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An approach to solving the strongCP problem in supersymmetric theories is discussed which uses Abelian
family symmetries to align the mass matrices of the quarks and squarks. In this way both the strongCP
problem and the characteristic flavor andCP problems of supersymmetry can be solved in a single way.
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It is well known that low-energy supersymmetry exacer-
bates the ‘‘flavor problem’’@1#. First, there are new contri-
butions to various flavor-changing processes@2#. In particu-
lar, since there is in general no Glashow-Iliopoulos-Maiani
~GIM! mechanism in the squark sector,DS52 box diagrams
involving squarks and gluinos can lead to excessiveK0-K0

mixing. Second, there are one-loop contributions to theu
and d quark electric dipole moments, coming from new
CP-violating phases that appear in the soft terms that break
supersymmetry@3#. These contributions are naturally two or-
ders of magnitude larger than the experimental bounds. And,
third, there are new contributions toū from diagrams involv-
ing gluinos and squarks. These create difficulties for nonax-
ion solutions to the strongCP problem@4#.

These various problems have led to a renewed interest in
flavor symmetry@5# and in spontaneously brokenCP sym-
metry @6–9# as a way to control excessive violations of fla-
vor andCP in the supersymmetrized standard model. Sig-
nificantly, even before the advent of supersymmetry, it was
suggested that a combination of flavor symmetry and spon-
taneously brokenCP could solve the strongCP problem.
Various models were proposed@10# that implemented this
idea. It therefore seems reasonable in the context of super-
symmetry to attempt to find a unified approach to all the
problems of flavor andCP violation, or in other words, to
treat the strongCP problem not as a separate problem re-
quiring a separate solution~the axion!, but as a particularly
severe aspect of a more general problem@6,9#. An advantage
of such a combined approach is that it may lead to a more
constrained set of possible solutions, and perhaps even to a
unique one.

In a recent paper@9# we showed that an Abelian flavor
symmetry can cause a ‘‘flavor alignment’’@11# of the quarks
and squarks that makes the supersymmetric contributions to
ū sufficiently small. However, the example presented there
did not deal with the other aspects of the flavor problem.
Here we propose a model, or rather a class of models, which
does, and which also has the virtue of more comfortably
satisfying the bound onū .

The class of models that we propose is characterized by
the mass matrices

Mu5S s11 s12 s13

0 s22 0

0 0 s33

D ^Hu&;S l6 l4 l3

0 l3 0

0 0 1
D v ~1!

and

Md5S s118 0 0

0 s228 s238

0 0 s338
D ^Hd&;S l6 0 0

0 l4 l4

0 0 l2
D v8. ~2!

Here si j 5l i j ^Si j &/M , and si j8 5l i j8 ^Si j8 &/M , where l i j and
l i j8 are dimensionless effective coupling constants, andSi j

and Si j8 are chiral superfields which are singlets under the
standard model gauge group, and which get vacuum expec-
tation values that break the flavor group. For now we will
treat these singlets as distinct fields, in which case there are
at least nine such fields@cf. Eqs.~1! and ~2!#. The scale of
flavor breaking isM , which is assumed to be somewhat be-
low the Planck scale, but far above the Fermi scale.l is the
Wolfenstein parameter ('0.2). These nonrenormalizable
Yukawa terms come from integrating out states of massM in
a renormalizable theory@9#. It is also assumed thatCP is a
spontaneously broken symmetry, so that all the Yukawa cou-
plings are real. Both the flavor symmetry andCP invariance
are broken by the vacuum expectation values~VEV’s! of the
singlets at the scaleM .

If one assumes thatHu andHd do not transform under the
flavor symmetry and that theSi j andSi j8 are all distinct fields,
then the flavor symmetry enjoyed by these Yukawa terms is
G̃F5U(1)9 , corresponding to rotating the phases of the nine
quark fieldsQi , Ui

c , andDi
c ( i 51,2,3), independently. Let

U(1)(qi ,ui ,di )
be the particular U~1! subgroup ofG̃F under

which these quark fields have chargesqi , ui , and di , re-
spectively. Then the eight U~1!’s that satisfy
( i(2qi1ui1di)50 will have no SU(3)c

23U(1) anomaly.
Let us call this color-anomaly-free U~1!8 flavor groupGF .

It is clear that there are two nontrivial combinations of the
singlet fieldsSi j that areGF invariant. ~By nontrivial we
mean to exclude such combinations asSi j Si j* .! These are

c[s338 s238* s22s12* s13s33* ;l16 ~3!

and

d[s11s22s33s118 s228 s338 , ~4!

where the fields have been divided byM to make the quan-
tities c and d dimensionless. If the full groupGF were
gauged, then the only two physically meaningful phases in

PHYSICAL REVIEW D 1 NOVEMBER 1997VOLUME 56, NUMBER 9

560556-2821/97/56~9!/5761~5!/$10.00 5761 © 1997 The American Physical Society



the theory would be those ofc and d. The latter of these
appears in the expression for the determinant of the tree-level
quark mass matrices. We assume that the minimization of
the Higgs potential leadsd to be real, at least at tree level.
Then ū 50 at tree level.

The CP violation in such a model comes exclusively,
therefore, from the phase ofc. It is because of this, and
becausec is so high order inl, that it will turn out thatū is
sufficiently small. On the other hand, the Kobayashi-
Maskawa ~KM ! phased is of the same order as arg(c),
which will be assumed to be of order unity. This is easy to
see from the fact that the invariant combination of KM ele-
ments VtdVts* VcsVcd* is given to leading order inl by
(s13/s33)(s238 /s338 )* (1)(s12/s22)* , which is in turn equal to
c/(us33s22s338 u2). Thus its phase is simply the phase ofc.

To estimate the radiatively induced value ofū it is nec-
essary to examine the squark mass matrices. Assuming for
the time being the flavor group to beGF5U(1)8, the left-
right squark mass@2# matrices have the same forms as the
quark mass matrices. That is, (MLR

d2 ) i j

;A(Md) i j ;Av8si j8 , and similarly for the up quark sector.
Of course there can be other, nonholonomic contributions to
the left-right squark masses coming from a variety of sources
@8#. But these will either suppressed by powers of

^Si j
(8)&/MPl , or by powers of thesi j

(8) and hence high powers
of l.

The left-left mass@2# matrix MLL
d2 has the form

~MLL
d2 ! i j 5aLid i j m0

21~MdMd
†! i j

1O„ln~M /MW!/16p2
…~MuMu

†! i j . ~5!

The first term represents the diagonal terms, which do not
break the flavor groupGF , and hence are unsuppressed. The
aLi are dimensionless numbers of order unity, which have no
reason to show any degeneracy. The second term is just the
supersymmetric contribution. The third term results from
loops involving charged Higgs boson. Thus, while the diag-
onal entries are of order unity times the square of the
supersymmetry-~SUSY-! breaking scale, the (i j ) element,
where iÞ j , is proportional either to factors ofsik8 sjk8* or to
loop factors timessiksjk* , and therefore to powers of the
Wolfenstein parameterl. The same discussion applies to the
matrix MLL

u2 , with the roles ofs ands8 interchanged.
The right-right mass@2# matrices of the squarks have

analogous forms:

~MRR
d2 ! i j 5aRid i j m0

21~Md
TMd* ! i j , ~6!

with a similar expression for the up quark sector. Here there
are no one-loop corrections analogous to the third term in
Eq. ~5!.

There may be contributions to the squark mass@2# matri-
ces which have a different form, especially if only a sub-
group ofGF is gauged, so that other invariants thanc andd
are allowed by local symmetry. However, if induced by
Planck-scale physics, these contributions will be suppressed
by powers ofM /MPl , which we are taking to be small. If
they are induced by loops at the scaleM , they will derive
from the forms given in Eqs.~1! and ~2!, and thus will in-

volve no CP-violating flavor invariant exceptc. Therefore,
in looking for the leading contribution toū , the forms given
in Eqs.~5! and ~6! are sufficient.

The leading contribution toū comes from the diagram in
Fig. 1~a!. If one ignored flavor violation in the left-left and
right-right squark mass@2# matrices, the contribution
of this graph toMd would be of the formdMd5O(as/4p)
(MLR

d2 /m0) f (mg̃ /m0). But since this has the same form as

Md itself, this gives no contribution toū . Indeed, it is clear
from the fact that the onlyCP-violating invariantc involves
elements of bothSi j andSi j8 , that one must take into account
the piece of theMLL

d2 matrix that involvesMu , namely, the

third term in Eq.~5!. Effectively, then,ū is a two-loop ef-
fect. This is a central idea behind these models and of the
forms given in Eqs.~1! and ~2!. Because the invariant that
violates CP involves bothMd and Mu , the exchange of
charged states, eitherW6 or H6, is required to bring it into
play, thus necessitating higher loops.

When one includes the effect of the third term of Eq.~5!
in the diagram of Fig. 1~a!, one finds straightforwardly that

d ū ;S as

4p DOS ln~M2/MW
2 !

16p2 D ~c/us338 u2!

&331023l12&10210. ~7!

FIG. 1. In supersymmetric models these diagrams give contri-

butions to ū through ~a! the phases of quark masses, and~b!
through the phase of the gluino mass.
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The analogous contribution toMu gives a smaller contribu-

tion to ū .

There is also a contribution toū from the diagram in Fig.

1~b!. It is straightforward to see that this givesd ū &(as/
4p)(A/mg̃)(v8/m0)2arg(c);1022l16/tan2b;10212/tan2b.
This is evidently much smaller than the contribution from
Fig. 1~a!.

The problem of excessive flavor changing in supersym-
metric models is here solved in the same way as in the mod-
els of ‘‘flavor alignment’’ proposed by Nir and Seiberg@11#.
In particular, the danger of excessiveK0-K0 mixing coming
from gluino box diagrams is obviated by the absence of a 12
element inMd . This means that, as in the Nir-Seiberg mod-
els, the Cabibbo mixing must come from the up-quark sector,
which in turn implies that the mixing in theD0-D0 sector is
near the experimental bound@11#.

Finally, there is the question of excessive electric dipole
moments~or chromoelectric dipole moments! for theu, d, or
s quarks. It is easy to see that these, since they also must
involve the invariantc, are suppressed by large powers of
l. In fact they are less than or of ordere(as/4p!(Amg̃v82v/
m0

6)l16, which is less than 10228e cm, or about three orders
of magnitude below the experimental bound.

The pattern or ‘‘texture’’ given in Eqs.~1! and ~2! is
unique in the following sense. There are several other tex-
tures that give the right amount of KM mixing, the right
hierarchy of quark masses, have vanishing 12 element for
Md in order to avoid excessiveK0-K0 mixing, and haveū
vanish at tree level and suppressed by several powers ofl at
one-loop level. However, none of them suppressū by as
many powers ofl as the forms given in Eqs.~1! and ~2!.
There are two forms that giveū to be of order (as/4p)l10

@cf. Eq.~7!#. One of these is the same as the forms in Eqs.~1!
and~2! except that the 13 element ofMd rather than ofMu is
nonvanishing. The other is the same as Eqs.~1! and ~2! ex-
cept thatMd has vanishing 23 element and nonvanishing 13
element, whileMu has vanishing 13 element, and nonvan-
ishing 23 element. Other forms haveū arising at even lower
order inl. For example, ifMd has a diagonal form, andMu

has a triangular form, thenū arises at orderl6 as in Ref.@9#.
There are many ways to construct a Higgs boson super-

potential that ensures that at tree leveld is real andc com-
plex. An example which is easy to analyze is the following.
Let WHiggs5W01Wd1Wc . W0 has the form
( i j (Si j S̄i j 2Mi j

2 )Yi j 1( i j (Si j8 S8 i j 2Mi j8
2)Yi j8 . Here all the

Mi j
2 are taken to be real and positive, exceptM13

2 which is

real and negative. This ensures that^ S̄i j &5^Si j &* , and simi-
larly for the Si j8 , except that̂ S̄13&52^S13&* .

Wd fixes the phase ofd and can be taken to have the form
(kSkkSkk8 Ak1(kS̄kkS8kkĀk1A1A2A31 Ā1Ā2Ā31(kmk

2AkĀk .

Integrating out theAk and Āk gives an effective term of the
form S11S22S33S118 S228 S338 ;d and S̄11S̄22S̄33S811S82S83; d̄ .
Together, the conditionsFSkk

50 and F S̄kk
50, imply that

^d&5^ d̄ &5^d&* and therefore that̂d& is real.
Wc fixes the phase ofc and may be taken to be of the

form Wc5S338 S823B231S22S̄12B211S13S̄33B131(S↔ S̄,

B↔ B̄). Integrating out theBi j , and using the equations
FSi j

50, one findŝ c&5^ c̄ &, in an obvious notation. From

the relation^ S̄13&52^S13&* , it follows that ^ c̄ &52^c&*
and therefore that̂c& is pure imaginary. This is not realistic,
since arg(c)5arg(VtdVts* VcsVcd* )5arg(12r2 ih) in
Wolfenstein parametrization, and therefore arg(c)Þp. But it
is easy to construct superpotentials that give other phases to
c.

It is possible to gauge some subset ofGF5U(1)8, the full
flavor symmetry of the quark Yukawa terms. Since there is
no SU(3)c

23GF anomaly, by construction, the gauge anoma-
lies can be cancelled by auxiliary leptons, whose presence
has no effect onū . There are nine fields,Si j andSi j8 , whose
VEV’s break GF , but two combinations of these fields,c
andd, areGF invariant. Thus the VEV’s of the singlet fields
break U(1)8 down to a single U~1! factor, which is obviously
the U~1! of baryon number as far as its action on the quarks
is concerned. If the broken U~1!7 is gauged, and the unbro-
ken U~1! is global, there are no goldstone bosons or
pseudogoldstone bosons associated with flavor breaking, and
all the flavor gauge bosons will have mass of orderM , which
is safely heavy.

While the groupGF is convenient for analysis, it is not
necessary that the local flavor group actually be this large.
Nor is it necessary that there be as many singlet fieldsS as
has been assumed to this point. This is shown by the follow-
ing example which has a single gauged U~1! flavor group
and six flavor-breaking singlet fields, but essentially the
same flavor structure as in Eqs.~1! and~2!. Let there be the
following singlet fields:S2, S3, S38 , S4, S48 , and S6. The
subscripts correspond to the order inl of each field’s
vacuum expectation value. For example,^S38&/M;l3. The
quark mass matrices have the form~where the Yukawa cou-
plings, assumed to be of order unity, are not indicated!

Mu5S s6 s48 s38

0 s3 0

0 0 1
D ^Hu& ~8!

and

Md5S s6 0 0

0 s4 s48

0 0 s2

D ^Hd&. ~9!

The Higgs boson superpotential can be arranged so that
~in some phase convention! the vacuum expectation value of
S38 is pure imaginary while those of the other singlets are real
~as was the case in the previous model!. These forms of the
quark Yukawa matrices can be enforced by a family U~1!
under which the doublet Higgs fieldsHu andHd are neutral
and the singlet fields have the chargesQ(S2 ,S3 ,

S38 ,S4 ,S48 ,S6)5@x,y,z,t, 1
2 (x1y1z),2 1

2 (x1y1t)#, and
the quark fields have the charges
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Q~Q1 ,Q2 ,Q3 ,U1
c ,U2

c ,U3
c ,D1

c ,D2
c ,D3

c!

5@2z, 1
2 ~x2y2z!,0,12 ~x1y1t !1z,

1
2 ~2x2y1z!,0,1

2 ~x1y1t !

1z, 1
2 ~2x1y1z!2t,2x].

This U~1! has no SU(3)c
23U(1) anomaly.

The values ofx, y, z, and t must satisfy several condi-
tions. In particular, the resulting charges of the fields must be
such that there are no additional terms allowed in the matri-
ces in Eqs.~8! and ~9!. The zeros must stay zeros, and the
nonzero entries must arise from a single field. Moreover, the
Higgs boson superpotential must contain enough distinct
kinds of terms to prevent unwanted accidental global flavor
symmetries, but no terms which make the invariantd have a
complex vacuum expectation value. There are many
solutions to these conditions. One example is
(x,y,z,t)5(11,21,24,26). This allows the termsS2S3,
S4S6S6, S2S2S48 , andS38S2S6 to appear in the superpotential,
which thus prevents accidental flavor U~1! symmetries from
arising. It is possible to construct a superpotential so that the
vacuum expectation value of each of these four invariants is
real~in which cased is also, since it is the product of the first
two of them!, while c has a complex VEV.

It must be admitted that in both the examples presented
above the cancellation of anomalies would be a nontrivial
problem, and would involve a set of additional fields which
would doubtless appear complicated and ugly. Constructing
a complete superpotential for such a theory would be a
daunting task. This is a general problem with models with
Abelian flavor symmetries, and if nature makes use of such
symmetries one assumes that among the large number of
possibilities there must exist some cases where anomaly can-
cellation is simple.

There are presumably a variety of other sets of singlets
and Abelian family symmetries which implement the general
Yukawa pattern of Eqs.~1! and~2!. An unsatisfactory feature
of the examples presented above is that they do not explain
the hierarchy in quark masses, as is done, for example, in
models of the Froggatt-Nielsen type@12#, where terms of
higher order inl arise from higher powers of a flavor-
breaking field. There is clearly something quitead hocabout
the second example presented. Of more significance are the
general features of these models, which it is useful to con-
trast with other types of models invented to solve the strong
CP problem.

One class of models, proposed almost twenty years ago
@10# in a non-SUSY context, was similar to the kind of
model proposed here in that they used symmetries to restrict
the form of the quark mass matrices in such a way that they
had~at tree level at least! real determinants in spite of having
some elements with phases of order unity. However, most of
those models had nonminimal Higgs bosons, and in particu-
lar several Higgs boson doublets that contributed to the
masses of quarks of a given charge. This, as is well known,
leads to problems with Higgs boson mediated flavor viola-

tion @13#. The same feature also typically gave rise to one-
loop contributions toū that tended to be somewhat too large.
With minimal Higgs boson structure, there are only the two
Yukawa matrices, proportional toMu andMd . Thus a one-
Higgs-boson-loop contribution to the down quark mass ma-
trix would have the formMiMi

†Md , where i 5u or d. But
then

ū 5argdet~Md1constMiMi
†Md!

5arg@det~Hermitian!detMd#

50.

The same is true for one-loop corrections toMu . But with
several Higgs boson doublets contributing toMd , as in the
models of Ref.@10#, there are several Yukawa coupling ma-
trices,Yd

k , for the down quarks. Thus the tree plus one-loop
contributions toMd have the form (Md1constYd

kYd
l†Yd

m),
which has no reason to have a real determinant.

An advantage of the present models consists in the fact
that there is a minimaldoublet Higgs boson structure. In-
stead of there being several Higgs boson doublets which
couple differently in flavor and which violateCP spontane-
ously, there are in the present models several singlet scalars,
Si j andSi j8 , which perform the same tasks. In this respect the
models proposed here are similar to the models proposed by
Nelson in Ref.@14#. Of course, as in the models of Ref.@14#,
there can be one-loop contributions toū coming from the
emission and reabsorption of the heavy singlet fields. In non-
supersymmetric Nelson models for such loops to be made
sufficiently small requires certain Yukawa couplings to be
less than about 1022 ~which is not unreasonable!. Here, such
loops are suppressed bymSUSY/M .

The Nelson-type models have problems, however, in the
context of supersymmetry~unless supersymmetry breaking
happens at low scales and is mediated by gauge interactions
@4,9#!. The problem is that even with minimal Higgs struc-
ture, other matrices in flavor space exist besides the Yukawa
matrices, namely the squark mass@2# matrices. These allow
one-loop contributions to ū from diagrams involving
squarks and gluinos~cf. Fig. 1!. In the present models these
are suppressed by ‘‘flavor alignment,’’ somewhat in the
spirit of the old nonsupersymmetric models rather than the
Nelson models. The models proposed here can therefore be
regarded as somewhat of a hybrid between the two ap-
proaches, using features of each to suppress all one-loop con-
tributions to the QCD angle.

An important feature of the ‘‘flavor alignment’’ here is
that the nonzero elements in the quark mass ‘‘textures’’ have
a pure form. That is, each element is generated by the VEV
of a singleS field. This is in contrast to both the supersym-
metric Nelson models discussed in Ref.@6# and to the models
of Nir and Rattazzi@8#.

If the flavor alignment idea in the form presented here,
where all CP-violating effects come from a single flavor
invariantc of high order in the Wolfenstein parameter, is the
true solution to the strongCP problem, one would expect the
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following signatures:ū should be observed not far below the
10210 level ~compared to the value 10215 typical of most
invisible axion models!, D02D0 mixing should be seen not
far below the present limits, the electric dipole moment of
the electron should be less than about 10228 e cm, and that

of the neutron should come predominantly fromū and there-
fore be not much below 10226 e cm.
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~1983!; W. Büchmuller and D. Wyler,ibid. 121B, 321~1982!;
E. Franco and M. Mangano,ibid. 135B, 445 ~1984!; F. del
Aguila, M.B. Gavela, J.A. Grifols, and A. Mendez,ibid. 126B,
71 ~1983!.

@4# M. Dine, R. Leigh, and A. Kagan, Phys. Rev. D48, 2214
~1993!.

@5# P. Pouliot and N. Seiberg, Phys. Lett. B318, 169 ~1993!; M.
Dine, R. Leigh, and A. Kagan, Phys. Rev. D48, 4269~1993!;
D.B. Kaplan and M. Schmaltz,ibid. 49, 3741 ~1994!; A.

Pomarol and D. Tommasini, Nucl. Phys.B466, 3 ~1996!; R.
Barbieri, G. Dvali, and L.J. Hall, Phys. Lett. B377, 76 ~1996!;
L.J. Hall and H. Murayama, Phys. Rev. Lett.75, 3985~1995!;
C. Carone, L.J. Hall, and H. Murayama, Phys. Rev. D54, 2328
~1996!; P. Frampton and O. Kong,ibid. 53, 2293~1996!; K.C.
Chou and Y.L. Wu,ibid. 53, 3492~1996!.

@6# S.M. Barr and G. Segre, Phys. Rev. D48, 302 ~1993!.
@7# K.S. Babu and S.M. Barr, Phys. Lett. B387, 87 ~1996!.
@8# Y. Nir and Rattazzi, Phys. Lett. B382, 363 ~1996!.
@9# S.M. Barr, Phys. Rev. D56, 1475~1997!.

@10# M.A.B. Beg and H.S. Tsao, Phys. Rev. Lett.41, 278 ~1978!;
H. Georgi, Hadronic J.1, 155 ~1978!; R.N. Mohapatra and G.
Senjanovic´, Phys. Lett.126B, 283 ~1978!; G. Segre and H.A.
Weldon, Phys. Rev. Lett.42, 1191 ~1979!; S.M. Barr and P.
Langacker,ibid. 42, 1654~1979!.

@11# Y. Nir and N. Seiberg, Phys. Lett. B309, 337 ~1993!.
@12# C.D. Froggatt and H.B. Nielsen, Nucl. Phys.B147, 277

~1979!.
@13# S.L. Glashow and S. Weinberg, Phys. Rev. D15, 1958~1977!.
@14# A. Nelson, Phys. Lett.136B, 387 ~1983!; S.M. Barr, Phys.

Rev. D30, 1805~1984!.

56 5765FLAVOR ALIGNMENT SOLUTIONS TO THE STRONGCP . . .


