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We calculate the nucleon contribution to the electromagnetic vertex of a neutrino in a background of
particles, including the effect of the anomalous magnetic moment of the nucleons. Explicit formulas for the
form factors are given in various physical limits of practical interest. Several applications of the results are
mentioned, including the effect of an external magnetic field on the dispersion relation of a neutrino in matter.
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I. INTRODUCTION

It is commonly accepted that the properties of neutrinos
that propagate through a thermal background of particles can
be very different compared to their properties in the vacuum.
This is the case, in particular, for their electromagnetic prop-
erties@1#. Some time ago, this notion motivated the study of
the electromagnetic properties of neutrinos in a background
of electrons@2#. In Ref. @2#, the effective electromagnetic
interactions of a neutrino that propagates through matter
were determined by a one-loop calculation of the electro-
magnetic vertex function induced by the neutrino interac-
tions with the electrons in the background. The results of
those calculations have been applied to determine the rates of
various physical processes such as, for example, the radiative
neutrino decay@3# and the Cherenkov radiation by massless
~chiral! neutrinos@4#, the latter of which had been studied
previously by different techniques@5#. We mention that the
Cherenkov process considered in Refs.@4,5# differs from the
one studied in the recent works by Grimus and Neufeld@6#
and by Mohanty and Samal@7#, which depends on a hypo-
thetical magnetic moment coupling of the neutrino.

It was observed in Ref.@2# that, in the presence of a static
magnetic field, the induced electromagnetic interactions pro-
duce an additional contribution to the effective potential of
the neutrinos, or equivalently to their index of refraction, that
modify the Wolfenstein resonance condition@8# for neutrino
oscillations in matter. This observation, and the calculations
on which it is based, have been generalized and refined sub-
sequently by various authors@9–12#.1

In the present work we extend the calculations carried out
in Ref. @2# by including the contribution to the neutrino elec-
tromagnetic vertex coming from the presence of the nucleons
in the background. In particular, we take into account the
anomalous magnetic moment coupling of the nucleons to the

photon and we calculate explicitly the additional terms they
induce in the neutrino electromagnetic vertex.

The present calculation is motivated, in part, by the recent
interesting work of Kusenko and Segre` suggesting that the
observed large birth velocities of pulsars are due to the asym-
metric emission of neutrinos from the cooling protoneutron
star, which is produced by the resonant neutrino oscillations
in the supernova’s magnetic field@14#. In a subsequent paper
@15#, the same authors find that a similar explanation is pos-
sible if the oscillations occur between an active~weak inter-
acting! neutrino and a sterile one. While in the oscillation
between active neutrinos the neutral-current interaction con-
tribution to the neutrino energy in not relevant, it becomes
important for oscillations between an active and a sterile
neutrino because the latter has no weak interactions at all. In
these contexts, the effects on the neutrino potentials due to
the magnetic couplings of the nucleons have been estimated
for various limiting cases in Refs.@12,16#.

However, the calculations presented here go farther. They
are based on the one-loop formula for the neutrino electro-
magnetic vertex using thermal field theory methods. Apart
from the limitations that the one-loop approximation~linear
in the electromagnetic field! imply, the formulas obtained for
the contribution due to the anomalous nucleon moments are
valid for general conditions of the nucleon gas, degenerate or
nondegenerate, whether it is relativistic or not. The formulas
can be applied, in the context of neutrino oscillations in the
presence of a magnetic field, to determine the additional cor-
rections to the neutrino index of refraction in situations in
which the nucleons are not necessarily described by one of
the idealized limiting cases, and instead a more detailed
evaluation of the effects is sought. Besides the application in
this context, our calculations can be relevant for other physi-
cal processes that have been considered in the literature, such
as the induced radiative neutrino decay and the Cherenkov
radiation emission by neutrinos mentioned above.

II. CALCULATION OF THE NEUTRINO
ELECTROMAGNETIC VERTEX

We follow the method and conventions of Ref.@9#. The
background-dependent part of the neutrino electromagnetic

1A particularly clear exposition, which also corrects some inaccu-
rate statements contained in Ref.@9#, has been given by Smirnov in
Ref. @13#.
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vertex function is denoted byG8(k,k8,v)m wherek and k8
denote the momentum of the incoming and outgoing neu-
trino, respectively, andvm is the velocity four-vector of the

medium, which from now on we set equal to (1,0W ) in our
calculations. The electron background contribution toGm8 ,
which we denote here byGm

(e) , was calculated in Ref.@9#
while the nucleon background contributionGm

(p)1Gm
(n) is the

subject of the present work. To lowest order, the diagrams
relevant to the calculation are shown in Fig. 1.

For each nucleonf 5n,p in the loop, the propagator is
given by

SF~p!5~p” 1mf !F 1

p22mf
2 12p id~p22mf

2!h f~p!G ,
~2.1!

where

h f~p!5
u~p•v !

eb~p•v2m f !11
1

u~2p•v !

e2b~p•v2m f !11
, ~2.2!

with u representing the unit step function, 1/b the tempera-
ture, andm f the chemical potential of each nucleon specie.

The electromagnetic couplings of the nucleons are given
by

Lg52ueuAmp̄gmp2
kp

2
p̄smnpFmn2

kn

2
n̄smnnFmn ,

~2.3!

wherekn,p are the anomalous part of the nucleon magnetic
moments, given by

kp51.79S ueu
2mp

D ,

kn521.91S ueu
2mn

D ; ~2.4!

e stands for the electron charge and, as usual,
smn5 ( i /2) @gm ,gn#. For the neutral-current couplings we
write

LZ52gZZmF n̄LgmnL1 (
f 5e,p,n

f̄ gm~af1bfg5! f G ,
~2.5!

where, in the standard model,

gZ5g/~2 cosuW! ~2.6!

and

2ae5ap5
1

2
22 sin2uW ,

an52
1

2
,

be5
1

2
,

bn52bp5
1

2
gA , ~2.7!

with gA51.26 being the renormalization constant of the
axial-vector current of the nucleon. There are several implicit
assumptions and simplifications that we have made by adopt-
ing the electromagnetic and neutral-current couplings de-
fined by Eqs.~2.3! and ~2.5!. Their justification is discussed
in more detail in Appendix B.

With these couplings, the nucleon contribution to the neu-
trino electromagnetic vertex is given by

Gm
~nucl!5~Tmn

~p!1Tmn
~n!!gnL, ~2.8!

where, as usualL5(12g5)/2, and

Tmn
~ f !5&GFE d4p

~2p!3 Tr@ j f m
~em!~q!~p” 1mf !gn~af1bfg5!

3~p” 2q” 1mf !#H d~p22mf
2!h f~p!

~p2q!22mf
2

1
d@~p2q!22mf

2#h f~p2q!

p22mf
2 J , ~2.9!

for f 5n,p. To arrive at this formula we have dropped the
term that is independent of the particle density distributions,
as well as the term that contains the product of the twod
functions.2 In Eq. ~2.9! q5k2k8 denotes the momentum of
the outgoing photon,j f m

(em)(q) is the total electromagnetic
current of each nucleon,

j pm
~em!~q!5ueugm2 ikpsmaqa,

j nm
~em!~q!52 iknsmaqa, ~2.10!

and we have also used the relation

gZ
2

mZ
2 5&GF . ~2.11!

2The latter contributes only to the absorptive part~provided the
appropriate kinematical conditions are satisfied!, which we are not
considering in this paper.

FIG. 1. One-loop diagram for the nucleon contributionsGm
(p,n)

3(k,k8) to the neutrino electromagnetic vertex.
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Let us consider the neutron case first. Making the change of
variablep→p1q in the integrand corresponding to the sec-
ond term in curly brackets in Eq.~2.9!, and carrying out the
traces, we obtain3

Tmn
~n!54mnkn&GFE d3P

~2p!32E $an~q2gmn2qmqn!~ f n1 f n̄ !

22ibnemnabqapb~ f n2 f n̄ !%F 1

q212p•q
1~q→2q!G ,

~2.12!

where

pm5~E,PW !, E5APW 21mn
2. ~2.13!

We have introduced the number densities of the nucleons

f n,p~p!5
1

eb~E2mn,p!11
, ~2.14!

and the corresponding quantitiesf n̄ , p̄ for the antiparticles,
which are given by a similar formula but with the opposite
sign of the chemical potential. Following Ref.@2#, Tmn

(n) can
be decomposed in the form

Tmn
~n!5TT

~n!Rmn1TL
~n!Qmn1TP

~n!Pmn , ~2.15!

where

Rmn5g̃mn2Qmn ,

Qmn5
ṽmṽn

ṽ 2 ,

Pmn5
i

Q emnabqavb, ~2.16!

with

g̃mn5gmn2
qmqn

q2 ~2.17!

and

ṽm5g̃mnvn. ~2.18!

The functionsTT,L,P
(n) depend on the variables

V5q•v,

Q5AV22q2, ~2.19!

which are the energy and momentum of the photon, and are
given explicitly by

TT
~n!5TL

~n!54&GFmnknanq2Dn ,

TP
~n!528&GFmnknbnQCn , ~2.20!

where

Dn,p5E d3P
~2p!32E ~ f n,p1 f n̄ , p̄!F 1

q212p•q
1~q→2q!G ,

~2.21!

Cn,p5E d3P
~2p!32E S ṽ•p

ṽ 2 D ~ f n,p2 f n̄ , p̄!F 1

q212p•q

1~q→2q!G . ~2.22!

It is useful to recall that

ṽ 252
Q2

q2 ,

ṽ•p5E2S q•p

q2 DV. ~2.23!

According to Eq.~2.10!, the proton contribution to the
nng vertex contains a term that is similar to the one deter-
mined above in the neutron case, plus another one that arises
from the ordinarygm coupling. The latter is of the same form
as the one calculated in Ref.@2# for the neutral-current con-
tribution in the electron background. Thus, repeating the
steps that lead to Eq.~2.24! of Ref. @2# and imitating Eq.
~2.20! above, we obtain the total contribution from the pro-
ton background

TT
~p!52&GFapH ueuS Ap2

Bp

ṽ 2D12mpkpq2DpJ ,

TL
~p!54&GFapH ueu

Bp

ṽ 2 1mpkpq2DpJ ,

TP
~p!524&GFbpQCp~ ueu12mpkp!, ~2.24!

where

Ap5E d3P
~2p!32E ~ f p1 f p̄!F2mp

222p•q

q212p•q
1~q→2q!G ,

Bp5E d3P
~2p!32E ~ f p1 f p̄!F2~p•v !212~p•v !~q•v !2p•q

q212p•q

1~q→2q!G . ~2.25!

The expressions in Eqs.~2.22!, ~2.21!, and~2.25! allow us
to obtain simple formulas for the coefficientsTT,L,P

(n,p) in vari-
ous limiting cases. For Eqs.~2.22! and~2.25! we can borrow3Our conventions are such thate0123511.
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the results from Ref.@2#, where the corresponding quantities
for the electron background were denoted byA,B,C. Thus,
for example, for the proton background,4

Ap~V,Q→0!523v0p
2 1
Q2v0p

2

V2 1O~V2!,

Ap~V→0,Q!5
1

2 E d3P
~2p!3

d

dE ~ f p1 f p̄!1O~Q2!,

~2.26!

Bp~V,Q→0!5
Q2v0p

2

V2 ,

Bp~V→0,Q!5Ap~V→0,Q!1O~Q2!, ~2.27!

Cp~V,Q→0!52
1

2 E d3P
~2p!32E

f p2 f p̄

E F12
2P2

3E2 G
1O~V2!,

Cp~V→0,Q!5
1

2 E d3P
~2p!32E

d

dE ~ f p2 f p̄!1O~Q2!,

~2.28!

where

v0p
2 5E d3P

~2p!32E ~ f p1 f p̄!F12
P2

3E2G . ~2.29!

In similar fashion, we obtain here

Dp~V,Q→0!52
1

2 E d3P
~2p!32E

f p1 f p̄

E2 1O~V2!,

Dp~V→0,Q!5
1

2 E d3P
~2p!32E

d

dE S f p1 f p̄

E D1O~Q2!.

~2.30!

We would like to stress that while the previous formulas
hold for the limiting values indicated of the photon energy
and momentum, no assumption has been made with respect
to the background gas. The formulas can be simplified fur-
ther by restricting the attention to some simple idealized situ-
ations, such as the degenerate and nondegenerate cases, in
both the relativistic and nonrelativistic limits. Since the
nucleons are non-relativistic in the situations of practical in-
terest, we consider this particular case in some detail.

In the nonrelativistic limit, the above expressions reduce
to

v0p
2 5

np

4mp
, ~2.31!

Ap~V→0,Q!5
2mp

4p2 I p1O~Q2!, ~2.32!

Cp~V,Q→0!5
2v0p

2

2mp
1O~V2!,

Cp~V→0,Q!5
21

8p2 I p1O~Q2!, ~2.33!

Dp~V,Q→0!5
2v0p

2

2mp
2 1O~V2!,

Dp~V→0,Q!5
21

8p2mp
I p1O~Q2!, ~2.34!

wherenp is the total proton number density

np52E d3P
~2p!3 f p , ~2.35!

and

I p5E
0

`

dPf p . ~2.36!

The integral in Eq.~2.36! cannot be evaluated without know-
ing the distribution function and, therefore, it depends on
whether the background is degenerate or nondegenerate. For
these two limiting cases we obtain

I p5H p2
bnp

mp
~nondegenerate!,

~3p2np!1/3 ~degenerate!.

~2.37!

The corresponding formulas for the neutron background are
easily obtained from the above by making obvious substitu-
tions. In this manner, via Eqs.~2.20! and ~2.24!, we deter-
mine the nucleon contribution to the neutrino electromag-
netic vertex either in the static (V→0) or in the long
wavelength (Q→0) limit. It is useful for some applications
to consider the case in which neitherV norQ is zero, while
still satisfying V,Q!mn,p , which is a good approximation
for most situations of interest. The results for this case are
derived in Appendix A.

III. DISCUSSION AND APPLICATIONS

The total matter background contribution to thenng ver-
tex is given by

Gm5~TTRmn1TLQmn1TPPmn!gnL, ~3.1!

where

TX5TX
~p!1TX

~n!1TX
~e! ~X5T,L,P!. ~3.2!

The electron termTmn
(e) can be decomposed as in Eq.~2.15!,

with

4We take this opportunity to mention the following typographical
errors in Ref.@2#: the second formula forC in Eq. ~2.24! of Ref. @2#
contains the factorf 21 f 1 when it should bef 22 f 1 , and the
left-hand side of Eq.~2.28! of the same reference should beB
instead ofB/ ṽ 2. The electron and positron distribution functions
are denoted byf e, ē in the present paper.
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TT
~e!52&eGFS A2

B

ṽ 2D H ae11 ~ne!,

ae ~nm,t!,

TL
~e!54&eGF

B

ṽ 2 H ae11 ~ne!,

ae ~nm,t!,

TP
~e!524&eGFQCH be21 ~ne!,

be ~nm,t!,
~3.3!

The additional contribution for the electron neutrino is due to
the charged-current diagram, which is absent fornm,t . The
functionsA,B,C are given by expressions analogous to those
in Eqs. ~2.22! and ~2.25!, with f n,p being replaced by the
electron distributionf e . In the nonrelativistic limit they re-
duce to formulas analogous to those given in Eqs.~2.32! and
~2.33!.

Since the electrons are relativistic in many situations of
interest, it is also useful to summarize the corresponding re-
sults in that limit. Thus, for a relativistic electron gas,

v0
25

1

6p2 E
0

`

dPP~ f e1 f ē!, ~3.4!

and

A~0,Q!523v0
21O~Q2!,

C~0,Q!52
1

8p2 ~ I e2I ē!1O~Q2!,

C~V,0!52
1

24p2 ~ I e2I ē!1O~V2!, ~3.5!

where

I e, ē5E
0

`

dPf e, ē . ~3.6!

The remaining integrals in Eqs.~3.4! and ~3.6! cannot be
performed without specifying the distribution function. In
the limiting cases of a degenerate or nondegenerate gas, they
are given by

v0
25H b

12
~ne1nē! ~nondegenerate!,

1

3 S 3

8p D 2/3

~ne
2/31nē

2/3! ~degenerate!,

~3.7!

I e, ē5H p2b2

2
ne, ē ~nondegenerate!,

~3p2ne, ē!1/3 ~degenerate!.

~3.8!

It should also be remembered that, for either case,

A~V,Q→0!523v0
21
Q2v0

2

V2 1O~V2!,

B~V,Q→0!5
Q2v0

2

V2 ,

B~V→0,Q!5A~V→0,Q!1O~Q2!. ~3.9!

The application of these and the formulas obtained in Sec. II
depend on the specific environment under consideration as
well as the kinematic regime involved. Let us then consider
some particular situations of interest.

From the explicit formulas given in Eq.~2.34!, or more
generally in Eq.~A13!, it is immediately seen that for values
of q such thatV,Q!mn,p , the functionDn,p is smaller than
Ap andBp by a factor of order 1/mn,p

2 . Therefore, neglecting
such terms in Eqs.~2.20! and~2.24! it follows that Eq.~3.2!
reduces to

TT52&ueuGFapS Ap2
Bp

ṽ 2D1TT
~e! ,

TL54&ueuGFap

Bp

ṽ 2 1TL
~e! , ~3.10!

with the TT,L
(e) given in Eq.~3.3!. The relative importance of

the electron and the proton contributions in these formulas
depend on the kinematic regime involved as well as the con-
ditions of the proton and electron gases.

For illustrative purposes, suppose that the physical situa-
tion is such thatq satisfies

V,Q!me , ~3.11!

in which case Eq.~A1! is satisfied also. If both the electron
and proton gases are nondegenerate and nonrelativistic, then
from Eqs.~2.26! and ~2.31! and the corresponding formulas
for the electron we have

Ap~V,0!52
3np

4mp
,

A~V,0!52
3ne

4me
, ~3.12!

with analogous results forBp and B. Thus in this case the
proton contribution toTT,L(V,0) is negligible. On the other
hand, Eqs.~2.32! and~2.37!, and the analogous formulas for
the electron, imply

Bp~0,Q!5Ap~0,Q!52
1

4
bnp ,

B~0,Q!5A~0,Q!52
1

4
bne , ~3.13!

so that the proton and the electron contributions toTT,L(0,Q)
are comparable. This last conclusion remains valid even if
the electrons are relativistic. In fact, in that case, their con-
tribution is also given by the result given in Eq.~3.13!, as
can be easily checked using Eq.~3.7! in Eqs.~3.9! and~3.5!.
More possibilities can obviously arise if we consider other
realistic situations, such as a nondegenerate proton gas but a
degenerate electron gas, or a kinematic regime in which
V,Q!mp is still satisfied but Eq.~3.11! is not.
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IV. NEUTRINO DISPERSION RELATION
IN A MAGNETIC FIELD

In the presence of a static, uniform magnetic fieldBW , the
nng modifies the neutrino dispersion relation in the medium
according to

vk5ukW u1b2ck̂•BW , ~4.1!

wherekW is the momentum vector of the neutrino andb gives
the standard Wolfenstein term in the dispersion relation
@8,17#. As shown in Ref.@2#,

c5FTP~0,Q!

Q G
Q→0

. ~4.2!

Substituting the formulas forTP
(n,p,e) given in Eqs.~2.20!,

~2.24!, and~3.3!, this yields

c524&GFFbp~ ueu12mpkp!Cp~0,Q→0!

1bn2mpknCn~0,Q→0!7
1

2
eC~0,Q→0!G , ~4.3!

where the upper~lower! sign holds forne (nmt) and we have

put be5 1
2 . If the electron gas is degenerate, then

C~0,Q→0!52
1

8 S 3ne

p4 D 1/3

, ~4.4!

for both the relativistic and nonrelativistic cases. If the physi-
cal situation is such that the proton gas also is degenerate,
then a similar formula holds forCp(0,Q→0) ~with ne→np!
and, in a neutral system, the electron and the normal proton
contributions tend to cancel forne in Eq. ~4.3!. In fact, if the
effect of the anomalous nucleon magnetic moment as well as
the renormalization of the nucleon axial-vector coupling are
neglected, thenc in Eq. ~4.3! would be zero forne . How-
ever, the cancellation is not complete once those two effects
are taken into account, independently of whether the proton
gas is degenerate or nondegenerate. This can have important
consequences in the context of the possible explanation of
the pulsar birth velocities in terms of resonant oscillations
between active and sterile neutrinos@15#, as recently pointed
out in Refs.@12,16#. Equation~4.3!, together with the formu-
las for Cp,n(0,Q) and C(0,Q) given in Sec. II @e.g., Eq.
~2.28! and the corresponding formulas forCn and C# give
the magnetic contribution to the neutrino dispersion relation
for fairly general conditions of the matter background. Under
some circumstances, it may be more appropriate to use other
methods to determine this contribution, such as those em-
ployed in Refs.@11–13#.

V. CONCLUSIONS

In this work we have extended the previous calculations
of the electromagnetic properties of neutrinos in a back-
ground of electrons, by including the contribution from the
nucleon background. In particular, we have taken into ac-
count the anomalous electromagnetic and neutral-current

couplings of the nucleons. The calculations are based on the
one-loop formula for the neutrino electromagnetic vertex us-
ing thermal field theory methods and, apart from the limita-
tions of the one-loop approximation, the formulas obtained
for the electromagnetic vertex are valid for general condi-
tions of the nucleon gas, degenerate or nondegenerate,
whether it is relativistic or not. In the context of neutrino
oscillations in the presence of a magnetic field, we applied
the formulas to determine the additional corrections to the
neutrino index of refraction in those situations in which the
nucleons are not necessarily described by one of the ideal-
ized limiting cases, and instead a more detailed evaluation of
the effects is sought. We have already mentioned that the
formulas for the electromagnetic vertex have been the basis
for studying other physical processes of neutrinos, such as
the induced radiative decay and Cherenkov radiation. Here
we have shown that the importance of the nucleon contribu-
tion to the functionsTT,L,P , relative to the electron contri-
bution, depends on the particular physical conditions of the
situation under consideration. For example, we indicated
how different the results can be depending on whether the
nucleon and electron gases are degenerate or not, or whether
the kinematic regime is such thatV,Q@me or V,Q!me
while still maintainingV,Q!mp , among other possibilities.
The formulas that we have given in this paper form a useful
starting point to study in more detail the radiative neutrino
process in such astrophysical settings as the supernova and
the early universe, or perhaps in the context of laboratory
experiments involving the coherent neutrino electromagnetic
conversion in crystals that has been discussed recently@18#.
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APPENDIX A: THE LIMIT OF SMALL
PHOTON MOMENTUM

Here we consider the functionsAf ,Bf ,Cf ,D f for values
of the photon momentum satisfying

V,Q!mp,n , ~A1!

but for the case that neitherV nor Q is necessarily zero.
Consider first the formula forBp given in Eq.~2.25!. It can
be written as

Bp5
1

2 E d3P
~2p!3 ~ f p1 f p̄!F2E12V1vWP•QW

q212p•q
1~q→2q!G ,

~A2!

wherevWP[PW /E is the velocity of the background particles.
We now make the change of variable

PW→PW 2
1

2
QW . ~A3!

After expanding the numerator and denominator in the terms
inside the brackets and neglecting terms of orderQ2/E2,

56 5903NUCLEON CONTRIBUTION TO THE NEUTRINO . . .



Bp5
1

2 E d3P
~2p!3 F f p„PW 2 ~1/2!QW …1 f p̄„PW 2 ~1/2!QW …

V2vWP•QW

1~q→2q!G . ~A4!

Finally, expanding the distribution functions in powers ofQW ,
we obtain

Bp52
1

2 E d3P
~2p!3

QW •¹P~ f p1 f p̄!

V2vWP•QW
, ~A5!

where ¹P is the gradient operator with respect to the mo-

mentum variablePW . Since the distribution functions depend
on P only throughE, Eq. ~A5! is equivalent to

Bp52
1

2 E d3P
~2p!3 S vWP•QW

V2vWP•QW
D d

dE ~ f p1 f p̄!. ~A6!

In the limit V→0, this formula reduces to the result
quoted in Eq.~2.27!. It is also straightforward to show, after
performing an integration by parts, that it reproduces the
result quoted in Eq.~2.27! for the limitQ→0. However, it is
important to remark that Eq.~A6! holds for any arbitrary
values ofV,Q, subject only to the condition in Eq.~A1!.

We can proceed in similar fashion with the functionAp ,
although the algebra is somewhat more involved in this case.

Thus, making the change of variablePW→PW 2 1
2QW in the for-

mula for Ap given in Eq. ~2.25!, then expanding the inte-
grand in powers ofQ/E and neglecting terms of orderQ2/E2

we obtain

Ap5Bp1E d3P
~2p!3 FQW •¹P~ f p1 f p̄!~PW •vWP!

2~EV2PW •QW !
2

~32vP
2 !

2E

3~ f p1 f p̄!G . ~A7!

With the help of the identity

~PW •vWP!QW •¹P5~PW •QW !vWP•¹P

5@EV2~EV2PW •QW !#vWP•¹P , ~A8!

Eq. ~A7! reduces to

Ap5Bp1
V

2 E d3P
~2p!3

vWP•¹P~ f p1 f p̄!

V2vWP•QW
. ~A9!

In Eq. ~A9! we have omitted the terms

E d3P
~2p!3 F2

1

2
vWP•¹P~ f p1 f p̄!2

~32vP
2 !

2E ~ f p1 f p̄!G
~A10!

which, using the fact that

¹P•vWP5
32vP

2

E ,

reduce ~apart from a factor of21/2! to the integral of

¹P•@vWP( f p1 f p̄)# and therefore integrate to zero. Equation
~A9! can be written in the equivalent form

Ap5Bp1
V

2 E d3P
~2p!3 S vP

2

V2vWP•QW
D d

dE ~ f p1 f p̄!.

~A11!

It is immediately seen that Eq.~A9!, or equivalently~A11!,
reduces to the results quoted in Eq.~2.26! whenQ50 or
V50. However, Eqs.~A9! and~A11! hold also when neither
Q nor V is zero. Whenq is such thatV,Q!me , the func-
tions A,B for the electron are given by similar formulas.

Proceeding in similar form for the functionsCn,p and
Dn,p we obtain

Cn,p5
q2

2Q2 E d3P
~2p!32E

QW •vWP

V2QW •vWP

d

dE ~ f n,p2 f n̄ , p̄!,

~A12!

Dn,p52
1

2 E d3P
~2p!3

1

2E2 F QW •vWP

V2QW •vWP

d

dE ~ f n,p1 f n̄ , p̄!

1
~ f n,p1 f n̄ , p̄!

E G . ~A13!

Once more, Eqs.~A12! and~A13! reduce to the formulas in
Eqs.~2.28! and~2.30! in the indicated limits. We stress also
that, in deriving Eqs.~A6!, ~A11!, ~A12!, and ~A13!, we
have made no assumption regarding the conditions of the
background gas. Thus, they are valid for degenerate and non-
degenerate gases, in the relativistic as well the nonrelativistic
limits.

APPENDIX B: ELECTROMAGNETIC
AND NEUTRAL-CURRENT COUPLINGS

OF THE NUCLEONS

The couplings of the interaction Lagrangian that are rel-
evant to our calculation are given by

L int52ueuAm~2ēgme1Jm
~em!!2gZZm@n̄LgnL

1ēgm~ae1beg5!e1Jm
~Z!#, ~B1!

where, in the standard modelae andbe are given in Eq.~2.7!
while, in terms of the quark fields,

Jm
~em!5q̄gm

t3

2
q1

1

6
q̄gmq, ~B2!

Jm
~Z!5q̄gm

t3

2
q2q̄gmg5

t3

2
q22 sin2 uWJm

~em! . ~B3!

We have introduced the notation
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q5S u
dD , ~B4!

andt1,2,3 stand for the Pauli matrices.
For each nucleonf 5p,n, the electromagnetic couplings

are defined by writing the matrix element

^ f ~p8!uJm
~em!~0!u f ~p!&5ū~p8!FF1 f

~em!gm

2 i
F2 f

~em!

2m
smnqnGu~p!, ~B5!

whereq5p2p8, m is the nucleon mass andu(p) is a Dirac
spinor. The form factors are functions ofq2 and are such that

F1p
~em!~0!51, ~B6!

F1n
~em!~0!50,

F2p
~em!~0!51.79,

F2n
~em!~0!521.71.

In similar fashion, and using the SU~2! symmetry property of
the matrix elements, we can write

K f ~p8!Uq̄gm

t3

2
qU f ~p!L 5I 3 f ū~p8!FF1

~3!gm

2 i
F2

~3!

2m
smnqnGu~p!,

K f ~p8!Uq̄gmg5

t3

2
qU f ~p!L 5I 3 f ū~p8!FA

~3!gmg5u~p!,

~B7!

where I 3p52I 3n51/2. SinceFA
(3) is the same form factor

that appears in the charged current matrix element~which is
responsible, for example, forb decay!

gA[FA
~3!~0!51.26. ~B8!

Further, from the SU~2! decomposition ofJm
(em) given in Eq.

~B2!, it follows that

F1
~3!5F1p

~em!2F1n
~em! ,

F2
~3!5F2p

~em!2F2n
~em! , ~B9!

so that, in particular,

F1
~3!~0!51,

F2
~3!~0!53.7. ~B10!

In principle, the form factors that enter the calculation of
the diagram shown in Fig. 1 are not the on-shell form factors
we have introduced above, but their off-shell counterpart.
However, since we are considering situations in which the

photon momentumq is small, we will use their value at
q→0, for which the formulas given above are valid. The
matrix element of the neutral-current between nucleon states
can then be written in the form

^ f ~p8!uJm
~Z!~0!u f ~p!&5ū~p8! j f m

~Z!~q!u~p!, ~B11!

where

j f m
~Z!~q!5afgm1bfgmg52 i

cf

2m
smnqn. ~B12!

From the decomposition ofJm
(Z) given in Eq.~B3! together

with Eqs.~B5! and ~B7!, it follows that

af5I 3 f22 sin2uWQf ,

bf52I 3 fgA ,

cf5I 3 f@F2p
~em!~0!2F2n

~em!~0!#22 sin2uWF2 f
~em!~0!,

~B13!

whereQp51,Qn50 and, as remarked above, the limitq→0
is implied. Similar considerations apply to the electromag-
netic vertices adopted in Eq.~2.10!.

In Eq. ~2.9! we have neglected thecf term in the nucleon
neutral-current couplings because it appears to be unimpor-
tant in the situations of interest. However, for completeness,
we summarize below the results of including such term in
the calculation.

The effect of including thecf term in the definition of the
nucleon neutral-current vertex is taken into account by mak-
ing the substitution

gm~af1bfg5!→ j f m
~Z!~2q! ~B14!

in Eq. ~2.9!. The end result of making that substitution is that
Tmn

(p,n) can still be decomposed as in Eq.~2.15! but, instead of
the formulas in Eqs.~2.20! and ~2.24! for TT,L

(p,n) , we have
instead

TT
~p!52&GFapH ueuS Ap2

Bp

ṽ 2D12mpkpapq2DpJ
1&GFcpF2ueuq2Dp1

kp

mp
S Ap82

Bp8

ṽ 2D G ,

TL
~p!54&GFapH ueu

Bp

ṽ 2 1mpkpapq2DpJ
12&GFcpF ueuq2Dp1

kp

mp

Bp8

ṽ 2G , ~B15!

and
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TT
~n!5&GFmnknF4anq2Dn1

cn

mn
2 S An82

Bn8

ṽ 2D G ,

TL
~n!52&GFmnknF2anq2Dn1

cn

mn
2

Bn8

ṽ 2G . ~B16!

The functionsAf8 ,Bf8 are given by

Af85q2S 1

2
Af13mf

2D f D ,

Bf852q2Bf2Q2S 1

2
Af1mf

2D f D . ~B17!

As expected, the additional terms associated with thecf
neutral-current couplings are accompanied by additional fac-
tors ofQ or V and therefore are not important in the limit of
small photon momentum that we have considered.
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