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We calculate the leptonic decay rates of the3S1 and the3D1 states of charmonium including their relativ-
istic and single gluonic radiative corrections within the framework of a nonsingular potential model proposed
by Gupta, Johnson, Repko, and Suchyta. We find that the relativistic corrections and the single gluonic
radiative corrections are both significant. But single gluonic radiative corrections are significantly smaller than
the well-known static limit results. Since we work in a formalism where the quarks are assumed to be on mass
shell, there is some ambiguity about treating the infrared divergent part of the radiative correction terms.
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PACS number~s!: 14.40.Gx, 13.20.Gd

I. INTRODUCTION

An important feature of the3S1 and 3D1 states of char-
monium is the decay of these states into lepton pairs such as
e1e2. Since these states have the sameJPC quantum num-
bers as the photon, they can directly annihilate into a virtual
photon which can then produce the lepton pair. For3S1
states the width has been found to be@1#

G~n3S1→e1e2!5
16pa2eQ

2

M2
uc~0!u2S 12

16as

3p D ~1!

if one includes a single gluonic radiative correction at the
annihilation vertex of the quarks. The wave functionc is
obtained by solving the eigenvalue problem, perhaps through
a variational method or some other approach, for a potential
which yields good results for the spectra. The result of Eq.
~1! above is valid only to lowest order in̂p&/m where^p& is
the average magnitude of the quark~or antiquark! momen-
tum in the charmonium rest frame.

In Eq. ~1! the term involving 16as/3p is the static limit
~zero quark momentum limit! of the contribution due to the
exchange of a transverse gluon between the quark and anti-
quark, and except for an additional factor of 4/3 arising from
color it is exactly the same term obtained many years ago in
positronium when studying, in electrodynamics, lowest order
radiative corrections to the annihilation graph. In that work
~see, e.g., Schwinger@2#! one must remove from the one
photon vertex correction ‘‘the Coulomb piece’’ since it is
already accounted for in the wave functionc and it is crucial
to avoid double counting. Likewise, in the present problem
we must also remove from the vertex correction all terms
which are already accounted for inc(0). We will return to
the specifics of this later. A second important point concern-
ing this radiative correction is that it has been calculated in
an approximate way@2# by assuming the bound quarks to be

on-shell particles of respective three momentapW and 2pW ,
and subsequently integrating over the momentum distribu-
tion. A more rigorous approach would utilize the Bethe-
Salpeter formalism.

Charmonium is at best only an approximately nonrelativ-
istic system with (v2)/c2 roughly 0.2 or 0.25. From this we
conclude that relativistic corrections to Eq.~1! could be im-
portant both for the leading term and for the radiative cor-
rection. In fact, a naive extension of the assumptions leading
to Eq. ~1!, when applied to3D1 states, leads to zero width
for the leptonic annihilation decay. On the other hand, the
c9(3770), which is supposed to be predominantly the 13D1

state, has a measured leptonic decay rate given by width 0.26
keV. Thus relativistic corrections are clearly necessary forD
state decays and they may also be important forS states.
Moreover, since forS states the suppression factor is very
substantial, any deviations from Eq.~1! are likely to be im-
portant in the consideration of QCD subprocesses in which
such radiative corrections are relevant.

Another issue, briefly mentioned earlier, is thatc(0) al-
ready contains a good part of thecc̄ interaction and conse-
quently one must avoid overcounting. For example, one of
the more successful recent potential models, namely, the
nonsingular potential model of Gupta, Johnson, Repko, and
Suchyta ~GJRS! @3# includes in its potential the instanta-
neous one gluon exchange in the Coulomb gauge~Coulomb
and transverse term!. Thusc(0) is obtained for this potential
and consequently the radiative correction should arise only
as a vertex correction reflecting only the difference between
one gluon exchange and the instantaneous Coulomb gauge
one gluon exchange. It is not obvious that this will produce
the factor 16as/3p since that factor normally emerges from
the difference between one gluon and Coulomb pieces. We
will later show that in the static limit there is, in fact, no
double counting, but we stress that this is true only in this
limit.
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In this paper we calculate the decay rate of charmonium
into lepton pairs, including the residual single gluon radiative
correction, without making any static approximations. How-
ever, to the extent that this is possible, we treat the quarks as
on shell particles in order to simplify the calculation of ver-
tex functions and avoid the use of the Bethe-Salpeter formal-
ism. We find that relativistic corrections and radiative cor-
rections are significant. To proceed we first calculate the
probability amplitude for the on-mass-shell quark and anti-
quark with three momentapW and 2pW to annihilate into a
virtual photon which then creates an electron positron pair
~see Fig. 1!. We use wave functions obtained from the po-
tential model of Ref.@3#, and thus the amplitude is obtained
by integrating over the momentum space wave function. It
should be mentioned that relativistic effects are included in
this model and the wave functions are determined variation-
ally. The only term dropped and treated as a perturbation to
the energy is the tensor interaction. The inclusion of instan-
taneous Coulomb and Breit interactions inc(0) implies their
removal from the vertex correction. Thus, as illustrated in
Fig. 2, we must calculate the difference shown. Although the
present calculation contains relativistic effects we show that
the static limit agrees with previous results. An important
feature of the nonstatic calculation is the appearance of an
infrared difficulty caused by placing the quarks on shell. We
use several different methods to cope with this singularity
and compare the results.

The format for the rest of the paper is as follows. In Sec.
II, following the work of Ref.@4#, we set up the problem and
show that the leptonic decay rates of the3S1 and the 3D1
states can be expressed entirely in terms of the decay con-
stantsf V,n3S1

and f V,n3D1
which define the matrix element of

the electromagnetic current between the vacuum and the vec-
tor meson state. We then derive expressions for these decay
constants in terms of integrals involving form factorsG1 and
G2 and appropriate wave functions. In Sec. III we calculate
G1 and G2 . In Sec. IV we carry out numerical integration
over wave functions, presenting results for 13S1 , 23S1 , and

13D1 states using several treatments to deal with the infrared
problem previously noted. In Sec. V we discuss our results
and make some concluding remarks.

II. FORMULATION OF THE PROBLEM

We consider the quantum states of charmonium which
have the same quantum numbers as the photon. In spectro-
scopic notation this could be the3S1 or the 3D1 state of
charmonium. In these states the charmonium acts as a vector
meson, withJPC5122, the sameJPC of the photon. We
assume that the vector meson decays into a virtual photon
with q25M2 which then decays into a lepton-antilepton pair.
M is the mass of the vector meson of the charmonium state
3S1 or 3D1 . Quite generally, theS matrix element for the
above process, when the vector meson is at rest, can be writ-
ten as

Sf i5~2p!4d4~k2p12p2!
1

A2MV
A m

E1V
A m

E2V
M,

~2!

whereM, Lorentz invariant Feynman amplitude, can be
written as

M5^0uJem
m ~0!uV;l&

3^e2~p1!l 1~p2!uJem
n ~0!u0&A2MVAE1V

m
AE2V

m

3
~2 i !gmn

q21 i«
~e2!, ~3!

wherem is the lepton mass. We assume box normalization in
a box of volumeV with periodic boundary conditions. In
general, the covariant matrix element of the electromagnetic
current between the vacuum state and the vector meson at
rest can be written as

A2MV^0uJem
m ~0!uV;l&5 f VM2«m~l!, ~4!

where «m(l) is the polarization four vector of the vector
meson. The constantf V is called the decay constant. Also,

AE1V

m
AE2V

m
^l 2~r 1p1!l 1~r 2p2!uJem

n ~0!u0&

5Ūr 1
~p1!gnVr 2

~p2!. ~5!

FIG. 1. Simplest graph for annihilation of quark and antiquark
into an electron positron pair.

FIG. 2. ~a! Gluonic radiative correction to simplest graph.~b!
Subtraction of the Coulomb gauge instantaneous part of the gluonic
correction.
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Substituting Eqs.~2!, ~3!, and~4! into Eq. ~1! and doing the
usual calculations, we get for the leptonic decay rate of the
vector meson the following result:

GV→l 1l 25
4

3
pa2f V

2M S 11
2ml

2

M2 DA12
4ml

2

M2
. ~6!

When the lepton is the electron we can write the above for-
mula to an excellent approximation as

GV→e1e25
4

3
pa2f V

2M . ~7!

The problem in all theoretical calculations is to calculatef V
according to some model. Here we assume that the vector
meson state in question is the bound state of ac quark and its
antiquark bound by some potential in then3S1 or then3D1
state. In the quark model these states are represented by the
state vectors

un3S1 ,l&5
V

~2p!3E d3p
~2p!3/2

AV
fnS~p!Y00~u,f!(

rs
K 1

2
r ;

1

2
sU1l L upW r ;2pW s&, ~8!

un3D1 ,l&5
V

~2p!3E d3p(
mn

~2p!3/2

AV
fnD~p!Y2m~u,f!^1lu2m;1n&(

rs
K 1

2
r ;

1

2
sU1n L upW r ;2pW s&. ~9!

In Eqs.~8! and ~9!, l is the polarization index of the vector
meson andfnS(p) and fnD(p) are the momentum space
radial wave functions of then3S1 and then3D1 states. Also
the state vectorupW r ;2pW s& represents an on mass shell quark-
antiquark state with three momenta1pW and2pW and the spin
indicesr ands, respectively.

In Eqs.~8! and~9! if the state vectors are normalized to 1,
the radial wave functions are also normalized to 1. That is,

E
0

`

ufns~p!u2p2dp51

and

E
0

`

ufnD~p!u2p2dp51. ~10!

In this model, the problem of calculatingf V reduces to the
problem of calculating the matrix element

^0uJm
em(0)upW r ;2pW s&. In general this matrix element can be

written as

^0uJm
em~0!upW r ;2pW s&5A m

EpV
A m

EpV
eVVs~2pW !LmUr~pW !.

~11!

In Eq. ~11! the constanteV is a color factor which for char-
monium withec512/3e takes the value

eV5
2

A3
. ~12!

We will later calculateLm in Eq. ~11! using the diagrams of
Figs. 1 and 2. In Fig. 2 the quark and the antiquark exchange
a gluon before they combine to annihilate into a photon.
Now we parameterize the matrix element of Eq.~11! the way
it enters into the calculation off V as

(
rs

K 1

2
r ;

1

2
sU1n L V̄s~2pW !LmUr ~pW !

5@G1~p!«m~n!1G2~p!~«•p!pm#, ~13!

whereG1 andG2 are two form factors introduced by Berg-
ström, Snellman, and Tengstrand@4#. One can invert Eq.~13!
and express the form factorsG1 andG2 as

G15
1

2(n
(
ms

K 1

2
r ;

1

2
sU1n L V̄s~2pW !F«W * ~n!•LW 2

1

upW u2
~pW •LW !@«W * ~n!•pW #GUr~pW !, ~14!

G25
1

2upW u2(n
(
rs

^rsu1n&V̄s~2pW !F«W * ~n!•LW 2
3

upW u2
~pW •LW !@«W * ~n!•pW #GUr~pW !. ~15!
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We will use Eqs.~14! and~15! to calculateG1 andG2 once
the LW ’s are determined from Feynman diagrams of Figs. 1
and 2.

We will now express the decay constantsf V,nS and f V,nD
in terms of the form factorsG1 andG2 and the momentum
space radial wave function for then3S1 and then3D1 states.
First of all we notice from Eq.~4! that

f VM25
1

3
A2MV(

l
^0u«W * ~l!•JWem~0!uV,l&. ~16!

Using Eqs.~8!, ~9!, ~11!, and~13! and using explicit expres-
sions for«W * (l) and«W (n) for l,n511,0,21 in Eq.~15! we
obtain

f V,n3S1
5

m

p
M 23/2eVE

0

`p2dp

Ep
fnS~p!FG12

1

3
p2G2G5

m

p
M 23/2eVI nS, ~17!

f V,n3D1
5

A2

3

m

p
M 23/2eVE

0

`p2dp

Ep
fnD~p!G2~p!p25

A2

3

m

M
M 22/3eVI nD . ~18!

III. CALCULATION OF THE FORM FACTORS G1

AND G2 TO FIRST ORDER IN as

We now proceed to calculate the form factors with wave
functions which are eigenfunctions of the Hamiltonian which
includes the Coulomb, as well as the instantaneous part of
the transverse one-gluon exchange potentials.

Once we have wave functions for the3S1 and the 3D1
states, the calculation of the leptonic decay constant of the
vector mesonsf V in Eqs.~17! and~18! reduces to a calcula-
tion of the form factorsG1 andG2 . We can calculate these
form factorsG1 and G2 from Eqs. ~14! and ~15! once we
know the vertex functionsLm of Eq. ~11!. We will calculate
the vertex functionLm to the first order inas . If we assume
that the quark and the antiquark are on mass shell, the only
Feynman diagrams we have to consider are those in Figs. 1
and 2. The virtual one gluon insertions on the external lines
lead to the usual wave function renormalization of the
charge. The wave functions of the GJRS model@3# already
contain the contribution of the instantaneous part of the one-
gluon exchange. In the Coulomb gauge, this means that the
potential includes the Coulomb part of the one-gluon ex-
change and the instantaneous part of the transverse one-
gluon exchange. So we have to subtract the part ofLm which
corresponds to these exchanges. Let us call the part ofLm to
be subtracted asLm,1g

(0) .
Let us call the form factors obtained from Eqs.~14! and

~15! with Lm calculated from Figs. 1 and 2~a! asG18 andG28 .
In other words,G18 and G28 includes the contributions from
the basic vertex part of Fig. 1~a! and the full contribution
from the one-gluon exchange diagram of Fig. 2~a!. The form
factors obtained from Eqs.~14! and ~15! where Lm is re-
placed byLm,1g

(0) of Fig. 2~b! are calledG1,1g
(0) andG2,1g

(0) . Then
the form factorsG1 andG2 to be substituted in Eqs.~17! and
~18! for the calculation of the decay constantsf V,n3S1

and

f V,n3D1
are given by

G1~p!5G18~p!2G1,1g
~0! ~p!,

G2~p!5G28~p!2G2,1g
~0! ~p!. ~19!

Next we turn to the calculation ofGi8 andGi ,1g
(0) ( i 51,2).

From Lorentz covariance and current conservation alone, the
vertex function originating from the diagrams of Figs. 1 and
2~a! can be written as

V̄s~p2!LmUr~p1!5V̄s~p2!FF1~q2!gm

2
2 i

2m

~4/3!as

2p
F2~q2!smnqnGUr~p1!,

~20a!

where

q5p11p2 , ~20b!

p15~Ep ,1pW ! andp25~Ep ,2pW !

andq25~p11p2!254M2. ~20c!

Equation~20a! is the counterpart of the corresponding equa-
tion in QED with a5 e2/4p replaced by 4/3as in QCD to
take into account the color factor 4/3. The form factor is
multiplied by 4/3as for convenience sinceF2 is nonzero
only because of the Feynman diagram in Fig. 2~a!. Notice
the minus sign in front ofF2 . This was introduced deliber-
ately to conform with Schwinger’s convention. After the
charge renormalization, the vertex function originating from
Fig. 2~b! is finite and Schwinger@2# has given expressions
for the form factorsF1 andF2 in QED. We can use the same
expressions in QCD provided we replace the fine-structure
constant,a by 4/3as . In contrast to the static result of
Schwinger in which the infrared piece drops out, we cannot
ignore the infrared divergent part in the expressions since
these remain in the nonstatic limit and are cut off by the
‘‘true’’ off-shell nature of the quarks. Later we will present
calculations using several procedures to deal with this infra-
red ambiguity which would not be present in a fully rigorous
bound state formalism, based on the Bethe-Salpeter equation.
Schwinger’s expressions@2# are given in terms of the rela-
tivistic velocity v5p/Ep . They are
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F1~v !5124/3
as

2pH ~11v2!

2v F2p21
1

2S ln
~12v !

2 D 2

2
1

2S ln
~11v !

2 D 2

22 ln2 ln
~11v !

~12v !
14l ~v !

2l ~v2!2l S 11v
2 D1l S 12v

2 D G12 ln 2

1F2 ln
2m

m
22GF ~11v2!

2v
ln

~11v !

~12v !
21G

1
1

2v
ln

~11v !

~12v !J , ~21a!

where

l ~x!5E
0

xdt

t
lnS 1

~12t ! D5 (
n51

`
xn

n2
; 0,x,1, ~21b!

F2~v !52
~12v2!

2v
ln

~11v !

~12v !
. ~22!

Substituting Eq.~20a! in Eqs.~14! and~15! and doing then,
r , ands summation by the well known trace method@5#

(
rs

K 1

2
r ;

1

2
sU1n L V̄s~p2!OUr~p1!

5
1

4A2m~Ep1m!
Tr$~p” 22m!

3O~p” 11m!~11g0!«” ~n!% ~23!

we obtain

G18~p!52
A2Ep

m S F1~v !1
4/3as

2p
F2~v ! D , ~24!

G28~p!52
A2

m~Ep1m!FF1~v !2
~4/3as!

2p
F2~v !

Ep

m G .
~25!

Next we turn to the more difficult part of calculatingG1,1g
(0)

and G2,1g
(0) . The contributions of the Feynman diagrams in

Figs. 1 and 2~a! can be written as

Gm~p1 ,p2!5 ieV̄~p2!LmU~p1!, ~26!

where

Lm~p1 ,p2!5gm1~4p!
4

3
asL1g

m ~p1 ,p2!, ~27!

where L1g
m is the regularized one-gluon vertex correction.

The unregularized vertex correction is calledL1g8
m and it is

given by

L1g8
m~p1 ,p2!52

i

~2p!4E d4k

k21 i«
ga

1

~2p” 22k”2m1 i«!
gm

1

~p” 12k”2m1 i«!
ga . ~28!

The integral in Eq.~28! is both ultraviolet and infrared divergent. The finite part of it was given by Eqs.~21! and ~22!. The
instantaneous part ofL1g8

m(p1 ,p2), given by Fig. 2~b!, which is already contained in the QCD potential of the GJRS model, is
calledL (0)1g8m and is given by

L~0!,1g8m ~p1 ,p2!5
21

~2p!4 F E d4k

~2ukW u21 i«!
ga

1

~2p” 22k”2m1 i«!
gm

1

~p” 12k”2m1 i e!
ga

1E d4k

~2ukW u21 i«!
~gW • k̂!

1

~2p” 22k”2m1 i«!
gm

1

~p” 12k”2m1 i«!
~gW • k̂!G . ~29!

To obtain the instantaneous part of Eq.~28! we replaced
k25k0

22ukW u2 in the photon propagator by2ukW u2. Equation
~29! is the instantaneous part in the Coulomb gauge. By sub-
tracting the contribution of Eq.~29!, we are trying to include
only the retarded part of the transverse one-gluon exchange.
In order to calculate what is included in the potential we also
have to consider the appropriate parts of the fermion propa-
gators. We write

SF~p!5
i

~p” 2m1 i«!
5H L1~pW !

p02Ep1 i«
1

L2~pW !

p01Ep2 i«
J ig0,

~30!

whereL1(pW ) and L2(pW ) are the positive and the negative
energy projection operators:

L1~pW !5
Ep1~aW •pW 1bm!

2Ep
5

~p” 1m!

2Ep
g0, ~31!

L2~pW !5
Ep2~aW •pW 1bm!

2Ep
5g0

~p” 2m!

2Ep
. ~32!

In the quark propagator involvingp1 we only include theL1

part and in the antiquark propagator involvingp2 we only
include theL2 part. We thus obtain
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L~0!,1g8m ~p1 ,p2!51
i

~2p!4E d3kdk0

~ ukW u22 i«!F gaL2~2pW 22kW !

~2p2
02k01E2pW 22kW2 i«!

g0gmL1~pW 12kW !

~p1
02k02EpW 12kW1 i«!

g0ga

1
gW • k̂L2~2pW 22kW !

~2p2
02k01E2pW 22kW2 i e!

g0gmL1~pW 12kW !

~p1
02k02EpW 12kW1 i«!

g0ḡ• k̂G . ~33!

Integration overk0 is rather trivial now. Integrating overk0 from 2` to 1` and closing the contour in the lower half plane
of the complexk0 plane, we will only pick up the pole atk05E2pW 12kW2p2

02 i«. By Cauchy’s theorem this integral is (22p i )

times the residue at that pole. We thus get, after changing the integration variable fromkW to pW 85pW 2kW ,

L~0!,1g8m ~p1 ,p2!5
21

~2p!3E d3p8

upW 2pW 8u2
@gaL2~pW 18!g0gmL1~pW 18!g0ga1gW • k̂L2~pW 18!g0gmL1~pW 18!g0gW • k̂#/2~Ep2Ep81 i«!.

~34!

The integral in Eq.~34! is ultraviolet divergent. We make it ultraviolet convergent by subtracting the value of the same vertex
function at the unphysical valueq250 whereq5p11p2 . One can easily see that

L~0!,1g8m ~p1 ,p2!uq2505
11

~2p!3E d3p8

upW 2pW 8u2FgaL2~pW 8!g0gmL1~pW 8!g0ga1gW • k̂L2~pW 8!g0gmL1~pW 8!g0~gW • k̂!

2Ep8
G . ~35!

In Eqs.~33!–~35!,

k̂5
~pW 2pW 8!

upW 2pW 8u
. ~36!

The subtraction atq250 is equivalent to the usual renormal-
ization of the electric charge. After subtraction, we get the
physically relevant part which is finite:

L~0!1g
m 5L~0!1g8m 2L~0!1g8m uq250

52
1

~2p!3E d3p8

upW 2pW 8u2
@gaL2~pW 8!g0gm

3L1~pW 8!g0ga1gW • k̂L2~pW 8!g0gm

3L1~pW 8!g0gW • k̂#Ep/2Ep8~Ep2Ep81 i«!.

~37!

We can write the right-hand side of Eq.~37! as the sum of
two parts, one corresponding to thega...ga piece in Eq.
~37!, which we will call L (0),1g

m,covar or the covariant piece, and

the other corresponding to thegW • k̂...gW • k̂ piece in Eq.~37!
which we will call L (0),1g

mL or the longitudinal piece. That is,

L~0!,1g
m 5L~0!,1g

m,covar2L~0!,1g
mL , ~38!

where

L~0!,1g
m,covar52

1

~2p!3E d3p8

upW 2pW 8u2

3
gaL2~pW 8!g0gmL1~pW 8!g0gaEp

2Ep8~Ep2Ep81 i«!
, ~39!

L~0!,1g
mL 52

1

~2p!3E d3p8

upW 2pW 8u2

3
gW • k̂L2~pW 8!g0gmL1~pW 8!g0gW • k̂Ep

2Ep8~Ep2Ep81 i«!
. ~40!

Substituting the spatial part of the four vectors in Eqs.~39!
and ~40! into Eqs. ~14! and ~15!, we get Gi ,1g

(0)covar and
Gi ,1g

(0)L( i 51,2). The trueG1 and G2 to be substituted into
Eqs. ~17! and ~18! to get the decay constantsf V,S and f V,D
for the S andD states

Gi~p!5Gj82Gi ,1g
~0!covar1Gi ,1g

~0!L ~ i 51,2!. ~41!

The sum over the spin indicesr ands in Eqs.~14! and~15!
can be carried out by the trace theorem of Eq.~23!. We thus
get,
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G1,1g
~0!covar,L52

4p

3
asEp

1

16A2m~Ep1m!
E d3p8

~2p!3

1

Ep8
3

~Ep82Ep2 i«!

1

upW 2pW 8u2
(

n
FTcovar,L

„pW ,pW 8,r 5e* ~n!…

2
1

p2
•«W * ~n!•pW Tcovar~pW ,pW 8,r 5p!G ~42!

G2,1g
~0!covar,L52

1

p2S 4p

3
asDEp

1

16A2m~Ep1m!
E d3p8

~2p!3

1

Ep8
3

~Ep82Ep2 i«!

1

upW 2pW 8u2(n
FTcovar,L

„pW ,pW 8,r 5«* ~n!…

2
3

p2
«W * ~n!•pW Tcovar,L~pW ,pW 8,r 5p!G , ~43!

where in Eqs.~42! and ~43! Gi ,1g
(0),covar,L can beGi ,1g

(0)covar or
Gi ,1g

(0)L depending on whether the traceT is Tcovar or TL. The
tracesTcovar andTL are given by the following expressions:

Tcovar~pW .pW 8,r !5Tr$~p” 22m!@22p” 8r”p” 912m2r”18mpW 8•rW#

3~p” 11m!~11g0!«” ~n!%, ~44!

TL~pW ,pW 8,r !52Tr$~p” 22m!s”~p” 92m!r”~p” 81m!s”~p” 11m!

3~11g0!«” ~n!%. ~45!

In Eqs.~44! and~45! the different four vectors are defined as
follows:

p1 5 Ep ,1pW ,

p2 5 Ep ,2pW ,

p8 5 Ep8,1pW 8,

p9 5 Ep8,2pW 8,

r 5 „0,«W * ~n!… or ~0,pW !,

s 5 ~0,k̂!, ~46!

wherek̂ is the unit three vector,

k̂5
~pW 2pW 8!

upW 2pW 8u
. ~47!

After computing the traces and summing over the polariza-
tion indexn and using the result

(
n

«a* ~Q,n!«b~Q,n!52gab1
QaQb

M2
, ~48!

where Q and M are the four momentum vectors and the
mass of the vector meson, we obtain

(
n

FTcovar
„pW ,pW 8,r 5«* ~n!…2

1

p2
«W * ~n!•pW Tcovar~pW ,pW 8,r 5p!G5232Ep~Ep1m!~Ep8

2
1m2!264Ep8~Ep1m!pW •pW 8

2
32

p2
Ep~Ep1m!~pW •pW 8!2, ~49!

(
n

FTcovar
„pW ,pW 8,r 5«* ~n!…2

3

p2
«W * ~n!•pW Tcovar~pW ,pW 8,r 5p!G52

32

p2
~Ep1m!~Ep12m!~pW •pW 8!2

264~Ep1m!~Ep822m!pW •pW 8232~Ep1m!@~Ep22m!Ep8
2

1Epm2#, ~50!
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(
n

FTL
„pW ,pW 8,r 5«* ~n!…2

1

p2
«W * ~n!•pW TL~pW ,pW 8,r 5p!G

5216Ep~Ep1m!p82116
Ep~Ep1m!

p2
~pW •pW 8!2132

Ep8~Ep1m!

p2
~Ep8Ep2m2!~ k̂•pW !2

132Ep~Ep1m!~ k̂•pW 8!2132Ep8~Ep1m!~ k̂•pW !~ k̂•pW 8!232
Ep~Ep1m!

p2
~ k̂•pW !~ k̂•pW 8!~pW •pW 8!, ~51!

(
n

FTL
„pW ,pW 8,r 5«* ~n!…2

3

p2
«W * ~n!•pW TL~pW ,pW 8,r 5p!G

516
~Ep12m!~Ep1m!

p2
~pW •pW 8!2232m~Ep1m!~pW •pW 8!232

~Ep12m!~Ep1m!

p2
~pW •pW 8!~ k̂•pW !~ k̂•pW 8!

18p2~Ep81m!218~Ep1m!2~m212Ep8m23Ep8
2

!132Ep~Ep1m!~ k̂•pW 8!2

132Ep8~Ep1m!~ k̂•pW !~ k̂•pW 8!132
Ep8~Ep1m!

p2 @EpEp82m212m~Ep82Ep!#~ k̂•pW !2 ~52!

In Eqs. ~51! and ~52!, p2 and p82 are the squares of the
magnitudes of the three momenta. After substituting Eqs.
~49!–~52! into Eqs. ~42! and ~43!, the angular integrations
~the integration over the directions of the three vectorpW 8)
can be performed easily. After substituting Eqs.~49!–~52!
into Eqs.~42! and ~43! and then doing the angular integra-
tions, we find that in general any of the form factorGi ,1g

(0)covar

or Gi ,1g
(0)L( i 51,2) takes the following form:

Gi ,1g
~0!covar,L5S as

3p D SA2Ep

m D E
0

` p82dp8

~p822p22 i«!
Fi

covar,L~p,p8!,

~53!

whereFi
covar,L(p,p8) is a real function of the variablesp and

p8. Writing

1

p822p22 i«
5PS 1

p822p2
D 1 ipd~p822p2! ~54!

we notice that the imaginary part ofGi ,1g
(0)covar,L does not con-

tribute to the leptonic decay rate to first order inas . So we
only have to concern ourselves with the principal part of the
integral in Eq.~53! since we intend to calculate the leptonic
decay rate to first order inas . After evaluating the well
defined principal part and changing the integration variable
to x such that (p8/p)5x for p8,p and (p/p8)5x for
p8.p, we finally find the following integral expressions for
Gi ,1g

(0)covar andGi ,1g
(0)L( i 51,2):

G1,1g
~0!covar52

as

3pSA2Ep

m D H 1

vE0

1 dx

~12x2!
ln

~11x!

~12x!F ~A11u2/x21A11u2!
~21u2/x2!

x~11u2/x2!3/2
2

x~A11u2x21A11u2!

~11u2x2!3/2

3~21u2x2!G12uE
0

1 dx

~12x2!
F ~11x2!

2x
ln

~11x!

~12x!
21GF ~A11u21A11u2/x2!

x2~11u2/x2!
2x2

~A11u21A11u2x2!

~11u2x2!
G

1S Ep

2mDuE
0

1dx~11x2!

~12x2!
F ~11x2!

2x
ln

~11x!

~12x!
21GF 1

x4

~A11u21A11u2/x2!

~11u2/x2!3/2
2

x2~A11u21A11u2x2!

~11u2x2!3/2 G J ,

~55!

wherev is the relativistic velocity andu is the nonrelativistic velocity.

v5
p

Ep
, ~56!

u5
p

m
, ~57!
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G2,g
~0!covar52

1

p2S as

3p D SA2Ep

m D F FuE
0

1 dx

~12x2!
ln

~11x!

~12x! F1

x

~A11u2/x21A11u2!

~11u2/x2!3/2 H 2

~11A11u2!
1

~A11u222!

x2 J
2x

~A11u2x21A11u2!

~11u2x2!3/2 H 2

~11A11u2!
1~A11u222!x2J G12uE

0

1 dx

~12x2!
F ~11x2!

2x
ln

~11x!

~12x!
21G

3F ~A11u21A11u2/x2!~A11u2/x222!

x2~11u2/x2!3/2
2x2

~A11u21A11u2x2!~A11u2x222!

~11u2x2!3/2 G
1

~Ep12m!

2m
uE

0

1

dx
~11x2!

~12x2!
F ~11x2!

2x
ln

~11x!

~12x!
21G

3F 1

x4

~A11u21A11u2/x2!

~11u2/x2!3/2
2x2

~A11u21A11u2x2!

~11u2x2!3/2 G G , ~58!

G1,1g
~0!L52S as

6p D SA2Ep

m D F FEp

m
uE

0

1 dx

~12x2!
ln

~12x!

~11x!Fx3~A11u21A11u2x2!

~11u2x2!3/2
2

1

x3

~A11u21A11u2/x2!

~11u2/x2!3/2 G
1

1

2

Ep

m
uE

0

1

dx
~11x2!

~12x2!
F ~11x2!

2x
ln

~11x!

~12x!
21GFx2

~A11u21A11u2x2!

~11u2x2!3/2
2

1

x4

1

~11u2/x2!3/2
~A11u2

1A11u2/x2!G12
1

uE0

1 dx

~12x2!
Fx2

~A11u21A11u2x2!~A11u2x2A11u221!

~11u2x2!

2
1

x2

~A11u21A11u2/x2!~A11u2/x2A11u221!

~11u2/x2!
G

12
1

uE0

1dx

2x
ln

~11x!

~12x! Fx2~A11u21A11u2x2!~A11u2x2A11u221!

~11u2x2!

1
1

x2

~A11u21A11u2/x2!~A11u2/x2A11u221!

~11u2/x2!
G12S Ep

m DuH E
0

1 dx

~12x2!
Fx2~A11u21A11u2x2!

~11u2x2!3/2

2
1

x2

~A11u21A11u2/x2!

~11u2/x2!3/2 G1E
0

1dx

2x
ln

~12x!

~11x!Fx2~A11u21A11u2x2!

~11u2x2!3/2
1

1

x2

~A11u21A11u2/x2!

~11u2/x2!3/2 G
2

1

2S Ep

m DuE
0

1 dx

~12x2!
F ~11x2!1

~12x2!2

2x
ln

~12x!

~11x!GFx2
~A11u21A11u2x2!

~11u2x2!3/2
2

1

x4

~A11u21A11u2/x2!

~11u2/x2!3/2 G G ,

~59!

and

G2,1g
~0!L52S as

6p D SA2Ep

m D 1

p2 F F1

uE0

1 dx

~12x2!
ln

~11x!

~12x! Fx
~A11u21A11u2x2!

~11u2x2!3/2
$A11u2~A11u2x211!222~11u2x2!

3~A11u211!%2
1

x

~A11u21A11u2/x2!

~11u2/x2!3/2
$A11u2~A11u2/x211!222~11u2/x2!~A11u211!%G

12uE
0

1 dx

~12x2!
F11

~11x2!

2x
ln

~12x!

~11x!G H x2
~A11u21A11u2x2!

~11u2x2!3/2
2

1

x2

~A11u21A11u2/x2!

~11u2/x2!3/2 J
1

~Ep12m!

2m
uE

0

1

dx
~11x2!

~12x2!
F ~11x2!

2x
ln

~11x!

~12x!
21GF x2

~11u2x2!3/2
~A11u21A11u2x2!
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2
1

x4

1

~11u2/x2!3/2
~A11u21A11u2/x2! G2

~Ep12m!

2m
uE

0

1 dx

~12x2!
F~11x2!1

~12x2!2

2x
ln

~12x!

~11x!G
3Fx2~A11u21A11u2x2!

~11u2x2!3/2
2

1

x4

~A11u21A11u2/x2!

~11u2/x2!3/2
12S Ep

m DuH E
0

1 dx

~12x2!
Fx2~A11u21A11u2x2!

~11u2x2!3/2

2
1

x2

~A11u21A11u2/x2!

~11u2/x2!3/2 G1E
0

1dx

2x
ln

~12x!

~11x!Fx2~A11u21A11u2x2!

~11u2x2!3/2
1

1

x2

~A11u21A11u2/x2!

~11u2/x2!3/2 G J
12

1

u H H E
0

1 dx

~12x2!
Fx2~A11u21A11u2x2!

~11u2x2!
$A11u2A11u2x22112~A11u2x22A11u2!%

2
1

x2

~A11u21A11u2/x2!

~11u2/x2!
$A11u2A11u2/x22112~A11u2/x22A11u2!% G

1E
0

1dx

2x
ln

~11x!

~12x! Fx2~A11u21A11u2x2!

~11u2x2!
$A11u2A11u2x22112~A11u2x22A11u2!%

1
1

x2

~A11u21A11u2/x2!

~11u2/x2!
$A11u2A11u2/x22112~A11u2/x22A11u2!% G J J G . ~60!

Substituting Eqs.~55!–~60! into Eq. ~41!, we get the form
factorsG1 andG2 to be substituted into Eqs.~17! and ~18!
which give the decay constantsf V,n3S1

and f V,n3D1
. Once we

have the decay constantsf V , the leptonic decay rates can be
obtained from Eqs.~6! or ~7!. It is interesting to see how our
results lead to the leptonic decay rate in the static approxi-
mation that is in the limit whenu or v go to zero. Using Eqs.
~21! and~22! in Eqs.~24! and~25! and taking the limitv→0,
we find that

limv→0G18~p!52A2
Ep

m F11
pas

3v
2

8as

3p G , ~61!

limv→0p2G28~p!50, ~62!

limv,u→0G1,1g
~0!covar

52
as

3pSA2Ep

m D 1

vE0

1 dx

~12x2!
ln

~11x!

~12x!
4S 1

x
2xD

52
as

3pSA2Ep

m D 4

vE0

1dx

x
ln

~11x!

~12x!

52
as

3pSA2Ep

m D 4

v
p2

4
2SA2Ep

m Dpas

3v
, ~63!

limv,u→0p2G2,1g
~0!covar50, ~64!

limu→0G1,1g
~0!L50, ~65!

limu→0p2G2,1g
~0!L50. ~66!

It is worth pointing out that the terms multiplying21/u in
the expressions forG1,1g

(0)L and G2,1g
(0)L vanish since the inte-

grand is proportional tou2 for small u.
Substituting Eqs.~61!–~66! we find

limv→0FG1~p!2
1

3
p2G2~p!G52

A2Ep

m F12
8as

3p G .
~67!

Substituting Eq.~67! into Eq. ~17! we obtain the follow-
ing result for the decay constantf V,n3S1

in the static limit:

f V,n3S1
5

m

p
M 23/2

2

A3
E

0

`p2dp

Ep
fns~p!S 2A2Ep

m D S 12
8as

3p D
52

m

p
M 23/2

2

A3

A2

m S 12
8as

3p D E
0

`

p2dpfns~p!

~68!

52
2A2

pA3
M 23/2S 12

8as

3p DA2pc~rW50!

52
4

A3
M 23/2S 12

8as

3p Dc~0!. ~69!

Substituting Eq.~68! into Eq. ~6! we reproduce the decay
rate to first order inas .

As we pointed out earlier the static approximation can
lead to significant errors in charmonium since (v2/c2) is of
the order of 0.2– 0.3 in this system. Also in the static ap-
proximation the decay rate for theD state is exactly zero
whereas experimentally it is quite significant, about 0.26
keV. So we intend to use the fullG1 and G2 given by our
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equations to calculate the leptonic decay constantf V for the
13S1 , 23S1, and 3D1 states of charmonium. We will do that
in Sec. IV using the wave functions of the GJRS model@3#.

IV. NUMERICAL RESULTS FOR 1 3S1 , 2 3S1 ,
and 1 3D1 STATES

Equation~69! gives the decay constant for theS states in
the static limit. As shown earlier, this can be derived by
letting v→0 in the expressions for the form factors. This
leads to the suppression factor 128as/3p in the decay con-
stant when lowest order radiative corrections inas are cal-
culated and also leads to Eq.~1! for the width.

One purpose of the present work was to investigate the
relaxation of the above approximation by integrating over
the bound state wave functions. A rigorous calculation re-
quires a systematic bound state treatment with off-shell
quarks and is very difficult. Instead of pursuing this ap-
proach, we elected to use on-shell vertex functions, which
unfortunately have an infrared divergence. This divergence
disappears in thev→0 limit, as can be seen in Eq.~21a!
above, since ln 2m/m multiplies a function which goes to
zero in this limit. However, for finitev this term does not
vanish and we need some rationale for its evaluation.

We have carried out calculations using the wave functions
obtained from the model of GJRS. These wave functions are
provided in the Appendix. To do the calculations we need to
chose an IR cutoffm. We have done this in two ways to see
how sensitive the result is to the choice ofm. The first choice
utilizes m5mp , wheremp5*0

`p2dp•puf(p)u2 wheref(p)
is the normalized radial wave function for the state. In the
second choice we usem5m0 where m05@(2(M /2)2

1m2)/M # is an invariant measure of the extent to which the
quarks are off their mass shell. The results of our numerical
integrations for the integralsI nS andI nD appearing in Eqs. 17
and 18 are as follows:

Values of integralsI nS and I nD

State

Infrared
mass
~GeV! Static limit Current result

1S mp50.855
21.08 S 12

8as

3p D 21.00710.459as

m050.800
21.08 S 12

8as

3p D 21.00710.474as

2S mp50.878
20.88 S 12

8as

3p D 20.80310.408as

m050.402
20.88 S 12

8as

3p D 20.80310.621as

1D mp51.024 0 0.17820.0148as

m050.351 0 0.17820.075as

Numerical estimate of the leptonic decay rates and
their comparison with experiment

as50.313, mc52.208 GeV,M1 3S1
53.097 GeV,

M2 3S1
53.685 GeV,M1 3D1

53.77 GeV.

We used the GJRS model@3#:

State

Value of
the infrared
parameter~m!

Predicted
decay
rate ~keV!

Experiment:
~keV!

1 3S1 m50.855(mp) 11.42
(5.2660.37)

m50.800 11.30

2 3S1 m50.878 4.93
(2.1460.21)

m50.402 4.00

1 3D1 m51.024 0.069
(0.2660.04)

m50.351 0.055

V. CONCLUDING REMARKS

The results quoted in the previous section have several
problems. First, they do not agree with experiment. Second,
they also seem to depend on the infrared cutoff parameterm.
We are forced to introduce the cutoff parameterm because of
the infrared divergent term in the Schwinger’s form factor
F1 . The origin of this divergence is due to the fact that we
took the quark and the antiquark on mass shell. If we were
dealing with the leptonic decay of a free quark-antiquark
pair, this infrared divergence in the decay rate to orderas
will be canceled by the infrared divergence due to the emis-
sion or absorption of soft gluons by the quark and the anti-
quark. But here we have a color singlet quark-antiquark
bound state where the quark and the antiquark are truly off
mass shell. If we work within the framework of a truly
bound state formalism such as Bethe-Salpeter, the quark and
the antiquark will be off mass shell and we will not encoun-
ter any infrared divergences. We believe that the result of a
Bethe-Salpeter calculation will be similar to our result except
that in the infrared divergent logarithmic term, instead of the
fictitious gluon massm we will have some parameter which
has the dimensions of mass, and which indicates how far the
quark or the antiquark is off mass shell in the bound state. In
the absence of a more complete calculation involving the
bound state, we can only make an educated guess what this
parameter will be. It is not surprising that the result is some-
what sensitive to this parameter. But we do not think the
qualitative nature of our results will change in a more com-
plete calculation.

The essential conclusions which we draw from our results
are the following. For the 1S and the 2S states the relativistic
and the one-gluon radiative corrections lead to a suppression
of the width significantly less than that predicted in the static
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limit. In the original work of Gupta, Johnson, Repko, and
Suchyta~GJRS! @3#, they were able to get reasonable agree-
ment with experiment only because the radiative correction
in the static limit was quite large, of the order of 60%. But as
we have argued the static limit is not a reasonable approxi-
mation for charmonium. When we take into account the rela-
tivistic corrections, the suppression factor is reduced to ten to
fifteen percent and we have disagreement with experiment
for the leptonic decay rates in the GJRS model@3#. We do
not believe the ambiguity in the infrared cutoff parameter
will change this important conclusion and consequently for
this reason we have not yet attempted to carry out the very
difficult calculation which would lead to a result independent
of an IR cutoff. For the 1D state we find that the inclusion of
the relativistic and the radiative corrections produce a result
different from the static nonrelativistic result of zero. A small
mixing of 2 3S1 state with the 13D1 state would give good
agreement with experiment forG@c9(3770)→e1e2#, but as
yet a realistic mechanism to produce sufficient mixing has
not been found.

We should also mention that there are other approaches
that have been applied to calculating the leptonic decay rates
of quarkonium bound states, including their radiative correc-
tions. For example, Durand and Durand@6#, Dentamaro and
Goldstein @7#, and Duke and Kimel@8# have used the so-
called ‘‘duality relation’’ and time-reversal invariance to re-
late G„(qq̄)bound→e1e2

… to s„e1e2→(qq̄) free…. The cross-
sections„e1e2→(qq̄) free… has been calculated to orderas

2

before @9#. Infrared divergences in this calculation are can-
celed by the infrared divergences ins„e1e2→(qq̄) free 1
real soft gluon…. The observeds„e1e2→(qq̄) free… is the sum
of s„e1e2→(qq̄) free… and s„e1e2→(qq̄) free 1 real soft
gluon…. Such a procedure would not apply in our formalism.
The duality relation@6# has only been derived in the JWKB
approximation@6# for the cross sections without radiative
corrections. It is not clear how it will apply when gluonic
radiative corrections are also included.

The above-mentioned authors@6–8# have used other po-
tential models@10#. The main reason they are able to get
better agreement with experiment is that their radiative cor-
rections of orderas are much larger~of the order of forty
percent! and their potential models give slightly smaller val-
ues for the leptonic decay rates without the radiative correc-

tions. The radiative correction of orderas
2 obtained by Den-

tamaro and Goldstein@7# has the opposite sign to that of the
order as correction. So inclusion of such higher-order cor-
rections is not likely to improve our results either.
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APPENDIX

We have calculated the momentum space radial wave
functions for the GJRS@3# model using a variational ap-
proach. This model, which has a rather large charmed quark
mass of 2.208 GeV produces excellent spectra in close agree-
ment with experiment, as well as good results for radiative
decays. The wave functions are

f3S1
~p!5 (

n51

10

anA2

p
R2

G~n11!

p
~cosu!n11 sin@~n11!u#

for 1 3S1 and 23S1 states

f13D1
~p!5 (

n51

8

anA2

p
R2

G~n13!

p
~cosu!n13

3sin@~n13!u#H 11
3

n11
1

3

pR~n11!~n12!

3F ~n13!cos@~n13!u#

sin@~n13!u#
2

1

RpG J for 1 3D1 .

In this expression thean are coefficients given below and
G(n11)5n!, tanu5pR. The values ofR areR1 3S1

50.43

GeV21, R2 3S1
50.82 GeV21, R1 3D1

50.46 GeV21.

The an are:

1 3S1 2 3S1 1 3D1

a1 1.34684183060 1.10370094192 0.03104816149

a2 1.47543941745 1.30702688329 0.09780895082

a3 0.30738386571 20.72789877235 0.00001099680

a4 0.07174239176 20.07715517807 0.00452835801

a5 0.01038137911 20.00525212711 20.00008205698

a6 0.00118180693 0.00031138962 0.00016043162

a7 0.00007979753 0.00021966952 20.00000626100

a8 20.00001003665 0.00004228280 0.00000028000

a9 0.00000060216 20.00000789835

a10 0.00000008718 0.00000028197
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