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Once chosen the dynamics in one frame, the rest frame in this paper, the Bakamjian-Thomas method allows
one to define relativistic quark models in any frame. These models have been shown to provide, in the infinite
quark mass limit, fully covariant current form factors as matrix elements of the quark current operator. In this
paper we use the rest frame dynamics fitted from the meson spectrum by various authors, already shown to
provide a reasonable value forr2. From the general formulas for the scaling invariant form factorsj (n)(w),
t1/2

(n)(w), and t3/2
(n)(w), we predict quantitavely theB semileptonic branching ratios to the ground state and

orbitally excited charmed mesonsD, D* , andD** . We check Bjorken’s sum rule and discuss the respective
contributions to it. We findj(w).@2/(11w)#2, resulting from the fact that the ground state wave function is
Coulomb-like. We also findt3/2.0.5@2/(11w)#3 and t1/2(w)!t3/2(w). Very small branching ratios into
j 51/2 orbitally excitedD ’s results. The overall agreement with experiment is rather good within the present
accuracy which is poor for the orbitally excited charmed mesons. We predict a ratio
B(B→D2* ln)/B(B→D1ln)51.5560.15 as a mere consequence of the heavy quark symmetry. If some faint
experimental indications thatB(B→D1ln).B(B→D2* ln) were confirmed, it would indicate a sizable
O(1/mc) correction.@S0556-2821~97!01621-4#

PACS number~s!: 12.39.Hg, 12.39.Ki, 13.20.He

I. INTRODUCTION

The experimental progress inb-flavored physics these last
years has been really astounding. Subdominant decay chan-
nels such as the decay into a noncharmed final state are now
currently seen and measured with an increasing accuracy. In
this paper, we focus our attention on another class of non-
dominant decays, namely,B→D** . Their suppression rela-

tive to the dominantB→D (* ) is of course not due to
Cabibbo-Kobayashi-Maskawa~CKM! angles but to the dy-
namics of the decay, and mainly to the orthogonality of the
orbitally excited spatial wave function of theD** ’s to B’s,
the ground state one.

Among the four nonstrange expectedD** ’s, two have

been seen: theD2* (2460)6 with I (JP)5 1
2 (21), and the

D1(2420)6 with I (JP)5 1
2 (11), which have rather small

widths (.20 MeV). This small width is usually understood
as a consequence of beingj 53/2 states,j being the total
angular momentum of the light quanta~light quarks and glu-
ons! of the system.1 The small widths of these states is at-
tributed to the centrifugal barrier effect on their decay. In-

deed, the dominant decay channels of theD** ’s areD (* )p

andD** ( j 53/2)→D (* )( j 51/2)p is only allowed through
anL52 partial wave by parity andj conservation. Of course
j conservation is only valid at leading order in 1/mc . It ap-
pears that the main expectations of HQET seem, up to now,
to be rather well satisfied, even though the charm is not such
a heavy quark and important corrections would not be a
surprise. According to what seems to be the standard use,
we will denote thej 51/2 statesD1* (;2420) with I (JP)

51
2 (11) andD0* (;2360) with I (JP)5 1

2 (01).
There are altogether three main reasons which lead us to

study theseD** ’s with some care. First, narrow resonances
are in general preferred for phenomenology for many prac-
tical reasons: they are better isolated from the background
and from other resonances, the very convenient and frequent
‘‘narrow resonance approximation’’ can be rightfully used,
etc. Second, the apparent success of HQET at dominant or-
der in 1/mc leads us to hope a reasonable success when de-
scribing theB→D** ln decay in the infinite mass limit with-
out having to face the large number of new operators and
unknown parameters at next order in 1/mc . Last, but not
least, the excited hadrons represent a domain in which, to our
knowledge, quark models remain the only tool to make pre-
dictions, beyond general consequences from heavy quark
symmetry~HQS!. Lattice QCD as well as QCD sum rules
meet huge difficulties to deal with hadrons beyond the
ground states.

Thus,B→D** is the privileged domain to test a class of
relativistic quark models which use the Bakamjian and Tho-
mas~BT! formalism@2#, and which we have recently proven
@4# to provide a covariant description of semileptonic decays
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1If D2* has to be a purej 53/2, the two expectedJ51 states with

j 51/2,3/2 should mix due to 1/mc corrections to the heavy quark
effective theory~HQET!. This mixing is estimated to be small@1#
and the observed state to be dominantlyj 53/2.
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in the heavy mass limit. It was shown@4# that this class of
models satisfies fully HQS and that ther2 Isgur-Wise slope
parameter was bounded in this class of models:r2.0.75. It
also satisfies@5,6# duality properties amounting in particular
to the Bjorken sum rule@7,8#. In @10# it is shown that they
satisfy the new sum rules involving the annihilation con-
stants that we have proposed in@9#.

The method of BT proceeds as follows. Given the wave
function in, say, the rest frame,2 the hadron wave functions
are defined in any frame through a unitary transformation, in
such a way that Poincare´ algebra is satisfied. The mass op-
erator, i.e., the Hamiltonian operator in the rest frame, is not
specified in the BT approach. The mass operator is simply
assumed to be rotationally invariant, to depend only upon the
internal variables~to commute with total momentum and
center of mass position! and, of course, to conserve parity
@4#. In other words, the spectrum of heavy flavored mesons is
left free, and all the above-mentioned properties are valid for
any spectrum.

These welcome properties make the BT method appealing
enough to try real phenomenology. The hadron spectrum has
been studied many times, and several good fits to the masses
of heavy flavor mesons exist in the literature. The question
we ask is,given any mass operator which fits well the mass
spectrum, what does it predict for the slope2r2 of the Isgur
Wise function atv•v851, and for the B→D** ln decay?
The results aboutr2 have been published and discussed in a
separate publication@11#. It has been stressed that the de-
tailed shape of the potential~more or less singular at the
origin, etc.! did not influence muchr2, while the form of the
kinetic energy ~KE! plus mass, whether it is relativistic
(Ap21m2) or nonrelativistic (m1p2/2m), did change very
sensibly the result. While the relativistic KE gives
r251.0060.05 for all models that we have considered, the
nonrelativistic KE provides much larger values,r2.1.3.
Theoretical and experimental estimates ofr2 clearly favor
the value close to 1, i.e., the relativistic KE@11#. It was a
good surprise for us that the more sensible relativistic KE
combined with a covariant way of boosting the states, the BT
method, provides a relatively model independent and quite
reasonable value forr2. It was a good surprise because the
relatively stringent lower boundr2.3/4 @4#, valid for any
mass operator, could induce the fear that a spectroscopically
successful mass operator, and its eigenfunctions which nec-
essarily are very different from the ones saturating the lower
bound, would give a much too larger2. This fear could be
reinforced by the fact that Gaussian wave functions give a
large valuer2.1.2. It was quite gratifying to realize that the
properties of the spectrum and the short distance potential
predicted from perturbative QCD, plus the relativistic KE
was shaping the wave function towards a lower and better
value ofr2, and towards a larger value of the wave function
at the origin. The latter effect and the related leptonic decay
constants are discussed in@10#.

To summarize, we have a model which has several wel-
come properties, and provides a very reasonable value ofr2,

and which, among its beauties, satisfies the Bjorken sum rule
@5,6# which, in particular, relates the value ofr2 to the func-
tions which enter in theB→D** ln decay, Eq.~4.1!.

This is not a trivial achievement. It comes in this class of
models because the boost of the wave functions is a unitary
transformation that keeps the closure property of the Hilbert
space in all frames. It is then more than tempting tomake
predictions with this model for B→D** ln precisely at a
time when these branching ratios start being measured.

In @6# we have derived the general formulas giving the
HQET form factorst1/2(w) andt3/2(w), which are relevant
for B→D** ln, from the eigenfunctions of the mass opera-
tor.

The content of the BT method has been explained in some
detail in @4,6#. It will not be repeated here. In this paper we
will use the same set of mass operators fitted to the experi-
mental meson spectrum which has proven to provide a rea-
sonable value ofr2 @11#. In Sec. II we describe the four
models from which we borrow the mass operator, and our
diagonalization procedure. In Sec. III we derive the formulas
for the partial widths. In Sec. IV we check the Bjorken sum
rule. In Sec. V we describe the shape of the functionsj(w)
and t j (w). In Sec. VI we will present our predictions for
semileptonic branching ratios and compare them with experi-
ment and other models. Finally we conclude.

II. DIAGONALIZATION OF THE MASS OPERATOR

A. Mass operators

The method of Bakamjian-Thomas@2,3# provides a fully
covariant@4# description of the current matrix elements in
the infinite mass limit, once given a mass operator, i.e., a
Hamiltonian operator in the meson rest frame. For the latter
the only condition that we impose is that it has to describe
correctly the meson spectrum. We did not try to invent our
own Hamiltonian but rather resorted to literature. We have
chosen four quark models: Godfrey and Isgur~GI! @12#, Ve-
seli and Dunietz~VD! @13#, Cea, Colangelo, Cosmai, and
Nardulli ~CCCN! @14#, and finally Isgur, Scora, Grinstein
and Wise~ISGW! @16#. The GI model is rather complex and
because of that, one may not agree on all the ingredients or
assumptions which enter it, or one may find it difficult to
evaluate their respective impact on the final result. Neverthe-
less, what makes the model outstanding is its covering of the
whole spectroscopy, from light to heavy quarks. The GI
model includes relativistic features, among which is the
square root kinetic energy:

K5ApW 1
21m1

21ApW 2
21m2

2. ~2.1!

Starting from the linear plus Coulomb potential comple-
mented with spin-spin and spin-orbit forces, GI apply a com-
plicated procedure to smooth the singular parts of the poten-
tial @using, for example, anas(Q

2) which is finite when
Q2→0# and smearing the potential via momentum depen-
dent terms meant to mimic relativistic effects. Since we con-
sider in this paper the infinite mass limitm1→`, we have
thrown away in the present calculations all terms which van-
ish in that limit, except when checking our numerical code
against their spectrum. We use the following set of param-
eters in the notation of@12#:

2Any starting frame can be chosen, for example, the infinite mo-
mentum frame, although some care is then needed.
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b50.18 GeV2, c52253 MeV, s051.8 GeV,

s51.55, eSO~V!520.035, eSO~S!50.055,

as~Q2!50.25e2Q2
10.15e2Q2/1010.20e2Q2/1000,

g150.5, g25
A10

2
, g35

A1000

2
,

m15104 GeV, m250.22 GeV,

where the massm15104 GeV is taken as a good approxima-
tion of m15`.3

The VD model is a genuine linear plus Coulomb model
fitted to theb-flavored and charmed flavored mesons:

H5K2
4

3

as

r
1br1c,

whereK is the relativistic kinetic term~2.1! and we use

as50.498, b50.142 GeV2, c52350 MeV,

m15104 GeV, m25300 MeV.

The CCCN model@14# uses a potential in the manner of
Richardson@15#:

H5K1
8p

3322nf
LS Lr 2

f ~Lr !

Lr D
with K in Eq. ~2.1! and

f ~ t !5
4

p E
0

`

dq
sin~qt!

q S 1

ln~11q2!
2

1

q2D .

Richardson’s potential has the property to be linear for large
r and to behave as predicted by asymptotic freedom for
r→0:

V~r !→
8p

3322nf

1

r ln~Lr !
.

We use the set of parameters

L50.397 MeV, nf53, m15104 GeV, m2538 MeV

and, as in@14#, we truncate the potential to a constant value:

V~r !5V~r m! for r<r m with r m5
0.8p

5.33
GeV21.

Finally, the ISGW model@16#, contrary to the three pre-
vious ones, has a nonrelativistic kinetic energy term

H5
p1

2

2m1
1

p2
2

2m2
2

4as

3r
1br1c

with the set of parameters

as50.5, b50.18 GeV2, c52840 MeV,

m15104 GeV, m25330 MeV.

In @16# form factors are computed according to the non-
relativistic dynamics, with some adjustment of the param-
eters. We insist that in this paper we do not use the latter
estimate, but we only take from@16# the Hamiltonian at rest
and compute the form factors according the to BT method.
The result is indeed totally different. The label ISGW refers
to the BT estimate of form factors from the ISGW Hamil-
tonian, while, when necessary, we will refer to ISGW’s com-
putation of form factors as ISGW nonrel.

B. Diagonalization

For each of the four mass operators we have diagonalized
the sectorsl 50 andl 51 using a basis of harmonic oscillator
eigenfunctions which is truncated by keeping only the
nmax11 lowest states. The code first computes the matrix
elements of the Hamiltonian in this truncated Hilbert space,
and then diagonalizes the matrix keeping the eigenvectors
and the eigenvalues. We have performed all the calculations
with nmax510,15,20 and for the GI model withnmax524.
Before sending the mass of the heavy quark to 104 GeV, we
have checked, using the massesmb ,mc fitted by the authors,
that we had good agreement with them for the meson
masses. In the case of GI the check needed the introduction
of spin dependent terms which disappear in the infinite mass
limit. VD has singular eigenfunctions forr→0 due to the
Coulombic singularity. CCCN cut the Coulomb logarithmic
singularity atr m , but a discontinuity results in the potential
at r m . Therefore, VD’s eigenvalues in thel 50 sector con-
verge rather slowly whennmax→`, and this is also the case
to a smaller extent for CCCN. This does not prevent a rapid
convergence of the matrix elements which we will consider
in this paper. Only the leptonic decay constants are infinite
and the sum rules of@9# are ill-defined for the VD potential
@10#.

III. ANALYTIC FORMULAS FOR B˜D** DECAY

A. j„w…, t1/2„w…, and t3/2„w…

It is well known @8# that in the heavy quark limit the
current matrix elements betweenB and the even parityD**
states~odd parityD (* )! can be expressed as functions of two
~one! universal functions,t j (w) @j(w)#, where w[v•v8
and wherej 51/2,3/2 is the total angular momentum carried
by the light quantas~light quarks and gluons! in the final
states.j is a conserved quantum number in the infinite mass
limit. In @6# ~@4#!, we have derived the expressions for
t1/2(w) andt3/2(w) @j(w)# in the BT type of models, once
given the eigenfunctions of the mass operator:

3When computing theB meson decay widths, we will use the
amplitudes computed atm15104 GeV but the phase space factors

will be taken with the physical masses of theB, theD (* ) andD** .
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j~w!5
1

v8•v11 E dpW 2

~2p!3

A~p2•v8!~p2•v !

p2
0

p2•~v81v !1m2~v8•v11!

A~p2•v81m2!~p2•v1m2!
w8„~p2•v8!22m2

2
…* w„~p2•v !22m2

2
…,

t1/2~w!5
1

2)
E dpW 2

~2p!3

1

p2
o

A~p2•v8!~p2•v !

A~p2•v81m2!~p2•v1m2!

3
~p2•v !~p2•v81m2!2~p2•v8!@p2•v81~v•v8!m2#1~12v•v8!m2

2

12v•v8
f1/2„~p2•v8!22m2

2
…* w„~p2•v !22m2

2
…,

and

t3/2~w!5
1

)

1

12~v•v8!2 E dpW 2

~2p!3

1

p2
o

A~p2•v8!~p2•v !

A~p2•v81m2!~p2•v1m2!
H 3

2

1

11v•v8
@p2•~v1v8!#22~p2•v !~2p2•v82m2!

2~p2•v8!@p2•v81~v•v8!m2#2
12v•v8

2
m2

2J f3/2„~p2•v8!22m2
2
…* w„~p2•v !22m2

2
…,

wherew(pW 2) @f j (pW 2)# is the radial part of the wave function of theB @D** ’s#. A detailed account of our conventions can be
found in @6#.

B. Differential decay widths

Leaving aside radial excitations, there are fourl 51 states, theD** , that we will label according to the common use:D0* ,
D1* with j 51/2 andD1 , D2* with j 53/2. The lower index stands for the total angular momentumJ. Two experimental
resonances, theD1(2420) and theD2* (2460), are considered as good candidates for thej 53/2 states. In the infinite mass limit,
to which we stick here, the mixing between bothJ51 states~j 51/2 andj 53/2! is forbidden. TheO(1/mc) mixing seems to
be small@1#.

To make a long story short, we have checked the formulas in@8# with which we agree except for three misprints: in Eq.~45!
in @8# one should read in the denominator 32p3 instead of 32p2 and r[mXQj

/mPQi
~for example,r[mD** /mB! instead of

r[mXQj

2 /mPQi

2 . Finally we agree with Table III in@8# if one definesd[@2rw22(114r 1r 2)w12(11r 2)#/4r instead of

d5@2rw22(114r 1r 2)w12(11r 2)#/2r .
While we have computed the wave functions and the universal functionst j (w) in the infinite mass limit, the kinematics is

taken with the physical masses of the particles~or, in the absence of measurement, some estimated physical masses!: i.e.,

mB55.279, mD51.865, mD* 52.010, mD
0*
52.360,

mD
1*
52.420, mD1

52.422, mD
2*
52.459.

We also use

Vcb50.041, GF51.166 38931025 GeV,

and r 5mX /mB , X being the charmed final meson. The calculation of the differential decay widths is then standard, leading
to ~taking the mass of the final lepton to zero!

dG

dw
~B→Dln!5uVcbu2

GF
2mB

5

48p3 r 3~w11!~w221!1/2~w21!~11r !2uj~w!u2, ~3.1!

dG

dw
~B→D* ln!5uVcbu2

GF
2mB

5

48p3 r 3~w11!~w221!1/2@~w11!~12r !214w~11r 222rw !#uj~w!u2, ~3.2!

dG

dw
~B→D0* ln!5uVcbu2

GF
2mB

5

48p3 4r 3~w21!~w221!1/2~w11!~12r !2ut1/2~w!u2, ~3.3!

dG

dw
~B→D1* ln!5uVcbu2

GF
2mB

5

48p3 4r 3~w21!~w221!1/2@~w21!~11r !214w~11r 222rw !#ut1/2~w!u2, ~3.4!
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dG

dw
~B→D1ln!5uVcbu2

GF
2mB

5

48p3 2r 3~w11!~w221!3/2@~w21!~11r !21w~11r 222rw !#ut3/2~w!u2, ~3.5!

dG

dw
~B→D2* ln!5uVcbu2

GF
2mB

5

48p3 2r 3~w11!~w221!3/2@~w11!~12r !213w~11r 222rw !#ut3/2~w!u2. ~3.6!

We have also computeddG/dEl whereEl is the energy of the final lepton. We do not think it very useful to write down the
lengthy resulting formulas, we will show some plots later on.

IV. BJORKEN SUM RULE

It has been demonstrated in@5,6# that the heavy quark models of Bakamjian-Thomas satisfy exactly the Bjorken sum rule
@7,8# thanks to the closure property of the Hilbert space. In this section, we would like to make this statement concrete, while
providing a flavor of the value and shape of thet j functions.

In Table I, we check the derivative Bjorken sum rule, obtained by a derivation of both sides of full Bjorken sum rule at
w51:

r25(
k

@ ut1/2
~k!~1!u212ut3/2

~k!~1!u2#1
1

4
. ~4.1!

We have given the values oft j (w) for w51.0 andw51.5 to give some feeling of the decrease oft j with w. Adding only the
ground statel 51 mesons on the rhs gives a contribution about 20% below the lhs,r2 ~35% in the case of the
linear1Coulomb potential of VD!. We have computed the contributions from the first radial excitation of thel 51 mesons.
Now the discrepancy is of a few percent except for the VD, still about 20% too low. Finally, adding all thel 51 eigentstates
in our truncated Hilbert space, we get a 1% agreement with the directly computedr2, thus confirming that the models of BT
do incorporate naturally the Bjorken sum rule.

The larger value ofr2 in the ISGW model is related, via the derivative Bjorken sum rule, to both a largert1/2(1) and a
largert3/2(1).

The full Bjorken sum rule writes@8#

15
w11

2
uj~w!u21~w21!F (

n51

nmax w221

2
uj~n!~w!u212(

n51

nmax

ut1/2
~n!~w!u21~w11!2(

n51

nmax

ut3/2
~n!~w!u2G1••• , ~4.2!

TABLE I. Results fort j (1) andt j (1.5) form factors into theD** ’s ~lowest l 51 states!. The errors in
parenthesis are for truncation~estimated by varyingnmax!. The line ‘‘ground state BSR’’ indicates the RHS
of the derivative Bjorken sum rule~4.1! in which thet’s have only been taken for the lowest orbitally excited
final states. Adding only the contribution of the first radially excitedl 51 final states@indicated by the
superindex~1!# almost fills the gap withr2. The line ‘‘BSR’’ gives the contribution to the right-hand side
~RHS! of the derivative Bjorken sum rule from all the states in our diagonalization procedure. The agreement
with the LHS,r2, is almost perfect.

GI VD CCCN ISGW

t1/2(1) 0.2248~1! 0.13~1! 0.059~1! 0.3424~1!

t3/2(1) 0.5394~1! 0.43~2! 0.515~1! 0.5918~2!

t1/2(1.5) 0.1151~1! 0.10~1! 0.042~2! 0.2116~2!

t3/2(1.5) 0.2767~1! 0.23~1! 0.270~1! 0.2700~1!

ut1/2(1)u2 0.051 0.017 0.004 0.117

2ut3/2(1)u2 0.582 0.37 0.531 0.701

Ground state BSR 0.882 0.64 0.79 1.068

t1/2
(1)(1) 0.1965~3! 0.15~1! 0.249~2! 0.2290~2!

t3/2
(1)(1) 0.2147~1! 0.25~2! 0.216~1! 0.2522~4!

ut1/2
(1)(1)u212ut3/2

(1)(1)u2 0.130 0.15 0.16 0.18

BSR 1.023 0.97 0.97 1.283

r2 1.023~3! 0.98~2! 0.97~2! 1.283~1!
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where the dots represent thel .1 states. In@8#, nmax corre-
sponds to some scale dependent cutoff, which does not exist
in our case since we did not introduce QCD radiative correc-
tions. We will use fornmax the higher state in our truncated
Hilbert space. Our results are exhibited in Table II.

For w51, the sum rule is a triviality from the normaliza-
tion j(1)51 and the vanishing of other contributions. The
larger w, the more room is left forl .1 states. However,
even forw51.5, which is beyond the end of the physical
domain~wmax.1.32 forD** ’s!, less than 20% is due tol .1
except for the nonrelativistic Hamiltonian. Again, as forr2,
we note a general agreement between the three models using
the relativistic kinetic energy~2.1!, and a sensibly larger
(;25%) need ofl .1 states for the ISGW model which uses
a nonrelativistic kinetic energy.

V. NUMERICAL PREDICTIONS FOR THE FUNCTIONS
j„w… AND t j„w…

A. The difference t3/2„1…2t1/2„1…

Table I clearly shows a dominance oft3/2(w) over
t1/2(w) (w5121.5) of more than a factor 2, except for the
nonrelativistic ISGW model. This feature is at the origin of a

predicted suppression of the semileptonic decay into
D1* (1/2)ln and D0* ln. It should be noted that this
t3/2(w)@t1/2(w) is only valid for the ground statel 51
states. Botht’s are of the same order for the first radially
excitedl 51 states.

The difference betweent3/2 and t1/2 is not due to the
difference between the 1/2 and 3/2 internal wave functions at
rest coming from the spin-orbit force, which is small and has
a rather moderate effect. It is essentially due to the relativis-
tic structure of the matrix element in terms of these wave
functions. One can gain understanding of this effect at least
near w51 by returning to the analysis made in@5#, in a
frame wherevW andvW 8 are small. There, the current has been
shown@Eq. ~30! in @5## to have one spin independent piece
and one which is spin dependent. The latter, corresponding
to the light spectator quarkWigner rotations, is responsible
for the large difference betweent3/2(1) andt1/2(1):

t3/2~1!2t1/2~1!.
1

2)
U E dpp2pf†~p!

p

p01m
w~p!U,

where f is f1/2.f3/2. In a nonrelativistic expansion, this
Wigner rotation effect is small, of relative orderO(v2/c2)
with respect to the main, spin-independent term. That it may
be large in spite of this illustrates the fact that the system is
ultrarelativistic in the GI case, while it is less relativistic in
the ISGW case. Forr2, the Wigner rotation effect was found
rather small, partly due to a small algebraic coefficient, and
partly to the fact that inr2 it is squared.

B. Shape of the functionsj„w… and t j„w…

In order to analyze the shape of the functionj(w), we
have fitted the predictions of our models to several standard
one parameter analytic formulas@17#:

FIG. 1. Plots ofj(w). The dots arej(w) calculated forw51.021.5 The curves are functions (2/(11w))2rfit
2

with rfit
2 fitted to the

above-mentioned points. From upper to lower the curves correspond to VD, CCCN, GI, and ISGW models. The numbers indicaterfit
2 for GI,

VD, CCCN, and ISGW in this order.

TABLE II. RHS of the full Bjorken sum rule~4.2! as a function
of w adding all thel 50 andl 51 states. The error is for the trun-
cation.

GI VD CCCN ISGW

w51.0 1.000 1.000 1.000 1.000
w51.1 0.9864~2! 0.988~2! 0.988~2! 0.9793~1!

w51.2 0.9546~5! 0.962~3! 0.959~3! 0.9337~1!

w51.3 0.913~1! 0.928~5! 0.921~5! 0.8781~1!

w51.4 0.870~2! 0.890~6! 0.879~2! 0.8201~1!

w51.5 0.825~3! 0.85~1! 0.83~1! 0.7633~1!
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jNR~w!5
2

w11
expF2~2r221!

w21

w11G , ~5.1!

j ISGW nonrel~w!5exp@2r2~w21!#, ~5.2!

jpole~w!5S 2

11wD 2rfit
2

, ~5.3!

j lin~w!512r2~w21!. ~5.4!

jNR(w) has been proposed in@18#, jpole(w) in @17#, and
j ISGW nonrel(w) in @16#. It should be repeated that
j ISGW nonrel(w) is totally different from what is referred to as
the ISGW model throughout this paper. We only take from
the ISGW model the mass operator, and computej(w) con-
sistently in the framework of the BT method. As a result, as
we shall see, ourj(w) deduced from the ISGW model is
much better fitted byjpole(w) than byj ISGW nonrel(w). We
have labeled the latter by ISGW nonrel in order to avoid any
confusion.

We fit r2 respectively to these four analytic shapes and
estimate the quality of the fit by computing

d5H (
wi5121.5

@j~wi !2jfit~wi !#
2J 1/2

,

where jfit is one of the functions in Eqs.~5.1!–~5.4! and
wherewi runs from 1 to 1.5 by steps of 0.1. The results are

dNR.~5 – 9!31023, d ISGW nonrel.~11– 14!31023,
(5.5)

dpole.~2 – 7!31024, d lin.~3 – 6!31022.

jpole(w) wins by far. In fact, in our case, it would deserve the
label ‘‘dipole’’ since r2.1 and we may claim that the BT
models with relativistic kinetic energy predict

j~w!.
~4mBmD~* !

2!

@q22~mB1mD~* !!2#2 , ~5.6!

although, clearly, this singularity does not correspond to an
exchanged particle. This dipole behavior is to be compared
to the pole-type behavior which results, forw→`, from a
naive Lorentz contraction, see Sec. VI in@19#. Notice that
the form factorsA1(q2) and f 0(q2) have one ‘‘pole’’ less
than j(w) @Eq. ~17! in @19##, while the other form factors
behave likej(w). Hence, the result~5.6! favors a pole-
dipole behavior of the form factors, contrary to the constant-
pole advocated in@19# on the basis of the naive Lorentz
contraction. In fact other arguments were also used in@19#
and an update of the latter discussion would be welcome in
view of the theoretical and experimental progress.

In @11# we have argued that, when using the relativistic
kinetic energy,the ground state wave functions are rather

close to ground state Coulomb wave function@see Eq.~14!
and Figs. 1 in@11##. It happens that in the limit of a vanish-
ing light quark mass, the ground stateCoulomb wave func-
tion gives exactlyj(w)5@2/(11w)#2, i.e., our best fit
jpole(w) with r251. Clearly the ‘‘dipole’’ behavior ofj(w)
may be traced back to the Coulomb-like shape of the wave
function, which in turn stems from the kinetic energy~2.1!. It
was also noticed in@11# that this Coulombic wave function is
similar to the nonrelativistic QCD~NRQCD! lattice results.

The fits with jpole(w) are shown in Fig. 1. The fittedr2

are presented in Table III. It appears that they agree very
well with the exact sloper2 except for the VD model where
a 6% difference is to be noted. We do not know whether the
latter difference has to do with the strong singularity of the
Coulomb potential in VD model. Needless to say, the other
fitting functions in Eqs.~5.1!, ~5.2!, and~5.4! lead to values
of rfit

2 which disagree withr2 by several percent in the case
of jNR(w), up to 30% in the case of Eq.~5.4!. The latter
point has already been discussed in@11#.

In a recent paper Simula@20# has computed the Isgur-
Wise function from the light front constituent model of@21#
based on the GI Hamiltonian. Not only does he getr251.03
in the infinite mass limit, but the detailed agreement of his
solid line in Fig. 4 with our results for GI model~Fig. VII! is
very striking. This confirms that the models are indeed
equivalent as discussed in@4#.

Expanding

j~w!512r2~w21!1c~w21!21••• ,

the different analytic functions in Eqs.~5.1!–~5.4! lead to

cNR5
r41r220.25

2
,

cISGW nonrel5
r4

2
, cpole5

r2~112r2!

4
.

For GI ~VD! model it leads to

r251.02, cNR50.90, cISGW nonrel50.52, cpole50.77 ~GI!,

r250.92, cNR50.76, cISGW nonrel50.42, cpole50.65 ~VD!.

TABLE III. Results of the fit ofj(w) by @2/(11w)#2rfit
2
, and of

t j (w) by t j (1)@2/(11w)#2s j
2
. For comparison the exactr2 is re-

peated. We have starred our preferred models: GI and CCCN which
have a relativistic kinetic energy and have a regular potential at
r→0.

GI* VD CCCN* ISGW

rfit
2 1.020 0.92 0.97 1.287

r2 1.023~3! 0.98~2! 0.97~2! 1.283~1!

t1/2(1) 0.2248~1! 0.13~1! 0.059~1! 0.3424~1!

s1/2
2 0.83 0.57 0.73 1.08

t3/2(1) 0.5394~1! 0.43~2! 0.515~1! 0.5918~2!

s3/2
2 1.50 1.39 1.45 1.76
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In the (r2,c) plane, our best fit (r2,cpole) for GI ~VD! is
slightly above~just on! the ellipse limiting the allowed do-
mains shown in Fig. 1 of@22#.

In Fig. 2 we also show the fits oft j (w) according to

t j~w!.t j~1!S 2

11wD 2sfit
2

.

Notice the stable and rather large slopess j
2.1.5 for the

dominantj 53/2 channel.

VI. PREDICTED BRANCHING RATIOS

A. Differential decay widths

We show in Fig. 3 our predictions in the GI model for
(1/G)(dG/dw) of the semileptonic production of nonorbit-
ally excited D and D* mesons, Eqs.~3.1! and ~3.2!. We
compare the latter with the DELPHI measurement for
B→D* ~Fig. 10 in @27#! multiplied by a factor such that the
total number of good events is adjusted to the integral of our
predicted partial width. The agreement is quite satisfactory.

Moreover, as promised in a preceding section, we also
computed the leptonic spectradG/dEl for each type ofc
meson produced in theB decays. There is no analytical for-
mula available, as is the case for thedG/dw widths: numeri-
cal calculations have to be made. So we are presenting these
results in the following plots: the dynamics used is, here
again, the GI model and we have only considered the nonra-
dially excited D, D* , D0* , D1* , D1 , and D2* mesons
~though it is possible to compute the same quantities for the
radially excited ones!.

In Fig. 4 the leptonic spectrum of thel 50 D and D*
mesons are represented. In Figs. 5 and 6 the leptonic spectra
of the l 51 D** mesons are plotted for thej 51/2 multiplet,

and for the j 53/2 multiplet, respectively. We can already
notice two features that will be discussed in the next section:
the j 51/2 multiplet seems to be outweighed by thej 53/2
one and the contribution of theD2* meson is bigger than the
contribution of theD1 meson.

B. Comparison with experiment

The summary is presented in Table V. The agreement is
quite satisfactory forD (* ).

FIG. 2. Plots oft3/2(w) to the left andt1/2(w) to the right. The dots aret j (w) calculated forw51.021.5. The curves are functions

t j (1)(2/(11w))2s j
2

with s j
2 fitted to the above-mentioned points. From upper to lower the curves correspond to ISGW, GI, CCCN, VD

~ISGW, GI, VD, CCCN! for t3/2 (t1/2). The numbers indicates j
2 for GI, VD, CCCN, and ISGW in this order.

FIG. 3. (1/G)(dG/dw) of the semileptonic production of non-
orbitally excitedD, Eq. ~3.1! ~dashed line! andD* , Eq. ~3.2! ~solid
line! mesons, compared with DELPHI measurements forD* , nor-
malized to adjust the total number of experimental events to the
integral of our theoretical curve. The experimental numbers corre-
spond to bins inw of size 0.1.
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Concerning the orbitally excited states, some work has to
be done to compare the different experiments between them-
selves and with our models. Experimental numbers are typi-
cally provided as branching ratiosB@b→DJ(→D* 1p2) ln#
@DJ being any of the two observed orbitally excited D me-
sons:D2* (2460) orD1(2420)#. To reduce this to the branch-
ing ratioB→DJln, we use the nominal production ratio of a
b̄ jet: B1:B0:Bs :b̄-baryon50.4, 0.4, 0.12, 0.08@24#.

The branching ratios intoD* p are very different forD2*
andD1 . Indeed, the decayD1→Dp is forbidden by angular
momentum and parity conservation. We have assumed that
these two channelsD (* )p saturate theDJ decay. This seems
a plausible assumption, although it has been argued@32# that
three-body,r and/or h decays might be important. This
means that we assumeB(D1→D* p)51, and from isospin
Clebsch-Gordan coefficients, the decay into charged pions
B(D1→D* p6)52/3. Concerning theD2* decay, we have
two pieces of information: one from experiment,@30#
indicates that B(D2* (2460)→D1p2)/B(D2* (2460)
→D* 1p2)52.260.760.6, the other one from theory, the
value 2.3 predicted by HQET@33#. Since both agree we take
this ratio to be 2.3 implying B(D2*→Dp)50.7 and

B(D2*→D* p)50.3, with an additional Clebsch-Gordan
~CG! coefficient of 2/3 for final charged pions.

We have treated the above-mentioned estimates for the
production ratios b→B and for the branching ratios
DJ→D* p as if they were exactly known. We do not feel
able to discuss in a reliable way the error attached to them.
As a conclusion the experimental errors mentioned in Table
V do not incorporate this uncertainty. They underestimate
the error. Of course, every time the experimental groups
have already performed one of the above-mentioned steps,
we use their estimate. Then the quoted error is more realistic.
For example, CLEO directly provides theB2 branching ra-
tios.

Looking at Table V, it appears that the experimental num-
bers are still rather scattered. The difference in OPAL results
between charged and neutralD2* is quite surprising. Our
models agree with the smallest one,D2*

0. The other experi-
ments give only upper bounds forD2* . None is in clear
disagreement with our models. It is standard to look for the
orbitally excitedD mesons via theirD* p decay. The lower
branching ratio ofD2*→D* p reduces the number of ob-
servedD2* compared toD1 , allowing only upper bounds,

FIG. 4. Leptonic spectra (1/G)(dG/dEl) of the semileptonic production ofl 50 D andD* mesons.

FIG. 5. Leptonic spectra (1/G)(dG/dEl) of the semileptonic production of the firstj 51/2 multiplet ofD** mesons.
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which are not the sign of a smallB(B→D2* ln) but only of a
small B(D2*→D* p). This has to be kept in mind.

The results forD1 are rather scattered: ALEPH and
CLEO find small values, DELPHI and OPAL larger ones.
However the discrepancy is less than twos’s. We agree with
the small values, ALEPH and CLEO.

A special comment is due concerning the ratio
B(B→D2* )/B(B→D1). In the heavy mass limit, the two
decays depend on one heavy quark universal form factor:
t3/2(w). Of course, since the kinematic factors differ be-
tweenB→D2* and B→D1 @compare Eqs.~3.6! and ~3.5!#,
the ratio of the partial widths slightly depends on the detailed
shape of the functiont3/2(w) which is model dependent.
However, this dependence is not very important as can be
seen from the stability of the ratio in Table IV. To get some
feeling of this dependence we have considered two extreme
shapes fort3/2(w): a constant and a very steep decrease
(s3/253). The ratio B(B→D2* )/B(B→D1) ranges from
1.43 to 1.7. We may thus consider a ratio of.1.5560.15 as
a prediction of HQS. Only DELPHI provides this ratio,
which agrees with HQS but within large errors.

However, if we take strictly this HQS prediction
B(B→D2* ln)/B(B→D1ln).1.4, it appears that the central

value forB(B→D1ln) in ALEPH and OPAL leads to a pre-
diction for B(B→D2* ln) which overcomes the upper bound
of the same experiment. In view of the general uncertainty
on these numbers, we can only take this as a faint indication
that some of our hypotheses might need to be reconsidered.

Let us first consider the effect of neglecting all decay

channels ofD** ’s except intoD (* )p. Let us assume that
some other channels contribute with a partial width to both
D2* andD1 decays, assumed to be equal to the partial width
into D* p times r . As a result we should divide in Table V
the experimental numbers concerningD1 by 11r while
those concerningD2* will be divided only by 110.3r . It
results that this correction would bring the numbers in better
agreement with the HQS predictionB(B→D2* ln)/
B(B→D1ln).1.4. At this stage we conclude that it would
be prematurate to claim that experiment contradicts this HQS
ratio.

Let us still assume that there is some indication of a
needed correction to the strict HQS relation
B(B→D2* ln)/B(B→D1ln).1.4. This leads one to consider
O(1/mc) corrections. A mixing of theD1 with the j 51/2
meson is quite plausible, but it would worsen our prediction

FIG. 6. Leptonic spectra (1/G)(dG/dEl) of the semileptonic production of thej 53/2 multiplet ofD** mesons.

TABLE IV. Semileptonic branching ratios, in percent, taking aB lifetime of 1.62310212 s. The last line
is the prediction forr2. The column on experiment refers to the rather established and stabilized results
reported in the PDG table. For more recent experimental results, see the following discussion and Table V.
We have starred our preferred models as in Table III.

Channel GI* VD CCCN* ISGW Expt.

B→Dln 2.36 2.51 2.45 1.94 1.660.8
B→D* ln 6.86 7.19 7.02 6.07 5.360.8
B→D2* ln 0.70 0.47 0.65 0.77

B→D1( 3
2 ) ln 0.45 0.29 0.42 0.49

B→D1* ( 1
2 ) ln 0.07 0.02 0.004 0.13

B→D0* ( 1
2 ) ln 0.06 0.02 0.004 0.11

B→D2* ln

B→D1~
3
2!ln

1.55 1.62 1.55 1.57

r2 1.023~3! 0.98~1! 0.97~1! 1.283~1!

56 5677QUANTITATIVE PREDICTIONS FORB SEMILEPTONIC . . .



since, due to the very small decay amplitudes into thej 51/2
states, it would lessen our prediction forB(B→D1ln). We
are thus led to consider directO(1/mc) corrections in the
decay amplitudes, which have indeed been found to be dra-
matically large in@34#. The authors of the latter paper obtain
B(B→D2* ln)/B(B→D1ln).0.8 for constantt j (w)’s.

Unhappily, no direct check of the predicted suppression
of the semileptonic decay intoj 51/2 orbitally excitedD ’s is
presently available.

C. Comparison with other models

Quark models. Among the calculations ofb→c exclu-
sive semileptonic decays which have been performed in the
framework of quark models, one must distinguish between
~1! calculations in frameworks equivalent to the present B-T
formalism @36,20,37#; ~2! calculations with direct identifica-
tion of some scaling functions to NR overlaps@35,38#; ~3!
calculations in a family of models with approximate Lorentz
boost @39,40#, which are close in spirit to our old quark
model @19#; ~4! calculations which do not deduce theq2

dependence of form factors from wave functions, but from
some simple or multiple pole Ansatz@41# ~these models have
been discussed in@19#!, @42#; or still some other Ansatz@16#.

~1! Calculations in frameworks equivalent to the present
BT formalism.In spite of the fact that the authors do not give
general formulas, we have found that the results of@36# con-
cide with the ones of the BT method for the particular case
they consider~mQ5` limit, choice of a particular frame,
expansion aroundw51, harmonic oscillator wave func-
tions!. Therefore we state that they have obtained by intui-
tive arguments essentially the BT formulation formQ5`.
The quite sizable differences observed with respect to our
present quantitative predictions forr2 and t1/2(1),t3/2(1)
come from our use of more realistic wave functions: the full
numerical solution of relativistic spectroscopic models@us-
ing the KE of Eq.~2.1!#, instead of the nonrelativistic ISGW
spectroscopic model with harmonic oscillator~HO! approxi-

mation, yield lower results forr2.
As to the work of@20,37#, it is a full calculation of the

B→D (* )l n form factors with the GI spectroscopic model,
in a null-plane approach, which, as we have checked~@4#!, is
the application of the BT method in the particularP→`
frame. As we have suggested@4#, because of the demon-
strated covariance of themQ5` limit, the results should
then coincide in this limit with our own, provided the same
spectroscopic model is used. Indeed ourj(w) agrees within
the computational uncertainty with the prediction by these
authors when using the same GI model.

~2! Calculations with direct identification of some scaling
functions to NR overlaps. In @35,38#, a simple intuitive
recipe has been used, consisting in the direct identification of
the scaling functions of Isgur and Wise with usual nonrela-
tivistic form factors. It results in quite different expressions
from what we advocate throughout this paper: deducing the
scaling functions from their relation to the current matrix
elements, the latter being calculated in a relativistic ap-
proach, as is proposed by the BT approach and the one be-
low ~point 3!.

~3! Calculations in a family of models with approximate
Lorentz boosts. In @39,40#, the approach is essentially the one
of our old model developped in the 1970s~in the HO case,
one ends with exactly the samej that we had found; for a
recent reference, see@19#!. It consists in calculating the cur-
rent matrix elements between wave functions for states in
motion obtained through a Lorentz transformation of rest-
frame wave functions, including the Lorentz transformation
of coordinates and the standard transformation of spinors in
Dirac representation. The matrix elements are calculated in
the equal-velocity frame where great simplifications occur.
To get the equal time wave function from the one at rest, one
has to assume that the dependence on the relative time is
weak in this latter frame~this corresponds to the assumption
of factorization of the wave function in light and heavy de-
grees of freedom in@39,40#!. One then ends with what we

TABLE V. The first column gives the range of our theoretical predictions. We have assumed aB(b̄→B1)5B(b̄→B0)50.4 in order to
compare the experimental numbers referring toB(b→DJ) with our prediction concerningB(B→DJln). Whenever experiment gives a
branching ratio→DJlX we have assumedX always to be a neutrino. We have furthermore assumedB(D1→D* p)53.33B(D2*→D* p)
from the ratioB(D2*→Dp)/B(D2*→D* p).2.3 and neglecting otherD2* decay channels. Unable to make a reliable estimate of errors on
all these estimates aboutB(b̄→B) as well as about theDJ decay branching ratios, we have chosen to take them with zero error. It results
that the experimental errors on the numbers given in the table are indeed larger than indicated. The upper bounds are at 95% CL, except for
the caveat in the previous sentence.

Channel Theory PDG@23# ALEPH @25,26# DELPHI @27,28# OPAL @29# CLEO @31#

B→Dln 1.9–2.5 1.660.7 2.3560.2060.44

B→D* ln 6.0–7.2 5.360.8 5.5360.2660.52 5.4760.1660.67

B→D2*
0ln 0.45–0.80 ,0.94 ,6.25 0.8860.3560.17 ,0.80 ~90% C.L.!

B→D2*
1ln 0.45–0.80 ,0.54 2.2560.6560.51

B→D1( 3
2 ) ln 0.30–0.50 0.7460.16 1.560.55 2.060.660.5 0.5660.1360.0860.06

B→D1* ( 1
2 ) ln 0.0–0.07

B→D0* ( 1
2 ) ln 0.0–0.06

B→D2* ln

B→D1~
3
2!ln

1.55–1.62 1.5561.1
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have called the ‘‘naive Lorentz contraction’’ prescription for
spatial wave functions. This prescription can be seen to be
too inaccurate to calculate form factors. In the BT formal-
ism,there appears a definite and more consistent Lorentz
transformation of momenta. The ‘‘naive Lorentz contrac-
tion’’ prescription consists in peforming in the result of the
BT boosts a linear approximation in the dependence on the
light quark spatial momentapW 2 in the hadron rest frame. The
resulting difference can be seen in the behavior of the func-
tion j(w). With the simpler Lorentz contraction prescription,
j(w)52I (w)/(11w) where the overlap factor
I (w)→constant whenw→`.4 Hencej(w);@2/(w11)# for
large w. In the BT formalism, as we have argued after Eq.
~5.5!, j(w).@2/(w11)#2r2

, with a power of dynamical ori-
gin.

Another point is deserving mention as regards models
@39,40#. Within a static approximation where the light quark
wave functions at rest would have no small Dirac compo-
nents~‘‘nonrelativistic’’ case of @40#!, and assuming, as is
found to a good accuracy, that the spin-orbit effect is small,
one getst1/2(1).t3/2(1). On theother hand, if one uses
wave functions with small components, like for instance so-
lutions of a Dirac equation~‘‘DESC’’ of @40#!, one has
t1/2(1)Þt3/2(1), andindeed, one finds, similarly to our BT
result, G(1/2)!G(3/2). In fact the BT formalism corre-
sponds to having small components given by the free-quark
Dirac spinor structure.

Apart from particular features, one must emphasize the
theoretical advantage of the BT approach that comes from
the demonstration of exact general properties such as unitar-
ity of the transformation from rest frame to states in motion,
or, in themQ5` limit, Isgur-Wise scaling, full covariance
and duality. In the other approaches, either they do not hold,
or they are enforced by formal procedures, for example, for-
mal covariance can be obtained by identifying invariant form
factors with form factors in one particular frame like the
equal-velocity frame, or they are only approximate.

Finally, one must still mention the following important
point: the above discussion has been maintained within the
mQ5` limit. For our BT approach, as well as for the others,
it is however quite possible to treat the finite mass case, and
it is indeed one interesting feature of quark models that they
yield definite 1/mQ effects. We have only refrained to do so
because our approach loses several of its nice properties,
in particular covariance. Detailed predictions for finitemQ
are given in the ISGW2 model@42#. This model falls in
category~4!, in that the form factors do not really derive
from a full quark model calculation. One interesting finding
of the ISGW2 calculations@42# is that they predictG~21)
,G(13/2

1 ), in contradiction with HQS. This may be due to
the finite mass treatment and would be in agreement with the
conclusions of@34#. It may also be mentioned that for the
ISGW1 model~@16#!, t3/2(1) is sensibly smaller than ours
~0.3 against 0.55!.

QCD fundamental methods.By fundamental methods,
we mean lattice QCD and QCD sum rules. As to the com-
parison of their results with ours as regards the elastic Isgur-

Wise functionj(w), the discussion has been made in@11#,
and the convergence is encouraging, even as concerns the
sensitive r2 parameter. For orbitally excited states, only
QCD sum rules give predictions@43#, and they lie well be-
low the ones of our quark models for ununderstood reasons
~with mQ5`, B@B→D1(3/2)1ln#50.1% versus 0.320.5%
in Table V!.

VII. CONCLUSION

We have applied the Bakamjian-Thomas~BT! method in
the infinite mass limit to meson wave functions fitted to the
experimental meson spectrum by several groups: GI, VD,
and CCCN,@12–14# using a relativistic kinetic term and
ISGW @16# a nonrelativistic one. Whichever set of wave
functions is used, the BT method ensures that the models are
covariant and satisfy heavy quark symmetry@4–6#.

We have computed the invariant form factorsj(w) and
t j (w). The Bjorken sum rule, which has been proven to be
valid in BT models@5,6#, has been checked practically in this
paper. The derivative Bjorken sum rule forw51 is almost
saturated by the ground statel 51 and the firstl 51 radial
excitation~the latter contributing for.15%!, except for the
VD model, in which;20% is contributed by then.1, l 51
excitations. The full Bjorken sum rule has also been checked
for 1<w<1.5. The missing part, corresponding to thel .1
states, increases withw up to 15% forw51.5 ~25% for the
ISGW model!.

The sloper2 is 160.05 when relativistic kinetic energy is
used,.1.3 when the nonrelativistic kinetic energy is used
@11#. The j(w) function is very well fitted by the function

@2/(w11)#2r2
which means a dipolelike behavior, Eq.~5.6!.

The latter result may be traced back to the Coulomb-like
shape of the ground state wave function when using a rela-
tivistic kinetic energy@11#. The functionst j are dominated
by t3/2, with t3/2(1).0.420.6. The latter decrease like
@2/(w11)#3.

We have computed, for the decaysB→Dln,D* ln and
the fourB→D** ln, the differential decay widths as a func-
tion of w, Fig. 3, and also as a function of the charged lepton
energy. Figures 4–6 show the latter. The decay widths to
j 53/2 are about one order of magnitude smaller than the
ones intol 50 states, and the ones intoj 51/2 are still one
order of magnitude below.

We have also computed the semileptonic branching ratios.
The ones intoD andD* are in good agreement with experi-
ment. TheD** experimental data are still rather scattered.
Our models predict tiny branching ratios intoj 51/2 states,
but this cannot be checked yet. For sure these decays have
not been seen yet, but their absence may be explained by
their broad widths, without invoking a suppressed branching
ratio. Our predictions forD2* are below the experimental
upper bounds, although close to them. Our predictions for
the D1( j 53/2) do not disagree with experiment taking into
account the wide spreading and large uncertainty of experi-
mental results.

Our models being all within the strict infinite mass limit,
we predict the relation B(B→D2* )/B(B→D1( j 53/2)
51.5860.05 which is mainly a consequence of HQS. In-
deed, going beyond the models studied in this paper, if we4In the harmonic oscillator casej(w)5jNR(w) @see Eq.~5.1!#.
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consider arbitrary but ‘‘reasonable’’ shapes oft3/2(w) we
find that HQS predictsB(B→D2* )/B@B→D1( j 53/2)]
51.5560.15. When comparing the experimental figures for
these decays, there might be some indication that this ratio is
indeed lower. This could be an indication of a large 1/mc

correction which enhances theD1 .
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