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We present a complete calculation of the leading-order QCD corrections to the quark level decay amplitude
for b→sgg and study their relevance for both the inclusive branching ratioB(B→Xsgg) and for the exclusive
decay channelBs→gg. In addition to the uncertainties in the short distance calculation, due to the choice of
the renormalization scale, an appreciable uncertainty in bothBs→gg and B→Xsgg is introduced by the
matrix element calculation. We also briefly discuss some long distance effects, especially those due to thehc

resonance for the inclusive rate. Finally, a brief analysis of the IR singularities of the two photon spectrum in
the inclusive case is given.@S0556-2821~97!05221-1#

PACS number~s!: 13.20.He, 12.15.Lk, 12.38.Bx, 14.65.Fy

I. INTRODUCTION

The radiative decays of theB meson are known to be very
sensitive to strong interaction perturbative corrections as
well as to the flavor structure of the electroweak interactions
and to new physics beyond the standard model. In particular,
both inclusive and exclusive processes induced byb→sg
have been studied in great detail@1–9# and two measure-
ments already exist from the CLEO Collaboration@10#:
B(B→Xsg)5(2.3260.5760.35)31024 and B(B→K* g)
5(4.260.860.6)31025.

Because of the impressive experimental effort that is be-
ing directed to the study of the physics of theB meson, we
can be confident that much lower branching ratios will be
measured in the future. Therefore it may be interesting to
study processes induced at the quark level by a two-photon
radiative decay of theb quark, i.e., byb→sgg.

The b→sgg decay has received some attention in the
literature@11–13# because of the interest in theBs→gg ex-
clusive mode. More recently, in Ref.@14# we focused on the
study of the inclusiveB→Xsgg branching ratio. In the pure
electroweak theory, without QCD corrections butafter the
necessary kinematical cuts to isolate the contribution into
hard photons are imposed, both branching ratios are found to
be of order 1027. There is at present an experimental upper
bound on theB(Bs→gg), namely,B(Bs→gg!,1.4831024

@15#.
As we know from the study ofb→sg, the impact of QCD

corrections on radiative B decays can be pretty dramatic.
Therefore in this paper we present a study of leading-order
QCD corrections to the quark level processb→sgg. We
will use this result to predict the QCD corrected branching
ratios for both the inclusiveB→Xsgg and the exclusive
Bs→gg mode. In both cases QCD corrections increase the
branching ratio by 60% to more than 100%. On the other
hand, the forward-backward asymmetry that was introduced

in @14# turns out to be very robust with respect to QCD
corrections and always varies by less than 15%.

In order to motivate the interest of our perturbative calcu-
lation we will also comment on some relevant long distance
contributions and devote particular attention to the effect of
thehc resonance in the inclusive case. Moreover, we will see
how some uncertainty for both the inclusive and the exclu-
sive branching ratio is introduced at the level of the matrix
element calculation, due to the dependence onms .

Finally, we will give in Appendix A a detailed description
of the treatment of the IR singularities that arise in the spec-
trum of the two photons forB→Xsgg.

II. LEADING-ORDER QCD CORRECTIONS TO b˜sgg

In this section we present the general structure of the
leading-order QCD corrections to the quark level decay pro-
cessb→sgg. We will give the expression for the amplitude
A(b→sgg), including a complete resummation of the lead-
ing QCD corrections to all orders in@asln(m2/MW

2 )#n. The
result will be then specialized in the following sections to the
calculation of the inclusive branching ratioB(B→Xsgg)
and of the exclusive branching ratio for the decayBs→gg.

We will discuss QCD corrections in the well-established
framework of electroweak effective Hamiltonians with
renormalization group improved resummation of QCD cor-
rections. For a complete review of the subject see Ref.@16#.
The most general effective Hamiltonian that describes radia-
tive b→s decays with up to three emitted gluons or photons
is given by@17,18#

Heff52
4GF

A2
VtbVts* (

i 51

8

Ci~m!Oi , ~1!

where, as usual,GF denotes the Fermi coupling constant and
Vi j indicates some Cabibbo-Kobayashi-Maskawa~CKM!
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matrix element. In writing Eq.~1!, we have used the unitarity
of the CKM matrix and we have taken into account that for
b→s transitionsuVubVus* u!uVtbVts* u.uVcbVcs* u. The basis of
local operators we use is obtained from the more general set
of gauge invariant dimension five and six local operators
with up to three external gauge bosons by applying the QED
and QCD equations of motion@17,18# and is expressed in
terms of the following operators:

O15~ s̄agmLcb!~ c̄ bgmLba!,

O25~ s̄agmLca!~ c̄ bgmLbb!,

O3,55~ s̄agmLba! (
q5u, . . . ,b

„q̄bgm~L,R!qb…, ~2!

O4,65~ s̄agmLbb! (
q5u, . . . ,b

„q̄bgm~L,R!qa…,

O75
e

16p2
s̄asmn~mbR1msL !baFmn ,

O85
gs

16p2
s̄asmn~mbR1msL !tab

a bbGmn
a ,

where the chiral structure is specified by the projectors
L,R5(17g5)/2, while a andb are color indices.Fmn and
Gmn

a denote the QED and QCD field strength tensors, respec-
tively, alsoe andgs stand for the electromagnetic and strong
coupling constants.

The Wilson coefficientsCi(m) are process independent
and their renormalization is determined only by the basis of
operators$Oi%. They depend on the renormalization scalem,
which we will set eventually tom'mb . This introduces an
error in the theory that is quite significant when only leading-
order~LO! logarithms of the form@asln(m2/MW

2 )#n are taken
into account and gets appreciably reduced when also next-
to-leading-order ~NLO! logarithms of the form
as@asln(m2/MW

2 )#n are resummed. The LO result for the Wil-
son coefficients in Eq.~1! is now a well established result@1#
and recently the authors of Ref.@6# provided us with the first
NLO calculation.

If we want to calculate the amplitude forb→sgg at LO
we have to use the effective Hamiltonian in Eq.~1! with LO
Wilson coefficients and evaluate its matrix element for the
b→sgg decay atO(as

0). On the other hand, for a NLO
result we have to use NLO Wilson coefficients and include
O(as) corrections to the matrix element.

In order to understand the impact of QCD corrections on
this new class of rare radiativeB decays, we choose to per-
form our analysis including, for the time being, only LO
corrections. Therefore we will take the LO regularization-
scheme-independent Wilson coefficients from the literature
@7# and will not consider explicitly the matrix elements due
to the insertion ofO5 andO6 into the one-photon and one-
gluon penguin diagrams. In fact these matrix elements are
reabsorbed into the scheme-independent definition ofC7(m)
andC8(m):

C7,8
eff~m!5C7,8~m!1ZW 7,8

T
•CW ~m!, ~3!

whereCW (m) is the vector ofC1(m), . . . ,C6(m), while the
vectorsZW 7,8 depend on the regularization scheme: they are
zero in the ’t Hooft–Veltman~HV! scheme and nonzero in
the naive dimensional reduction scheme~NDR! ~see Ref.@7#
for details!. In our calculation, we use theCi

eff effective co-
efficients, although we drop the extra index to simplify the
notation. We note that no new regularization scheme depen-
dence enters in the calculation of the matrix elements for
b→sgg through the new class of penguin diagrams with two
external photons. In fact, a finite scheme dependence in the
matrix element can arise only as a result of the product of the
UV pole part of a Feynman diagram~or set of diagrams!
times someO(e) evanescent Dirac structure of the diagram
itself. However, as we will see, the new penguins with two
external photons are UV finite atO(as

0). Therefore any dif-
ference between two regularization schemes can only give an
unphysicalO(e) effect. We have performed the calculation
of the following matrix elements in both the HV and NDR
regularization schemes and, as expected, the results coincide.
Therefore we do not specify any regularization scheme in the
following discussion.

The amplitude for the decayb(p)→s(p8)1g~k1)1g(k2)
can be expressed as

A5(
i 51

7

Ai52
ie2GF

A2p2
l t(

i 51

7

Ci~m! ū s~p8!Ti
mnub~p!

3em~k1!en~k2!, ~4!

wherel t5VtbVts* andem(k1) anden(k2) are the polarization
vectors of the two photons. TheCi(m) coefficients are in-
tended to be the LO ones, as explained before, while we have
denoted byTi

mn the tensor structure of the transition ampli-
tude induced by the operatorOi . The differentTi

mn are ob-
tained by inserting the operators of Eq.~2! into the Feynman
diagrams of Fig. 1, according to the color and chiral structure
of the operators themselves. In particular, one has to be care-
ful when dealing with penguinlike operatorsO3, . . . ,6 due to
their more complicated flavor structure. TheTi

mn tensors can
be summarized in a compact form as follows:

FIG. 1. Examples of Feynman diagrams that contribute to the
matrix element̂ sgguHeffub&. The 1PI diagrams illustrate the two
possible insertions of the operatorsO1 , . . . ,O6 ~double circled
cross vertices!, depending on their flavor, chiral, and color struc-
ture, while the 1PR ones represent the insertion ofO7 ~cross verti-
ces!. Moreoverq indicates a generic quark flavor.
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T1
mn5NcQu

2kcW2
mn ,

T2
mn5Qu

2kcW2
mn ,

T3
mn5$Nc@Qd

2~kd1ks1kb!1Qu
2~ku1kc!#

1Qd
2~kb1ks!%W2

mn ,

T4
mn5$@Qd

2~kd1ks1kb!1Qu
2~ku1kc!#

1NcQd
2~ks1kb!%W2

mn , ~5!

T5
mn52Nc@Qd

2~kd1ks1kb!1Qu
2~ku1kc!#W2

mn

1Qd
2@mbW5,b

mnR1msW5,s
mnL#,

T6
mn52@Qd

2~kd1ks1kb!1Qu
2~ku1kc!#W2

mn

1NcQd
2@mbW5,b

mnR1msW5,s
mnL#,

T7
mn5QdW7

mn ,

where we note that there is no contribution from the chromo-
magnetic operatorO8 at O(as

0). In Eq. ~5! Nc denotes the
number of colors (Nc53), Qu52/3 andQd521/3 are the
up-type and down-type quark electric charges, andmb and
ms indicate the masses of the bottom and of the strange
quark, respectively. Moreover all theTi

mn have been ex-
pressed in terms of only three tensor structures:

W2
mn5H 1

k1•k2
@k1

nk” 1gmk” 22k2
mk” 1 gnk” 22k2

mk1
n~k” 12k” 2 !#

1gngm~k” 12k” 2 !2gmn~k” 12k” 2!12k1
ngmJ L, ~6!

W5,q
mn5

1

mq
2 ~gnk” 2gmk” 11k1•k2gngm1gmnk” 2k” 12k2

mgnk” 1

2k1
nk” 2gm!~122kq!14S gmn2

k1
nk2

m

k1•k2
Dkq ,

W7
mn5

1

2 F2
1

2p•k2
k” 1gm~mbR1msL !~p” 2k” 21mb!gn

1
1

2p8•k2

gn~p” 2k” 11ms!k” 1gm~mbR1msL !G

1~$k1 ,m%↔$k2 ,n%!,

and the analytic coefficientskq defined as

kq5
1

2
1

Q0~zq!

zq
5

1

2
1

1

zq
E

0

1dx

x
ln~12zqx1zqx2! ~7!

for zq52k1•k2/mq
2 . In deriving Eqs. ~5!–~7! we have

checked the analogous results given in Refs.@3#, @4# for the
b→sgg decay and we confirm all of them.

Finally, we observe that using the effective Hamiltonian
of Eq. ~1! at m.MW and in the absence of QCD corrections,
we can reproduce the pure electroweak amplitude obtained
in Refs. @11–13#, as expected. Only two operators,O2 and
O7, contribute in this case. Their Wilson coefficients at
m5MW read

C2~MW!51,
~8!

C7~MW!5F2~xt!2F2~xc!,

whereF2(xi) is the Inami-Lim function for the on-shellbsg
vertex @19#:

F2~xi !5
3xi

322xi
2

4~xi21!4
lnxi1

28xi
325xi

217xi

24~xi21!3
. ~9!

The corresponding matrix elements are given in Eq.~5! and
we can easily verify thatO2 reproduces the one-particle ir-
reducible part of the result of Refs.@11–13# while O7 is
responsible for the one-particle reducible part.

III. INCLUSIVE BRANCHING RATIO FOR b˜sgg

As already discussed in Ref.@14#, the inclusive rate for
B→Xsgg can be described to a good degree of accuracy by
the quark level process. We can therefore directly use the
results of Sec. II to evaluate the square amplitude. For this
purpose, we rewrite the amplitude as

A52
ie2GF

A2p2
l t ū s~p8!@F2W2

mn1F5~mbW5,b
mnR1msW5,s

mnL !

1F7W7
mn#ub~p!em~k1!en~k2!, ~10!

where the coefficientsFi can be easily deduced from Eqs.~4!
and ~5!, and are

F25„NcC1~m!1C2~m!…Qu
2kc

1C3~m!$Nc@Qd
2~kd1ks1kb!1Qu

2~ku1kc!#1Qd
2~ks1kb!%

1C4~m!$@Qd
2~kd1ks1kb!1Qu

2~ku1kc!#1NcQd
2~ks1kb!%

2@NcC5~m!1C6~m!#@Qd
2~kd1ks1kb!1Qu

2~ku1kc!#,

F55@C5~m!1NcC6~m!#Qd
2 ,

F75C7~m!Qd . ~11!
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The square amplitude summed over spins and polarizations will then be given by

uAu25
1

4 S e2GF

A2p2
l tD 2

mb
4$uF2u2A221uF5u2A551uF7u2A7712 Re~F7F2* !A2712 Re@F5F2* ~122kb!#A25

b

12 Re@F5F2* ~122ks!#A25
s 12 Re~F7F5* !A57%, ~12!

where the quantitiesAi j denote the contractions between the tensorsWi
mn and Wj

mn . In order to give them explicitly we
introduce the notation1

s5
2k1•k2

mb
2

, t5
2p•k2

mb
2

, u5
2p•k1

mb
2

, r5
ms

2

mb
2

, ~13!

which satisfy the relationu1t2s512r. In order to introduce a more compact notation, it can be useful to switch occasion-
ally to the (s̄ , ū , t̄ ) invariants, defined ass̄5s/(12r), t̄ 5t/(12r), and ū5u/(12r). In this framework theAi j quantities
are given by

A2252@~12r!22~11r!s#,

A555$16ukbu21u~122kb!s14kbu21r@16uksu21u~122ks!s/r14ksu2#%~12s1r!

116 Re$8rkbks* 1s@kb22~11r!kbks* 1rks* #%,

A25
b,s56s~12r7s!, ~14!

A27522F ~11r!s1
rs2

~s2t !t
1

rs2

~s2u!uG ,
A575 ReH 8~kb1rks!s2$4r~kb1ks!1s@~122ks!1r~122kb!#%

3F s2

t~s2t !
1

s2

u~s2u!G J ,

A775~11r!@~12r!A77
~1!22A77

~2!#1A77
~3! ,

with

A77
~1!5

1

t̄
F11 ū1

2ū ~ ū22!

12ū
t̄ 1

2ū21

12 ū
t̄ 2G1~ t̄↔ū!,

~15!

A77
~2!5

1

t̄ 2 F12
11r

12ū
t̄ 1

r

~12ū! 2
t̄2G1~ t̄↔ū!,

A77
~3!522

s

t̄ ū
H ~11r!~21 ū t̄ !1

r

12r F12
2~11r!2 t̄ ū

~12 t̄ !~12 ū !
G s̄ J .

We want to put particular emphasis on the structure of theA77 part of the square amplitude because it will be a crucial
ingredient in testing the cancellation of the IR divergences that appear in the calculation of the total rate. In fact, the total rate
is obtained by integrating

dG5
1

2mb~2p!2D23
dD~p2p82k12k2!uAu2

d~D21!p8

2p08

d~D21!k1

2v1

d~D21!k2

2v2
, ~16!

1We decide to follow in our discussion the notation of Ref.@4# as closely as possible, which can be helpful for comparison.
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over the physical phase space, where we have denoted byv1

andv2 the energies of the two photons. All the terms inuAu2

are both UV and IR finite exceptA77, which gives origin to
IR singularities upon integration over the phase space of the
two photons. We chose to regularize the integrals working in
D5422e dimensions and to extract the existing IR singu-
larities as poles in 1/e. These IR divergencies originate when
either v1→0 or v2→0, and correspond to the well-known
IR singularities that arise in the bremsstrahlung process
when one or the other of the two photons becomes very soft.2

In this limit theb→sgg decay cannot be distinguished from
b→sg and the two processes have to be considered together
in order to obtain meaningful~i.e., finite! physical quantities.
In fact, we have checked that the IR singularities that arise
from the integration ofA77 over the phase space cancel ex-
actly with theO(ae) virtual corrections to theb→sg ampli-
tude ~see Appendix A!. ThereforeG(b→sg)1G(b→sgg)
is free of IR singularities.

This problem has already been studied in detail in order to
take into account theO(as) bremsstrahlung corrections for
b→sg @3,4#. However our point of view here is slightly
different. In our case the bremsstrahlung process is not con-
sidered as anO(ae) correction to theb→sg amplitude, but
as a different process: the decay of ab quark into ans quark
plus two hard photons. Therefore, the end points of the spec-
trum of each photon~where the IR singularities are present!
do not in fact correspond to the process of interest. In order
to calculate the physical rate of interest we just have to im-
pose a cut on the energy of each photon, which will naturally
correspond to the experimental cut imposed on the minimum
energy for detectable photons.

In Fig. 2 we illustrate the spectrum of the two photons,
defined as the photon of higher energy and the photon of
lower energy. We obtain this spectrum requiring the energy
of each photon to be larger thanEg

min5100 MeV and the
angles between any two outgoing particles to be bigger than
u i j

min520°. This last constraint is not required analytically,
but we think it is reasonable to exclude photons that are
emitted too close to each other or to the outgoings quark, in
order to roughly incorporate the experimental requirements
as we perceive them. Once the structure of the differential
rate has been checked and the presence of IR singularities
understood and treated, we can integrate Eq.~16! numeri-
cally and study the impact of QCD corrections on the total
rate as well as on different distributions.

We find that QCD corrections enhance the rate by a factor
of .222.5, depending on the numerical parameters we use.
In our evaluation we fixmb54.8 GeV, mc51.5 GeV,
mt5175 GeV, andul tu5uVtbVts* u50.04. As far asms is con-
cerned, we usems.MK50.5 GeV. For this set of param-
eters and fixingm5mb , the branching ratio forB→Xsgg
goes from ;1.731027, without QCD corrections, to
;3.731027 when LO QCD corrections are included. We

recall that we define theB(B→Xsgg) in terms of the semi-
leptonic branching ratio as follows:

B~B→Xsgg!.FG~b→sgg!

G~b→cln l !
G th

3B~B→Xcln l !
expt,

~17!

where no QCD corrections have to be included in the theo-
retical prediction ofG(b→cln l) at this order inas and we
have usedB(B→Xcln l).0.11 @20#.

In principle, ms.MK should be used in the phase space
integration, while in the perturbative calculation of the am-
plitude one may need to replace it by the current mass
ms.0.15 GeV. However, this introduces spurious instabili-
ties in the numerical Monte Carlo integration over the phase
space. Since the numerical results change little as we replace
ms over the range 0.15– 0.5 GeV, we prefer to use the same
value of ms in both cases. Thus, in order to simulate the
physical phase space correctly we setms.MK everywhere.

Moreover, we have to account for the scale dependence
introduced by QCD corrections at the level of the Wilson
coefficients. This makes a 25– 30% uncertainty, as is the
case forB→Xsg. For the sake of completeness, we also give
the values of the Wilson coefficients we use in Table I, for
three values ofm, m5mb/2, mb , and 2mb , respectively, and
for mt5175 GeV andas(MW)50.118. We will comment
about further uncertainties introduced by long distance QCD
effects in Sec. V.

2We note that there are no collinear singularities so long as the
mass of the external quarks is nonzero. This gives origin to a non-
negligible dependence onms and perhaps a more careful resumma-
tion of logarithms like ln(ms

2) in the rate should be implemented.
We will discuss our concern with this problem later on.

FIG. 2. The spectrum of the two photons including QCD cor-
rections, normalized to the total QCD corrected rate forms50.5
GeV. The two photons are defined as the photon of lower energy
~solid! and the photon of higher energy~dashed!.

TABLE I. Values of the regularization-scheme-independent LO
Wilson coefficients for m5mb/2, m5mb , and m52mb , for
mb54.8 GeV,mt5175, GeV andas(MW)50.118.

m C1 C2 C3 C4 C5 C6 C7

mb/2 20.324 1.148 0.01520.033 0.009 20.043 20.344
mb 20.234 1.100 0.01020.024 0.007 20.029 20.308
2mb 20.162 1.065 0.00720.017 0.005 20.019 20.277
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In order to better understand the dynamics of QCD cor-
rections, let us classify the different contributions to the rate
into one-particle reducible~1PR! and one-particle irreducible
~1PI!, as we did in Ref.@14# for the pure electroweak case. In
the language of the effective Hamiltonian of Eq.~1! this
corresponds to separating the contribution ofO7 ~which cor-
responds to the IPR part! from that of all the other operators.
As we saw @14#, the photon invariant mass distribution,
dG/ds, is dominated for lows by the 1PR diagrams, while
for largers a nontrivialmc-dependent contribution from the
1PI diagrams starts being relevant. The effect of QCD cor-
rections is to enhance even more the effect ofO7, as we
could expect from the dramatic effect that QCD corrections
have inb→sg, while lowering the impact of the 1PI contri-
bution, because of the new mixing with many different four-
quark operators. In particular, the contribution ofO2 is sup-
pressed by the destructive interference withO1. We verified
that the contributions of different operators to the angular
distribution of the two photons are very similar to each other,
also after QCD corrections have been included.

On the other hand, as expected, the forward-backward
asymmetry we introduced in@14#,

AFB5
G~cosusg>0!2G~cosusg,0!

G~cosusg>0!1G~cosusg,0!
, ~18!

whereusg is the angle between thes quark and the softer
photon, is rather insensitive to QCD corrections, since the
QCD corrections tend to cancel between the numerator and
the denominator. In fact we find that QCD corrections affect
AFB by no more than 15%, changing it from 0.71~without
QCD corrections! to 0.78 ~with LO QCD corrections!, de-
spite the fact that the total rate changes by as much as 60%
to 100%. FurthermoreAFB is practically insensitive to the
choice of scale in the LO Wilson coefficients, while the
branching ratio varies as much as 30% withm. On the other
hand, this observable will clearly benefit from the enhance-
ment induced by QCD at the rate level. Once the process is
measured the possibility of measuring this new observable
should give us another handle in testing our understanding of
the theory and in differentiating the standard model from its
extensions, as already explained in@14#.

IV. THE EXCLUSIVE DECAY Bs˜gg

Using the quark level amplitude in Eq.~10! we can also
estimate the rate for theBs→gg rare decay and evaluate the

impact of QCD corrections on it. In order to calculate the
matrix element of Eq.~10! for the Bs→gg decay, we can
work, for instance, in the weak binding approximation and
assume that both theb and thes quarks are at rest in theBs
meson. In the rest frame of the decayingBs meson we would
have that

k1k25
MBs

2

2
, pbk15pbk25 1

2 mbMBs
,

psk15psk25 1
2 msMBs

, ~19!

wheremb andms must now be treated as constituent masses.
The problem can also be rephrased in the language of heavy
quark effective theory~HQET!, assuming that the velocity of
theb quark coincides with the velocity of theBs meson up to
a residual momentum of orderLQCD, i.e., pb

m5mbvm1km.
To first approximation, the scalar products of Eq.~19!, are
replaced by

k1k25
MBs

2

2
, pbk15pbk25 1

2 mbMBs
,

psk15psk25 1
2 ~MBs

2mb!MBs
, ~20!

where we have used thatps
m52(pb2k12k2)m. We can see

that, to this order, Eqs.~19! and ~20! are compatible up to
corrections of order (LQCD/mb), if we assume
ms'(MBs

2mb)'LQCD. Unless the HQET formalism is
taken to beyond the leading order one cannot make a reliable
distinction between the two predictions. Therefore, for con-
creteness, we give in the following the necessary matrix el-
ements using the weak binding approximation. By further
recalling that

^0usḡmg5buBs~PBs
!&52 i f Bs

PBs

m ,
~21!

^0usḡ5buBs&5 i f Bs
MBs

,

we obtain the following matrix elements forW2
mn , W5,q

mn and
W7

mn :

^0uW2
mnuBs&em~k1!en~k2!5 i

1

2
f Bs

~2 iF mnF̃mn!

^0uW5,b
mnuBs&em~k1!en~k2!5 i

1

4
f Bs

MBsF2S 122kb

mb
1

8kbmb

MBs

2 D FmnFmn2
122kb

mb
iF mnF̃mnG ,

~22!

^0uW5,s
mnuBs&em~k1!en~k2!5 i

1

4
f Bs

MBsF S 122ks

ms
1

8ksms

MBs

2 D FmnFmn2
122ks

ms
iF mnF̃mnG ,

^0uW7
mnuBs&em~k1!en~k2!5 i

1

4
f Bs

~mb1ms!
2

mbms
F ~mb2ms!

~mb1ms!
FmnFmn2 iF mnF̃mnG ,
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where f Bs
denotes theBs meson decay constant. The amplitudeA(Bs→gg) can therefore be expressed in terms of the only

two tensor structuresFmnFmn andFmnF̃mn:

A~Bs→gg!52 i
GFe2

A2p2
l t~A1FmnFmn1 iA2FmnF̃mn!, ~23!

whereF̃mn51/2 emnrsFrs . The coefficientsA1 andA2 of theCP-even and of theCP-odd terms can be easily derived from
Eq. ~22! and read

A15 i
1

4
f BsF2MBsS 122kb

mb
1

8kbmb

MBs

2 D F51MBsS 122ks

ms
1

8ksms

MBs

2 D F51
~mb

22ms
2!

mbms
F7G , ~24!

A25 i
1

4
f BsF22F22MBsS 122kb

mb
1

122ks

ms
DF52

~mb1ms!
2

mbms
F7G . ~25!

The QCD corrected coefficientsF2, F5, andF7 can be taken
from Eq. ~11!, while at O(as

0) they are simply given by
F25Qu

2kcC2(MW), F550, and F75QdC7(MW) for
C2(MW) and C7(MW) in Eq. ~8!. We notice that the terms
proportional toF7 in both A1 andA2 are inversely propor-
tional to ms .3 This is a clear signal of the relevance of non-
perturbative effects to the evaluation of the matrix element
for the decay rate ofBs→gg. In the absence of a calculation
of the matrix elements for this process which takes into ac-
count the higher-order corrections in the HQET expansion,
we can only give the perturbative prediction and try to esti-
mate the theoretical error we have on that. Therefore we will
use Eqs. ~23! and ~24! and vary ms in the range
300<ms<500 MeV.4

Let us first estimate the impact of QCD corrections on the
rate

G~Bs→gg!5
MBs

3

16pS 2 i
GFe2

A2p2
l tD 2

~ uA1u21uA2u2!,

~26!

and on the ratio of the two coefficientsA1 andA2:

R5
uA1u2

uA2u2
. ~27!

As pointed out in Refs.@11,13#, the coefficientsA1 andA2

correspond respectively to photons with parallel
@e(k1)•e(k2)# and perpendicular@e(k1)3e(k2)# polariza-
tion. The interest in the ratioR also crucially depends on the

magnitude of the branching ratio itself and is therefore im-
portant to examine the impact of QCD corrections on both of
them.5

In the following we will usef Bs
.200 MeV, MBs

55.37
GeV, mb54.8 GeV, mc51.5 GeV, mt5175 GeV, and
ul tu5uVtbVts* u50.04. Using the experimental lifetime of the
Bs meson,ts51.61310212 s, we find that the branching
ratio B(Bs→gg) goes, forms50.5 GeV, from 3.131027

without QCD corrections to 5.031027 with LO QCD cor-
rections, therefore increasing by about 62%. As far asA1

andA2 are concerned, their ratio is substantially changed by
the action of QCD corrections. It goes fromR50.28 without
QCD corrections toR50.55 with LO QCD corrections. In
fact atO(as

0) bothA1 andA2 depend on the 1PR part of the
amplitude (O7) and only A2 is sensitive to the 1PI part
(O2). When we switch on QCD corrections, the contribution
of O7 dominates and drivesA1 and A2 closer and closer.
This effect is amplified by the cancellation that takes place in
the 1PI sector, mainly amongO2 andO1.

The uncertainty in the perturbative calculation is domi-
nated by the scale dependence of the LO Wilson coefficients,
which is around 25230%. On the other hand, we estimate
the uncertainty coming from nonperturbative QCD effects,
i.e. from the calculation of the matrix element, to be of about
50%. Thus, attributing a 60% uncertainty to the central value
(531027), we expect the branching ratio to be about
(228)31027. It would be very useful to have a more accu-
rate calculation of these effects, perhaps by using HQET
beyond the leading order, so that a more precise theoretical
prediction can be obtained. Indeed it is not inconceivable
that those corrections will further increase the branching ra-
tio for Bs→gg.

V. LONG DISTANCE QCD EFFECTS

As far as theBs→gg rare decay is concerned, as we
discussed in the previous section, we expect long distance

3The matrix element ofW5,s
mn does not scale as 1/ms for small ms

because alsoks→1/2 for ms→0, therefore killing the 1/ms terms.
Moreover, the dependence onms from this matrix element is very
much suppressed by the smallness of the coefficientF5.

4In principle, at this level of approximation, one should also vary
mb in order to compensate the variation ofms and always satisfy
the relationMBs

'(mb1ms). We verified that this makes only a
minor difference numerically and therefore we keepmb54.8 GeV
while varyingms .

5One interesting implication of this is thatA1/A2 can be used to
construct aCP-violating observable, which will pick up a depen-
dence on Im(l t)/Re(l t)5O(hl2), whereh and l correspond to
the Wolfenstein parametrization of the CKM matrix.
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QCD corrections to be proportional to 1/ms at the lowest
order, introducing an uncertainty that asks for a more accu-
rate computation of the matrix element. Other nonperturba-
tive effects could come from the formation ofc̄ c bound
states in the decay process, i.e., from resonances. However,
in the Bs→gg case these resonant states would be far off-
shell and they are not likely to give a significant contribution
to the rate~similar to theb→sg case!.

The inclusive decayB→Xsgg is, in this respect, more
problematic. In the region of invariant mass of the two pho-
tons arounds.4mc

2/mb
2 , the rate is going to be dominated

by the hc resonance, which subsequently decays into two
photons, i.e., byb→hcs→sgg. This could affect other re-
gions of the spectrum and constitute a serious problem.
Moreover, we recall that in the resonance region, the inclu-
sive B→Xsgg decay cannot be approximated anymore by
the quark level process, as is the case forB→Xse

1e2 @8#. In
order to understand the relevance of our perturbative calcu-
lation we need to include the resonance at the amplitude
level and to estimate how it affects the invariant mass distri-
bution, dG/ds, away from the resonance peak. This will al-
low us to select those regions of the spectrum that are free
from major long-distancepollutions. In principle we should
include in our analysis all the possible resonant channels.
However, thehc resonance is dominant and is enough to
provide us with an idea of the resonant effects.

In order to model the contribution of thehc resonance we
need to provide an effective vertex both for theb→shc tran-
sition and for thehc→gg decay that follows it. Thebshc
vertex can be derived from the amplitude for theb→shc
decay@21#. Using the effective Hamiltonian in Eq.~1! and
parametrizing the axial vector current matrix element

^0ucḡmg5cuhc&52 i f hc
Ph

m ~28!

in terms of the decay constantf hc
.300 MeV @21#, one gets6

^shcuHeffub&52 i
GF

A2
l t f hcFC11C32C51

1

Nc

3~C21C42C6!G ū s@2ms~12g5!

1mb~11g5!#ub . ~29!

For the values of the parameters used in this paper and taking
the LO Wilson coefficients from Table I, we can estimate
B(b→hc1 anything).431023, more restrictive than the
present experimental upper bound@20#

B~b→hc1 anything!,931023. ~30!

As far as thehcgg vertex is concerned, we can assume the
amplitude forhc→gg to be of the form

A~hc→gg!5 iB2FmnF̃mn, ~31!

and use the experimental measurement

6We assume simple factorization.

B~hc→gg!5331024 ~32!

to estimateuB2u.(2.523)31023, for Ghc
50.013 GeV and

Mhc
.3 GeV. The relative sign between the perturbative

continuum and the resonant contribution can be determined
via the same kind of unitarity arguments applied in Ref.@22#
to theb→sc case. In fact, in the resonance region the per-
turbative amplitude is much smaller than the resonant one
and therefore the relative sign between the two terms of the
amplitude has to be positive, as in@22#.

The amplitude for the inclusiveb→sgg decay can now
be written as the sum of a nonresonantANR and a resonant
AR part

A~b→sgg!5ANR1AR

5ANR1S 2 i
e2GF

A2p2
l tD

3 ū s~p8!FRWR
mnub~p!em~k1!en~k2!, ~33!

whereANR , including LO QCD corrections, is given in Eq.
~10! while AR has been expressed in terms of the following
coefficient and matrix element:

FR5 i
p

4ae
f hc

B2FC11C32C51
1

Nc
~C21C42C6!G

3
1

q22Mhc

2 1 iGhc
Mhc

,

WR
mn52i emnrsk1rk2s@2ms~12g5!1mb~11g5!#, ~34!

where q25(k11k2)2. If we use Eq.~33! to compute the
invariant mass distribution of the two photons, we see that
the effect of the resonance is very well localized around the
resonance peak and does not affect in particular the region
for s<0.3, where we uses5q2/mb

2. We can define in fact
two regions, for 0.0<s<0.3 and fors>0.5, in which the
effect of thehc resonance is practically negligible, as one
can see in Fig. 3. Over these regions we can assume the
validity of our perturbative calculation of Sec. III as well as
of our previous studies of the various kinematical distribu-
tions for b→sgg decay@14#. Disregarding in the perturba-
tive calculation of Sec. III the contribution of the resonance
region, which we conservatively define as 0.3<s<0.5, we
find that theperturbativebranching ratio is reduced by at
most 14%. It would be very useful to verify experimentally
that the effect of thehc resonance in theB→Xsgg case is
not so relevant, in comparison with what we know to be the
case forB→Xse

1e2. In fact, if we consider the decay chain
b→sc followed by c→e1e2 and use both experimental
@20# and theoretical@16,23# inputs, we can estimate that

G~b→sc!G~c→e1e2!

G~b→se1e2!
.1.43102, ~35!

while the analogous quantity forb→shc followed by
hc→gg, amounts to
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G~b→shc!G~hc→gg!

G~b→sgg!
.6. ~36!

This argument indirectly confirms the less dramatic impact
that thehc resonance has on the invariant mass distribution
of the two photons in theb→sgg decay.

Note added.While in the course of writing this manu-
script, we became aware of the following two papers: G.
Hiller and E.O. Iltan, hep-ph/9704385 and C.-H. V. Chang,
G.-L. Lin and Y.-P. Yao, hep-ph/9705345, in which the
problem of QCD corrections as it pertains only to the exclu-
sive Bs→gg decay is also discussed. We agree with the
revised version of the first reference. We also agree with the
results of the second reference, except for a few points that
appear to be misprints.
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APPENDIX A: STUDY OF THE IR DIVERGENCES
OF THE RATE

In this Appendix we want to show the explicit cancella-
tion between the IR singularities arising respectively in the
b→sgg rate from the bremsstrahlung of a soft photon and in
the O(ae) virtual corrections to theb→sg amplitude. This
will confirm our understanding of the end points of the pho-
ton spectrum in theb→sgg decay. Our calculation is very
similar to what can be found in Refs.@3#, @4# for the study of
the gluon spectrum inb→sgg. Many results could be taken
from there provided the different charge and color factors are
adequately taken into account. We have indeed reproduced

the calculation we report in this Appendix and we can
confirm7 a posteriori the results forb→sgg.

Moreover, as we already explained in Sec. III, we are not
going to includeO(ae) virtual corrections to theb→sg am-
plitude in the calculation of the rate forb→sgg. In fact, we
will just require the two photons to be hard, imposing a
minimum energy cut. Therefore, in the present Appendix we
will consider only those aspects of the discussion that are
necessary to show the cancellation of the IR poles.

In the reactionb(p)→s(p8)1g(k1)1g(k2), the spec-
trum of any of the two photons presents two sharp singulari-
ties in the vicinity of the end points, i.e. forxg→0 and for
xg→1, where we definexg5Eg/Eg

max for Eg
max5(mb

2

2ms
2)/2/mb . The variablexg corresponds in general to the

reduced energy of a given photon. To make contact with the
notation introduced in Eq.~13!, we can easily see that

xg1
5

u

12r
5 ū and xg2

5
t

12r
5 t̄ . ~A1!

This singular behavior at the end points of the spectrum cor-
responds to the presence of IR singularities in the rate for
b→sgg, when the energy of one or the other of two photons
goes to zero, i.e., whenxg→0 ~the energy of the photon
under consideration! or xg→1 ~the energy of the other pho-
ton!.

These IR singularities originate from the integration of the
A77 part of the square amplitude over the phase space of the
two photons. As we can see from Eq.~15!, A77 is symmetric
with respect to (ū↔ t̄ ), i.e., under the exchange of the two
photons. Therefore the treatment of the two end points is
symmetric. Given the spectrum of one photon, we will arbi-
trarily consider the end pointxg1

→1. All our results will be
valid in an analogous manner for the other end point, i.e., for
xg2
→1.

Let us consider the contribution ofO7 only to the differ-
ential decay rate. Starting from Eq.~16! and working out the
integration over the phase space inD5422e dimension we
get

dG7

d t̄ d ū
5~12r!2

1

4

ae

p
G0F7

2

3
~12r!24e~8pm2/mb

2!2e

G~222e!$ t̄ ū @12 f ~ t̄ , ū !2#1/2%2e
A77~ t̄ , ū !,

~A2!

whereA77( t̄ , ū ) is given in Eqs.~14! and~15! and the func-
tion

f ~ t̄ , ū !512
2~ ū1 t̄21 !

~12r! t̄ ū
~A3!

7In the course of these checks we came across a misprint in Eq.
~34! of Ref. @4#. We are very grateful to the author for confirming
this. The correct expression is given in Eq.~A2!.

FIG. 3. The invariant mass distribution of the two photons in the
presence of thehc resonance, normalized to the total rate
G tot55.731027, as obtained forms50.5 GeV. We show the pure
nonresonant~solid!, the pure resonant~dashed!, and the total distri-
bution ~dotted!. The resonance peak is truncated in order to show
the relevance of the different contributions both inside and outside
the resonance region.
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corresponds kinematically to the cosinus of the angle be-
tween the two photons in the rest frame of theb quark, when
expressed in terms of the invariantsū and t̄ . Moreover we
denote byG0 the quantity

G05
GF

2aeul tu2

32p4
mb

5 . ~A4!

The origin of the singularity inū→1 becomes evident after
we integrate overt̄ and similarly for the singularity int̄→1
when we integrate overū .8 In particular, they are generated
by the term in brackets inA77

(2) @see Eq.~15!#, whose contri-
bution, upon integration, reads

dG7,ū
IR

d ū
5~11r!~12r!3

1

4

ae

p
G0F7

2CeF2
2~G~a!1eG~b!!

~12 ū !112e G ,

~A5!

where

Ce5
~12r!24e~4pm2/mb

2!2e

G~222e! ū2e
, ~A6!

and

G~a!5S 11
r

12uD ū1
11r

12r
ln~12u!,

G~b!5
r

12u
@21 ln~12u!#ū22

12u

12r
ln~12u!

1
11r

12r F1

2
ln2~12u!22 Li2~u!G , ~A7!

using the standard notation for the Spence function
Li2(x)52*0

1dtln(12xt)/t. After the last integration overū ,
the IR singularity forū→1 appears as a pole ine, i.e.,

G7, ū→1
IR

~b→sgg!5E
0

1

d ū
dG7,ū

IR

d ū
5~11r!~12r!3

1

4

ae

p

3G0F7
2 1

e F21
11r

12r
logrG1•••, ~A8!

where the ellipsis indicates all other kinds of terms arising
from the integration. An analogous singularity arises for
t̄→1 when we integrate the second term ofA77

(2) @see Eq.

~15!# first overd ū and then overd t̄ . Therefore the rate has
a total IR singularity given by

G7
IR~b→sgg!5E

0

1

d ū
dG7

IR

d ū

5~11r!~12r!3
1

2

ae

p
G0F7

2 1

e F21
11r

12r
lnrG

1O~1!, ~A9!

where we have indicated withO(1) all the other nonsingular
terms arising from the integration.

We will now show that the same IR singularity, but with
opposite sign, arises from theO(ae) virtual corrections to
theb→sg amplitude induced, of course, by the same opera-
torsO7. In this case, given the tree levelbsg vertex induced
by O7, we have to consider both self-energy and vertex
O(ae) corrections in the renormalized theory, i.e., taking
into account the wave-function renormalization constants of
theb and of thes quark. The choice of gauge for the photon
is not relevant if the calculation is consistently performed
~we checked the result in both the Feynman and the Landau
gauge! and the final result reads

G7
~ae!

~b→sg!5~11r!~12r!3G0F7
2~112Kae

!

3
G~12e!

G~222e! S 4p

mb
2 D e

~12r!22e

5G7
~0!1dG7

~ae! , ~A10!

where

G7
~0!~b→sg!5~11r!~12r!3G0F7

2 , ~A11!

dG7
~ae!

~b→sg!5~11r!~12r!3G0F7
22Kae

3
G~12e!

G~222e! S 4p

mb
2 D e

~12r!22e,

and

Kae
5

1

4

ae

p
~4p!eG~11e!F2

1

e S 21
11r

12r
lnr D1O~1!G .

~A12!

It is now easy to verify that the pole terms cancel between
Eq. ~A9! and Eq.~A10!, such that

G7
IR~b→sgg!1dG7

~ae!
~b→sg!;O~1!. ~A13!

In the previous discussion we may have disregarded terms of
O(e) when they do not happen to multiply a quantity con-
taining 1/e poles and we have omitted all over a factor of
@mb(mb)/mb#2 because it would not influence the cancella-
tion of the IR poles.

8We could obtain this second singularity by looking, after we

integrate overt̄ , to the ū→0 end point of the remaining integra-
tion. However, we prefer to use the symmetry between the two
photons.
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