion for theu field with the backreac-
tion of the produced fermions was rigorously derived in the
one-loop approximation in Ref.@16#. For small deviations of
u from the equilibrium the potential can be approximated as
V(u)5 1

2 mR
2 f 2u2 and the equation of motion during the os-

cillating phase can be effectively written in the well-known
form

ü1mR
2u1Gu̇50, ~2.7!

where mR is the renormalized u mass defined as
limv→`mR

2@11(g2/4p2)ln(2v/mR)#5m2, where m is the
bare mass of theu field, andG[g2mR/8p. ~Our expressions
above differ by a factor of 2 from those in Ref.@16# because
a factor of 1/& was dropped from Eq.~2.5! in Ref. @16#.!
The solution to this equation is

u~ t !5u ie
2Gt/2cos~mRt !, ~2.8!

where we have assumed that the initial velocity of theu field
is negligible and have therefore set an arbitrary phase in the
cosine to zero. The results obtained below can be easily gen-
eralized for arbitrary initial conditions. The above solution
was derived assumingmQ5mL50. However, it can be
shown that nonzero values ofmQ andmL will not change the
solution foru significantly as long asmQ , mL!mR , which
we shall assume below.

III. BARYOGENESIS

Previous calculations and concerns:In previous work,
Cohen and Kaplan@15# considered any theory in which a
scalar field is derivatively coupled to the baryon current with
a term in the interaction Lagrangian of the formLint
}]muJm, and derived an expression for the baryon asymme-
try produced by the decay of the scalar field as it oscillates
about its minimum. From Eq.~2.6! one can see that our
pseudo Nambu-Goldstone boson is an example of such a
scalar field as it has the appropriate coupling. Cohen and
Kaplan obtaineduṅBu5G f 2uu̇u, wherenB is the net baryon
number density. This gives

uDnBu5G f 2uDuu. ~3.1!

In a previous paper@16# by Dolgov and Freese, several con-
cerns with this interpretation were raised. We will outline
two of these concerns again here, and then proceed with a
direct calculation of the baryon asymmetry. Our results will
disagreewith Eq. ~3.1!.

One concern is as follows: in making the identification
uṅBu5G f 2uu̇u, one is comparing an operator equation,

namely, the Euler-Lagrange equationü1m2u5ṅB / f 2, with
an equation of the form of Eq.~2.7!, which is obtained after
vacuum averaging. In Ref.@16# the average valuêṅB& was
found to be not just2G f 2u̇ but a more complicated expres-
sion @Eq. ~3.3! in Ref. @16##.

A second concern is with regard to energy conservation.
The initial energy density of the fieldu that creates the bary-
ons and antibaryons isru(t i)5 1

2 f 2mR
2u i

2. At the end this
energy density has been converted to baryons and antibary-
ons, with energy densityrfinal.nBEB whereEB;mR/2 is the
characteristic energy of the produced fermions~note thatnB
refers to the difference between baryon and antibaryon num-
ber densities and not to the total number density of produced
particles!. It must be true thatnBEB,ru(t i). If we were to
use Eq.~3.1! we would see that this requiresG,mRu i

2/Du.
Using the definition of G, we can write this as
g2/8p,u i

2/Du. Clearly there can be particular choices ofg,
u i , andDu for which this condition is not satisfied. Since the
arguments put forward in Ref.@15# are independent of the
value ofg, u i , or Du, this counterexample calls into question
the validity of Eq.~3.1!.

New calculations and results:We now proceed to calcu-
late the net baryon number density of the particles produced
during reheating. We perform an explicit calculation and find
a different result from Eq.~3.1!. Theu field decays to either
QL̄ pairs orQ̄L pairs.~The Q andL fields are not the mass
eigenstates. Later in this section we consider effects of oscil-
lations betweenQ and L fields.! As mentioned earlier, we
treat theu field classically,Q andL are quantum fields and
Q carries baryon number. For now we ignore any dilution of
the baryon number density due to the expansion of the Uni-
verse.

As shown in Appendix A with the Bogolyubov transfor-
mation method@17#, the average number densityn of
particle-antiparticle pairs produced by decay of a homoge-
neous classical scalar field, to lowest order in perturbation
theory, is given by

n5
1

V (
s1 ,s2

E dp1̃dp2̃uAu2, ~3.2!

whereA is the one pair production amplitude, subscripts 1
and 2 refer to the final particles produced, anddp̃
5d3p/@(2p)32p0#. Equation~3.2! can also be obtained us-
ing the method presented in Sec. 4-1-1 of Ref.@18#, as dis-
cussed in Appendix B.

Thus, to lowest order in perturbation theory, the average
number density ofQL̄ pairs produced during reheating in our
model is given by2

n~Q,L̄ !5
1

V (
sQ ,sL̄

E dp̃dq̃u^Q~p,sQ!,L̄~q,sL!u0&u2.

~3.3!

We take

Q5(
s
E dk̃@uk

sb
s
e1 ik•x1vk

sdk
s†e2 ik•x# ~3.4!

and a similar expression forL. Here $bk
s ,bk8

s8†%5$dk
s ,dk8

s8†%
5(2p)32k0d3(k2k8)dss8 . Standard algebra gives

2Throughout the paper, a state^A(p1 ,s1),B̄(p2 ,s2)u corresponds
to a final state with anA particle of momentump1 and spins1 and
an anti-B particle with momentump2 and spins2 .
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n~Q,L̄ !5
1

V (
sQ ,sL̄

E dp̃dq̃U^Q~p,sQ!,L̄~q,sL!u i
g

&
E d4xQ̄~x!L~x!eiu~x!u0&U2

5
g2f 2

2V E dp̃dq̃U~2p!3d3~p1q!E
2`

`

dtei2vt1 iu~ t !U2

Tr@~2p” 1mQ!~2q” 2mL!#, ~3.5!

where 2v5p01q0. We obtain a similar expression for
n(L,Q̄) with u(t) replaced by2u(t). We set the baryon
number densitynb to be equal ton(Q,L̄) and the antibaryon
number densitynb̄ to be equal ton(L,Q̄). Then we have

nb, b̄5
g2f 2

2p2 E dvv2U E
2`

`

dt e2ivte6 iu~ t !U2

, ~3.6!

where the1 sign in the exponent refers to baryon number
and the2 sign to antibaryon number. To carry out the inte-
gration over time we expandeiu as

11 iu2u2/2, ~3.7!

valid for smallu, and use

u~ t !5 H u i

u ie
2Gt/2 cos~mRt !

for t<0,
for t>0. ~3.8!

We also use a convergence factor at early times to regularize
the integral. We will examine a series of possible terms to
find the first nonzero contribution in perturbation theory. The
lowest-order term comes from usingeiu51 from Eq.~3.7! in
Eq. ~3.6! and gives*dte2ivt}d(2v)50 since we cannot
havev50 for particle production. The next term in the ex-
pansion, theu term in Eq. ~3.7!, when squared gives the
same contribution tonb and to nb̄ . In order to obtain an
asymmetry one must consider cross terms. The lowest-order
cross term that gives a nonzero contribution to the baryon
asymmetry is

nb2nb̄523
g2f 2

2p2 E dvv2F ũ~2v!@ũ2~2v!#*

2i
1H.c.G ,

~3.9!

where H.c. refers to Hermitian conjugate,

ũ~2v!5E
2`

`

dt e2ivtu~ t ! ~3.10a!

and

ũ2~2v!5E
2`

`

dt e2ivtu2~ t !. ~3.10b!

The factor of 2 in Eq.~3.9! arises from the fact that the cross
terms innb and nb̄ terms are the same up to a minus sign.
One can see from the form of Eq.~3.9! that we expect the
asymmetry to be proportional tou3. The details of this cal-
culation are outlined in Appendix C, and the results are pre-
sented here.

We obtain

nb5
1

4
mRf 2u i

21
g2

32p
mRf 2u i

3, ~3.11!

nb̄5
1

4
mRf 2u i

22
g2

32p
mRf 2u i

3. ~3.12!

Therefore,

nB[nb2nb̄5
g2

16p
mRf 2u i

35
1

2
G f 2u i

3. ~3.13!

We notice that the net baryon number density is propor-
tional tou i

3. This disagrees with the calculation in Ref.@15#,
which gives an asymmetry proportional tou i . We also note
that the number density of pairs of particlesnb1nb̄ is equal
to 1

2 mRf 2u i
2. Since the energy per pair of particles ismR , the

energy density in the produced particles is1
2 mR

2 f 2u i
2, which

agrees with the initial energy density of theu field. We have
also done the calculation of

rfinal5
1

V (
sQ ,sL

E dp̃dq̃~p01q0!@ u^Q~p,sQ!,L̄~q,sL!u0&u21u^L~q,sL!,Q̄~p,sQ!u0&2# ~3.14!

and have verified that we obtain12 mR
2 f 2u i

2.
Mass mixing: In many cases Eq.~3.13! is not yet the

complete story because of mass mixing. As we mentioned
above theQ andL fields are not mass eigenstates. Therefore
a particle that is produced as aQ may later rotate into anL.
This effect must be taken into account. Equation~3.13! is
completely correct for the case where the fermionsQ andL

are converted immediately to regular quarksq and leptonsl
as soon as they are produced~assuming that the temperature
is low enough that theq and l cannot convert back intoQ
and L!. In that case, there is no opportunity for mixing to
take place, e.g., there is no opportunity forQ to convert to an
L. On the other hand, ifQ andL do not decay immediately
into stable lighter mass particles with appropriate quark
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quantum numbers, they may have the chance to mix into one
another. One can calculate the effects of mixing in either the
Q, L basis or in the basis of mass eigenstates; below we will
do both.

The mass matrix in the (Q,L) basis is

S mQ

2g f /&
2g f /&

mL
D . ~3.15!

The mass eigenstates are

c15
L1eQ

A11e2
and c25

Q2eL

A11e2
~3.16!

with massesmQ2g f /(&e) and mL1g f /(&e), respec-
tively, where e5&g f /(Dm1A(Dm)212g2f 2) and Dm
5mQ2mL . Note thatDm50 corresponds toe51.

In the c1,c2 basis, one can now calculate the baryon
asymmetry as a sum of terms, each of which is a product of
a number density of produced particle-antiparticle pairs
times the~time-averaged! quark content of the pair:

nB5n~c1 ,c̄2!u^Quc1&u21n~c2 ,c̄1!u^Quc2&u2

2n~c1 ,c̄2!u^Q̄uc̄2&u22n~c2 ,c̄1!u^Q̄uc̄1&u2.

~3.17!

Here n(c1 ,c2) and n(c2 ,c̄1) are the number densities of
c1 and c̄2 pairs andc2 and c̄1 pairs, respectively; and
u^Quc i&u2 is the probability that a particle that is produced as
a c i ~wherei 51,2! is measured as aQ. Hence, for example,
the first term is the product of the number density ofc1c̄2
pairs produced times the quark content ofc1 .

Note that we are here computing a time averaged baryon
asymmetry; actually the value of the baryon asymmetry os-
cillates in time, as discussed in Appendix D. From Eq.~3.16!
we see that the probability thatc1,2 is measured as aQ is

u^Quc1&u25u^Q̄uc̄1&u25
e2

11e2 ~3.18!

and

u^Quc2&u25u^Q̄uc̄2&u25
1

11e2 . ~3.19!

As in Eq. ~3.2!, the number densities of particle-
antiparticle pairs are obtained by squaring the production
amplitudes for the pairs,

ni j̄ 5
1

V (
si ,s j̄

E dk̃idk j̃̄ uAi j̄ u2, ~3.20!

wherei and j are either 1 or 2. The amplitude for production
of a c i c̄ j pair is

Ai j̄ 5^c i c̄ j u i E d4xS g

&
f eiuQ̄L1H.c.D u0&. ~3.21!

Using Eqs.~3.18!, ~3.19!, and~3.20!, we can write Eq.~3.17!
as

nB52
1

V (
s1 ,s2

E dk1̃dk2̃S 12e2

11e2D @ uA1 2̄u22uA2 1̄u2#.

~3.22!

Using

Q̄L5S 1

11e2D @c̄2c12ec̄2c21ec̄1c12e2c̄1c2#

~3.23!

and its Hermitian conjugate, we calculate the relevant pro-
duction amplitudes:

A1 2̄5K c1 ,c̄2U i E d4xS g

&
f eiuQ̄L1

g

&
f e2 iuL̄QD U0L

~3.24a!

to find

A1 2̄5 i
g

&
f S 1

11e2D K c1c̄2U E d4x~ c̄1c2e2 iu2e2eiuc̄1c2!U0L . ~3.24b!

Now the two matrix elements in Eq.~3.24b! are similar to the ones we calculated in Eq.~3.5!, with Q̄L replaced byc̄1c2 .
Hence, we have

A1 2̄5S 1

11e2D ~ALQ̄2e2AQL̄!. ~3.25!

Similarly,

A2 1̄5H.c.@A1 2̄#5S 1

11e2D ~2e2ALQ̄1AQL̄!. ~3.26!

Thus Eq.~3.22! becomes
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nB5S 12e2

11e2D 2S (
sQ ,sL̄

E dkQ̃dkL̃̄ uAQL̄u22 (
sL ,sQ̄

E dkL̃dkQ̃̄uALQ̄u2D 5S 12e2

11e2D 2

3~our previous answer!. ~3.27!

Thus we find that

nB5
1

2
G f 2u i

3S 12e2

11e2D 2

. ~3.28!

If mQ5mL , e51 and the asymmetry vanishes because in
this case of the net baryon number of a (c1 ,c̄2) pair or a
(c2 ,c̄1) pair is 0 and thus no baryon asymmetry is pro-
duced.

Another derivation of Eq.~3.28! is given in Appendix D.
In the preceding paragraphs we considered particle produc-
tion and mixing in the mass eigenstatec1 ,c2 basis. In Ap-
pendix D we work in theQ,L basis. We find the oscillations
of the baryon asymmetry with time, and obtain the same
expression as in Eq.~3.28! for the time-averaged baryon
asymmetry.

Thermalization:After theu field has decayed intoc1 and
c2 particles, thermal equilibrium can be established if these
particles have other interactions with each other and with
other particles. As long as one introduces interactions such
as xc̄1c1 and xc̄2c2 as a part of a realistic model, the
number ofc1-c̄1 particles and ofc2-c̄2 particles does not
change, thereby preserving the baryon asymmetry.~Interac-
tions such asxc̄1c21H.c. would, however, destroy the
baryon asymmetry.! The fieldsc1 andc2 will annihilate or
decay to lighter particles that will thermalize. If these inter-
actions preserve the net baryon number, then the asymmetry
will survive.

Quantitative results:So far we have not included the ef-
fects of the expansion of the Universe. For baryon number
created whenH<G, we may neglect the expansion and di-
rectly use the results obtained above in Eq.~3.28! with u i
replaced with the value ofu at H5G. Since theu field domi-
nates the cosmic energy density, the conditionH5G fixes
the amplitude ofu at that moment to be

u15A3/4p~GmPl / f mR!'0.02g2mPl / f !1. ~3.29!

In the early stages of reheating withu.u1 , expansion of the
Universe must be taken into account.

The decay of theu field produces relativisticc1,2 andc̄1,2
with energiesv'mR/2. This state is far from thermal equi-
librium @the temperature of the thermalized plasma in Eq.
~3.30! below may be smaller than thec masses#. The rate of
thermalization depends upon the interaction strength of the
fermions created in theu decay. It is typically higher than the
decay rate becauseg!1 to ensure reasonable fermion
masses. Thermalization could occur either through annihila-
tion of c1 andc̄1 or c2 andc̄2 into light particles or through
their decays and subsequent elastic scattering. Assuming that
these processes are fast we can roughly estimate the reheat
temperature in the instantaneous decay approximation,r rad
5ru(t5G21), as

Treh5~90/8p3g* !1/4AGmPl'0.15gg
*
21/4LAmPl / f ,

~3.30!

where we have takenmR5L2/ f .
The entropy density after thermalization is given bys

54p2g* Treh
3 /90. It is conserved in the comoving volume if

the expansion of the Universe is adiabatic, in particular in the
absence of first-order phase transitions as the Universe cools.
Baryonic charge density is also assumed to be conserved
inside a comoving volume during and after thermalization
and so the baryon-to-entropy rationB /s remains constant in
the course of expansion.

First we find the baryon asymmetry produced afterH
<G so that expansion may be neglected~subscript 1 refers to
this case!. Using Eqs.~3.28!, ~3.29!, and~3.30! we find

S nB

s D
1

'1024
g5

g
*
1/4 S mPl

f D 3/2 f

L S 12e2

11e2D 2

. ~3.31!

In the models studied in Ref.@14# ( f /mPl);1 and f /L
51062103, so to get a reasonable baryon asymmetry we
need a rather large coupling,g.1022 ~for e!1!.

In fact the asymmetry should be noticeably larger than
that given by Eq.~3.31!. The result that we got above refers
to the case whenH,G but the process of particle production
starts much earlier whenH'mR and the inflation field be-
gins to oscillate around the bottom of the potential. The net
baryon number density produced whileH.G is again pro-
portional tou3, as it is associated with the interference be-
tween theu and theu2 terms inu*dt e2ivt(11 iu2u2/2)u2 in
Eq. ~3.6!. The generation of the asymmetry is more efficient
at early times (H.G) since the amplitude of theu field,
which goes down with the scale factor asR23/2, is larger.
However, whenH.G one must include the effects of the
expansion of the Universe on the production of the baryon
asymmetry. This makes the exact calculations considerably
more complicated. Still we can roughly estimate the asym-
metry in the following way. The difference between the pro-
duction of particles and antiparticles is most profound at
early times,Dta;1/mR , whenu is larger. The total number
of particles produced in timeDta is proportional toGDtanu
and, as we mention above, the baryon number asymmetry
must vary asu3. Therefore, a reasonable estimate of the net
baryon number density created whileH.G is nB;G f 2u i

3.
Between the time of peak production of baryon asymmetry at
ta;1/mR and the peak entropy production attb;1/G we will
take the baryon asymmetry to be diluted by a factor of
(Ra /Rb)3;(ta /tb)2;(G/mR)2 due to the expansion of the
Universe, where we have taken the Universe to behave as
matter dominated withR}t2/3 in the usual fashion during
reheating. Thus the baryon-to-entropy ratio at timetb and
afterwards is (nB /s)2;G f 2u i

3(G/mR)2/s. The calculation of
the entropy density is exactly the same as described above
Eq. ~3.31!, while the baryonic charge density is larger than
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the H,G case by a factor of (u i /u1)3(G/mR)25u i /u1
5mR /G58p/g2@1. Consequently, we get that the total
baryon asymmetry of the Universe is approximately equal to

S nB

s D
2

5
u i

u1
S nB

s D
1

'331023
g3

g
*
1/4 S mPl

f D 3/2 f

L S 12e2

11e2D 2

.

~3.32!

Here subscript 2 refers to the case where expansion has been
included. Henceforth we use Eq.~3.32! as our estimate of the
baryon asymmetry produced.

IV. DISCUSSION

In Ref. @14#, the authors obtain constraints on the param-
etersL and f . The stipulation that a large fraction of the
Universe after inflation have inflated by at least 60e-foldings
gives f >0.06MPl . A stronger constraint can be obtained by
requiring the formation of galaxies to take place early
enough in the history of the universe; in this way one obtains
f >0.3MPl . A constraint onL is derived by using Cosmic
Background Explorer~COBE! data on the density fluctuation
amplitude and is plotted in Fig. 1 of Ref.@14#; the upper
bound onL thus obtained ranges from 1013 to 1016 GeV for
f between 0.3MPl and 1.2MPl . If one desires the density
fluctuations from inflation to be responsible for the large-
scale structure of our Universe and hence for the COBE an-
isotropy, thenL must be equal to the above values rather
than simply being bounded by these numbers.

If the baryon asymmetry produced above is accompanied
by an equal lepton asymmetry, so thatB2L50, it will be
wiped out by baryon number violating sphaleron processes
unless the reheat temperature is below 100 GeV. The low
reheat temperature condition may be a desirable feature of
our model as many inflation models have difficulty creating a
high reheat temperature. Furthermore, we shall require that
Treh.10 MeV so that we reproduce standard nucleosynthe-
sis. If, in addition, one requires the density fluctuations from
inflation to serve as the explanation for the COBE data rather
than merely being bounded by it, thenL is determined as a
function of f as described in the previous paragraph; then the
combination of these constraints implies that 10214,g
,10210 for L and f equal to 1013 GeV and 0.3MPl , respec-
tively, and the asymmetry generated by the mechanism con-
sidered above is by far below the necessary observed value.
However, if L is merely bounded by COBE measurements
~density fluctuations must then be generated some other way
than by the inflation!, theng can be much larger as can the
baryon asymmetry. Alternatively if a nonzero (B2L) is gen-
erated, for example, if theL fields carry no lepton number,
then it is not destroyed by the electroweak processes and the
coupling constantg need not be so small.

In our perturbative calculations of the number of pairs of
particles produced we have assumed that the masses of the
fermions are smaller than the massmR of the theta field and
that g f,mQ,L ; otherwise the perturbative approach is not
applicable. This implies thatg f,mR5L2/ f or g,(L/ f )2.
In this case, the baryon asymmetry is rather small as
(nB /s)2,1023(L/ f )5(mPl / f )1.5,10218 ~in obtaining this
limit we have included the simultaneous constraint onL and
f from density fluctuation constraints in Ref.@14#!. If, how-

ever,u is not the inflation field, as in the original version of
the spontaneous baryogenesis scenario@15#, then the param-
etersL and f do not necessarily satisfy the above bounds and
the asymmetry may be quite large, especially iff !mPl . In
such a case, one would have to redo the calculation of the
entropy if u does not dominate the energy density of the
Universe when it decays. A period of inflation prior to the
decay of the PNGB would also be required so thatu and,
consequently, the baryon asymmetry have the same sign
within present-day domains of sizes 100 Mpc or greater
~constraints on the minimum size scale of domains of matter
and antimatter in a matter-antimatter symmetric universe are
discussed in the following references@19#!.

An interesting possibility is that the mass of fermions is
not below mR and the perturbative approach is not appli-
cable. The nonperturbative calculations in this case are more
complicated and will be presented elsewhere.

In conclusion, we have calculated the baryon asymmetry
created by a pseudo Nambu-Goldstone boson with baryon-
number-violating couplings in the context of natural infla-
tion. We have obtained a general result for the baryon asym-
metry created by the decay of an oscillating scalar field with
baryon-number-violating couplings and demonstrated explic-
itly that the asymmetry is not proportional tou i to the first
power as claimed in earlier work.
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APPENDIX A: NUMBER DENSITY OF PRODUCED
PARTICLES IN TERMS OF ONE PAIR

PRODUCTION AMPLITUDE

Here we use the Bogolyubov transformation method to
obtain Eq.~3.2!. We show that in the lowest order of pertur-
bation theory, the average number density of particle-
antiparticle pairs produced by decay of the initial scalar field
is given by

n5
1

V (
s1 ,s2

E dp1̃dp2̃uAu2,

whereA is the one pair production amplitude and subscripts
1 and 2 refer to the final particle and antiparticle produced.
For simplicity we will work with scalar fields here; the gen-
eralization to production of fermions is similar and has been
performed in Ref.@20#.

We begin with a classical scalar fieldf(t) coupled to a
quantum complex scalarx:

L int5gf~ t !x* x. ~A1!
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At early timest→2`, we takeL int50 so thatx is expanded
in terms of creation and annihilation operators:

x5E dk̃@akexp~2 ivt1 ik•x!1bk
†exp~ ivt2 ik•x!#,

~A2!

where v5Ak21m2. Here the commutators are@ak1
,ak2

† #

5(2p)32k1
0d (3)(k12k2) and a similar relation holds for the

antiparticle creation and annihilation operatorsbk . Then, at
later times,f(t)Þ0 and Eq.~A2! is replaced by

x5E dk̃@ak f k~ t !exp~ ik•x!1bk
†f k* ~ t !exp~2 ik•x!#,

~A3!

with equation of motion

@] t
21k21m22gf~ t !# f k~ t !50. ~A4!

The subscript onf k , and onak andbk below, refers touku
and not to the momentum four vector. For continuity at early
times f k(t→2`)5exp(2ivt). We also assume that
f(t)→0 for t→`. Then we have

f k~ t→1`!→ake
2 ivt1bke

ivt, ~A5!

so thatx(t) evolves as

x~ t→1`!5E dk̃@exp~2 ivt1 ik•x!~akak1bk* b2k
† !

1exp~ ivt2 ik•x!~ak* bk
†1bka2k!#. ~A6!

One can define new creation and annihilation operators for
particles,

ãk5akak1bk* b2k
† , ~A7a!

and for antiparticles,

b̃k5akbk1bk* a2k
† . ~A7b!

Then the operator of final particle number is given byÑk
5ãk

†ãk /@2k0V#.
The number of particles in the final state of momentumk

is given by

Nk5^0uÑku0&5ubku2. ~A8!

Thus the total number density of produced particles is

n5
1

V

V

~2p!3 E d3k Nk5E d3k

~2p!3 ubku2. ~A9!

This result, obtained by the method of Bogolyubov coeffi-
cients, can be found in Refs.@17,21#.

Now we shall calculatebk in perturbation theory. Ex-
pandingf 5 f 01 f 1 , we havef 05exp(2ivt) and the equation
of motion ~A4! becomes

~] t
21k21m2! f 15gf~ t !exp~2 ivt !. ~A10!

Using the Green’s function method we find

f 1~ t !52gE dv8

2p

f̃~v82v!

v822k22m2 e2 iv8t. ~A11!

Taking the residue at the polev852Ak21m252v, we
find the coefficient of exp(1ivt) to be

bk5 ig@f̃~2v!#* /2v. ~A12!

Now, for comparison, let us calculate the field theory am-
plitude with the interaction Lagrangian given by Eq.~A1!:

A5 K k1 ,k̄2U i E d4xgf~ t !x* xU0L . ~A13!

Perturbatively the matrix element is easy to calculate using
Eq. ~A2!, and we find

A5 ig~2p!3d3~k11k2!E dtf~ t !exp@ i ~v11v2!t#,

~A14!

so that

uA2u5g2V~2p!3d~3!~k11k2!uf̃~v11v2!u2. ~A15!

Now if we integrate overdk1̃dk2̃, we find that

n5
1

V E dk1̃dk2̃uAu25E d3k

~2p!3 g2
uf̃~2p!u2

4v2 .

~A16!

This is exactly Eq.~A9! with bk given by Eq.~A12!. Thus
we have shown that the number density of produced particles
is given by the integral of the one pair production amplitude
squared.

APPENDIX B: SECOND DERIVATION OF NUMBER
DENSITY OF PRODUCED PARTICLES IN TERMS

OF ONE PAIR PRODUCTION AMPLITUDE

Equation~3.2! can also be obtained using the method pre-
sented in Sec. 4-1-1 of Ref.@18#. @We have ignored the
higher-order vacuum graphs that give the exponential factor
exp(2n̄) in Eqs.~4-23!, of Ref. @18#.# We have verified that
we obtain the Poisson distribution for the number of (Q,L̄)
pairs and (Q̄,L) pairs as in Ref.@18#. Indeed the derivation
of the Poisson distribution can be done exactly along the
same lines as in Ref.@18#. The only difference is that in the
example considered in this book the matrix element de-
scribes the production of a single photon by an external cur-
rent while in our case it gives the amplitude for production of
a pair of particles. For the multiparticle production ampli-
tude this gives rise to a different normalization, namely, in
the case of the production ofn photons the amplitude con-
tains the factor 1/An! connected with identical photons while
for the case of production ofn pairs ofQ̄L ~or charge con-
jugate! the amplitude contains 1/n!. In the case of photons
the multiparticle amplitude squared contains the following
n-dependent factors:uAn

gu2;u(n!)(1/n!)(1/An!) u2;1/n!.
The first factor ofn! comes fromn! combinations that ap-
pear when the photon production operator acts on the multi-
photon statêk1 ,k2 ,...,kni(ak

1)n. The factor of 1/n! comes
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from the expansion of the actionS5exp(i*d4xAmJm), and the
factor of 1/An! comes from the normalization of the
n-photon state. So the net result is proportional to 1/n!,
which is exactly what is needed to get the Poisson distribu-
tion pn5exp(2n̄)n̄n/n!. In the case of the production ofn
pairs, we have the same 1/n! from the expansion of the ac-
tion, but now we get 1/n! coming from the normalization
and not 1/An! as before. However, the action of the product
of the creation operators ofQ andL̄, which can be symboli-
cally written as (aQ

1bL
1)n, gives now an overall factor ofn!

from the action of, say, (aQ
1)n, as above, and also the sum of

n! equal but not interfering terms, each of them being pro-
portional to a different delta function of the momenta,
d(pQj

1pLk
). Thus in the matrix element squared we will get

the same overall factor 1/n!, which is necessary for the Pois-
son distribution.

APPENDIX C: CALCULATION
OF BARYON ASYMMETRY

Here we calculate the lowest-order nonzero contribution
to the baryon asymmetry; we derive Eq.~3.13! from Eqs.

~3.9! and ~3.10!. As our starting point, we have

nb2nb̄5
g2f 2

p2 E dvv2F ũ~2v!@ũ2~2v!#*

2i
1H.c.G ,

~C1!

where

ũ~2v!5E
2`

`

dt e2ivtu~ t ! ~C2!

and

ũ2~2v!5E
2`

`

dt e2ivtu2~ t !. ~C3!

Using Eq.~3.8!, we find that

ũ~2v!5
u i

4iv F ~2G/21 imR!

~2G/21 imR12iv!
2

~G/21 imR!

~2G/22 imR12iv!G ~C4!

and

ũ2~2v!* 52
u i

2

4iv F ~ imR1G/2!

2imR12iv1G
1

~2 imR1G/2!

2iv22imR1G
1

G

2iv1G G . ~C5!

Thus

ũ ũ2* 5
u i

3

16v2 F ~2mR
22G2/4!

~2imR12iv1G!~2iv1 imR2G/2!
1

~mR
22G2/41G imR!

~2iv22imR1G!~2iv1 imR2G/2!
1

G~ imR2G/2!

~2iv1G!~2iv1 imR2G/2!

2
2mR

21 iGmR1G2/4

~2imR12iv1G!~2iv2 imR2G/2!
2

mR
21G2/4

~2iv22imR1G!~2iv2 imR2G/2!
2

G~ imR1G/2!

~2iv1G!~2iv2 imR2G/2!
G .

~C6!

Now we must integrate each of the terms in Eq.~C6! as
indicated in Eq.~C1!. The lower limit of the integral ismQ
1mL!mR and we useG!mQ1mL . We find that the first
term cancels with its Hermitian conjugate, the third and sixth
terms are 0, the second and fourth terms cancel each other,
and the fifth term plus its Hermitian conjugate is responsible
for the final result given in Eq.~3.13!,

nB[nb2nb̄5
g2

16p
mRf 2u i

35
1

2
G f 2u i

3. ~C7!

APPENDIX D: THE EFFECTS OF MIXING
IN THE Q,L BASIS

We will consider the decay ofu to aQL̄ pair ~superscript
1 for this decay channel!, and the decay ofu to a Q̄L pair

~superscript 2 for this decay channel!. For the first decay
channel, from Eq.~3.16! we see that aQ produced at the
time t50 is given by

c~0!5Q5sc11cc2 , ~D1a!

where

c5
1

A11e2
and s5

e

A11e2
. ~D1b!

Similarly,

x̄~0!5L̄5cc̄12sc̄2 . ~D2!

56 6163BARYOGENESIS DURING REHEATING IN NATURAL . . .



We will let the fieldsc andx evolve in time, mixing theirQ
andL components as they travel. The time evolution ofc(t)
can be modeled as follows:

c~ t !5~se2 iDvtc11cc2!exp~2 iv2t !, ~D3!

where Dv5v12v2 . We now wish to ask the question:
what is theQ content at some timet of the field c, which
was initially pureQ? Using Eq.~3.16!, we can write Eq.
~D3! as

c~ t !5@~c21s2e2 iDvt!Q2sc~12e2 iDvt!L#exp~2 iv2t !.
~D4!

The quark content is given by the magnitude squared of the
coefficient of the first term, so that

nQ
~1!~ t !5@c41s412c2s2cosDvt#

1

V

3 (
sQ ,sL̄

E dkQ̃dkL̃̄ uAQL̄u2. ~D5!

Similarly, from the same decay processu→Q1L̄, theL̄ that
is produced can convert to aQ̄ so that we have

n
Q̄

~1!
~ t !5

1

V (
sQ ,sL̄

2s2c2~12cosDvt !E dkQ̃dkL̃̄ uAQL̄u2.

~D6!

From u→LQ̄, one can obtainQ at a later time from oscil-
lations of either theL or theQ̄ and find contributions:

n
Q̄

~2!
~ t !5@c41s412c2s2cosDvt#

1

V

3 (
sL ,sQ̄

E dkL̃dkQ̃̄uALQ̄u2 ~D7!

and

nQ
~2!~ t !5

1

V (
sL ,sQ̄

2s2c2~12cosDvt !E dkL̃dkQ̃̄uALQ̄u2.

~D8!

Thus the baryon asymmetry at any timet is

nB~ t !5nQ
~1!~ t !1nQ

~2!~ t !2n
Q̄

~1!
~ t !2n

Q̄

~2!
~ t !5@~c22s2!214s2c2cosDvt# (

sL ,sQ

~ uAQL̄u22uALQ̄u2!

5F S 12e2

11e2D 2

14s2c2cosDvt G (
sL ,sQ

~ uAQL̄u22uALQ̄u2!. ~D9!

One can see that the baryon asymmetry oscillates in time as a cosine about the average value. When one takes a time average,
the cosine term averages to zero, and one reproduces the result in Eq.~3.28!,

nB5
1

2
G f 2u i

3S 12e2

11e2D 2

. ~D10!

Our derivation above assumes in Eqs.~D5!–~D8! that allQL̄ pairs and allLQ̄ pairs were produced at the same time. If one
considers that all pairs are not produced at the same time then an average over all pairs would also cancel the cosDvt term in
Eqs.~D5!–~D8!.
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