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Multifractal analysis of extreme fluctuations in hadron multiplicities
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If a limited region of the final state phase space of multiparticle production in high-energy particle collisions
is divided into many bingcells) of equal size, it may happen occasionally that a single bin contppsticles
and all the other bins are empty. It is pointed out that the probalSlity) to find such extremely fluctuating
events carries useful information which is independent of that carried by the scaled factorial mpente
generalized dimensioD, can be estimated i§(q) obeys a power law. Several models and experimental
feasibility are examined in deta{lS0556-282(97)03721-1

PACS numbed(s): 13.85.Hd

. INTRODUCTION On(KyeeiKiee Kar)

The observation of seemingly large fluctuations of par- 1 1 1
ticle distributions in either cosmic ral] or acceleratof2] =J dpl---f dpi-~-J dpuP(P1s---:Pis---,PM)
experiments stimulated further study of nonstatistical fluc- 0 0 0

tuations and the possible multifractal structure behind them NIk - pi. . . pku
[3]. Among others, the Bialas-Peschanski intermittency ap- « PP Py for N=1.2 2.0
proach using the scaled factorial moments has been exten- Kyl kil ey ! Y '

sively studied for several yeaf4,5]. The scaled factorial
momentF,(A) is evaluated for the multiplicity distribution wherep; is the probability of finding a particle in thi¢h bin,
in a limited region of the final state phase space of multipark; s the multiplicity of particles in théth bin,

ticle production at high energies. Hei®,is the size of the
region called a bin or cell. The main task here is to see if
F4(A) obeys the power law

M=
=

[
=

Il
iy

(2.2

Fq(A)xcA™ % (1.2

P(P1seesPis--es can be nonvanishing only when
as A goes to zero. If such a behavior is observed, one may (P, Py Pw) vanishing only w

determine the generalized dimension as

=

pi:11 (23)

i=1

Do=1- =7 (1.2
The purpose of this paper is to point out that there isand PPy, Py Pu) IS normalized as
another observable which allows an independent estimate of 1 1 1
Dg. In Sec. II, we first recall the exclusive analysis of the f dpl---J dpi--'J’ dpuP(P1s.-Pis--PM) =1
factorial moment$4] and then derive the main result of the 0 0 0
present paper. Several models are examined for illustration (2.9
in Sec. lll. The experimental feasibility of our approach is o
examined in Sec. IV. Section V is devoted to conclusions. It should be noted here thapjlzl for pj=k;=0,
i=1,2,..M in Eqg. (2.1). Bialaset al. have shown thaj4]
Il. GENERAL FORMALISM

Consider a limited region of the final state phase space (p)=M Fq'(N) forq=1,23..., 25

(e.g., an interval in the longitudinal rapidity spacand
divide it into M bins (cells) of equal size. In the exclusive
analysis adopted in Ref4], one considers an ensemble

of events where jusN particles are produced in the re- q :fld -‘-fld ---'J'ld ap _
gion. The fundamental assumption here is that there is an<p ) e PRl P (Par-Pive-Pu),

where

underlying probability distribution P(p4,...,p;,....Pm) (2.6
which generates the observed joint multiplicity distribution
QOn(Ky,--- K, ... .ky) by the relation and
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N N N
FON=MID > - 3 ki(k—1)-(k—q+1)
ki=0 kj=0 ky=0

X Qn(Kq,...
—-q+1)}.

Kivee k) AN(N=1)- (N
2.7

Equations(2.1)—(2.7) summarize the general formalism
of the scaled factorial moments in the exclusive analijs

The point here is that one can estimate the expectation value
of the gth moment of the directly unobservable probability

p; in terms of the observable quantilﬁg)(N).

Now we would like to make a simple remark that, as is

obvious from Eq.(2.1), (p{") can also be given in terms of
another independent observable:
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(p{)=lim S(q,M)

q—0+
1 1
fdpl-“f dpipi’---
0 0

1
XJOdpMP(pl

= lim
q—0+

1 1 1
:f dpl”’f dplf dpMP(plv-'-!piv'-'!pM)'
0 0+ 0
(2.13

On the other hand, the expectation valyglnp;) is ex-
pressed in terms d§(q,M) as

oy 9S(@M) -
(PH=Qq(0, ...,0ki=0,0,...,0=S(q,M) {pilnpi)=—"2-— - (2.14
for q=1,2,3 ... . 2.9 The proof is as follows. From E@2.1), one has
Si(q,M)
It follows from Egs.(2.5 and(2.8) that ) ) )
_ =f dp1-~-f dpi"'f dpupP(P1,--- i, - .Pm)
M79FP(N)=S(qM) forg=123... . (2.9 0 0 0

(2.19

for q>0. Differentiating both sides with respect tp and

This equality has to be tested experimentall 2 (the
d 4 P Y 067 putting gq=1 lead to Eqg. (2.14 provided that

g=1 case is trivial in order to prove(or disprove the va- \a

lidity of the fundamental relation2.1). In particular, Eq. ~ P(P1:---.Pi.---,Pu) is independent of.

(2.9) suggests thaEg)(N) is independent oN. Now Eg. (2.10 indicates physically tha%(q,M) for g
According to the theory of multifractals, the generalized* 1 Will show a scaling behavior

dimensionD, may be determinedmathematically by the

M
following limit [6]: E Si(q,M)=M1~9Pq
i=1

(2.1
D — 1 : In(=M 1 (p)) forq£l, (210 for increasingM if P(py,...,p;,...,Pm) possesses a multi-
9 1-qy_.. [nM a7 L ' fractal structure. The experimental test of £2.16) is inde-
pendent of the test of E¢L.1). Of courseD, determined by
. ) Eqg. (1.2 and that by Eq(2.16) have to coincide with each
in particular, other if the fundamental formulé.1) is correct.
Finally, Eq.(2.12 suggests a scaling behavior
In(ZiLy(p?)) y
Do= lim —————, 21 5(q,M
o= M T M 213 > S@M) —D4InM (2.17)
=1 Jq -
gq=1
while for increasingM.
If the interval is so narrow that all the bins are equivalent,
|' EiM=1<pi|npi> - i.e., Si(q,M)=95(q,M), one has
L T (212 S(A,M) = M-, (2.18
and
It should be noted here thép?) is not necessarily equal to
unity. As the “empty” bins have to be excluded when one d(q,M)|  _ DynM (2.19
takes the expectation value pf (this is particularly crucial aq q=1 M '
whenq is negative, <p?) represents the probability that is
nonzero. It should be noted also that, in E(.1), Il. MODELS

On(Kg,..-Ki,... ,ky) is defined only forN=1,2,..., and
henceS;(q,M) is defined only fog=1,2, ..., by Eq(2.8).

For illustration of the results obtained in the preceding
Then,(p°) is formally evaluated by taking the limit

section, we consider several models.
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A. Statistical model C. @ model of intermittency

If all the N particles distribute homogeneously and inde- Both models considered in the preceding subsections are
pendently in the interval, the underlying probability distribu- trivial because they givg-independent generalized dimen-
tion is given by sions. Now we consider a nontrivial model used by Bialas
et al.[4,5]. In this model, a given interval of the phase space
is divided into\ bins of equal size and random numbers are
assigned to every bin in the first step. Each bin is divided
into \ bins similarly and random numbers are assigned again

Substituting Eqs(3.1) into Eq. (2.15, one obtains to every bin in the second step, and the same procedure is
repeatedv times. Then the total number of bins is

1

M
P(pl,...,pi,...,ph,,)zj_]:[1 S

S(gq,M)=M"1. 3.2 M=\". (3.13
Equations(2.13, (2.14), with Eqg. (3.2) give The probabilityp; is then given by
(pPy=1, (3.3 v
pi= M—laﬂl Wa, (3.14
(pilnp;)=—InM/M, (3.4 -
. where{w,: a=1,2,... p} is a set of non-negative random
from which one has numbers that are generated along the cascade down itththe
cell at thevth level. The spectral functiop(w,) of the
Do=D,=1. (3.9 random numbers satisfies the conditions
Finally, Eq.(2.18 with Eq. (3.2) gives 0
y, EQ.(2.18 q.32¢g J dw p(w)=1, (3.15
0
Dg=1 forg#1. (3.6
To summarize, we have a trivial geometrical dimendippn f dwwp(w)=1. (3.19
=1 for any realq. 0
In general, we will use the average of a functitfw) de-
B. Complete spike model fined as
In order to understand the particular role played by the .
empty bins, let us consider the distribution (f(w)>=f dw f(w)p(w). (3.17
MM 0+
P(P1,. Py PM) =M _1j:1 (k:l o(pk— 5Jk))- Note that{w®) is less than unity in spite of E43.15 when

3.7) p(w) has asfunction-like singularity atv=0.
' In this model, one has

All the bins except for thgth bin are emptysuch an event

may be called a complete spike event at lavglif particles

are produced according to the probability given by fkle  for g realq, where the relations=InM/In\ has been used.

S(q'M):M—q<Wq>InM/In)\ (3.18)

term on the right-hand sidgRHS). Equation(3.7) yields Equations(2.13 and(2.14) then give
S(gq,M)=1/M for g>0, (3.9 (p?) = (wO)InM/in\, (3.19
from which one has and
(p=1/M for g>0 (3.9 (pilnp;)=—INM/M +M~*» (winw),  (3.20
and With Egs.(2.11) and(2.12, one obtains
In{w®
(pilnp;)=0. (3.10 D=1+ fn—x> , (3.2
E i . i
quation(3.9) gives . (winw) 52
(PO = lim S(q,M)=1/M. (3.12) v In\ '
q—0+
In general,
All of these results imply that
In{w)
Dy=1- —7+— forg#1, (3.23

D,=0 forqg>0. (3.12 a (g—1)Inx
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TABLE |. Boundary values ofy in two models.

1.8} Statistical model Random cascade model
et M A=2 A=3 A=4
2 11 189 25 19
1.4 4 6 87 12 10
8 4 53 8 7
121 16 3 36 6 5
ch & statistical model 32 3 26 5 4
1.0 - § 64 3 19 4 4
081 o\(z model M
osl A4 Z,lSi(q,M):MS(q,M). (4.2)
3
04 If MS(g,M) is of the order of 103, one will observe some
ten complete spike events among thé #9ents, obtaining
0.2} " del 2 an experimental value df1S(q,M) with some 30% statisti-
complete spike mode cal error. Thus we set the following lower bound for practi-
0.0 L L 1 L L ) L L cally measurablé S(q,M):
-2 -1 0 1 2 3 4 5 6
q
MS(q,M)>10"3. 4.3

FIG. 1. Generalized dimensions in three models.
The most pessimistic estimate 8fq,M) is given by the
which includes Eq(3.2]). statistical model defined by E(B.1) because complete spike
The results of the three models are summarized in Fig. levents take place as a result of statistical fluctuations in this
Here, as an example, the spectral function oféhmodel is  case. We thus put
chosen as
MS(g,M)=M1"9>10"3, (4.4
p(wW)=ad(w)+Bé(w—1+a)+(l—a—B)é(w—1-b),
(3.24  The boundary values af as a function oM are shown in
Table I. It is obvious that the analysis can be done easily at
with @=0.1, 8=0.6,a=0.3, andb=(a+aB)/(1—a—p) least up tog=3 for a sufficiently largeM. An experimental

=0.933:- . In this case, the generalized dimensiDg is  analysis would be difficult for largesj. However, the statis-
given by EQq.(3.23 with tical model gives the result for the most disadvantageous
case. The situation is much better if there are nonstatistical

(Wwh=p(1-a)%+(1-a—p) " Y1-(1-a)B}". fluctuations. In fact, the boundary valuesgpbecome much
3.25 larger if one adopts the random cascade model with the spec-

tral function(3.24). The results fon=2, 3, and 4 are shown
in Table 1. In this case, it will be easy to carry out experi-
mental study fog=2 up to several tens.

The results foln=2, 3, and 4 are shown in Fig. 1.

IV. FEASIBILITY OF SPIKE EVENT ANALYSIS

In this section, we examine the feasibility of determining V. CONCLUSIONS
experimentally the probabilityS(q,M) for detecting the
complete spike event. Our approach would turn out to b%s

useless if5(q,M)’s for i_nteresting ranges af andM were the underlying probability distribution. We have shown that
too small to be determined experimentally even when ther?he probability of finding complete spike events carries

areAzht);]SécfaiLr"s); 'Sntfre;f'?hgefgﬁglja;gnzﬁé rr‘]c;r;sggtfé'llc:étog'%&;_equivalent information. 15(q,M) is measured experimen-
P ySIS, tally, one should first examine whether or no{Sfg,M)}

ficiently large numbetsay, 10) of events where jusy par- behaves as linear functions ofMhfor a sufficiently wide

ticles are produced in the interval of the phase space und('?:Emge ofM. If the linear-log behavior is observed, one can

r(!ietermineDq by using Eq(2.18. Equationg1.1) and(2.18
provide independent tests of the multifractality while Eg.
_ . _ 2.9 provides a consistency check of the existence of the
Si(A.M)=S,(q,M)=---=Su(a,M)=S(a,M). @.1) Emd)errl)ying probability distribﬁtion. As a byproduct, it is sug-
' gested thaF{’(N) will be independent oN. There is in-
In this case, it is sufficient to consider the total probability deed experimental evidence that the moments have no strong
for the complete spike event given by N dependencé?7]. The experimental study of the intermit-

The standard approach to intermittency or multifractality
es the scaled factorial moments that are supposed to reflect

appropriate multiplicity trigger. For simplicity, suppose that
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tency have been based on the inclusive approach in mosiclusive approach and is equally important. Furthermore,
cases. An apparent reason is to achieve good statistics. Titehas been shown that such an analysis is experimentally
present work suggests that the exclusive approach with themost feasible when there are interesting nonstatistical fluc-
analysis of complete spike events is complementary to théuations.

[1] T. H. Burnettet al, Phys. Rev. Lett50, 2062 (1983. [4] A. Bialas and R. Peschanski, Nucl. Phia273 703 (1986.

[2] NA22 Collaboration, M. Adamust al,, Phys. Lett. B185 200 [5] A. Bialas and R. Peschanski, Nucl. Pha308 857 (1988.
(1987. [6] H. G. E. Hentschel and I. Procaccia, Physic&,2+35(1983.

[3] See, for example, F. Takagi, Phys. Rev. LB8, 427 (1984, [7] TASSO Collaboration, W. Braunschwedd al., Phys. Lett. B
Phys. Rev. (32, 1799(1985; Phys. Rev. Lett72, 32(1994), 231, 548(1989.

and references therein.



