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We present a complete calculation of the leading-order QCD corrections to the quark level decay amplitude
for b—syy and study their relevance for both the inclusive branching B¢{®— X;yvy) and for the exclusive
decay channeB,— yvy. In addition to the uncertainties in the short distance calculation, due to the choice of
the renormalization scale, an appreciable uncertainty in Bqath yy and B— X yy is introduced by the
matrix element calculation. We also briefly discuss some long distance effects, especially those dug. to the
resonance for the inclusive rate. Finally, a brief analysis of the IR singularities of the two photon spectrum in
the inclusive case is givenS0556-282(97)05221-1

PACS numbgs): 13.20.He, 12.15.Lk, 12.38.Bx, 14.65.Fy

[. INTRODUCTION in [14] turns out to be very robust with respect to QCD
corrections and always varies by less than 15%.

The radiative decays of tH& meson are known to be very In order to motivate the interest of our perturbative calcu-
sensitive to strong interaction perturbative corrections aation we will also comment on some relevant long distance
well as to the flavor structure of the electroweak interactionsontributions and devote particular attention to the effect of
and to new physics beyond the standard model. In particulathe 7. resonance in the inclusive case. Moreover, we will see
both inclusive and exclusive processes inducedbbysy  how some uncertainty for both the inclusive and the exclu-
have been studied in great detfll-9] and two measure- sive branching ratio is introduced at the level of the matrix
ments already exist from the CLEO CollaboratiphO]: element calculation, due to the dependencemn
B(B—Xsy)=(2.32+0.57+0.35)x 10 * and B(B—K*y) Finally, we will give in Appendk A a detailed description
=(4.2+0.8+0.6)x 107 5. of the treatment of the IR singularities that arise in the spec-

Because of the impressive experimental effort that is betrum of the two photons foB— Xsyy.
ing directed to the study of the physics of tBemeson, we
can be confident that much lower branching ratios will be |I. LEADING-ORDER QCD CORRECTIONS TO b—syy
measured in the future. Therefore it may be interesting to ) )
study processes induced at the quark level by a two-photon N this section we present the general structure of the
radiative decay of thé quark, i.e., byb—syy. leading-order QCD.cor.rectlons to the quark level deca_\y pro-

The b—syy decay has received some attention in thecessb—>37y.. We vy|ll give the expression for' the amplitude
literature[11—13 because of the interest in ta— yy ex-  A(P—Sy7), including a complete re.summaglonzof the lead-
clusive mode. More recently, in Rdfl4] we focused on the INg QCD corrections to all orders ifaIn(u/My)]". The
study of the inclusiveB— Xy branching ratio. In the pure result will be then specialized in the following sections to the
electroweak theory, without QCD corrections tafter the ~ Calculation of the inclusive branching ratl(B—Xsyy)
necessary kinematical cuts to isolate the contribution into@nd of the exclusive branching ratio for the de@y- .
hard photons are imposetioth branching ratios are found to ~ We will discuss QCD corrections in the well-established
be of order 107. There is at present an experimental upperfamework of electroweak effective Hamiltonians with
bound on theB(Bs— ), namely,B(Bs— vy)<1.48x<10* renqrmallzatlon group |mpro.ved resummation of QCD cor-
[15]. rections. For a complete_ review _of th_e subject see R, _

As we know from the study di— sy, the impact of QCD The most general gffectlve Hamlltom_an that describes radia-
corrections on radiative B decays can be pretty dramaticive b—s decays with up to three emitted gluons or photons
Therefore in this paper we present a study of leading-ordel given by[17,18
QCD corrections to the quark level procdss>syy. We 4G 8
will use this result to predict the QCD corrected branching __9F * ‘ .
ratios for both the inclusiveB— X yy and the exclusive Her= 2 V“’Vtszl (w0, @
B.— yy mode. In both cases QCD corrections increase the
branching ratio by 60% to more than 100%. On the othemwhere, as usual;r denotes the Fermi coupling constant and
hand, the forward-backward asymmetry that was introduced;; indicates some Cabibbo-Kobayashi-Maskaw2kM)
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matrix element. In writing Eg(1), we have used the unitarity .
of the CKM matrix and we have taken into account that for * L s 3 T
b— s transitions|V,,Vd <[V Vig =|VcpVad . The basis of k,g gzkz g"z (s)

local operators we use is obtained from the more general se v

of gauge invariant dimension five and six local operators
with up to three external gauge bosons by applying the QEL b s s

and QCD equations of motiofl7,18 and is expressed in ’ § g ' % § t
terms of the following operators:

Ol: ( Sa’y'ul—cﬁ)( C,B’Y,ul—ba) ’
. e FIG. 1. Examples of Feynman diagrams that contribute to the
0,=(S,¥"Lc,)(Cpy,Lbp), matrix element(syy|Hqx/b). The 1PI diagrams illustrate the two
possible insertions of the operato€,, ... ,Og (double circled
o o cross vertices depending on their flavor, chiral, and color struc-
O35=(S,7*Lb,) E i (9g7.(L,R)qp), (2)  ture, while the 1PR ones represent the insertio@gfcross verti-
q=

RS ces. Moreoverq indicates a generic quark flavor.
O46=(Sa7"Lby) 2 (a7, (LR)a.), CoYm)=Crem)+Z75 Clp), (3)
whereé(,u) is the vector ofCq(u), ...,Ce(r), while the
0,= € S_D[UW(mbR+ mgL)b,F,,, vectorszzg depend on the regularization scheme: they are
1672 zero in the 't Hooft—Veltmar(HV) scheme and nonzero in

the naive dimensional reduction schefMbR) (see Ref[7]
O — for details. In our calculation, we use thg®" effective co-
Og="—5S0""(MR+ ML )15 505G, , efficients, although we drop the extra index to simplify the
16m notation. We note that no new regularization scheme depen-
ence enters in the calculation of the matrix elements for
—Svyvy through the new class of penguin diagrams with two

. . - . d
where the chiral structure is specified by the projectors,

L’aR_(1+75)/2’ while o and g are color indicesF,, and  oy40rna) photons. In fact, a finite scheme dependence in the
G,,, denote the QED and QCD field strength tensors, respeGyatrix element can arise only as a result of the product of the
tively, alsoe andgs stand for the electromagnetic and strong j/ pole part of a Feynman diagrafor set of diagrams
coupling constants. _ times someO(e) evanescent Dirac structure of the diagram
The Wilson coefficientsCi(u) are process independent jiseif However, as we will see, the new penguins with two
and their renormalization is determined only by the basis o, tarnal photons are UV finite &(a?2). Therefore any dif-

operator§O;}. They depend on the renormalization scale  terence hetween two regularization schemes can only give an
which we will set eventually tu~m,. This introduces an 5 5hysicalO(e) effect. We have performed the calculation
error in the theo_ry that is quite S|gn|f|can;[ wr;en only leading-¢ tha following matrix elements in both the HV and NDR
order (LO) logarithms of the forni aIn(u/Miy)]" are taken  roqjarization schemes and, as expected, the results coincide.
into account and gets appreciably reduced when also nexfnerefore we do not specify any regularization scheme in the
to-leading-order (NLO) logarithms of the form following discussion.

ag adn(u?M3)]" are resummed. The LO result for the Wil-  The amplitude for the decay(p)—s(p’) +¢ky) + y(K,)

son coefficients in Eq1) is now a well established resfilt]  can be expressed as

and recently the authors of R¢6] provided us with the first
NLO calculation.

7 ) 7
If we want to calculate. the amplituc_ie ft-br—>S'yy.at LO A:E A=— %ME Ci(M)U_s(p')Tf”Ub(p)
we have to use the effective Hamiltonian in Eg) with LO i=1 V2m? =
Wilson coefficients and evaluate its matrix element for the
b—syy decay atO(al). On the other hand, for a NLO X eu(ki)e(ko), “)
result we have to use NLO Wilson coefficients and include . o
O(ay) corrections to the matrix element. where\=V,Vi; ande, (k1) ande,(k;) are the polarization

In order to understand the impact of QCD corrections onvectors of the two photons. The;(u) coefficients are in-
this new class of rare radiati® decays, we choose to per- tended to be the LO ones, as explained before, while we have
form our analysis including, for the time being, only LO denoted byT{*” the tensor structure of the transition ampli-
corrections. Therefore we will take the LO regularization-tude induced by the operat@; . The differentT{" are ob-
scheme-independent Wilson coefficients from the literaturéained by inserting the operators of Eg) into the Feynman
[7] and will not consider explicitly the matrix elements due diagrams of Fig. 1, according to the color and chiral structure
to the insertion ofO5; and Og into the one-photon and one- of the operators themselves. In particular, one has to be care-
gluon penguin diagrams. In fact these matrix elements aréul when dealing with penguinlike operato®;  sdue to
reabsorbed into the scheme-independent definitic@4f.)  their more complicated flavor structure. TRE” tensors can
andCg(uw): be summarized in a compact form as follows:
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T4 =N Q2K W4,
T4"=QircWs",
THY={N[ Q3(kq+ kst Kp) + Q3(Kky+ K¢)]
+ Qg( Kpt+ Kg) fWEY
TH'={[Qa( kgt kst Kp) + Q2(Kky+ K¢)]
+ N QAa( kgt Kp) JWHY (5
TE= — N[ Q3( kg+ kst Kp) + Q2(Kky+ Ke) WA
+ QAL My WELR+ MWEZL],
TE =~ [Qé( Kq+ kst Kp) + QLZJ( Kyt ko) JWEY

+NeQI MpWEFR+mMWEZLT,

TEY = QWA

5807

+ ({ky, u} =1k, v}),

and the analytic coefficients, defined as

1, Qzg) 1

B 1 1 (idx
T2 Tz, 2

_ _ 2
2e)o % IN(1—2zx+2z4x%) (7)

for zy=2k;- kzlmé. In deriving Egs. (5—(7) we have
checked the analogous results given in RE3$, [4] for the
b—syg decay and we confirm all of them.

Finally, we observe that using the effective Hamiltonian
of Eq. (1) at u=M,y and in the absence of QCD corrections,
we can reproduce the pure electroweak amplitude obtained
in Refs.[11-13, as expected. Only two operato@, and
O, contribute in this case. Their Wilson coefficients at
u=My, read

C7(My) =F (X)) —Fa(Xc),

where we note that there is no contribution from the chromoWhereFz(x;) is the Inami-Lim function for the on-shelisy

magnetic operatoDg at O(ag). In Eg. (5) N, denotes the
number of colors N.=3), Q,=2/3 andQ4=—1/3 are the
up-type and down-type quark electric charges, amdand

mg indicate the masses of the bottom and of the strange

quark, respectively. Moreover all th&*” have been ex-
pressed in terms of only three tensor structures:

1
W2"=1 g LRk ke Kok v ko~ Koki(Ky — Kz )]

+'y”y“(kl—kz)—g“”(kl—K2)+2k'{y“]L, (6)

1
W%:F( YKoy K+ Ky Koy v+ g Kok — K5 vV Ky
q

—Kikoy*)(1—2kq) +4

kiks
g'uv_ Kk ) Kq»

1-ko
uv 1 1 Y
7 :E _mkl’y”(mbR-l-msL)([b—kz-}—mb)»y
+ , YV(Ib_kl‘l‘ms)kly“(mbR—l—msL)
2p’ -k,

vertex[19]:

3x3—2x2

—8x3—5x2+7x;
= 4( l)4|nxi+
Xi—

24(x;—1)3

Fa(xi) (©)

The corresponding matrix elements are given in g.and
we can easily verify tha®, reproduces the one-particle ir-
reducible part of the result of Ref§11-13 while O is
responsible for the one-particle reducible part.

Ill. INCLUSIVE BRANCHING RATIO FOR b—syy

As already discussed in Rdfl4], the inclusive rate for
B— Xgyy can be described to a good degree of accuracy by
the quark level process. We can therefore directly use the
results of Sec. Il to evaluate the square amplitude. For this
purpose, we rewrite the amplitude as

in2

e GF T v v v

A=— WMUS(D')[HWQL +Fs(myWEpR+mgWECL)
+FWE Jup(p) €, (Ka) €,(Ka), (10)

where the coefficients; can be easily deduced from E¢4)

and(5), and are

Fa=(NcCy()+Co( 1)) Qikc

+ Ca( ) {N[ Qi kgt kst Kp) + Q3+ ko) 1+ Q5 kst K1)}

+Ca(u){[ Qi kgt kst Kp) + QElryt ke) ]+ N Qi kst Kp)}

—[NCs( 1)+ Co( ) [ Q3( ka+ K5+ Kp) + Qo Kyt 1)1,

Fs=[Cs(u)+N:Co()1Q3,

F7=Cs(u)Qq.

11
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The square amplitude summed over spins and polarizations will then be given by

2
1
|A[2= ( 7| B ) Mi{|F 2|2 Agat |Fs|*Asst|F7|?Arr+ 2 REF7F3 ) Agrt 2 REF5F3 (1 2kp) JASs

+2 REFsF5 (1—2ks)]ASs+ 2 REF/FE) A5}, (12

where the quantitieg\; denote the contractions between the tendbfs’ and W{*”. In order to give them explicitly we
introduce the notaticn

2k, -k 2p-k 2p-k m?2
T 13
mj mj, my, m

which satlsfy the relatiom+t—s=1—p. In order to introduce a more compact notation, it can be useful to switch occasion-

ally to the (s u, t)mvarlants defined as = s/(1—p), t—t/(l P), andu= u/(1—p). In this framework thed;; quantities
are given by

Ap=2[(1-p)*~(1+p)s],
Ass= {16l kp|2+ | (1= 2k)5+ Ay >+ p[ 16] g >+ (1~ 26c0) 8/ p+ Ak 2]} (1 — 5+ p)
+16 Re8prpki +s[kp—2(1+p)rprl +prl]},
AbS=+5(1—pFs), (14)

2 2

ps

Ayy= —2 P
2r (s—t)t  (s—u)ul’

(1+p)s+

Asr= Re[ 8(kp+pKs)S—{4p(Kp+ K +S[(1-2ks)+p(1—2kp)]}

)

Ar=(1+p)[(1-p)AY —2AZ1+AP,

s s?

x t(s—t) * u(s—u)

with
2u(u—2) — 2u-—1 -
AR 1+u+ ( _) + —— 2|+ (teu),
1-u 1-u
(19
1 1+p — P - —
AP=—|1-— 1t + 2|+ (tu),
[y 1-u (1-u (

_ 2(1+p)—tu
AR =211 2 P_|1- ——|s|.
i W{( teEruT I (1—t)(1—u)q

We want to put particular emphasis on the structure of Ahe part of the square amplitude because it will be a crucial
ingredient in testing the cancellation of the IR divergences that appear in the calculation of the total rate. In fact, the total rate
is obtained by integrating

1 2d(D lp dD l)k d(D l)k
=———56 "—ki—ky)|A
2mb(271-)2D 3 (p p 1™ 2)| | 2p0 2(1)1 20)2

: (16)

we decide to follow in our discussion the notation of Rdfl as closely as possible, which can be helpful for comparison.
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TABLE I. Values of the regularization-scheme-independent LO
Wilson coefficients for u=m,/2, u=m,, and x=2m,, for
mp=4.8 GeV,m=175, GeV andug(M,y)=0.118.

over the physical phase space, where we have denoted by
andw, the energies of the two photons. All the termgAg?
are both UV and IR finite excegt;;, which gives origin to
IR singularities upon integration over the phase space of the

two photons. We chose to regularize the integrals working irf* Ca €2 Gs Cs Cs Ce C
D=4-2¢ dimensions and to extract the existing IR singu-m,/2 —-0.324 1.148 0.015-0.033 0.009 —0.043 —0.344
larities as poles in & These IR divergencies originate when m,  —0.234 1.100 0.010-0.024 0.007 —0.029 —0.308
either w;—0 or w,—0, and correspond to the well-known 2m, -0.162 1.065 0.007-0.017 0.005 —0.019 —0.277
IR singularities that arise in the bremsstrahlung proces
when one or the other of the two photons becomes verysoft.

In this limit theb— syy decay cannot be distinguished from recall that we define thB(B— Xsyy) in terms of the semi-
b—sy and the two processes have to be considered togethéitonic branching ratio as follows:

in order to obtain meaningfil.e., finite) physical quantities. "
In fact, we have checked that the IR singularities that arise B(B_X ):{F(b—’Sﬂ’) BB Xl )&
from the integration ofA,; over the phase space cancel ex- sYY I'(b—cly) cr
actly with theO(a) virtual corrections to the— sy ampli- (17)

tude (see Appendix A Thereforel'(b—sy)+T'(b—syy)
is free of IR singularities. where no QCD corrections have to be included in the theo-

This problem has already been studied in detail in order tdetical prediction ofl"(b—clw)) at this order inas and we
take into account th©(as) bremsstrahlung corrections for have used(B— Xl »)=0.11[20].
b—svy [3,4]. However our point of view here is slightly In principle, mg=My should be used in the phase space
different. In our case the bremsstrahlung process is not corirtegration, while in the perturbative calculation of the am-
sidered as a®(a,) correction to theb— sy amplitude, but  plitude one may need to replace it by the current mass
as a different process: the decay df guark into ars quark ~ Ms=0.15 GeV. However, this introduces spurious instabili-
plus two hard photons. Therefore, the end points of the spedies in the numerical Monte Carlo integration over the phase
trum of each photorfwhere the IR singularities are present space. Since the numerical results change little as we replace
do not in fact correspond to the process of interest. In ordefs over the range 0.15-0.5 GeV, we prefer to use the same
to calculate the physical rate of interest we just have to imvalue of mg in both cases. Thus, in order to simulate the
pose a cut on the energy of each photon, which will naturallyphysical phase space correctly we sgt=M everywhere.

correspond to the experimental cut imposed on the minimum Moreover, we have to account for the scale dependence
energy for detectable photons. introduced by QCD corrections at the level of the Wilson

In Fig. 2 we illustrate the spectrum of the two photons,coefficients. This makes a 25-30% uncertainty, as is the
defined as the photon of higher energy and the photon ofase folB— Xgy. For the sake of completeness, we also give
lower energy. We obtain this spectrum requiring the energyhe values of the Wilson coefficients we use in Table I, for
of each photon to be larger thaE"=100 MeV and the three values of:, u=my/2, my,, and 2ny, respectively, and
angles between any two outgoing particles to be bigger thafor m;=175 GeV andas(M,y) =0.118. We will comment
6™""=20°. This last constraint is not required analytically, about further uncertainties introduced by long distance QCD
but we think it is reasonable to exclude photons that aréffects in Sec. V.
emitted too close to each other or to the outgdriuark, in
order to roughly incorporate the experimental requirements -

as we perceive them. Once the structure of the differentia
rate has been checked and the presence of IR singularitie 0.16 | Iy
understood and treated, we can integrate @) numeri- 014 | ’
cally and study the impact of QCD corrections on the total i
rate as well as on different distributions. 5 0121
We find that QCD corrections enhance the rate by a factol '§ 0.1
of =2—2.5, depending on the numerical parameters we use % I
In our evaluation we fixm,=4.8 GeV, m;=1.5 GeV, & 0.08 I
m,=175 GeV, and\ =|V,Vis =0.04. As far asn is con- ™ 006} i
cerned, we usen,=M=0.5 GeV. For this set of param- 0.04 | !
eters and fixingu=m,, the branching ratio foB— X;yy S
goes from ~1.7x10° 7, without QCD corrections, to 0.02 |
~3.7x10"7 when LO QCD corrections are included. We 0 . . R
0 0.2 0.4 0.6 0.8 1

Xy

2We note that there are no collinear singularities so long as the
mass of the external quarks is nonzero. This gives origin to a non- FIG. 2. The spectrum of the two photons including QCD cor-

negligible dependence ang and perhaps a more careful resumma- rections, normalized to the total QCD corrected rate rfige=0.5
tion of logarithms like In(rﬁ) in the rate should be implemented. GeV. The two photons are defined as the photon of lower energy
We will discuss our concern with this problem later on. (solid) and the photon of higher energgtashedl
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In order to better understand the dynamics of QCD corimpact of QCD corrections on it. In order to calculate the
rections, let us classify the different contributions to the ratematrix element of Eq(10) for the B;— yy decay, we can
into one-particle reducibléLPR and one-patrticle irreducible work, for instance, in the weak binding approximation and
(1PI), as we did in Ref{14] for the pure electroweak case. In assume that both tHe and thes quarks are at rest in tHg,
the language of the effective Hamiltonian of E() this  meson. In the rest frame of the decayBgmeson we would
corresponds to separating the contributiorOef(which cor-  have that
responds to the IPR paifrom that of all the other operators.

As we saw[14], the photon invariant mass distribution, Mé

dT'/ds, is dominated for lows by the 1PR diagrams, while klkzsz, pbk1=pbk2:%mszs,

for largers a nontrivialm.-dependent contribution from the

1PI diagrams starts being relevant. The effect of QCD cor-

rections is to enhance even more the effectOgf as we Pk, =psko=1mMp , (19

could expect from the dramatic effect that QCD corrections
have inb— s+, while lowering the impact of the 1PI contri-

bution, because of the new mixing with many different four- wherem, andmg must now be treated as constituent masses.

uark operators. In particular, the contribution@§ is sup- 1 ne Problem can also be rephrased in the language of heavy
gressedpby the destFr)uctive interference v@th Wogverifigd quark effective theoryHQET), assuming that the velocity of
that the contributions of different operators to the angulat®P guark coincides with the velocity of tfi& meson up to
distribution of the two photons are very similar to each other residual momentum of orde¥ocp, i.€., pp=mpu* +k*.
also after QCD corrections have been included. To first approximation, the scalar products of E#9), are
On the other hand, as expected, the forward-backwareplaced by
asymmetry we introduced 4],

M3
A :I‘(CO$S}/>O)_F(CO$57<O) (18) klkzzTS, pbk1=pbk2=%mbM By’
P8 T'(cods,>0) + I'(cos,<0)
where 6, is the angle between the quark and the softer PK1=peKo=3(M B, ~ my)M B, (20)

photon, is rather insensitive to QCD corrections, since the
QCD corrections tend to cancel between the numerator and

the denominator. In fact we find that QCD corrections affectVNeré we have used thaf = — (p,—ky —k;)*. We can see

Arg by no more than 15%, changing it from 0.7ithout that, to this order, Eqg19) and (20) are_compatible up to
QCD corrections to 0.78 (with LO QCD correctiony de- ~ corrections  of —order Aqcp/my), if we assume
spite the fact that the total rate changes by as much as 609Bs~(Me,~My)~Aqcp. Unless the HQET formalism is

to 100%. Furthermoré\rg is practically insensitive to the taken to beyond the leading order one cannot make a reliable
choice of scale in the LO Wilson coefficients, while the distinction between the two predictions. Therefore, for con-
branching ratio varies as much as 30% withOn the other ~ creteness, we give in the following the necessary matrix el-
hand, this observable will clearly benefit from the enhancee€ments using the weak binding approximation. By further
ment induced by QCD at the rate level. Once the process ikecalling that

measured the possibility of measuring this new observable

should give us another handle in testing our understanding of (O[sy*ysb|By(Pg ))=—ifg P§_,
the theory and in differentiating the standard model from its s s s
extensions, as already explained] imf].

(21)
(0[sysb|Bs)= ifg Mg,
IV. THE EXCLUSIVE DECAY Bg—yy
Using the quark level amplitude in E¢LO) we can also we obtain the following matrix elements fav”, Wg; and
estimate the rate for the,— yvy rare decay and evaluate the W4":

|
1 =
(O[W5"[Bg)en(ki)€,(kp) =15 fp (—IF 1, F#")

1 1_2Kb 8Kbmb 1_2Kb_ ~
(O|WEpIBs) €, (k) €, (ko) =i ZstM B, —( -~ + W) e - iF,Fer,
) (22)
1 1-2k,  8Kem, 1-2ky -
<O|WI5L,;|BS>6,M(k1)€V(k2):IZfBSM B M é ) FMVFMV— m. IFMVFMV]’
s

1 ~
<O|W¢V|Bs>ey(kl)ev(k2):iZfBS F/LvFMV_iF,uVF#V

(mb+ ms)2 (mb_ ms)
mpms | (My+m)
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wherefBS denotes théB, meson decay constant. The amplitldEB,— yy) can therefore be expressed in terms of the only
two tensor structures , ,F*” andF ,,F*":

Gre?

V2m?

whereF#"=1/2 €*"P’F . The coefficientA™ andA~ of the CP-even and of th€ P-odd terms can be easily derived from
Eqg. (22) and read

A(Bg— yy)=—i M(ATF, FA+IATF , FAY), (23

1 1_2Kb 8Kbmb 1_2KS 8K5m5 (mﬁ_mg
+_iZ _
A |4st Mg, - + Més Fs+Mpg -~ + MES Fg+ o F7| (24)
1 1-2kp, 1—2ks (mp+myg)?
T = — — — + -
A =i 4st[ 2F, MBS( e -~ ) 5 ~ (25)

The QCD corrected coefficienks,, F5, andF; can be taken magnitude of the branching ratio itself and is therefore im-
from Eq. (11), while at O(a?) they are simply given by phortaglt to examine the impact of QCD corrections on both of
FzzQﬁchz(Mw)a Fs=0, and F;=QqC,(My) for them . .

C,(My) andC,(M,,) in Eq. (8). We notice that the terms In the following we will usefBS:ZOO MeV, MBsz 5.37
proportional toF; in bothA™ andA™ are inversely propor- GeV, my=4.8 GeV, m;=15 GeV, m=175 GeV, and
tional tomg.3 This is a clear signal of the relevance of non- |\{ =V, Vi =0.04. Using the experimental lifetime of the
perturbative effects to the evaluation of the matrix elemenBs meson, 7,=1.61x10 '* s, we find that the branching
for the decay rate dBs— yy. In the absence of a calculation ratio B(Bs— yy) goes, forms=0.5 GeV, from 3.Kx 10"’

of the matrix elements for this process which takes into acWithout QCD corrections to 50107 with LO QCD cor-
count the higher-order corrections in the HQET expansionfections, therefore increasing by about 62%. As fads
we can only give the perturbative prediction and try to esti-andA™ are concerned, their ratio is substantially changed by

mate the theoretical error we have on that. Therefore we wilfn€ action of QCD corrections. It goes frdRs=0.28 without
use Egs. (23 and (24) and vary m, in the range QCD corrections tdR=0.55 with LO QCD corrections. In

300<m.<500 MeV* fact a_ttO(ag) bothA* andA‘_ d_epend on the 1PR part of the
Let us first estimate the impact of QCD corrections on the2MPlitude ©7) and only A” is sensitive to the 1P| part
rate 0,). When we switch on QCD corrections, the contribution
of O; dominates and driveA* and A~ closer and closer.
Mg Gpe? 2 -Lhislifrem is amplifield by threég cancggaltion that takes place in
_ sl +]2 -2 the sector, mainly amor@, andO;.
F(Bs=v) 167 ! N M| (ATFHATE, The uncertainty in the perturbative calculation is domi-

(26)  nated by the scale dependence of the LO Wilson coefficients,
which is around 25 30%. On the other hand, we estimate

and on the ratio of the two coefficients” and A™: the uncertainty coming from nonperturbative QCD effects,
i.e. from the calculation of the matrix element, to be of about

|AT|? 50%. Thus, attributing a 60% uncertainty to the central value

= AP (27)  (5x1077), we expect the branching ratio to be about

(2—8)x 10 7. It would be very useful to have a more accu-
rate calculation of these effects, perhaps by using HQET
beyond the leading order, so that a more precise theoretical
prediction can be obtained. Indeed it is not inconceivable
that those corrections will further increase the branching ra-
tio for Bg— yvy.

As pointed out in Refd11,13, the coefficientA™ and A~
correspond respectively to photons with parallel
[e(kq)-e(ky)] and perpendiculafe(kq) X e(ks)] polariza-
tion. The interest in the ratiR also crucially depends on the

V. LONG DISTANCE QCD EFFECTS

3The matrix element oWVES does not scale asrhf for small mg
because alsa;— 1/2 for m¢— 0, therefore killing the Ihg terms.
Moreover, the dependence am, from this matrix element is very
much suppressed by the smallness of the coeffi¢ignt

“In principle, at this level of approximation, one should also vary
my, in order to compensate the variation of and always satisfy  5One interesting implication of this is that"/A~ can be used to
the relationMg ~(myp+ms). We verified that this makes only a construct aC P-violating observable, which will pick up a depen-
minor difference numerically and therefore we keep=4.8 GeV  dence on Imk,)/Re(\;)=0(7Ar2), where» and\ correspond to
while varyingm. the Wolfenstein parametrization of the CKM matrix.

As far as theB;— yvy rare decay is concerned, as we
discussed in the previous section, we expect long distance
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QCD corrections to be proportional tom{ at the lowest B(7.—yy)=3x10* (32
order, introducing an uncertainty that asks for a more accu-
rate computation of the matrix element. Other nonperturbato estimateB ™|~ (2.5—-3)x 103, for I, =0.013 GeV and

tive effects could come from the formation afc bound M, =3 GeV. The relative sign between the perturbative

. . C

states in the decay process, i.e., from resonances. Howeventinyum and the resonant contribution can be determined
in the B;—yy case these resonant states would be far offyz the same kind of unitarity arguments applied in R2g]
shell and they are not likely to give a significant contribution theb— sy case. In fact, in the resonance region the per-
to the rate(similar to theb—sy casg. turbative amplitude is much smaller than the resonant one

The inclusive decayB— Xsyy is, in this respect, more 5,4 therefore the relative sign between the two terms of the
problematic. In the region of invariant mass of the two pho'amplitude has to be positive, as[ig?]

2, 2 AN ) : .

tons arounds=4mc/my, the rate is going to be dominated  The amplitude for the inclusive—syy decay can now

by the 7. resonance, which subsequently decays into tWaye written as the sum of a nonresonantz and a resonant
photons, i.e., byo— 7,s—syy. This could affect other re- A, part

gions of the spectrum and constitute a serious problem.

Moreover, we recall that in the resonance region, the inclu- A(b—syy)=AnrtAr
sive B—Xgyvy decay cannot be approximated anymore by
the quark level process, as is the caseBfes X.e"e™ [8]. In .
order to understand the relevance of our perturbative calcu- —| W)‘t
lation we need to include the resonance at the amplitude

level and to estimate how it affects the invariant mass distri- X Ug(p')FRWE UL(P) €, (ki) € (Ko), (33
bution, dI'/ds, away from the resonance peak. This will al- a

low us to select those regions of the spectrum that are fregherea, -, including LO QCD corrections, is given in Eq.

from major long-distancgollutions In principle we should (10 while Ag has been expressed in terms of the following
include in our analysis all the possible resonant channelsgefficient and matrix element:

However, the. resonance is dominant and is enough to

e’Ge
=Anrt

provide us with an idea of the resonant effects. T 1

In order to model the contribution of the, resonance we Fr=ig 1, B |C1+Ca=Cst ~(CotCs—Co)
need to provide an effective vertex both for the>sy, tran- € ¢
sition and for then.— yy decay that follows it. Thd sz, 1
vertex can be derived from the amplitude for thess, X— > ,
decay[21]. Using the effective Hamiltonian in Eql) and q _MWC+IF77CM ¢
parametrizing the axial vector current matrix element

(O[cy*ysc| ne)= —if, P4 (29) WR"=2i 777Ky Kool —mMy(1— y5) +mp(1+y5)], (34

where g?=(k;+k,)2. If we use Eq.(33) to compute the
invariant mass distribution of the two photons, we see that
the effect of the resonance is very well localized around the
Cit+Cs=Cst - resonance peak and does not affect in particular the region
¢ for s<0.3, where we use=q?/m3. We can define in fact
two regions, for 0.6s<0.3 and fors=0.5, in which the

in terms of the decay constahj_~300 MeV[21], one get®

. Gr
(S77c|Her| D) = —i E)\tf e

X(Ca+Cy—Cp) (U —Myg(1—ys5) effect of the 7. resonance is practically negligible, as one
can see in Fig. 3. Over these regions we can assume the
+mp(1+ys)]up. (290  validity of our perturbative calculation of Sec. Ill as well as

o ~of our previous studies of the various kinematical distribu-
For the val_ues of the parameters used in this paper anq takinfhns for b—syy decay[14]. Disregarding in the perturba-
the LO Wilson coefficients from Table I, we can estimatetive calculation of Sec. Il the contribution of the resonance
B(b— »c+ anythingy=4X10"°, more restrictive than the region, which we conservatively define as €8<0.5, we
present experimental upper bouff] find that theperturbative branching ratio is reduced by at
. 5 most 14%. It would be very useful to verify experimentally
B(b— e+ anything<9x10™. B0 that the effect of they, resonance in th8— X,yy case is
As far as thern.yy vertex is concerned, we can assume thenOt S0 relevant,+|nicompar|spn with what we know to be fche
amplitude forz,— yy to be of the form case forB— Xse"e™. In fact, if we consider the decay chain
¢ b— sy followed by y»—e*e™ and use both experimental
INE yy)ziB*FME“V, 31) [20] and theoretical16,23 inputs, we can estimate that

and use the experimental measurement F(b—sy)T(yp—e’e)
I'(b—se'e™)

=1.4x 10, (35

while the analogous quantity fob—s#. followed by
5Wwe assume simple factorization. n.— vy, amounts to
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the calculation we report in this Appendix and we can

0.035 | confirm’ a posteriorithe results folb— syg.
003 | Moreover, as we already explained in Sec. Ill, we are not
: going to includeO(a,) virtual corrections to thb—sy am-
0.025 | plitude in the calculation of the rate ft¥—syy. In fact, we
% will just require the two photons to be hard, imposing a
5 002t minimum energy cut. Therefore, in the present Appendix we
2 will consider only those aspects of the discussion that are
= 005 necessary to show the cancellation of the IR poles.
0.01 | In the reactionb(p)—s(p’) + y(ky) + y(ky), the spec-
trum of any of the two photons presents two sharp singulari-
0.005 | ties in the vicinity of the end points, i.e. for,—0 and for
x,—1, where we definex,=E/ET™ for EJ®=(mj
00 01 02 o5 o2 o5 06 o7 o8 —m3)/2/my,. The variablex,, corresponds in general to the

5 reduced energy of a given photon. To make contact with the
notation introduced in Eq.13), we can easily see that

FIG. 3. The invariant mass distribution of the two photons in the
presence of thesn. resonance, normalized to the total rate X, = u =u and x. = t _T (A1)
— —7 H — Y — Y — )
I'=5.7X10"/, as obtained foms=0.5 GeV. We show the pure 1 1-p 2 1-p
nonresonangsolid), the pure resonaritiasheg, and the total distri-
bution (dotted. The resonance peak is truncated in order to showrhjs singular behavior at the end points of the spectrum cor-
the relevance of the different contributions both inside and OUtS'd?esponds to the presence of IR singularities in the rate for
the resonance region. b—syy, when the energy of one or the other of two photons
goes to zero, i.e., wher,—0 (the energy of the photon
T'(b—sn )T (9~ 7vyy) under consideratigror x,— 1 (the energy of the other pho-
=6. (36 ton)
I'(b—s X . " - . .
(b=sy7) These IR singularities originate from the integration of the
A part of the square amplitude over the phase space of the
This argument indirectly confirms the less dramatic impactWo photons. As we can see from Hd5), A;7 is symmetric
that the 7, resonance has on the invariant mass distributioith respect to (< t), i.e., under the exchange of the two
of the two photons in thé—syy decay. photons. Therefore the treatment of the two end points is
Note addedWhile in the course of writing this manu- Symmetric. Given the spectrum of one photon, we will arbi-
script, we became aware of the following two papers: G trarily consider the end point, —1. All our results will be
Hiller and E.O. Iltan, hep-ph/9704385 and C.-H. V. Chang,valid in an analogous manner for the other end point, i.e., for
G.-L. Lin and Y.-P. Yao, hep-ph/9705345, in which the Xy, — 1.
problem of QCD corrections as it pertains only to the exclu- | et ys consider the contribution @ only to the differ-

sive Bs—yy decay is also discussed. We agree with thegntjal decay rate. Starting from E@.6) and working out the

revised version of the first reference. We also agree with thﬁnegration over the phase spacelin-4— 2e dimension we
results of the second reference, except for a few points thf@tet

appear to be misprints.
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Ar( t,u),

(A2)
APPENDIX A: STUDY OF THE IR DIVERGENCES

OF THE RATE whereA,/( t,u) is given in Eqs(14) and(15) and the func-

In this Appendix we want to show the explicit cancella- tion
tion between the IR singularities arising respectively in the

b— sy rate from the bremsstrahlung of a soft photon and in 2(u+t—1)
the O(«,) virtual corrections to théd— sy amplitude. This f(t,uy=1- ———= (A3)
will confirm our understanding of the end points of the pho- (1-p)tu

ton spectrum in thdd—svy+y decay. Our calculation is very

similar to what can be found in Refig], [4] for the study of

the gluon spectrum ib—syg. Many results could be taken  7In the course of these checks we came across a misprint in Eq.
from there provided the different charge and color factors arg34) of Ref.[4]. We are very grateful to the author for confirming
adequately taken into account. We have indeed reproducetlis. The correct expression is given in E42).
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corresponds kinematically to the cosinus of the angle bewhere the ellipsis indicates all other kinds of terms arising

tween the two photons in the rest frame of thquark, when

expressed in terms of the invariantsand t . Moreover we
denote byl the quantity

Glzrae|)\t|2

5
3o mp . (Ad)

0=

The origin of the smgularlty ii— 1 becomes evident after

we integrate ovett t and S|m|IarIy for the singularity in— 1
when we integrate oven ®
by the term in brackets iA{2) [see Eq(15)], whose contri-
bution, upon integration, reads

drii- 1a 2(G@+eG™)
u_ _,\3_ "% 2 -~ = 7
— =(1+p)(1=p)°; —ToF7C, e
(A5)
where
(1_ )745 A 2/m2)25
U )T (A6)
I'(2—2€e)u?s
and
p |\— 1+tp
(@) — . -'F _
G 1+ -y u+1_pln(1 u),
__ 1-u
__P _ sl Sl PO
G 1_u[2+ln(1 u)u Zl_pln(l u)
il 1| 2(1 2 Li A7
1=, 2 (Imw=2 L), (A7)

In particular, they are generated

from the integration. An analogous singularity arises for
t—1 when we integrate the second term/ldf7 [see Eq.

(15)] first overdu 'u and then oved t. Therefore the rate has
a total IR singularity given by

IR F
I'7(b—syy)= du—
du
1a 1 1+p
_ _\3-"® 27 -
(L+p)(1=p) 5 T ToFr g 24+ 7 Inp
+0(1), (A9)

where we have indicated wi@(1) all the other nonsingular
terms arising from the integration.

We will now show that the same IR singularity, but with
opposite sign, arises from th@(«,) virtual corrections to
theb— sy amplitude induced, of course, by the same opera-
tors O-. In this case, given the tree levesy vertex induced
by O,, we have to consider both self-energy and vertex
O(«,) corrections in the renormalized theory, i.e., taking
into account the wave-function renormalization constants of
theb and of thes quark. The choice of gauge for the photon
is not relevant if the calculation is consistently performed
(we checked the result in both the Feynman and the Landau
gauge and the final result reads

I (b—sy)=(1+p)(1—p)°ToF3(1+ 2K, )

using the standard notation for the Spence functioryng

Lio(x)= —f(l)dtln(l—x_t)/t. After the last integration oveu,
the IR singularity foru—1 appears as a pole i i.e.,

Iy ,1
7uﬂl(b—’577)—f du —_(1+P)(1—p) i

Qe

1+
2+ —Iogp

1
><F0F7 .-, (A8)

I'(1-¢) .
“T(2= 2e)( )(1 P
=0+ 60, (A10)
where
I'P(b—sy)=(1+p)(1-p)°IoF3,  (AlD)
ST (b—sy)=(1+p)(1-p)°TF32K,,_
I'l-e) (4m .
XT2=2¢ 25)( )(1 p) %,
e 1+p
Key=7 —(@mT(L+e)| - 2+n|np +o<1)}
(A12)

It is now easy to verify that the pole terms cancel between
Eqg. (A9) and Eq.(A10), such that
I'Rb—syy)+ " (b—sy)~0(1).  (A13)

In the previous discussion we may have disregarded terms of

8We could obtain this second singularity by looking, after we O(e) when they do not happen to multiply a quantity con-
integrate overt , to theu—0 end point of the remaining integra- taining le poles and we have omitted all over a factor of
tion. However, we prefer to use the symmetry between the twd My(mMy)/m,]? because it would not influence the cancella-
photons. tion of the IR poles.
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