
Evolution of the order parameter after bubble collisions

Edward W. Kolb*
NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510

and Department of Astronomy and Astrophysics, Enrico Fermi Institute, The University of Chicago, Chicago, Illinois 60637

Antonio Riotto†

NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510

Igor I. Tkachev‡

Department of Physics, The Ohio State University, Columbus, Ohio 43210
and Institute for Nuclear Research of the Academy of Sciences of Russia, Moscow 117312, Russia

~Received 19 March 1997!

If a first-order phase transition is terminated by percolation and collisions of new-phase bubbles, there will
exist a period of nonequilibrium between the time bubbles collide and the time thermal equilibrium is estab-
lished. We study the behavior of the order parameter during this phase. We find that large nonthermal fluc-
tuations at this stage reduce the order parameter below its eventual thermal equilibrium value. We comment on
possible consequences for electroweak baryogenesis.@S0556-2821~97!04422-6#

PACS number~s!: 98.80.Cq, 11.27.1d

It has long been known that symmetry may be restored at
high temperature in local thermodynamic equilibrium~LTE!
@1#. Recently it was realized that certain nonequilibrium
~NEQ! conditions can be even more efficient for symmetry
restoration@2#. An example of such a nonequilibrium state
can arise naturally after inflation in the so-called preheating
era@3,4#. In fact, symmetry may be restored in the NEQ state
even if it is not restored in the LTE state formed by thermal-
ization of the NEQ state. Detailed numerical studies@5# con-
firm that fluctuations of inflaton decay products are large
enough for symmetry restoration, as well as for several other
important effects, including baryogenesis@6#, supersymme-
try breaking @7#, and generation of a background of relic
gravitational waves@8#.

States with properties similar to those in preheating,
namely, anomalously large fluctuations and highly NEQ con-
ditions, can arise in other situations as well. It was suggested
in Ref. @9# that if bubble collisions produce large numbers of
soft scalar particles carrying quantum numbers associated
with a spontaneously broken symmetry, the phenomenon of
~or tendency toward! symmetry restoration may occur locally
in regions of high density of the soft quanta. The basic point
is that bubble collisions create NEQ conditions with a large
number of ‘‘soft’’ quanta of average energy smaller than the
equivalent LTE temperature corresponding to instantaneous
conversion of the bubble energy density into radiation. Since
it may require several scattering times for the low-energy
quanta to form a thermal distribution, it is rather reasonable
to consider the NEQ period as a separate epoch. This may be
referred to as a ‘‘preheating’’ epoch in a manner similar to
the preheating phase of slow-roll inflation.

The effect of NEQ conditions after bubble collisions may
be readily understood by the following~somewhat oversim-
plified! reasoning. Let us imagine that particlesx are pro-
duced in the bubble wall collisions and are charged under
some symmetry group, so that their massmx depends upon
some scalar fieldf ~the order parameter of the symmetry! as
mx

2(f)5m0
21gf2.1 Here,g represents a combination of nu-

merical factors and a coupling constant. As a simple example
we might assume that thef-dependent mass originates from
a potential term of the formVxf5(1/2)gf2x2. As opposed
to the large-angle scattering processes required for thermali-
zation, forward-scattering processes do not alter the distribu-
tion function of the particles, but simply modify the disper-
sion relation. This is true in NEQ conditions, as well as the
familiar LTE conditions. Forward scattering is manifest, for
example, as ensemble and scalar background corrections to
the particle masses. Since the forward-scattering rate is usu-
ally larger than the large-angle scattering rate responsible for
establishing a thermal distribution, the nonequilibrium en-
semble and scalar background corrections are present before
the initial distribution function relaxes to its thermal value.
These considerations allow us to impose the dispersion rela-
tion v25p21mx

2(f) for NEQ conditions.
The leading contribution of the particles created by

bubble collisions to the one-loop effective potential of the
scalar fieldf can be shown to beDV(f).(n/E)mx

2(f)
@2,10#, wheren andE are the number density and the energy
of thex quanta, respectively. We may write the potential for
the NEQ configuration as DV(f)5BNEQf2, where
BNEQ5gn/E. In NEQ conditions, the coefficientBNEQ may
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1Of coursex particles may coincide with thef particles them-
selves, but in this example the colliding bubbles arenot made from
the field f. Otherwise, there can be some effect, but the original
symmetry will not be restored.
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be quite large, indeed larger than the corresponding equilib-
rium coefficient which scales likeTLTE

2 , TLTE defined as the
temperature of the universe when the thermal spectrum of
radiation is first obtained. Therefore, the tendency of sym-
metry restoration may turn out to be rather independent of
TLTE . We also notice that since the energyE scales like the
inverse of the bubble wall widthD, E;D21, one can sug-
gest that the effect of soft particles on symmetry restoration
is stronger for thick bubble walls.

The aim of the present paper is to investigate numerically
the effect of NEQ conditions following bubble wall colli-
sions. We will show explicitly that at the final stage of first-
order phase transitions when percolation and bubble colli-
sions occur nonthermal quanta are produced and that they
tend to shift the order parameterf from its equilibrium value
toward smaller values. We will also confirm the conjecture
about the dependence of the strength of symmetry restoration
upon the bubble wall width. Finally, we will comment on the
possible implications that our result may have for elec-
troweak baryogenesis.

Let us concentrate on a theory with a single scalar fieldf
~the x particles of the above discussions must be identified
with the f) with Lagrangian density

L5
1

2
]fm]fm2

1

2
m2f21

1

3
cf32

1

4
lf42V0 , ~1!

whereV0 is a constant. We introduce the dimensionless vari-
ablesw[f/f0, t[Alf0t, andj5Alf0x, wheref0 will
be fixed later. In the new variables the factorlf0

4 is an
overall multiplication factor for the Lagrangian
(m̃5m/Alf0, c̃5c/lf0, Ṽ05V0 /lf0

4)

L5lf0
4F1

2
]wm]wm2

1

2
m̃2w21

1

3
c̃w32

1

4
w42Ṽ0G

[lf0
4F1

2
]wm]wm2V~w!G . ~2!

The overall factor will not enter the equation of motion. The
final step is a choice of a potential, which we choose such
that dV/dw5w(w21)(w2wm). The equation of motion is
then

hw1w~w21!~w2wm!50. ~3!

With this choice ofdV/df the extrema of the potential are
transparent: It has minima atw50 and w51 and a local
maximum atw5wm ~we thus fix the parameterwm to be in
the range 0,wm,1). We shall assumew51 corresponds to
the true vacuum, i.e.,V(0).V(1). Making the connection
with Eq. ~1!, we conclude thatf5f0 is the field strength in
the true vacuum, and the constants entering Eq.~1! are
m25wmlf0

2 andc5(11wm)lf0. We shall require the ab-
sence of a cosmological constant in the true vacuum,
V(1)50; this givesV05(122wm)lf0

4/12. Since we con-
sider the true vacuum to be atw51 and the false vacuum at
w50, we can further restrict the parameterwm to be in the
range 0,wm,0.5. We choosewm50.1 for the only param-

eter in the equation of motion, which implies that the physi-
cal mass of the scalar field in the true vacuum will be
mf

2 5(12wm)lf0
250.9lf0

2 .
The fact that only one parameterwm enters the equation

of motion in the rescaled variables is a key point. The evo-
lution of any initial field configurationw(t50,j) for fixed
wm will be the same in the rescaled variables, regardless of
the coupling constantl.

The initial field configuration for the problem at hand cor-
responds to a set of new-phase critical bubbles expanding in
the false vacuum. Note that the evolution of a critical bubble
is also defined by Eq.~3!, and consequently it is fixed when
wm is fixed. However, the bubble nucleation probability is a
more complicated function of the other variables~note that
nucleation became unsuppressed whenwm→0, i.e., when the
potential barrier disappears!. The nucleation probability will
determine the initial separation of critical bubbles~in space,
as well as in time!. In our numerical integration we will
consider the mean separation of bubble nucleation sites as
another free parameter of the model. Fixing it gives one extra
constraint on the set of parametersl, f0, andwm .

After nucleation, new-phase bubbles expand, percolate,
and collide. After collisions the spatial distribution of the
magnitude ofw resembles a random superposition of many
wavelength modes—a configuration with large field fluctua-
tions. It is important that the system is classical and can be
described by Eq.~3! from the time of bubble nucleation,
through the time of bubble collisions and the condition of
large field fluctuations.

The random-wave configuration is quickly established af-
ter bubble collisions; essentially it is established on the time
scale of bubble collisions since there is no small parameters
in Eq. ~3!. Eventually the waves interact and LTE is estab-
lished. Since transforming the NEQ distribution function into
an LTE distribution function involves producing states with
small occupation number, the coupling constantl will enter
the time scale for the establishment of LTE. This time scale
can be very long ifl is small, and so the NEQ configuration
can exist for a long time. This phase has specific properties
which are the subject of our study here.

First, let us recall what is expected in the final LTE state.
The LTE temperature can be found using energy conserva-
tion

g*
p2

30
TLTE

4 5V05lf0
4~122wm!

12
, ~4!

which gives

TLTE5S l

g*
D 1/4

f0F5~122wm!

p2 G 1/4

[l1/4f0b, ~5!

whereb is a constant of order unity andg* (T) is the number
of relativistic degrees of freedom at temperatureT. Note that
TLTE approaches zero asl approaches 0. Because of inter-
actions with the medium, LTE values of the model param-
eters, e.g., the effective mass, are different than vacuum val-
ues. The value of the parameters can be calculated as loop
corrections to the action. Most important is the change of the
effective mass,meff

2 (T)5m21lT2/4. At very high tempera-
turesmeff

2 (T) becomes positive, even if the zero-temperature
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value ofm2 was negative. This is a signal that broken sym-
metries are restored at high temperatures@1#.

In the model of Eq.~1! which we consider here, the sym-
metry cannot be restored again after bubble collisions, but
the temperature-dependent contribution to the effective mass
will be nonzero. Using Eq.~5! we find that it scales with
coupling constant asl3/2, and tends to zero asl tends to 0.
Note for what follows that the temperature-dependent correc-
tion to the mass can be written in more general form, as
meff

2 5m213l^f22^f&2&.
Let us now find the mean value of the fieldw in thermal

equilibrium with temperature given by Eq.~5!. To leading
order in the coupling constants, the equationdVeff /dw50
becomes

~wm13Alb2!w2~11wm!w21w32~11wm!Alb2/1250,
~6!

where terms proportional toAl are reminiscent of
temperature-dependent corrections to the effective potential
rewritten in terms of our dimensionless variables. We see
that the solution of this equation tends tow51 whenl→0.
In other words, the mean value of the fieldw in thermal
equilibrium ~established after the phase transition is com-
pleted! differs very little from the vacuum expectation value
if the coupling constant is small.

We can study the process of bubble collisions and subse-
quent chaotization by numerically integrating Eq.~3!. We
are not interested in the collision of two isolated bubbles, but
in the nearly simultaneous collisons of many bubbles, as
might be expected at the end of a cosmological first-order
phase transition. Rather than track the evolution of many
bubbles, by use of periodic boundary conditions we can
simulate the desired situation starting with a single bubble.

We define a three-dimensional box of sizel on a grid of
size 1283 employing periodic boundary conditions. With pe-
riodic boundary conditions every bubble in the box is mir-
rored by its~infinitely repeating! reflections. As the bubble
expands to fill the box, it will collide with its reflections, and
so there is no need to put more than one bubble inside the
box to study bubble collisions. Therefore we can study an
initial configuration corresponding to just one critical bubble
of the true phase in the box.

The size of the box,l , corresponds to the mean initial
separation of bubbles in units of (l1/2f0)21.mf

21 . We in-
tegrated the equation of motion forl /2p54, 8, 10, and 12,
corresponding to progressively larger bubbles at collision
time. There is a practical limit on the size of the box set by
the requirement that the bubble wall be able to be resolved.
If the box is too large, then the bubble will grow large before
colliding, and the wall will become too thin to resolve.

We show the evolution of a two-dimensional slice
through the three-dimensional space of the simulation in Fig.
1 for the casel /2p58 as a function of time.@Time is ex-
pressed in units of (l1/2f0)21.mf

21 .# The slice is centered
on the bubble. The bubble was placed off center in the box to
avoid numerical artifacts. The height above the plane corre-
sponds to the value of the scalar field normalized to its
vacuum value as discussed above~i.e., one corresponds to
true vacuum and zero corresponds to false vacuum!. The
units in the plane indicate the spatial position, with each unit

from zero to l 516p.50, corresponding roughly to an in-
verse mass of the scalar particle in the true vacuum.

At time equal to zero, a bubble is nucleated. The bubble
shown is a solution to the equations of motion. When first
nucleated, the scalar field at the center of the bubble is not in
the true vacuum because it is a rather thick-wall bubble.

The slice corresponding to timet515mf
21 shows the

growing bubble of true vacuum. Note that the bubble has
gone out of the back and left-hand sides of the box and is
now propagating inward from the front and right sides of the
box toward the expanding bubble.

In the slice att530mf
21 , the bubble walls have just col-

lided. The shallow and wide pockets at coordinates near the
points (10,40) and (40,10) are regions that have been passed
by true vacuum bubble walls—they are the debris of the
collision. The deep pocket near coordinate (40,40) extends
to the false vacuum—it is a region that has yet to experience
the passing of a domain wall.

By t545mf
21 the entire box has been swept by a true-

vacuum bubble wall. Eventually the system will evolve to
the situation where the field is everywhere in the true
vacuum (w51) and the false-vacuum energy has been con-
verted to a thermal bath off particles. But the situation at
t545mf

21 and for the remainder of the simulation does not
resemble that state. Before the ultimate thermal state is
reached, there are large, long-wavelength field oscillations.
The system is truly chaotic. Although att560mf

21 the sys-
tem appears to be approaching a quiescent state, at
t575mf

21 and t5105mf
21 there are large-amplitude, long-

wavelength oscillations.
These large-amplitude, long-wavelength oscillations do

not resemble a thermal background: The background is a true
NEQ distribution, and the effect upon the zero-mode of the
field, w05^w&, will be different than the effect of the back-
ground after thermalization. The nonthermal nature of the
fluctuations can be quantified in terms of the power spectrum
of the fluctuations of the scalar fieldw. At any time the
fluctuations can be expanded in terms of a Fourier series. We
normalize the power spectrum of the fluctuations,Pw(k), in
such a way that Parseval’s theorem reads
*d3kPw(k)5L23*d3x@w(x)2w0#2[ Var(w).

Using a fast Fourier transform, we monitored the power
spectrum of fluctuations during the evolution of the system.
The evolution of the power spectrum is illustrated in Fig. 2.
The rescaled momentumk in this figure is related to the
physical momentum,kphys by kphys5Alf0k.mfk. For
comparison we also plot on this figure the power spectrum of
the field in LTE.

In LTE at temperatureT, thermal fluctuations in the field
are found by examining the finite-temperature, two-point
correlation function. The two-point correlation function is
given by the Green’s function

^f~x!f~0!&5E d4k

~2p!4
e2 ikxDT~k!, ~7!

whereDT(k) is thef propagator at finite temperature, given
by
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FIG. 1. A series of illustrations of the spatial dependence of the scalar field for a two-dimensional slice through the center of the bubble
for the casel /2p58. The height indicates the value of the scalar field normalized to the true vacuum value. Time and space are in units of
(l1/2f0)21.mf

21 . The details are discussed in the text.
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DT~k!5
i

k22mf
2 1 i e

12pd~k22mf
2 !

1

exp~2E/T!21
~8!

in the real-time formalism. The temperature-independent
contribution is absorbed into the renormalization of thef
propagator, and the temperature-dependent part results in

^f~0!f~0!&5E d4k

~2p!4

2pd~k22mf
2 !

exp~2E/T!21

5E d3k

~2p!3

1

2E

1

exp~2E/T!21
. ~9!

Choosing the same normalization of the power spectra for
both the data and LTE,Pf(k)5(2p)23(2E)21@exp(E/T)
21]21, where E25mf

2 1kphys
2 . The LTE thermal fluctua-

tions depend uponmf and the temperature. In turn, both
depend uponl. In Fig. 2 we give the power spectrum for
thermal fluctuations atTLTE , given by Eq.~5!, for l51022.

We see from Fig. 2 that the power spectra of the random
field after bubble collisions is much steeper than the LTE
spectrum, with much more power on large-distance scales
~smallk). This again reflects our statement that Var(w) right
after the bubble collisions is much larger and much softer
compared to LTE fluctuations. Note that the nonequilibrium
state which we are discussing is long lived: The power spec-
tra did not change appreciably during the time interval
60,tmf,120, and since the time needed to reach LTE is
proportional tol22, the NTE epoch is distinct, with peculiar
properties which were neglected in previous discussions of
phase transitions.

The results for the time dependence of zero mode of the
field, w05^w&, are presented in Fig. 3, where^•••& means
the spatial average~over grid points!. We see that after
bubbles have collided (t.16 for l /2p54 and t.40 for
l /2p58), the zero mode does not relax to is vacuum value,
w051, but oscillates near some smaller value. We define
w0[^w&, where the overbar denotes the time average over
several oscillations. We findw0'0.93 in the casel /2p58
and w0'0.87 with l /2p54 at t;80. Note thatw0 rises

slightly with t, which is the sign of ongoing relaxation. We
do not present results forl /2p510 andl /2p512 since they
do not differ appreciably from the casel /2p58 (w0 at
l /2p512 is larger by an about 0.01 than the corresponding
value for l /2p58).

The deviation ofw0 from the vacuum value is not unex-
pected since a random field of classical waves is created after
the bubble collision, i.e., Var(w)[^w2&2^w&2, is nonzero.
The time dependence of the variance is shown in Fig. 4. Note
again that with fixed initial conditions the variance does not
depend uponl; i.e., it has a nonthermal origin.

At t;80, with l /2p58 we have Var(w)'0.036 and with
l /2p54 we find Var(w)'0.08. Again we employ time av-
eraging over several oscillations. At smalll those values are
much larger than its equivalent LTE value Var(w)5TLTE

2 /12
@see Eq.~5!#. The fact that Var(w) in NEQ can exceed its
equivalent LTE value by many orders of magnitude was the
main point of Ref.@2# which studied the preheating phase
after inflation and of Ref.@9# which studied conditions fol-
lowing bubble collisions. Our work supports the claim in
Ref. @9# that NEQ phase transitions can occur in models
which contain more degrees of freedom than the simple toy
model of Eq.~1!.

Let us see whether we can understand the deviation of the
zero mode from its vacuum value by the existence of a non-
zero Var(w). Let us decompose the field asw5w01dw, and
substitute this decomposition into the equationdV/dw50.
We find, in the Hartree approximation,

~wm13^dw2&!w02~11wm!w0
21w0

32~11wm!^dw2&50.
~10!

FIG. 2. The evolution of the power spectrumPw(k) of fluctua-
tions in thew field for l /2p58. The dotted line is the spectrum
when the bubbles have first completely collided (t545mf

21), the
dashed line is the spectrum well after bubble collision
(t5120mf

21), and the solid line is a representative of the eventual
thermal spectrum~here given forl51022).

FIG. 3. Time dependence of the zero-momentum mode,
w05^w&. The dotted line corresponds to initial bubble separation of
l /2p54, the solid line corresponds tol /2p58.

FIG. 4. Time dependence of the variance,^w2&2^w&2. The dot-
ted line corresponds to initial bubble separation ofl /2p54 and the
solid line corresponds tol /2p58.
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Assuming in addition the deviation ofw0 from 1 to be small,
we find

w0512
22wm

12wm13^dw2&
^dw2&. ~11!

Usingwm50.1 and the values of^dw2& inferred from Fig. 4,
we find w050.93 for l /2p58 and w050.87 for l /2p54,
which are in excellent agreement with the results presented
in Fig. 3.

We can also understand the dependence uponl , the initial
bubble separation. The larger the initial bubble separation,
the longer bubbles will expand before they collide. As a
bubble expands, its wall thickness decreases. Hence, collid-
ing bubbles in thel /2p58 calculation are thinner than in the
l /2p54 case. Following the discussion in Ref.@9#, we ex-
pect the average energy of the quanta created in wall colli-
sions to scale asD21, whereD is the wall thickness at col-
lision. Since the effect of the background on the effective
potential scales asn/E}D, we expect thel /2p54 calcula-
tion to result in a larger departure from the vacuum value.
This expectation is confirmed by the results shown in the
figures.

Even though we only examine a particularly simple
model, we conjecture that a deviation ofw0 from its thermal
equilibrium value in the aftermath of bubble collisions may
have important consequences for some applications of first-
order phase transitions, e.g., electroweak baryogenesis. In
any scenario where the baryon asymmetry is generated dur-
ing a first-order electroweak phase transition, the asymmetry
is generated in the vicinity of bubble walls, and a strong
constraint on the ratio between the vacuum expectation value
of the Higgs field inside the bubble and the temperature must
be imposed,̂ f(T)&/T.1 @11#. This bound is necessary for
the just created baryon asymmetry to survive the anomalous
baryon-number-violating interactions inside the bubble, and

may be translated into a severe upper bound on the physical
mass of the scalar Higgs particle. Combining this bound with
the CERNe1e2 collider LEP constraint already rules out
the possibility of electroweak baryogenesis in the standard
model of electroweak interactions, and even impacts
electroweak baryogenesis in the minimal supersymmetric
extension of the standard model@12#. Since the rate of
anomalous baryon-number-violating processes scales like
exp(2^f&/T), it is clear that even a small change in the
vacuum expectation value of the Higgs scalar field from its
equilibrium value may be crucial for electroweak baryogen-
esis considerations. Our results suggest that imposing the
bound^f(T)EQ&/T.1 may not be a sufficient condition for
successful electroweak baryogenesis. NEQ effects at the
completion of the phase transition may reduce the expecta-
tion value of the Higgs field, thus enhancing the anomalous
baryon-number-violating rate with respect to its equilibrium
value, making the upper bound on the Higgs boson mass
more severe. Applications of our considerations to the elec-
troweak transition may result in a fatal blow to many sce-
narios involving extensions of the standard model where the
baryon asymmetry is generated during the electroweak phase
transitions.

The model we consider in this paper is quite simple, but it
illustrates several points. The most important result is that
NEQ conditions following bubble collisions can have a dra-
matic effect upon the effective potential. Although the model
we study is too simple to result in symmetry restoration, the
numerical results confirm the assumptions made in Ref.@9#
about the efficiency of NEQ conditions. We mentioned a
possible direct application of our results to electroweak
baryogenesis, but we believe that the phenomenon of NEQ
effects will have other implications as well.
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