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Leptonic decay rates of charmoniumS and D states
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We calculate the leptonic decay rates of i and the®D; states of charmonium including their relativ-
istic and single gluonic radiative corrections within the framework of a nonsingular potential model proposed
by Gupta, Johnson, Repko, and Suchyta. We find that the relativistic corrections and the single gluonic
radiative corrections are both significant. But single gluonic radiative corrections are significantly smaller than
the well-known static limit results. Since we work in a formalism where the quarks are assumed to be on mass
shell, there is some ambiguity about treating the infrared divergent part of the radiative correction terms.
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PACS numbd(s): 14.40.Gx, 13.20.Gd

. INTRODUCTION on-shell particles of respective three momeptand — p,
. 5 and subsequently integrating over the momentum distribu-
An important feature of thé'S, and °D; states of char- tion. A more rigorous approach would utilize the Bethe-
monium is the decay of these states into lepton pairs such agy|peter formalism.

e"e”. Since these states have the sa]ﬁg, quantum num- Charmonium is at best only an approximately nonrelativ-
bers as the_ photon, they can directly annihilate into a virtualggic system with ¢2)/c? roughly 0.2 or 0.25. From this we
photon which can then produce the lepton pair. F&  conclide that relativistic corrections to Hd) could be im-
states the width has been found to[i portant both for the leading term and for the radiative cor-
rection. In fact, a naive extension of the assumptions leading
to Eq. (1), when applied to°D; states, leads to zero width
for the leptonic annihilation decay. On the other hand, the
/" (3770), which is supposed to be predominantly tRB 1
state, has a measured leptonic decay rate given by width 0.26

16ma2e? 16a
3 -y Q 2l 4 S
I'(n°S;—e’e )——M2 |4(0)] (1 377) (1)

if one includes a single gluonic radiative correction at the s :
annihilation vertex of the quarks. The wave functignis keV. Thus relativistic corrections are cl_early necessarnXor
obtained by solving the eigenvalue problem, perhaps throughi@te decays and they may also be importantScstates.

a variational method or some other approach, for a potentidy!oreover, since foiS states the suppression factor is very
which yields good results for the spectra. The result of EqSubstantial, any deviations from E.) are likely to be im- -

(1) above is valid only to lowest order ifp)/m where(p) is ~ Portant in the consideration of QCD subprocesses in which
the average magnitude of the quadt antiquark momen-  such radiative corrections are relevant.

tum in the charmonium rest frame. Another issue, briefly mentioned earlier, is thgt0) al-

In Eqg. (1) the term involving 1&./3 is the static limit ready contains a good part of tlee interaction and conse-
(zero quark momentum limitof the contribution due to the quently one must avoid overcounting. For example, one of
exchange of a transverse gluon between the quark and anthe more successful recent potential models, namely, the
quark, and except for an additional factor of 4/3 arising fromnonsingular potential model of Gupta, Johnson, Repko, and
color it is exactly the same term obtained many years ago iSuchyta(GJRS [3] includes in its potential the instanta-
positronium when studying, in electrodynamics, lowest ordeneous one gluon exchange in the Coulomb gai@milomb
radiative corrections to the annihilation graph. In that workand transverse teprmThus(0) is obtained for this potential
(see, e.g., Schwingd2]) one must remove from the one and consequently the radiative correction should arise only
photon vertex correction “the Coulomb piece” since it is as a vertex correction reflecting only the difference between
already accounted for in the wave functigrand it is crucial one gluon exchange and the instantaneous Coulomb gauge
to avoid double counting. Likewise, in the present problemone gluon exchange. It is not obvious that this will produce
we must also remove from the vertex correction all termshe factor 16/37 since that factor normally emerges from
which are already accounted for i#(0). Wewill return to  the difference between one gluon and Coulomb pieces. We
the specifics of this later. A second important point concernwill later show that in the static limit there is, in fact, no
ing this radiative correction is that it has been calculated irdouble counting, but we stress that this is true only in this
an approximate waf2] by assuming the bound quarks to be limit.
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13D, states using several treatments to deal with the infrared
problem previously noted. In Sec. V we discuss our results
and make some concluding remarks.

II. FORMULATION OF THE PROBLEM

We consider the quantum states of charmonium which
have the same quantum numbers as the photon. In spectro-
_ - _ scopic notation this could be thés, or the 3D, state of
~ FIG. 1. Simplest graph for annihilation of quark and antiquark charmonium. In these states the charmonium acts as a vector
into an electron positron pair. meson, withJ°¢=1"", the sameJPC of the photon. We

assume that the vector meson decays into a virtual photon

In this paper we calculate the decay rate of charmoniunwith g?=M?2 which then decays into a lepton-antilepton pair.
into lepton pairs, including the residual single gluon radiativeM is the mass of the vector meson of the charmonium state
correction, without making any static approximations. How-3s, or 3D;. Quite generally, theS matrix element for the
ever, to the extent that this is possible, we treat the quarks aghove process, when the vector meson is at rest, can be writ-
on shell particles in order to simplify the calculation of ver- ten as
tex functions and avoid the use of the Bethe-Salpeter formal-
ism. We find that relativistic corrections and radiative cor-

rections are significant. To proceed we first calculate the 1 m m
probability amplitude for the on-mass-shell quark and anti- =(2m)45% k—p.— \/ \/—M,
Sfl ( ) ( P1 pZ)\/m E1V E2V
V)

qguark with three momenté and —5 to annihilate into a

virtual photon which then creates an electron positron pair

(see Fig. 1L We use wave functions obtained from the po-

tential model of Ref[3], and thus the amplitude is obtained where M, Lorentz invariant Feynman amplitude, can be
by integrating over the momentum space wave function. Iwritten as

should be mentioned that relativistic effects are included in

this model and the wave functions are determined variation-

ally. The only term dropped and treated as a perturbation to M={0|J~ (0)|V;\)

the energy is the tensor interaction. The inclusion of instan-

taneous Coulomb and Breit interactions/i0) implies their

removal from the vertex correction. Thus, as illustrated in x(e(p1)/ *(po)| 32 (0)|0>\/m /ﬂ /@
Fig. 2, we must calculate the difference shown. Although the em m m
present calculation contains relativistic effects we show that

the static limit agrees with previous results. An important (—i)g

feature of the nonstatic calculation is the appearance of an X ——+(e?), ®)
infrared difficulty caused by placing the quarks on shell. We q*+ie

use several different methods to cope with this singularity

and compare the results. . o
The format for the rest of the paper is as follows. In Sec.Wherem Is the lepton mass. We assume box norme_xhzaﬂon n

Il, following the work of Ref.[4], we set up the problem and a box of volume\/_ with pe_rlodlc boundary conditions. In .
general, the covariant matrix element of the electromagnetic

show that the leptonic decay rates of 1§, and the’D; urrent between the vacuum state and the vector meson at
states can be expressed entirely in terms of the decay cofi: ;
rest can be written as

stantsf\,vnssl andf\,ynsDl which define the matrix element of
the electromagnetic current between the vacuum and the vec-
tor meson state. We then derive expressions for these decay
[ " . _ 2

constants in terms of integrals involving form fact@g and 2MV(O|JE(0)[ViN) =fyMZs¥(\), (4)
G, and appropriate wave functions. In Sec. Il we calculate
G, andG,. In Sec. IV we carry out numerical integration

. . 3
over wave functions, presenting results fdiS1, 2°S;, and  \yhere g*(\) is the polarization four vector of the vector

meson. The constarft, is called the decay constant. Also,

[E.V [EV - ,
m T</ (r1p1)7 " (r2p2)[Jem(0)0)

FIG. 2. (a) Gluonic radiative correction to simplest gragh)

Subtraction of the Coulomb gauge instantaneous part of the gluonic — Y
correction. =U; (PD) YV, (P2). (5)
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Substituting Eqs(2), (3), and(4) into Eg. (1) and doing the
usual calculations, we get for the leptonic decay rate of the Iy ete-= §7Ta2f\2/’\/|- (7)
vector meson the following result:
5 The problem in all theoretical calculations is to calculfje
1+ ﬂ) 1— 4m/ ©) according to some model. Here we assume that the vector
M2 M2 meson state in question is the bound state ®faark and its
antiquark bound by some potential in théS,; or then®D,
When the lepton is the electron we can write the above forstate. In the quark model these states are represented by the
mula to an excellent approximation as state vectors

4
FV*}/+/—:§7Ta2f\2/M

)3/2

v (2 11
|n381,)\>= (ZW)SJ d3p \/v ¢nS(p)YOO(61¢)§S: <§rrzs

1)\>|f>r;—f)s>, (8

3/2 1
=2 T gnp e b6 2m 1) S <—r 5 1v>|pr ~ps). ©

J—

In®Dy \)= (2m)?

In Egs.(8) and(9), \ is the polarization index of the vector In Eq. (11) the constangy is a color factor which for char-
meson andg,g(p) and ¢,p(p) are the momentum space monium withe,= + 2/3e takes the value
radial wave functions of the3S, and then®D, states. Also
the state vecto|r§r ;= 55) represents an on mass shell quark-
antiquark state with three momen%aﬁ and—ﬁ and the spin
indicesr ands, respectively.

In Egs.(8) and(9) if the state vectors are normalized to 1,
the radial wave functions are also normalized to 1. That is,

o We will later calculateA , in Eq. (11) using the diagrams of
f | ns(P)[?pdp=1 Figs. 1 and 2. In Fig. 2 the quark and the antiquark exchange
0 a gluon before they combine to annihilate into a photon.

(12

|
ol

Now we parameterize the matrix element of Erfl) the way

and
it enters into the calculation df, as
fo | no(P)?p?dp=1. (10
In this model, the problem of calculatinfy, reduces to the %‘, <§r; 55 1v>VS(—p)AMUr(p)
problem of  calculating the matrix  element
(0]35™(0)|pr; —ps). In general this matrix element can be =[Gi(p)e(v)+Ga(p)(e-P)PL], (13
written as

- - m m - - whereG,; andG, are two form factors introduced by Berg-
em . — _ . 1 2
(0[3ET(O)[pr;—ps) =/ EV V EpVeVVS( PALMP)- strem, Sneliman, and Tengstrafd. One can invert Eq13)

(11 and express the form facto®, andG, as

1 1 1 . . . - -
Ci=32 2 <§r,§ > V(- p){ 5P ML ()Pl Up), (14
— . . 3 . . . - -
PR Ey > <rs|1v>vs<—p>{s*<v>~A—W(p-A)[s*(v)-p] U (p). (1)
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We will use Egs(14) and(15) to calculateG; andG, once , 1 -, R
the A’s are determined from Feynman diagrams of Figs. 1 fuM :§V2MV; (0]e* () Jen(0)[V.N).  (16)
and 2.

We will now express the decay constafi{s,s andfy np _ _ o
in terms of the form factor§; andG, and the momentum Using Eqs.(8), (9), (11), and(13) and using explicit expres-
space radial wave function for th€S; and then®D; states. sions fore* (\) ande(v) for \,v=+1,0—1 in Eq.(15) we
First of all we notice from Eq(4) that obtain

2
m *p<dp 1 m
_M-a L oa My
fvns = —M Zevjo E, ¢ns(p)[Gl 3P Gz} M %yl ns, 17)
V2m =p?dp vam
fvnio, =3 — 3/29va E ¢nD(p)GZ(p)p2:? M “Peylnp - (18)
p

lll. CALCULATION OF THE FORM FACTORS G, Next we turn to the calculation d&/ and Gi(%(i =1,2).

AND G, TO FIRST ORDER IN From Lorentz covariance and current conservation alone, the

We now proceed to calculate the form factors with waveVertex function_ originating from the diagrams of Figs. 1 and
2(a) can be written as

functions which are eigenfunctions of the Hamiltonian which
includes the Coulomb, as well as the instantaneous part of

the transverse one-gluon exchange potentials. = 2y 4 u
Once we have wave functions for th, and the D, Va2 A, Ur(P)=VelRo)| Fala)y
states, the calculation of the leptonic decay constant of the —i (43«
vector mesong,, in Egs.(17) and(18) reduces to a calcula- - *Fo(gd)a*q,|U,(py),
tion of the form factorgs; andG,. We can calculate these 2m 2w
form factorsG,; and G, from Eqgs.(14) and (15 once we (209

know the vertex functiona , of Eq. (11). We will calculate
the vertex functiom , to the first order inxg. If we assume  where
that the quark and the antiquark are on mass shell, the only

Feynman diagrams we have to consider are those in Figs. 1 g=p1tp2, (20D
and 2. The virtual one gluon insertions on the external lines

lead to the usual wave function renormalization of the p1=(Ep,+ 5) andp,=(E,,— 5)

charge. The wave functions of the GJRS mddlalready

contain the contribution of the instantaneous part of the one- andq2= (py+ p2)2=4M 2 (200

gluon exchange. In the Coulomb gauge, this means that the

potential includes. the Coulomb part of the one-gluon eXEquation(203 is the counterpart of the corresponding equa-
change and the instantaneous part of the transverse ongsn in QED with a= e?/4 replaced by 4/a in QCD to
gluon exchange. So we have to subtract the paft pivhich  take into account the color factor 4/3. The form factor is
corresponds to these exchanges. Let us call the pat},dd  yitiplied by 4/3v for convenience sincé, is nonzero

be subtracted a8 0} . _ only because of the Feynman diagram in Fi¢g)2Notice
Let us call the form factors obtained from E,CﬁM) ar,1d the minus sign in front of,. This was introduced deliber-
(15) with A# calculated from Figs. 1 and@ asG; andG;.  ately to conform with Schwinger's convention. After the

In other words,G; and G, includes the contributions from charge renormalization, the vertex function originating from
the basic vertex part of Fig.(d and the full contribution Fig. 2(b) is finite and Schwingef2] has given expressions
from the one-gluon exchange diagram of Figg)2The form  for the form factors=; andF, in QED. We can use the same
factors obtained from Eqg14) and (15 where A, is re-  expressions in QCD provided we replace the fine-structure
placed byA (%), of Fig. 2(b) are called5{%; andG);. Then  constant,a by 4/3as. In contrast to the static result of
the form factorss; andG, to be substituted in Eq$17) and  Schwinger in which the infrared piece drops out, we cannot
(18) for the calculation of the decay constarftg,ss, and ignore the infrared divergent part in the expressions since
fy n3p. are given by these remain in the nonstatic limit and are cut off by the
T “true” off-shell nature of the quarks. Later we will present
calculations using several procedures to deal with this infra-
G1(p)=G;(p)—GY(p), red ambiguity which would not be present in a fully rigorous
bound state formalism, based on the Bethe-Salpeter equation.
, © Schwinger's expressiori®] are given in terms of the rela-
Ga(p)=G5(p) =G iy(P)- (19 tivistic velocity v =p/E,. They are
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(1+u ) , 1 (1-v)\? 1
Fiv)=1- 4/3— — +§ In 5 = TH{(po—
4\2m(E,+m)
2
Y M o2 Y ) XO(py+m)(1+70)é(v)} 23
2 2 (1-v)
we obtain
/(v?) /(1+U)+/(—1_v +2In2
R Ny ,
2 2 , V2E 413
Gl<p)=—T"(Fl<v>+ 5 SF2<v)), (24
2m (1+v?)  (1+v)
+|2In —-=2 In -
p 2o (=) Gip) = V2 (o) (4325 )
N (1+v) ’ 2(P)= mE,+m)| *Y 27 Fa(v
20" (1-0))’ (213 (25
where Next we turn to the more difficult part of calculatig}’),
and GY);. The contributions of the Feynman diagrams in
X “ooxn Figs. 1 and 2a) can be written as
/(X)ZJ TI (ﬁ):z - 0<x<1, (21b
ot A=Y d=in I*(py.p2)=ieV(po) A“U(py), (26)
_ (1-v)  (1+v) where
Falv)= =5 In G0 22) )
Substituting Eq(20a in Egs.(14) and(15) and doing they, A#(p1,P2) = y#+ (47) 3 asATg(P1,P2), (27)

r, ands summation by the well known trace methfsl
where A/ is the regularized one-gluon vertex correction.

. The unregularized vertex correction is callad4 and it is
=r,=s|lv)V ou X Y
2 <2r 5S > s(P2)OU;(py) given by
N S — f X e - g - (29)
10 PP =T o T e (—p—k—mtie) | (p—k—mtie)

The integral in Eq(28) is both ultraviolet and infrared divergent. The finite part of it was given by E2B.and(22). The
instantaneous part of 1§ (p1,p2), given by Fig. 2b), which is already contained in the QCD potential of the GIRS model, is
called A 5,4 and is given by

A Y= J d*k . 1 ., 1
Ot P1P = Al ) (ClRerie) T (p-k—mtie) | (Bi—k-mtie)
[T G — ot 29)
(—[Ki2+ie) " (—pp—k—mtie) | (Pi—K-m+ie)

To obtain the instantaneous part of E88) we replaced \yhere A, (p) and A_(p) are the positive and the negative
k?= k2 |k|2 in the photon propagator by|k|2 Equation  energy projection operators:
(29) is the instantaneous part in the Coulomb gauge. By sub-
tracting the contribution of Eq29), we are trying to include R Ep+(c;- 5+ pm)  (p+m)
only the retarded part of the transverse one-gluon exchange. AL(p)= = T 7, (32)
In order to calculate what is included in the potential we also P P
have to consider the appropriate parts of the fermion propa-

gators. We write - Ep—(a-p+pm) (p—m
A-(p) T A R
Se(p)= i _ A+ (p) + A-_(p) i 1,0 In the quark propagator involving; we only include the\
; (p—m+ig) pO—Ep+is pO+ Ep—ie ’ part and in the antiquark propagator involvipg we only

(30 include theA _ part. We thus obtain
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, i d3kdk, Y*A_(—p,—K) YOy A L (p1—K)
A(é;,lg(plip2):+ 4J > - ’V 0 0 . 0 0 2 . yoya
(2m)*J (|K| _|8)\_(_p2_k +E_p,—k—ie) (py—K'—Ep —ktie)
y-KA _(—po—K Ok, (py—K .
Y (—p2—k) Y YA (p1—K) S5k, 33

(—p3—K+E_5, i~ie) (p—K°—Ej +ie)

Integration ovek? is rather trivial now. Integrating ovée’ from — to + and closing the contour in the lower half plane
of the complex® plane, we will only pick up the pole &°= E_p—k— pg— ie. By Cauchy’s theorem this integral is-@ i)

times the residue at that pole. We thus get, after changing the integration variable fmﬁ1= f)—IZ,

A& 19(P1,P2) = (2m )3f| lz[v“./\ (PDY° YA (P ¥0¥at 7- KA (P YO¥*A 4 (P YOy~ K1/ (Ep—Eptie).
(34)

The integral in Eq(34) is ultraviolet divergent. We make it ultraviolet convergent by subtracting the value of the same vertex
function at the unphysical valug?=0 whereq=p;+p,. One can easily see that

(35

o +1 [ & [y AP Y VAL (B)voYat ¥ KA_(B') Y0¥ AL (P)Y(7-K)
A(o>,1g(p1,p2)|q2:o .

2m) |p-p'|} 2E,

In Egs.(33)—(35), where

R:(p_p ).

— (36) 3n/
|p_p/| A(‘B)civar— 1 Qd Fi
¢ (@2md) |p-p'?

The subtraction a?=0 is equivalent to the usual renormal-
ization of the electric charge. After traction, w t th « > =)
ation of the electric charge er subtraction, we get the YA _(P')Y° ¥ A+ (') YOy, E

physically relevant part which is finite: X P (39
2E,(E,—E,+is)

Af0)19= AGyag™ AGyaglaz=0
3n7
1 d3p! A'(u(')l_)]_g:_(zl)gf|—>d E |2
_ an (B ’ p—p’
=- ——[Y"A_(p") "y i
(2wﬁf|p—pw2 ) )
) X7-kAf(p’)voy"M(p’)voy'kEp “0)
XAL(P)Yyaty KA_(D') ¥ y" 2E(E,—Ep+is)
A+(5/)70;'k]Ep/ZEp’(Ep_Ep’—FiS)' Substituting the spatial part of the four vectors in E@9)

and (40) into Egs. (14) and (15), we get G{9"* and
37 69 (i=1,2). The trueG, and G, to be substituted into
Eqs (17) and(18) to get the decay constantg s and fy p
We can write the right-hand side of E@7) as the sum of for the S andD states
two parts, one corresponding to the&...y, piece in Eq.
(37), which we will call Aﬁ))c‘i‘éaror the covariant piece, and
the other correspondmg to the k...y-k piece in Eq.(37) Gi(p)=G| —G{%**+G{%y (i=1,2. (41)
which we will call AéLO),lg or the longitudinal piece. That is,
The sum over the spin indicesands in Egs.(14) and (15

can be carried out by the trace theorem of &3). We thus
Afo) 1= Ao g~ Aojsg (38 get,
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4 1 d®p’ 1 1 ..
G(O)covarL:_ —  a.E J’ — TcovarL , ’,rZE* v )
19 3 7 "162m(E,+m)) (2m)° EX(Ep—Ep—ie) |p—p’|2§v: P.p )
1 . - N
‘—z'8*(V)-pTC°Var(p,p’,r=p)1 (42)
p
14 1 d3p’ 1 1 -
G(O)covarL: _ —(—a )E f — TcovarL( , ',I’:s* v )
219 p2l 3 % P162m(E,+m) ) (2m)3 EX(Ep—Ep—ie) |p—p’|2§v: PP )
3. N N
- —28*(v)-pT°°VarL(p,p’,r=p)], 43
p
|
where in Eqs(42) and (43) G{%;°"*"- can beG{%** or P = E,+p,
G{%- depending on whether the trageis T°® or T-. The B R
tracesT¢®® and T are given by the following expressions: P2 = Ep,—p,
P’ = Ep.+p,
" — Ep’,_ﬁ,,
T(p.p’,r)=Tr{(p,—m)[—2p'Fp"+2m* +8mp’-r] r = (0g*(v)) or (0p),
s = (0k), (46)
X (pr+m)(1+90)é(v)}, (44)  wherek is the unit three vector,
k=P (47)
lp—p’|

TH(p,p’ 1) = —Tr{(po— m)E(P" — m)F (p’ +m)&(p,+m)

After computing the traces and summing over the polariza-

tion index v and using the result

X (14 Y0 é(v)}. 45
(1+97)é(»)} “9 ESE(Q,V)SB(Q,V)TQQN%' (48)

14

In Egs.(44) and(45) the different four vectors are defined as where Q and M are the four momentum vectors and the

follows: mass of the vector meson, we obtain

> T°°Va’(p,p’,r=s*(v))—Es*(v)opT°°V"’“(p,p’.r=p)1=—3ZEp(Ep+m)(E§r+m2)—64Ep/(Ep+m)p’p’
32 ~ ~\2
_EEp(Ep"'m)(p'p )%, (49)
E covVal R R/ p— ok _i"* LATcovar ;o — :_3_2 2 .02
T (p,p" . r=¢*(v)) 0" (v)-pT="(p,p",r=p) p2(Eerm)(Eer m)(p-p")

—64(Ey+m)(Ey —2m)p-p’ — 32 Ep+m)[(E,—2m)ES,

+E,m?], (50)
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>

14

.. 1. .
TL(p,p’,r=s*(v))—Es*(v)'pTL(p,p’,r=p)

—16E,(E, +m)p'2+16(—)(’ *')2+32”(—p)(E Ep—mP)(k-p)?
p? p?
c o Ep(Eptm)
+32E,(Ep+m)(k-p")“+32E,/ (Ep+m)(k-p)(k-p’)— SZT )(k p )(p p ", (51
Lin A7 * 3 % ~TL/ A A7
2 | THp.p'r=e (v))—;s (v)-pTH(p,p’,r=p)
(E +2m)(E,+m) . . (Ep+2m)(Ep+m) - - ~ o ~ .
e (p-p’)2=32m(E,+m)(p-p’) —32—" e P——(p-p")(k-p)(k-p")
+8p2(Epy +m)?+8(E,+m)2(m?+ 2E, m—3E2, )+ 32E,(E,+ m) (k-p')?
Ej(Ep+m) " L
+32E,(E, +m)(k p)(k p )+32p—[E Epr—m*+2m(E, —Ep)J(k-p) (52
|
In Egs. (51) and (52), p?> and p’? are the squares of the 1 1
magnitudes of the three momenta. After substituting Egs. =P +imd(p'%p?) (59
(49-(52) into Egs.(42) and (43), the angular integrations p/2—p2—ie p/—pz

(the integration over the directions of the three vecﬁé)

can be performed easily. After substituting E¢49)—(52)

into Egs.(42) and (43) and then doing the angular integra- we notice that the imaginary part 6f%)°*** does not con-

tions,  we fllnzd that in general any of the form fac®f%°  tribute to the leptonic decay rate to first orderdg. So we

or G{9 =+ takes the following form: only have to concern ourselves with the principal part of the

o, integral in Eq.(53) since we intend to calculate the leptonic

G(O)covark _ ( )( \/—E )f p'“dp Feovark(p by decay rate to first order im. After evaluating the well

g 37 m (p'2—p2?—ie) ' e defined principal part and changing the integration variable
(53 to x such that p'/p)=x for p’<p and (@/p')=x for

covarl . ) . p’'>p, we finally find the following integral expressions for
whereF; (p,p") is a real function of the variablgsand GI(Ol)gcovarand GI(OZI.)gL(I =1,2):

p’. Writing

2E,\ [ 11 dx 1+x 2+ u?/x? X(V1+ud+1+u?
G(lO{é:ovar: _ ﬁ( \/_ P) _J' n ( )[(\/1+U2/X2+ \/1+U2) ( ) _ (\/ \/ )
3w\ m vJo(1-x?) (1—X){ X(1+U2/X2)3/2 (1+U2X2)3/2
- Lodx [(1+x%)  (1+X) (VI+UP+V1+u%x%) (V1+UuP+V1+u%x)
X (2+u“x9) +2uj In - -
0(1-x2) 2x (1-x) X2(1+u?/x?) (1+u?x?)
+( Ep) fldx(l+x2)[(1+x2) (1+X) 1 (V1+U2+V1+Uu?/x?)  X3(VJ1+u?+\1+ux®)
—|u n -1||— - ,
2m/"Jo (1-x?) | 2 (1-x) x4 (1+u?/x?)%? (1+u?x?)%?
(55)
wherev is the relativistic velocity andi is the nonrelativistic velocity.
_P

P
u_a' (57)
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G(O)covar: _ i ﬁ \/EEP
29 p2 37 m

(V1+u®2+ \/1+u2)I 2
(1+ud®)¥ | (1+ 11 0)

(VI+UPH+VI+ U (VI+ WX =2) (V1+UP+ J1+UuAP) (V1+u™X-2)
X —X
X2(1+ u2/X2)3/2 (l+ u2X2)3/2

J'l dx | (1+x)
! 0(1-x?) 1%

1 (1+u?d+ Jitud)| 2 +(\/1+u2—2)
X (1w (1+V1rdd) X2

1 dx [(1+x2) (1+x) }
+2uf0(1—x2)[ x "

+(W—2)x2]

+

(Ep+2m) fld (1+x2)[(1+x2) (1+x)
2m )0 (1=x?)| 2x (1-x)

" 1 (V1+UuP+V1+0%) (V1+uP+ 1+u) 58
4 (1+ uZ/x2)32 (1+ux?)32
GO [ s V2E,\|| E, fl dx (1—x)[x3(\/1+u2+\/1+u2x2) 1 (J1+u?+J1+u?/x?)
L9\ 6r/| m m" 0(1-x?) A (1+x)| (1+u?x?)%? X3 (1+u?/x?)%?
1E, (1 (1+x)[(1+x? 1+x 1+u’+V1+u’x®) 1 1
2m Jo (1) ¢ T (1-x) (1+u?x?)%? X (L+U%/x?)%?
11 dx 1+ u’+ 1+ ux?)(Y1+u?x?y1+u’—1
+ 1+ u?/x?) +2—J (Y y i y )
uJo(1-x?) (1+u?x?)
1 (V1+u?+ 1+ Uu?/x?)(J1+u?/x?1+u?—1)
x2 (1+u?/x?)
1 r1dx  (1+X) | x3(V1+u+ Y1+ u?x?)(V1+u?x?1+u’—1)
+2—] 5-In
ulo2x = (1-x) (1+u?x?)
1 (V1+u?+ 1+ u?/x?) (J1+u?/x>1+u’—1) Ep fl dx [xz(\/1+u2+\/1+u2x2)
— —u
x2 (1+u?/x?) m 0 (1—x2)L (1+u?x?)%2
1 (V1+U?+\1+u?/x?) 1dx (1—x)[x2(\/1+u2+ Vi+u?x®) 1 (V1+u?+{1+u?/x?)
x2 (1+u?/x?)%? 02X (1+X){ (1+u?x?)3? x2 (1+u?/x?)%7?
1(Ep\ (1 dx (1-x22  (1-x)]| (J1+uP+y1+u®x®) 1 (J1+u?+1+Uu?/x?)
— 5= uj (1+x?)+ In 2 -=
2\m) " Jo(1-x?) 2X (1+x) (1+ux?)%? x4 (1+u?/x?)%7?
(59

and

(V1+u?+1+udd)

(1+ u2x2)3/2

G(Q)L:_(ﬁ)(ﬁEp)iHlfl dx_ (1+%)

219~ " |6x/\ " m 2| [ulo(1=2) " (1-X)

{VI+Uu(J1+ud®+1)%2-2(1+ux?)

2 702
X (J1+u?+ 1)}—;(\/1?;:2\51;;;2/)( ){\/1+u2(\/1+u2/x2+ 1)2—-2(1+u?/x?)(V1+u?+1)}
u?/x
s J‘l dx [1+(1+x2) (1—x) 2(\/1+u2+\/1+u2x2)_i(\/l+u2+ V1+u?/x?)
! 0(1-x2)| 2x " (14x) (1+ux?)%2 x2 (1+u?/x?)%?

X2

(1+ u2x2)3/2

2 2
N (Ep+2m)ufldx(1+x )[(1+x ) (1+Xx) }
2m 0

- 2 242
(1—x2)[ 2x " (1—x) (\/l+u +y1+u’x )
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1 1

x* (1+u?/x?)%?

E+2m)u 1 dx (1+x2)+(1 x?)?  (1-x)

2 P
(\/1+u ++1+u /x) m 0 L) Vel 1%

(1+ @) 32 X (Ui m/Jo1x®)|  (1+ud®)

X2(V1+Uu?+1+u®x?) 1 (J1+Uu?+\1+u?/x%) (Ep) Ifl dx [xz(\/l+u2+\/1+u2x2)
— +2( =2 u

1 (V1+u?+1+u?/x?)
X2 (1+u?x?)¥?

1 1 dx
ot |

UH 0(1-x?)

1 (V1+u?+1+Uu?/x?)

x2 (14 u?/x?)

1dx (1—x)[x2(\/1+u2+\/1+u2x2) i(\/1+u2+\/1+u2/x2)
(1+x)]| (1+u2x?)32 X2 (1+u?/x?)%?

X2(J1+u?+ 1+ u?x?)
(1+u?x?)

[Tr e T - 1+ 2( VT w15 ) )

[VTF e TriBe- 1+ 2( I+ 18- {17 P)}

X2(V1+Uu?+ 1+ u?x?)

{Virutyir i -1+ 2( 1+ ude- 1+ i) }

+fld_x (1+X)

x " (1-x) (1+u?x?)
+ % (\/H(ulzjuﬁ;;zlxz){mm—uz( J1+ W21+ uZ)}H ] ] (60)
|
Substituting Eqs(55—(60) into Eg. (41), we get the form It is worth pointing out that the terms multiplying 1/u in

factorsG, and G, to be substituted into Eq$17) and(18)  the expressions foG(lol)e'l' and GYY)- vanish since the inte-
which give the decay constan‘t\svnssl andfv,nle. Once we grand is proportional ta? for smallu.

have the decay constarftg, the leptonic decay rates can be  Substituting Eqs(61)—(66) we find

obtained from Eqs(6) or (7). It is interesting to see how our

results lead to the leptonic decay rate in the static approxi- lim Gy(p)— E 2G,(p) |= - \/EED 1— %
mation that is in the limit when or v go to zero. Using Egs. v—0/ B1(P 3p 2P m 37|
(21) and(22) in Egs.(24) and(25) and taking the limiv — 0, (67)
we find that

Substituting Eq(67) into Eqg. (17) we obtain the follow-
ing result for the decay constam;vnss1 in the static limit:

8
im, oGi(p)= 2 1+ T2 0% (g
3v 37 2
3/2 p dp \/—E sas
fV nSSl:_M \/— ¢ns(p) 1_§
lim, _,op*G5(p) =0, (62)
m \/— 8a ®
||mv UHOG(O)COV&' — ;M _S/ZT F( _ 37:) fo p2d p¢ns(p)
as [ V2E, |1 ) fl dx (14 (68)
= n —X
" 37| m 0(1-x?) (1% 2
v 3’2( )fwu—m
o[ 2E|4 1dx| (1+%) NG
T 37 o m Jo (1—x) 4
312
a \/—E 4 72 \/_E T o \/§M ( )‘ﬂ(o) (69
a3 m e d Tm e 63
Substituting Eq.(68) into Eq. (6) we reproduce the decay
) 5 covar rate to first order ing.
lim, uop"Gz3g =0, (64) As we pointed out earlier the static approximation can
lead to significant errors in charmonium sina€/c?) is of
|,mLHOG<0>L 0, (65)  the order of 0.2-0.3 in this system. Also in the static ap-

proximation the decay rate for tHe state is exactly zero

whereas experimentally it is quite significant, about 0.26

limy_op?Gig =0. (66)  keV. So we intend to use the fuls; andG, given by our
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equations to calculate the leptonic decay constarfor the Numerical estimate of the leptonic decay rates and
13s,, 23S;, and®3D; states of charmonium. We will do that their comparison with experiment

in Sec. IV using the wave functions of the GJRS md&s!

ars=0.313, m,=2.208 GeV M 35 =3.097 GeV,
M23Sl: 3.685 GeV, M 13Dl: 3.77 GeV.

IV. NUMERICAL RESULTS FOR 1 3S,, 23S, We used the GJRS modig]:
and 13D, STATES

Equation(69) gives the decay constant for tliSestates in Value of Predicted
the static limit. As shown earlier, this can be derived by the infrared decay Experiment:
letting v—0 in the expressions for the form factors. This State parameterw) rate (keV) (keV)
leads to the suppression factor 8« /37 in the decay con-
stant when lowest order radiative correctionsaipare cal- 1°S = 0.855(up) 11.42
culated and also leads to Eq) for the width. (5.26+0.37)

One purpose of the present work was to investigate the w#=0.800 11.30
relaxation of the above approximation by integrating over, sq 1=0.878 4.93

the bound state wave functions. A rigorous calculation re-

: : : (2.14+0.21)
quires a systematic bound state treatment with off-shell
quarks and is very difficult. Instead of pursuing this ap- #=0.402 4.00
proach, we elected to use on-shell vertex functions, which 3p, w=1.024 0.069
unfortunately have an infrared divergence. This divergence (0.26+0.04)
disappears in the —0 limit, as can be seen in Eq213 ©=0.351 0.055

above, since In @/u multiplies a function which goes to
zero in this limit. However, for finitey this term does not
vanish and we need some rationale for its evaluation. V. CONCLUDING REMARKS

We have carried out calculations using the wave functions _ . _
obtained from the model of GJRS. These wave functions are The results quoted in the previous section have several
provided in the Appendix. To do the calculations we need tProblems. First, they do not agree with experiment. Second,
chose an IR cutoffz. We have done this in two ways to see they also seem tq depend on the infrared cutoff parameter
how sensitive the result is to the choicewof The first choice e are forced to introduce the cutoff paramqierecause of
utilizes o= ., wherep, = [2p2dp- p|B(p)|2 where &(p) the infrared divergent term in the Schwinger's form factor

= p, =15 .

is the normalized radial wave function for the state. In theFl' The origin of this divergence is due to the fact that we
. ~\»  took the quark and the antiquark on mass shell. If we were
second choice we useu=uy where uo=[(—(M/2)

2 /M1 i . . fth hich th dealing with the leptonic decay of a free quark-antiquark
+m)/M] is an invariant measure of the extent to which t epair, this infrared divergence in the decay rate to ordegr

quarks are off their mass shell. The results of our numericaj,jj| e canceled by the infrared divergence due to the emis-

integrations for the integrals,s andl,p appearing in EQs. 17 gjon or absorption of soft gluons by the quark and the anti-

and 18 are as follows: quark. But here we have a color singlet quark-antiquark
bound state where the quark and the antiquark are truly off
mass shell. If we work within the framework of a truly

Values of integrald,s and | ,p bound state formalism such as Bethe-Salpeter, the quark and
Infrared the antiquark will be off mass shell and we will not encoun-
mass ter any infrared divergences. We believe that the result of a
State (GeV) Static limit Current result Bethe-Salpeter calculation will be similar to our result except

that in the infrared divergent logarithmic term, instead of the

1S pp=0.855 8as| —1.007+0.45% fictitious gluon mass: we will have some parameter which
—1.08 |1~ 3 has the dimensions of mass, and which indicates how far the
wo=0.800 ( SaS) —1.007+0.474x,  quark or the antiquark is off mass shell in the bound state. In
—1.08|1— the absence of a more complete calculation involving the
37 bound state, we can only make an educated guess what this
25 11,=0.878 ( 8as> —0.803+ 0.408x, parameter_vyill be. It _is not surprising that the result is_ some-
-088|1— what sensitive to this parameter. But we do not think the
3m qualitative nature of our results will change in a more com-
Ho=0.402 8ag| —0.803+0.62lxs  plete calculation.
—0.88 ( 1- 37.,) The essential conclusions which we draw from our results

are the following. For the $ and the 3 states the relativistic
1D w,=1024 O 0.178 0.0148 and the one-gluon radiative corrections lead to a suppression
Muo=0.351 0 0.178 0.075x4 of the width significantly less than that predicted in the static
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limit. In the original work of Gupta, Johnson, Repko, and tions. The radiative correction of orde obtained by Den-
Suchyta(GJRS [3], they were able to get reasonable agreetamaro and Goldsteif¥] has the opposite sign to that of the
ment with experiment only because the radiative correctiomrder ag correction. So inclusion of such higher-order cor-
in the static limit was quite large, of the order of 60%. But asrections is not likely to improve our results either.

we have argued the static limit is not a reasonable approxi-

mation for charmonium. When we take into account the rela-

tivistic corrections, the suppression factor is reduced to ten to ACKNOWLEDGMENTS
fifteen percent and we have disagreement with experiment , , )
for the leptonic decay rates in the GJRS mo&l We do This research has been supported by the National Science

not believe the ambiguity in the infrared cutoff parameter~oundation under Grant No. NSF-PHY-9421408.
will change this important conclusion and consequently for
this reason we have not yet attempted to carry out the very
difficult calculation which would lead to a result independent

of an IR cutoff. For the D state we find that the inclusion of We have calculated the momentum space radial wave
the relativistic and the radiative corrections produce a resulfunctions for the GJR$3] model using a variational ap-

different from the static nonrelativistic result of zero. A small proach. This model, which has a rather large charmed quark
mixing of 2 %S, state with the D, state would give good mass of 2.208 GeV produces excellent spectra in close agree-

agreement with experiment félf " (3770)~e"e"], butas  ment with experiment, as well as good results for radiative
yet a realistic mechanism to produce sufficient mixing hagjecays. The wave functions are

not been found.

We should also mention that there are other approaches
that have been applied to calculating the leptonic decay rates 2 .I'(n+1) _
of quarkonium bound states, including their radiative correc- #ss(P) = >, a,\| =R*————(cos )" sin (n+1)4]
tions. For example, Durand and Duraf&], Dentamaro and n=1 7 P
Goldstein[7], and Duke and Kime[8] have used the so-
called “duality relation” and time-reversal invariance to re-
late ' ((qQ) poung— € €7) to o(e"e” —(qQ)ed. The cross-
sectiono(e"e”—(q0) e has been calculated to ordaf
before[9]. Infrared divergences in this calculation are can- 8 5 T

¢ _ > o0 i (n+3)
celed by the infrared dlvergenceSJf(e e H(_qq)free + 4’1301(9): E a,\/—-R?———
real soft gluoi. The observed(e™e™ — (). iS the sum n=1 ™
of o(ete”—(qQ)sed and o(e*e” —(qQ)qee + real soft
gluon). Such a procedure would not apply in our formalism. Xsin(n+3)46]
The duality relation{6] has only been derived in the JWKB
approximation[6] for the cross sections without radiative
corrections. It is not clear how it will apply when gluonic
radiative corrections are also included.

The above-mentioned authd®—8] have used other po-
tential models[10]. The main reason they are able to getIn this expression th fiicients ai bel d
better agreement with experiment is that their radiative cors _p essmn_ @y are coetlicients given e_ow an

. I'(n+1)=n!, tan =pR The values oR areR;35, =0.43
rections of orderas are much largefof the order of forty 1 1 L
percent and their potential models give slightly smaller val- G€V 7, Rp35 =0.82 GeV 7, Ry3p =0.46 GeV ~.
ues for the leptonic decay rates without the radiative correc- Thea, are:

APPENDIX

10

for 135, and 2°S states

(cos )" "3
. 3
T hr1 pRINT D)(nt2)

(n+3)cog(n+3)0] 1
Si(n+3)0] _R_p“ for 1°D;.

133, 233, 1°D,

a, 1.34684183060 1.10370094192 0.03104816149
a, 1.47543941745 1.30702688329 0.09780895082
as 0.30738386571 —0.72789877235 0.00001099680
a, 0.07174239176 —0.07715517807 0.00452835801
as 0.01038137911 —0.00525212711 —0.00008205698
as 0.00118180693 0.00031138962 0.00016043162
a, 0.00007979753 0.00021966952 —0.00000626100
ag —0.00001003665 0.00004228280 0.00000028000
ao 0.00000060216 —0.00000789835

0.00000008718 0.00000028197
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