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If a limited region of the final state phase space of multiparticle production in high-energy particle collisions
is divided into many bins~cells! of equal size, it may happen occasionally that a single bin containsq particles
and all the other bins are empty. It is pointed out that the probabilityS(q) to find such extremely fluctuating
events carries useful information which is independent of that carried by the scaled factorial momentsFq . The
generalized dimensionDq can be estimated ifS(q) obeys a power law. Several models and experimental
feasibility are examined in detail.@S0556-2821~97!03721-1#

PACS number~s!: 13.85.Hd

I. INTRODUCTION

The observation of seemingly large fluctuations of par-
ticle distributions in either cosmic ray@1# or accelerator@2#
experiments stimulated further study of nonstatistical fluc-
tuations and the possible multifractal structure behind them
@3#. Among others, the Bialas-Peschanski intermittency ap-
proach using the scaled factorial moments has been exten-
sively studied for several years@4,5#. The scaled factorial
momentFq(D) is evaluated for the multiplicity distribution
in a limited region of the final state phase space of multipar-
ticle production at high energies. Here,D is the size of the
region called a bin or cell. The main task here is to see if
Fq(D) obeys the power law

Fq~D!}D2fq ~1.1!

as D goes to zero. If such a behavior is observed, one may
determine the generalized dimension as

Dq512
fq

q21
. ~1.2!

The purpose of this paper is to point out that there is
another observable which allows an independent estimate of
Dq . In Sec. II, we first recall the exclusive analysis of the
factorial moments@4# and then derive the main result of the
present paper. Several models are examined for illustration
in Sec. III. The experimental feasibility of our approach is
examined in Sec. IV. Section V is devoted to conclusions.

II. GENERAL FORMALISM

Consider a limited region of the final state phase space
~e.g., an interval in the longitudinal rapidity space! and
divide it into M bins ~cells! of equal size. In the exclusive
analysis adopted in Ref.@4#, one considers an ensemble
of events where justN particles are produced in the re-
gion. The fundamental assumption here is that there is an
underlying probability distribution P(p1 ,...,pi ,...,pM)
which generates the observed joint multiplicity distribution
QN(k1 ,...,ki ,...,kM) by the relation

QN~k1 ,...,ki ,...,kM !

5E
0

1

dp1•••E
0

1

dpi•••E
0

1

dpMP~p1 ,...,pi ,...,pM !

3
N! p1

k1•••pi
ki•••pM

kM

k1! •••ki ! •••kM!
for N51,2, . . . , ~2.1!

wherepi is the probability of finding a particle in thei th bin,
ki is the multiplicity of particles in thei th bin,

(
i 51

M

ki5N, ~2.2!

P(p1 ,...,pi ,...,pM) can be nonvanishing only when

(
i 51

M

pi51, ~2.3!

andP(p1 ,...,pi ,...,pM) is normalized as
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0
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0

1

dpMP~p1 ,...,pi ,...,pM !51.

~2.4!

It should be noted here thatpj
kj51 for pj5kj50,

j 51,2,...,M in Eq. ~2.1!. Bialaset al. have shown that@4#

^pi
q&5M 2qFq

~ i !~N! for q51,2,3, . . . , ~2.5!

where

^pi
q&5E

0

1

dp1•••E
0

1

dpi•••E
0

1

dpMpi
qP~p1 ,...,pi ,...,pM !,

~2.6!

and
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Fq
~ i !~N!5Mq (

k150
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kM50

N

ki~ki21!•••~ki2q11!

3QN~k1 ,...,ki ,...,kM !/$N~N21!•••~N

2q11!%. ~2.7!

Equations~2.1!–~2.7! summarize the general formalism
of the scaled factorial moments in the exclusive analysis@4#.
The point here is that one can estimate the expectation value
of the qth moment of the directly unobservable probability
pi in terms of the observable quantityFq

( i )(N).
Now we would like to make a simple remark that, as is

obvious from Eq.~2.1!, ^pi
q& can also be given in terms of

another independent observable:

^pi
q&5Qq~0, . . . ,0,ki5q,0, . . . ,0!5Si~q,M !

for q51,2,3, . . . . ~2.8!

It follows from Eqs.~2.5! and ~2.8! that

M 2qFq
~ i !~N!5Si~q,M ! for q51,2,3, . . . . ~2.9!

This equality has to be tested experimentally forq>2 ~the
q51 case is trivial! in order to prove~or disprove! the va-
lidity of the fundamental relation~2.1!. In particular, Eq.
~2.9! suggests thatFq

( i )(N) is independent ofN.
According to the theory of multifractals, the generalized

dimensionDq may be determined~mathematically! by the
following limit @6#:

Dq5
1

12q
lim

M→`

ln~( i 51
M ^pi

q&!

lnM
for qÞ1, ~2.10!

in particular,

D05 lim
M→`

ln~( i 51
M ^pi

0&!

lnM
, ~2.11!

while

D152 lim
M→`

( i 51
M ^pi lnpi&

lnM
. ~2.12!

It should be noted here that^pi
0& is not necessarily equal to

unity. As the ‘‘empty’’ bins have to be excluded when one
takes the expectation value ofpi

q ~this is particularly crucial
whenq is negative!, ^pi

0& represents the probability thatpi is
nonzero. It should be noted also that, in Eq.~2.1!,
QN(k1 ,...,ki ,...,kM) is defined only forN51,2, . . . , and
henceSi(q,M ) is defined only forq51,2, . . . , by Eq.~2.8!.
Then,^pi

0& is formally evaluated by taking the limit

^pi
0&5 lim

q→01

Si~q,M !
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~2.13!

On the other hand, the expectation value^pi lnpi& is ex-
pressed in terms ofSi(q,M ) as

^pi lnpi&5
]Si~q,M !

]q U
q51

. ~2.14!

The proof is as follows. From Eq.~2.1!, one has

Si~q,M !

5E
0

1

dp1•••E
0

1

dpi•••E
0

1

dpMpi
qP~p1 ,...,pi ,...,pM !

~2.15!

for q.0. Differentiating both sides with respect toq and
putting q51 lead to Eq. ~2.14! provided that
P(p1 ,...,pi ,...,pM) is independent ofq.

Now Eq. ~2.10! indicates physically thatSi(q,M ) for q
Þ1 will show a scaling behavior

(
i 51

M

Si~q,M !5M ~12q!Dq ~2.16!

for increasingM if P(p1 ,...,pi ,...,pM) possesses a multi-
fractal structure. The experimental test of Eq.~2.16! is inde-
pendent of the test of Eq.~1.1!. Of course,Dq determined by
Eq. ~1.2! and that by Eq.~2.16! have to coincide with each
other if the fundamental formula~2.1! is correct.

Finally, Eq. ~2.12! suggests a scaling behavior

(
i 51

M
]Si~q,M !

]q
U

q51

52D1lnM ~2.17!

for increasingM .
If the interval is so narrow that all the bins are equivalent,

i.e., Si(q,M )5S(q,M ), one has

S~q,M !5M ~12q!Dq21, ~2.18!

and

]S~q,M !

]q U
q51

52
D1lnM

M
. ~2.19!

III. MODELS

For illustration of the results obtained in the preceding
section, we consider several models.
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A. Statistical model

If all the N particles distribute homogeneously and inde-
pendently in the interval, the underlying probability distribu-
tion is given by

P~p1 ,...,pi ,...,pM !5)
j 51

M

dS pj2
1

M D . ~3.1!

Substituting Eqs.~3.1! into Eq. ~2.15!, one obtains

S~q,M !5M 2q. ~3.2!

Equations~2.13!, ~2.14!, with Eq. ~3.2! give

^pi
0&51, ~3.3!

^pi lnpi&52 lnM /M , ~3.4!

from which one has

D05D151. ~3.5!

Finally, Eq. ~2.18! with Eq. ~3.2! gives

Dq51 for qÞ1. ~3.6!

To summarize, we have a trivial geometrical dimensionDq
51 for any realq.

B. Complete spike model

In order to understand the particular role played by the
empty bins, let us consider the distribution

P~p1 ,...,pi ,...,pM !5M 21(
j 51

M S )
k51

M

d~pk2d jk !D .

~3.7!

All the bins except for thej th bin are empty~such an event
may be called a complete spike event at levelM ) if particles
are produced according to the probability given by thej th
term on the right-hand side~RHS!. Equation~3.7! yields

S~q,M !51/M for q.0, ~3.8!

from which one has

^pi
q&51/M for q.0 ~3.9!

and

^pi lnpi&50. ~3.10!

Equation~3.9! gives

^pi
0&5 lim

q→01

S~q,M !51/M . ~3.11!

All of these results imply that

Dq50 for q.0. ~3.12!

C. a model of intermittency

Both models considered in the preceding subsections are
trivial because they giveq-independent generalized dimen-
sions. Now we consider a nontrivial model used by Bialas
et al. @4,5#. In this model, a given interval of the phase space
is divided intol bins of equal size and random numbers are
assigned to every bin in the first step. Each bin is divided
into l bins similarly and random numbers are assigned again
to every bin in the second step, and the same procedure is
repeatedn times. Then the total number of bins is

M5ln. ~3.13!

The probabilitypi is then given by

pi5M 21)
a51

n

wa , ~3.14!

where$wa : a51,2, . . . ,n% is a set of non-negative random
numbers that are generated along the cascade down to thei th
cell at the n th level. The spectral functionr(wa) of the
random numbers satisfies the conditions

E
0

`

dwr~w!51, ~3.15!

E
0

`

dw wr~w!51. ~3.16!

In general, we will use the average of a functionf (w) de-
fined as

^ f ~w!&5E
01

`

dw f~w!r~w!. ~3.17!

Note that^w0& is less than unity in spite of Eq.~3.15! when
r(w) has ad-function-like singularity atw50.

In this model, one has

S~q,M !5M 2q^wq& lnM / lnl ~3.18!

for a realq, where the relationn5 lnM/lnl has been used.
Equations~2.13! and ~2.14! then give

^pi
0&5^w0& lnM / lnl, ~3.19!

and

^pi lnpi&52 lnM /M1M 21n ^w lnw&, ~3.20!

With Eqs.~2.11! and ~2.12!, one obtains

D0511
ln^w0&

lnl
, ~3.21!

D1512
^w lnw&

lnl
. ~3.22!

In general,

Dq512
ln^wq&

~q21!lnl
for qÞ1, ~3.23!
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which includes Eq.~3.21!.
The results of the three models are summarized in Fig. 1.

Here, as an example, the spectral function of thea model is
chosen as

r~w!5ad~w!1bd~w211a!1~12a2b!d~w212b!,
~3.24!

with a50.1, b50.6, a50.3, andb5(a1ab)/(12a2b)
50.933••• . In this case, the generalized dimensionDq is
given by Eq.~3.23! with

^wq&5b~12a!q1~12a2b!12q$12~12a!b%q.
~3.25!

The results forl52, 3, and 4 are shown in Fig. 1.

IV. FEASIBILITY OF SPIKE EVENT ANALYSIS

In this section, we examine the feasibility of determining
experimentally the probabilitySi(q,M ) for detecting the
complete spike event. Our approach would turn out to be
useless ifSi(q,M )’s for interesting ranges ofq andM were
too small to be determined experimentally even when there
are physically interesting fluctuations of nonstatistical origin.

As the first step of the analysis, one has to collect a suf-
ficiently large number~say, 104) of events where justq par-
ticles are produced in the interval of the phase space under
consideration. This may be done rather easily by using an
appropriate multiplicity trigger. For simplicity, suppose that

S1~q,M !5S2~q,M !5•••5SM~q,M !5S~q,M !.
~4.1!

In this case, it is sufficient to consider the total probability
for the complete spike event given by

(
i 51

M

Si~q,M !5MS~q,M !. ~4.2!

If MS(q,M ) is of the order of 1023, one will observe some
ten complete spike events among the 104 events, obtaining
an experimental value ofMS(q,M ) with some 30% statisti-
cal error. Thus we set the following lower bound for practi-
cally measurableMS(q,M ):

MS~q,M !.1023. ~4.3!

The most pessimistic estimate ofS(q,M ) is given by the
statistical model defined by Eq.~3.1! because complete spike
events take place as a result of statistical fluctuations in this
case. We thus put

MS~q,M !5M12q.1023. ~4.4!

The boundary values ofq as a function ofM are shown in
Table I. It is obvious that the analysis can be done easily at
least up toq53 for a sufficiently largeM . An experimental
analysis would be difficult for largerq. However, the statis-
tical model gives the result for the most disadvantageous
case. The situation is much better if there are nonstatistical
fluctuations. In fact, the boundary values ofq become much
larger if one adopts the random cascade model with the spec-
tral function~3.24!. The results forl52, 3, and 4 are shown
in Table I. In this case, it will be easy to carry out experi-
mental study forq52 up to several tens.

V. CONCLUSIONS

The standard approach to intermittency or multifractality
uses the scaled factorial moments that are supposed to reflect
the underlying probability distribution. We have shown that
the probability of finding complete spike events carries
equivalent information. IfS(q,M ) is measured experimen-
tally, one should first examine whether or not ln$S(q,M)%
behaves as linear functions of lnM for a sufficiently wide
range ofM . If the linear-log behavior is observed, one can
determineDq by using Eq.~2.18!. Equations~1.1! and~2.18!
provide independent tests of the multifractality while Eq.
~2.9! provides a consistency check of the existence of the
underlying probability distribution. As a byproduct, it is sug-
gested thatFq

( i )(N) will be independent ofN. There is in-
deed experimental evidence that the moments have no strong
N dependence@7#. The experimental study of the intermit-

FIG. 1. Generalized dimensions in three models.

TABLE I. Boundary values ofq in two models.

M

Statistical model Random cascade model

l52 l53 l54

2 11 189 25 19
4 6 87 12 10
8 4 53 8 7
16 3 36 6 5
32 3 26 5 4
64 3 19 4 4
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tency have been based on the inclusive approach in most
cases. An apparent reason is to achieve good statistics. The
present work suggests that the exclusive approach with the
analysis of complete spike events is complementary to the

inclusive approach and is equally important. Furthermore,
it has been shown that such an analysis is experimentally
most feasible when there are interesting nonstatistical fluc-
tuations.
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