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Spectroscopy of heavy mesons expanded innié
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Starting from the semirelativistic Hamiltonian foerq_system with Coulomb and linear confining scalar
potentials, and operating just once with the naive Foldy-Wouthuysen-Tani transformation on the heavy quark,
we have calculated the heavy meson mass specttaaridB together with higher spin states. Based on the
formulation recently proposed, their masses and wave functions are expanded up to second arggwithl/

a heavy quark massg and the lowest-order equation is examined carefully to obtain a complete set of
eigenfunctions for the Schdinger equation. Heavy quark effective theory parameErsl, and\, are also
determined at first and second order img/. [S0556-282(97)06521-1

PACS numbdss): 12.39.Hg, 12.40.Yx

I INTRODUCTION that the Schirdinger equation for @ q bound state can be
expanded in terms of d,; i.e., the resulting eigenvalues as
Hadrons are composed of quarks and antiquarks and aigell as wave functions are obtained order by order mdl/
considered to be governed by quantum chromodynamick this paper, as one of the applications of our formulation
(QCD), at least in principle. Since QCD describes a strongwe will calculate the heavy meson spectrabbfand B, and
coupling interaction, a perturbative calculation of physicaltheir higher spin states. In order to do so, we would like to
guantities of hadrons is not so reliable other than in the deeptart from introducing phenomenological dynamics, i.e., as-
inelastic region where the coupling constant becomes weakuming Coulomb-like vector and confining scalar potentials

due to asymptotic freedom and hence other methods such &s Q q bound statesheavy mesons expand a Hamiltonian
lattice gauge theory have been developed to take into adn 1/mq then perturbatively solve the Schiinger equation
count nonperturbative effects. However, the situation drain 1/mg. Angular part of the lowest-order wave function is
matically changes when it is discovered that the system oéxactly solved. After extracting asymptotic forms of the
heavy hadrons, composed of one heavy gu@rland light lowest-order wave function at both—0 andr—« and

quarksq or antiquarksa can be systematically expanded in adopting the variational method, we numerically obtain the
1/mg with a heavy quark massi,. The numerator of this radial part of the trial polynomial wave function which is
expgnsion in Th- could be eithe?’A orm expanded in powers of radial variabte Then fitting the
This theory ﬁeavy quark effectﬁlceDtheoﬁgyl-QE'l’) [1]is Smallest eigenvalues of a Hamiltonian with masseB aind
applied to many aspects of high-energy theories and mang* mesons, a strong couplings, and other parameters in-

kinds of physical quantities of QCD which can be perturba-¢luded in scalar and vector potentials are determined
tively calculated in Iy . Especially those regardir® me- uniguely. Using parameters obtained this way, other mass

son physics, e.g., the lowest order form fadtwhich is now levels are calculated and compared with the experimeptal
called Isgur-Wise functionof the semileptonic weak decay dztalforD/Bdmesons up to the slecondforr]dgéjcj)rf] perturbation.
processB—D/ v and the Kobayashi-Maskawa matrix ele- "€ lowest degenerate eigenvalues of the Stihger equa-

mentV,,, have been calculated by many peof#é How- tion gives the so-called parameters fou, d, ands light

ever, since applications of HQET to higher-order perturbaduarks, which is defined by

tive calculations are very restricted, only forms of higher- _

order operators are obtained. Their Wilson coefficients are A= lim (E4j—mg),

calculable, but some of the matrix elements of those opera- mQ—

tors are obtained so that the whole quantity be somehow )

fitted with the experimental daf8]. This is because most of WhereEy is a calculated heavy meson mass amgla heavy

the calculations based on HQET do not introduce realisti@uark mas$3]. Meson wave functions obtained thereby and

heavy meson wave functions and hence there is no way tgxPanded in I, may be used to calculate ordinary form

determine those quantities completely within the model. factors as We_II as Isgur-Wlse functions and its corrections in
In previous paper$4,5], using the Foldy-Wouthuysen- 1/Mq for semileptonic weak decay processes.

Tani transformatiorj6] we have developed a formulation so Al the above calculations are calculated up tong/and
analyzed order by order inr, to determine parameters as

well as to compare with results of heavy quark effective

*Electronic address: matsuki@tokyo-kasei.ac.jp theory, e.g., the parameteps,, A,, andA in Sec. IV. The
Electronic address: morii@kobe-u.ac.jp final goal of this approach is to obtain higher-order correc-
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tions to Isgur-Wise functions, decay constants of heavy megiven by a confining scalar potential and a Coulomb vector

sons, and the Kobayashi-Maskawa matrix elem¥gg, by

potential with transverse interacti¢t0] and a total Hamil-

using wave functions of heavy mesons obtained so thationian is given by

heavy meson spectrum is fitted with the experimental data.
Below in Secs. Il and 11l we will first give formulation of
this study and next in Secs. IV and V give quantitative and
qualitative discussions on the obtained results.
Il. HAMILTONIAN

The Hamiltonian density for our problem is given by

Ho= f A [q7 (%) (dg- Po-t BaM) G°X)

+{1- g do+(aq M)(agm) 1}V, ™

where scalar and vector potentials are given by

and n=

. (8

| =,

_r+b V(P = 4 ag
SN=gz+b, V(N=-3,

and the vector potential is averaged over longitudinal as well

as transverse as given in the last term of &g. The trans-

+QT(X)(ag:Pot BoMo)QX) 1, (1)

Himzf f dx3dx’3q°(x) 0;%(x)

X Vi(x—x")Q(x")0;Q(x"), (2)

where we consider only a scalar confining potential,
Os=1Vs=9(r), and a vector potentiaD, =1y, ,V,=V(r),
with a relative radial variable, which we think is the best

choice to describe phenomenologically the meson mass lev-

els[7,8]. The state ofd q is defined by

|"b>:f d3xf Py p(x—y)aS (0QL(YI0), (3

whereq®(x) is a charge cg\jugate field of a light quarkand

the conjugate state o@q by (¢|=|¢)" with (0|=|0)".
From these definitions, we obtain the Fermi-Yang equation
[9] or the Schrdinger equation as

Hy=(mo+E)y, (4)

where the bound state mads, is split into two partsmg
andE (=E— M), so that it expresses the fact that the heavy

quark mass is dominant in the bound stasj, and ¢ is
nothing, but the wave function which appears in the right-
hand sidgRHS) of Eq. (3).

Operating with the FWT transformation and a charge con-
jugation operator, which are defined in Appendix A, only on
the heavy quark sector in this equation at the center of the
mass system of a bound state, one can modify the "Schro
dinger equation given by Ed4) as

(Hewr— M) ® thewr= Ethewr, ®)

where a notatior® is introduced to denote that gamma ma-

1
szﬁg ByBa

formed Hamiltonian is expanded inmif; as

where

HFWT_mQ:H*l+H0+Hl+H2+“' ’ (9)
H 1=—(1+B8g)mg, (10a

Ho=aq P+ BqMy— BqBo S+{1+ 3 [ aq ag
+(ag-N)(ag-n) 1}V, (10b)

H,= 1 2+ ! " *+1* S+—1 Vo-qV
1= 2mQ’8Qp m_QBan' p Eq 2mQ7Q'q
1 L
2_mQ Bol P >4/ +ia
X Bo ol [ ag+(ag-mn 1V, (100

2

1.
p+§q

[,
S———qgxp- 36 S
4méq P-ByBg 2q

1 . i .
— V- —qxp-So V
2 2 Q
8mQ 4mQ
- —{(p+q) (agP)
2
8mQ

+plag (P+A1+igXp yat-[ ag+(ag-mn 1V,
(100)

trices of a light anti-quark is multiplied from left while those HereH; stands for théth order expanded Hamiltonian, the

of a heavy quark from right or, more explicitly,

0q0a® hrwr= (Og) ap( ¥rwt) g, Og) s (6)

whereO, and Oq represent gamma matrices related to light
anti-quark and heavy quark, respectively. The problem of
this paper is to solve this equation, E®), in powers of

Dirac gamma matrices3, «, and2, are defined as

1 0 0 o o
B=lo -1| a= ol 2=lo

0

S
S

11

1/mq . As described first in this section, interaction terms areand since a bound state is at rest,
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whose explicit form is solved in Appendix C and is given by

Yo=T =(0 VK (). 17

The notation might be confusing; however, one may under-
stand Eq{(16) by noting

UA U t@up=A_@yp=uA .

Here/ stands for a set of quantum numbgran, andk and
a 4x 2 matrix wave function¥ | (), is given by

Definition of momenta of Qg

FIG. 1. Each momentum is defined. .1 ug(r)
V()=

k
- T m(Q), 18
n—n - ) = >z, 2 —i vk(r)(a~n))y' m( ) (18)
P=pPg=—Pqo, P'=Py'=—Po', d=p'—p, (12
are defined, where primed quantities are final momenta anyherej is a total angular momentum of a mesom;s its z
the relation of these momenta with particles is depicted iffomponentk is a quantum number which takes only values,

Fig. 1. k==j, _t(j +1) ar_ld 7&0_, ug(r) and uk(r_) are scalar
Details of derivation of equations in this section are givenPOlynomials of a radial variable, and are tacitly assumed to

in Appendix A. be multiplied by a 22 unit matrix.y}(m(Q) are functions of
angles and X2 matrix bi-spinors of a total angular momen-

Ill. PERTURBATION tum, j=/+s,+5o with a definition of an orbital angular

momentum/’ = —ir X V, ands, ands,, being spin operators
of light anti-quark and heavy quark, respectively. Note again
that the positive projection operator of a heavy quark is
given by A _ instead ofA , as described early in this section
and should be multiplied from right as shown in EG6).

15 Bo T.he corresponding operator for the quantum numkeés

= (13)  given by[4]

Using the Hamiltonian obtained in the last section, we
give in this section the Schdinger equation order by order
in 1/mq . Details of the derivation in this section are given in
Appendix B. First we introduce the projection operators:

+ 2 1

which correspond to positive-/negative-energy projection op- — ,Gq(iq- /+1), (19
erators for a heavy quark sector at the rest frame of a bound

state. The notation might be confusing since these expre
sions are opposite to the ordinary definition. As describe
just before Eq(5) or at the end of Appendix A, heavy quarks . . .
in the Schrdinger equation are transformed by the charge —Bg(Sq: 7+ 1)(0 WK (N)=KO ¥K (1), (20)
conjugation operatorl)., and the projection operators are
given by Eq.(A5) or in the present notation usirgy by Eq. ..,
(13). These correspond to (1#)/2 in a moving frame of a
bound state withy# the four-velocity of a bound state. Then

vhich satisfies

we expand the mass and wave function of a bound state in [ Ba(2q'/+1), Ho '1=0, (2D)
1/mg as
with Hy ~ being given in Appendix D, the lowest-order non-
E=E-mg=E;+E{+E5+-, (14) trivial Hamiltonian,
Yewr= o+ g+t (15 Ho ™ ® g =Euf .

where/ stands for a set of quantum numbers that distinguish . . .
independent eigenfunctions of the lowest-order Sdimger | he Operator given by Eq19) has a form of the spin-orbit

. Y / for th coupling of light anti-quark and so is an ir_1trinsic property of
equation, and a subscripof £ andy; stands for the order the light degree of freedom. Therefore pairs of states with the

of 1/mg . same value ok are in the near-degeneracy in mass, e.g., the
two states ofP=0",1" with k= —1, whose details are de-
A. —1st order scribed at the end of Appendix C.
The —1st-order Schidinger equation in b, gives a Note that since charge conjugation operates on the heavy
4X 4 matrix wave function as guark sector, thé\ _ projection operator appears in E46),

, L i.e., positive components @ corresponds to negative com-
Po=A_®ypo=9y A_, (16)  ponents ofU Q.



B. Zeroth order
The zeroth order equations are given by

[ag-P+Bq(Mg+S)+V 10 ys=Eg ¢, (22

—2moA . @Y+ 3 A _[aq-ag+(ag-N)(ag-n) Ve ¥,

=0. (23

Equation(22) gives the lowest nontrivial Schdinger equa-

tion with a solution given by Eq17) andn=r/r. A detailed
analysis of this equation is given in Appendix €., com-
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1 ’ -
C{Jrk: 7k E Cl'/,/ <\I’;|A+HOA7|W/r>
Eo—Eol 7
(WA _HA_| W)Y, for k#/, (32
cii=0 (33)

This completes the solution fm/l sinceA . ® w{, orC{f ;
is obtained in the last subsection. Here we have used the

ponents of wave functions can be expanded in terms of theormalization for the total wave functiog;, as

eigenfunctions:
W ={y(r) 0). (24

ExpandingA+®¢{ in terms of this set of eigenfunctions,
one can obtain the solution for E(3) as

Aoy =2 ¢l v, ,, (25)
/l

with the coefficients

Vs 1 \I’_ e e e e e e \I,-F
cit —m< /,|[aq-aQ+(aq-n)(aQ~n) VW),
(26)

Here the inner product is defined to be
(weo|w’ ,>=f d’r v[veT(0evr )],  (27)

where the notatior® is defined by Eq(6) and the zeroth
order wave functions are normalized to be 1:

(P|WE y=6,,.6%F for a, p=+ —. (29

C. 1st order
The 1st-order equation is given by

—2mQA+®¢£+Ho®w{+H1®w6=E6¢{+E{¢/6-(29)

Multiplying projection operatorsA .. from right with the
above equation, and expandiqé in terms of ' as

Wi=> (i) Wi, +cl v, (30)
> ,
one obtains
Ef=2> ¢/ (V/[ALHoA_|¥) )
/I
(WA _HA_[W)), (3D

Wl V=6,,1, (34)

where we have neglected color indices in this paper and
hence a color factoi\.=3, in the above equation since it
does not change the essential arguments. This definition of
Eq. (34) is admitted because here we are not calculating the
absolute value of the form factors. The appropriate nhormal-
ization (normally given by E with a bound state mads)

will be adopted in future papers in which we will calculate
some form factors. This way of obtaining the expressions for
E; andc; ¥ by manipulating Eq(29) is unique and we will

use this method below to obtain similar expressions appear-
ing in Sec. lll D. Actually this method has been already used
to obtain Egs(22) and(23) and to solve Eq(23) obtaining

the coefficient; © " by Eq. (26).
One obtainsA | ® ng as in the former subsection,

Aogy=> ¢ W, ,, (35)
//

with the coefficients

) 1 _
¢ = omg (¥ Il(HoE)A @i +Hih L@ yg)).
(36)
D. 2nd order
The 2nd-order equation is given by
—2moA L ® P4+ Ho® ¢ + Hi® ] + Ha®
=Eqy +ELy4 +Ez 5. (37)

As in the above cas€lst ordej, we obtain

E5=> ¢/ (Wi A HoA_|W) )+(W/HA_®y)
/!

(W I|A_HA _|¥)), (39)

which gives the first-order perturbation correction to the
mass when one calculates matrix elements of the RH®vhich gives the second-order perturbation corrections to the

among eigenfunctions and

mass and
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TABLE I. Input values to determine parametdrmits are in k
. my+S+V —0,+—
cev ; T e u(r)
k
Mp Mps M Mps Mg Mg k r) | =Eo| vy(r) |-
My= M, =My D D D, D B B s+ X Cmesev vk(r) vi(r)
0.01 1.867 2.008 1.969 2.112 5.279 5.325 r
(44)
1 , This eigenvalue equation is numerically solved by taking
Cof=———| 2 o5 (WA HoA [T, ) into account the asymptotic behaviors at bath-0 and
Eo—Eo| /7 r—oo and the forms of scalar functions,(r) andv,(r), are
UL A L Hy @ 05) + (T A _HoA | V)) given by
r\” 1(r\?
—E{ C{+k . for K/, (39) U(r), vi(r)~wg(r) 2 & —(mg+b) =313l |
(45)
1 where
=52 (et {[P+Ick /). (40
27 4o
2 S
y=\ K- —) (46)
3
This completes the solution faf sinceA _yX, orcj ', is L . .
ob;ained Fi)n the last sugslecti((;? ! V2 2= ! andw,(r) is a finite series of a polynomial of
Although we do not need in this paper, one obtains N-1 i
/
A, ®y; as Wy (r)= IZO af (47)
A+®¢3/=2 Cg_/ /\If; . (41  Which takes different coefficients fas(r) anduv(r).

(i) We have fixed the value of a light quark masg,, to
be 0.01 GeV as listed in Table | since only in the vicinity of
with the coefficients this value theD andD* masses can be fitted with the ex-
perimental values. We believe that when the mass,
1 Mg=m,=my, is running with momentum, these are close to
cgf ! (v ,|[(HO—E/)A ® ¢§+(H1— EHA the current quark mass since the momentum is given by the
order of theB meson mass~+5 GeV) [14] though we have
not used the running mass to solve the Sdimger equation.
From Eqs.(44)—(47), we have a R dimensional eigenvalue
matrix. The lowest eigenvalue of the positive energies is as-
IV. NUMERICAL ANALYSIS signed to the physical state adopted here, whose wave func-
tion has no node. In practice, we have found that the eigen-
In this section, we give numerical analysis of our analyti-value equation wittN=8 gives the zero node solution for
cal calculations obtained in the former sections order by orthe lowest positive eigenvalue, while othergives a rather
der in 1img. In order to solve Eq(22), we have to obtain oscillatory solution, i.e., a solution with some nodes for the
numerically a radial part of the wave function, lowest positive eigenvalue. Therefore we have adopted
vi=(0 ‘P}‘m), given by N—1=7 for the highest power af that gives sixteen solu-
tions to Eq.(44), half of which corresponds to negative en-
uy(r) ergies and another half to positive onesgbfstate. That is,
K- K although we have a node quantum numbegrpther thanj,
Yin(MD=11 i v () (a-n) | Yim(), (43 m, andk, for Eq. (44), we take only then=0 solution for
each value ok andj quantum numbers and we do not assign
higher node solutions to any physical states in this paper.
detailed properties of which are described in Appendix C. As In the case of a hydrogen atom, for instance, only the
described in the same Appendix, the lowest-order, nontriviaCoulomb potential/~ 1/r survives in the above problem and
Schralinger equation is reduced into E@25): a radial functionw,(r), becomes a hypergeometric function

®¢{+H2A+®¢g]>. (42

TABLE Il. Most optimal values of parameters determined by the least chi square method.

Parameters ag a (Gev'l) b (GeV) m. (GeV) mg (GeV) my, (GeV)

first order 0.3998 2.140 —0.04798 1.457 0.09472 4.870
second order 0.2834 1.974 —0.07031 1.347 0.08988 4.753
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TABLE lll. D meson mass spectru(first orde).

State OP) MO pllMO nl/MO Mcalc Mobs
15, (07) 1.869 —2.01 (X107?) 1.93 (10 ?) 1.867 1.867
35, (17) 7.37 0.101 2.008 2.008
3p, (01) 2.276 —0.373 1.59 2.304 -
“3p(1 ) 7.50 0.0883 2.449 2.472
“lpr(@at) 2.216 7.51 0.0210 2.383 -
3p, (27) 9.54 4.7%10°7 2.428 2.459
3D, (17) 2.440 181 0.0242 6.850 -
“3D," (27) 177 4281077 6.747 -

and its finite series of a polynomial gives discrete energythe zeroth order masseb|, that are degenerate with the
levels. In our case, since the potential includes a scalar ternsame value ok, ratios,p; /M, andn; /M, and the observed
we cannot analytically solve the above reduced Sdinger  values,M . Here the heavy meson mags, , is expanded
equation, Eq(44). If we force to make the functionsy(r) in 1/mg up to thenth order as
andv(r), finite series and relate the coefficients of those
functions via recursive equations, it leads us to inconsistency
among coefficients of each term, of a polynomial. We just
assume in this paper that(r) andv,(r) are trial finite
polynomial functions of .

(ii) To determine the parametexs,, a, andb appearing ) ] .
in the potentials given by E@8), and the quark masses,,  With Mg=mq+E, being the degenerate mags, the ith

my, andmg, we have calculated the chi square defined by Order correction from positive components of a heavy meson
wave function, anah; theith order correction from negative

) 2 (My—Ex)? components. Note also that the exponential factor in the
X = - 5

> ) (48) brackets in the first row of each table should be multiplied
X=D,D*,Dg,Dg,B,B* Ox

n n
EH=M0+i:El pi+i§1 n;, (49)

with a value of each column except for those with the ex-

whereM andEy are the observed and calculated masses of/iCit €xponential factor. _ .
a mesorX, respectively, andry is the experimental error for ~ Strictly speaking each state is classified by two quantum
each meson mass. As mentioned alreatly=my=m, is numbersk andj, and also_ appro>§|mately cla55|f!ed by the
fixed to be 10 MeV. Mr_:lss, e.gMp, is averagec_i over ;Jhpper compongntzé)l‘lthe light gntl quark se_ctorkln terms of
chargesMp= and Mpo, since we have not taken into ac- the usual notation;>""L,. Studying the functiong;, care-
count the electromagnetic interaction, the same is true fofully, one finds the upper component‘d!ﬁ‘m(r) corresponds
Mp«, etc. We have determined the values for these six pato the following Table XI, respectively. Heré in J° and
rameterspsg, a, b, mg, m,, andmg, by setting the value of 2S*1L; is the same as a total angular momentgmin the
x? as 10 *. The input values are given in Table I. Table XI. Although the states can be completely classified in
(ii ) There are two types of solutions to optimal values forterms of two quantum numberk,andj, we would like or-
these parameters, i.e., one set b0 which is listed in  dinarily to classify them in terms ofS*L,. However, the
Table 1, and another fob>0. However, the solution for states classified by®=1" and 27, are mixtures of two
b>0 gives large difference between calculated values andtates in terms ofS™IL; as given by the Table XI. We
observed ones for higher order spins and also gives negatiwgould approximately regard the stat&, (j)=(1, 1) with
values for some spectrum even though the lowest lying statesP;,” (=2, 1) with “ 'P;” and (2, 2 with * 3D,,” re-
are in good agreement with the observed ones. Hence w&pectively, whose legitimacy can be supported by calculating
disregard this set of parameters. the coefficient of each state®* 1L included in the mixture
Tables IlI-X give calculated value¥) .., together with  state. We denote them with double quotations so that they

TABLE IV. D meson mass spectru(first orde).

State OP) MO pl/MO nllMO Ivlc:alc Mobs
15, (07) 1.986 —2.66(x 10 ?) 1.67(x1073) 1.966 1.969
35, (17) 6.95 0.0851 2.125 2112
3p, (01) 2.288 0.769 1.45 2.339 -
“Sprr (1) 8.62 0.0835 2.487 2.535
“lpr@a’) 2.335 6.87 0.0194 2.496 -
3p, (27) 8.79 8.8% 107 2.540 2.574)
3D, (1) 2.401 159 0.0282 6.230 -

“3D, (27) 126 8.6% 10’ 5.428 -
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TABLE V. B meson mass spectruffirst ordey.

State OP) MO pl/MO rl1/M0 Mcalc Mobs
15, (07) 5.281 —2.13(x10°9) 2.05(x10°%) 5.281 5.279
35, (17) 7.80 0.107 5.323 5.325
3p, (01) 5.689 —0.447 1.90 5.697 -
“3p(1 ) 8.98 0.106 5.740 -
“lpr(@at) 5.629 8.85 0.0247 5.679 -
3p, (27) 11.2 5.56<10° 8 5.692 -

3D, (1) 5.853 225 0.0302 7.172 -
“3p,” (27) 220 5.34<10°8 7.141 -

remind us an approximate representation of the state in termerms inH; * given by Eq.(D10). Similar resolution of the
of 25*1L;. Using Eq.(C6) in Appendix C, their relations are degeneracy among the states with the same valkeooturs
given by via the same interaction terms.

(vi) The simple-minded heavy meson mass formula given

<|“3P1“>)_ 1(& 1)(|3pl>>' by

w1 1 - = 1 (50)
Py V3l =1 2/ ['Py)
M. (Epx —Ep)=m, (Egx —Eg) (52
e 3 1 3
( D» >) _ i( VB2 (' D2>)_ (51 holds exactly at the first order calculation. This is because
1Dy ) B\ =2 3/\|'Dy) the zeroth order mass of two states with the sanis de-

generate and by definition the first-order correction to this
(iv) From Tables IlI-X we see that the perturbative cal-mass is proportional to ti, as given byH, of Eqg. (10) or
culation with these parameters might not work well forby H{? of Eq. (D10). To see Eq(52) as a prediction, re-
higher k. Namely masses of 1 and 2 for k=+2 give placing Ex with the observed valuelly we obtain, to first
some odd values. They become even negative fti," of order,
D, andBg at the second order as shown in Tables VIII and

X. Hence we disregard in this paper all calculated masses of Mgs—Mg m
3D,(17) and 3D, (2 7) states in any order. In order to — = =_£-0.299, (53
remedy this problem, we may need to improve the potential Mp«—Mp Mo

form or adopt some other methofdiss]. Hence here only the
first-order mass spectra are depicted without higher spimvhich should be compared with the experimental value,
stateg°D,(17) and **3D,”’(2 7)] in Figs. 2-5. 0.326. This discrepancy between the calculated and the ob-
One may also notice that tleequark mass listed in Table served comes from our calculation Bf meson mass spec-
Il is relatively small (- 90 MeV) compared with the conven- trum listed in Table V which giv8 andB* meson masses
tionally used values;~150 GeV, which is regarded as the slightly different values from the observed ones. Hold also
current quark mass. It is interesting to note that these valuesquations similar to Eq52) for higher spin states with the
are also obtained as (. =2GeV) in the recent lattice QCD Samek quantum number because of the same reason given
calculationg16]. above. _
(v) Two states, pseudoscalar (D and vector (1), are (vii) The so-calledA parameter can be calculated using
degenerate at the zeroth order img/since the eigenvalue the definition[3]
E'g for these states depends on the same quantum number
k=—1, which are split into etwogvia Ehe heavy quark spin A= lim (Ey—mg)= Mo—mQ=E61, (54)
interaction terms, like—V'(aq-2gXn) in H; ~ and all mQ—

TABLE VI. B meson mass spectrufirst orde).

State OP) MO pl/MO nl/MO Mcalc Mobs
15, (07) 5.399 —2.92(x107%) 1.84(x1079) 5.393 5.369
35, (17) 7.65 0.0936 5.440 -
3p, (01) 5.701 0.923 1.74 5.716 -
“3p (1) 10.3 0.100 5.760 -
“lpr@a’) 5.748 8.35 0.0236 5.796 -
3p, (27) 10.7 1.08<10°7 5.809 -

3D, (1) 5.814 197 0.0348 6.959 -

“3D, (27) 156 1.0%10°7 6.719 -
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TABLE VII. D meson mass spectrueecond order

State () Mg P1/Mg Ny /Mg P2/Mg Ny /Mg Mcae  Mobs
15, (07) 1.865 0.45710°%4) 1.03(x10°%) —1.86(x10"') —1.40(x102%) 1.867 1.867
33, (1) 7.41 0.0540 —2.95<10°* 0.209 2.008 2.008
3p, (01) 2.319 2.33 0.828 3.44 0.689 2.408 -
3P, (1) 7.00 0.164 3.6810°* —-0.0107 2.486 2.432)
p,r (1) 2.205 8.22 0.0532 —3.82x1074 —0.0541 2.388 -
3p, (2) 8.67 0.0156 —0.157 0.112 2.399 2.459
D, (17) 2.584 8.29 0.154 2.2410°4 -0.177 2.798 -
“3D," (27) 8.13 0.0133 3.17 -0.134 2791 -
whereEy, My, andmg are calculated heavy meson mass, B P dH)\Z
the lowest degenerate bound state mass, and a heavy quark Ep=mo+tA——F——+---. (61)

2m
mass, respectively. Difference Mo andmg is nothing but Q

the lowest leading eigenvalugg, with k=—1 in our  The first-order calculation in fl, makes 2, equal to Eq.

model. From Tables Ill and IV aneh,= 1.457 listed in Table (52) and the\; can be calculated using the above equation as
I, one obtains, to first order,

_ A1=2my(My+A,—Eg)—3\,, (62)
Au,d:MOD_mC:MOD*_mC:O.412 GeV, (55)
my — ~
As=Mgp,~Me=Mopx —m,=0.529 GeV, (56 A== (Egx—Es), (63
and from Tables Il and IV andh,=1.347 listed in Table I, whereEg andEgs are the calculateB meson masses with-
one obtains, to second order, out the second-order corrections. The results are given by, to

o first order,

Ay g=Mgp—M.=Mgpx—m.=0.518 GeV, (5
wd oD e TopT - e ®7) A,=—0.378 GeV, \,=0.112 GeV?, (64

Ag= Mop,—Mc=Mgpr —m.=0.629 GeV, (58)  and to second order,
whereMop . Mopy are the calculated lowest-ordBr me- A=-0.238 GeV, \,=0.0255 GeV. (65

son mass defined by E¢4).
(viii) Parameters which give nonperturbative corrections
to inclusive semileptoni® decays are defined §%7,1§

Here we notice that although the first term in EG2) is
expected to be-1, we find it to be small from Table Yo
first orderand obtain the approximate relation

xf%m(v)lh_var)>2hv|H<v>>, (59 M~ =3z (66)
Q

These values should be compared with those in R,

hich give A,=0.39+0.11 GeV,\;=—0.19+0.10 Ge\?

H Wi IEAN N 1]
(”)>’ (60 and\,=0.12 Ge\2.

(ix) Recently, it has been pointed out that the kinetic en-

whereh, is the heavy quark field in the HQET with velocity ergy of heavy quark inside a heavy meson plays an important
v. dy= 3 —1 for pseudoscalar or vector mesons, respecrole in the determination of the ratiosfg/fp,

tively. Then the heavy meson mass can be expanded in termg/ ;. — M)/(Mp« —Mp), and|V,,/Vep|, in which use has
of the heavy quark masg,;, \o, andA, as been made the Gaussian form for the heavy meson wave

gO’ G*’h,

)\2 voYuw

<H(v)

2m

TABLE VIIl. Dg meson mass spectrufeecond order

State () My p1/Mq ny /Mg p2/Mq Ny /Mg M caic M ops
15, (07) 1.976 0.150K 10°?) 90.6(x10™%) 2.81(x 1071 —1.60(x 10 ?) 1.965 1.969
33, (17) 7.76 4.65 —7.02x1074 0.243 2.133 2.112)
3p, (01) 2.331 3.20 76.8 2.08 0.956 2.446 -
“3prr (1) 8.12 3.87 22661073 0.0361 2.527 2.535
“lpr@a) 2.317 7.29 0.925 —2.22x1078 0.0229 2.482 -

3p, (21) 8.31 2.96<10°8 -5.98 —0.00166 2.509 2.5712)
3D, (1) 2.582 702 0.770 5.3810° ¢ —0.00632 2.072 -

“3D, (27) —4470 2.65¢10°8 212 0.000139 -113 -
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TABLE IX. B meson mass spectruteecond order

State F) Mg p:1/Mq ny /Mg p2/Mq ny/Mq M caic M obs
s, (07) 5.271 0.212K10°?) 10.3(x10° %) 2.80(x 107 —3.97(x10° % 5.286 5.279
35, (17) 0.862 0.541 —8.41x1076 0.593 5.317 5.325
3Py (01) 5.725 0.387 9.50 —3.54 2.24 5.754 -
“3pr(1t) 0.965 1.89 1.1810°° —0.0347 5.782 -
“lpr(@at) 5.611 1.08 0.593 -1.21x10°° 0.171 5.672 -
3p, (27) 1.23 0.174 —1.06 0.352 5.680 -
3D, (17) 5.990 1.18 1.88 7.4910°°© -0.614 6.061 -
“3p,” (27) 1.28 0.163 —6.48 —0.465 6.066 -

function and has been adopted the so-called Cornell poten- (x) When one takes an overall look at the calculated
tial, the same as ouff0]. They have derived the relation of masses, the negative component contributionéM,, are
these physical quantities in terms of the Fermi momentumgelatively large for both scalar states; Oat the first as well
pe, introduced in[21] in which pg is related to a heavy as second order even though they become very small for

quark recoil momentury , by

<|52>=f d®p p* $(p ) =3P, (67)
where the momentum probability distribution function is
given by

3
. 2 =5 2
é(p )=( ) e PP, (68)
\/;pF

They calculated the left-hand sideHS) of Eq. (67) to ob-

higher spin states. Positive components constantly contribute
to all states. When one compares the first-order with the
second-order calculations, one cannot conclude that the sec-
ond order is better than the first as a whole although higher
spin states oD andB are largely improved at the second
order. This conclusion may be also supported by the com-
parison of the first- and second-order calculations of the pa-

rameters\ 1, A,, andA with other calculation§19]. In order
to incorporate the second-order effects properly, one may
need to introduce a different potential and/or method from
ours as mentioned ifiv) in this section.

We have used the following algorithms to calculate nu-
merically the heavy meson masses, Gauss-Hermite quadra-

tain pg by using the Gaussian form of the wave function andture to evaluate integrals, and the tridiagonal QL implicit
then derived the relations between physical quantities anghethod to determine the eigenvalues and eigenvectors of a
this pe [20]. We have the radial wave function given by Eq. finite dimensional real matrig22].

(45) different from a Gaussian one and hence should have

relations among physical quantities and our paramedeis,

ag, andm., independent opr and hence we may calculate
the LHS of Eq.(67) to check if our calculation gives the
value similar to other calculations. Our value of the LHS of

Eq. (67) gives, for(ﬁ2 ) of the B meson to first order,
(p?)=0.560 GeV, (69)

and the second order give®?)=0.562 GeV, which
should be compared with the latest valypgs=0.5—-0.6 GeV
calculated in  [20] which correspond to

(p?)=0.375-0.540 GeV.

V. COMMENTS AND DISCUSSIONS

In this paper, we have calculated heavy meson masses,
D), Dy B(s)» B{s, €tc., based on the formulation pro-
posed beford4], which develops the perturbation potential
theory in terms of inverse power of a heavy quark mass. The
first and second-order calculations of masses are in good
agreement with the experimental data except for the higher
spin states even though the second-order calculation does not

much improve the first order. The first-order calculation of

the HQET quantities) 1, A, andA, are also in good agree-
ment with the other calculatiorf49]. A new study on the

TABLE X. B; meson mass spectruteecond order

State (°) Mo p1/Mg ni/Mq p2/Mq nz/Mq M calc M obs
15, (07) 5.382 0.161K 10°?) 9.43(x10™%) —7.46(x 1017 —4.72(X10°% 5.393 5.369
35, (1) 0.882 0.483 —2.07x107° 0.717 5.430 -
3P, (07) 5.739 0.505 8.84 3.12210°4 3.12 5.773 -
“3p (1) 1.11 0.446 7.1810°° 0.118 5.801 -
“lpr(a ) 5.723 1.03 0.106 —7.21x10°° 0.0743 5.782 -
3p, (27) 1.19 3.3%10°° —3.78 —0.00540 5.791 -
%D, (17) 5.988 43.9 0.0940 1.8610°° —0.0219 8.618 -
“3D, (27) —136 3.24x10°° —2.06 4.8%10°8 -2.174 -
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HQET introduced the Fermi momentuim; , to obtain other
physical quantitie§20]. Although we have not hagg in our
mind at the begining of this study, the obtained value given
by Eg. (69) is in good agreement with what they have ob-

tained[20].

We have also found a new symmetry already mentione
in the papef4] and realized by the operator, E4.9),

which is always present when one considers a centrally sym-
metric potential model for two particles or when one takes a

—By(Zq/+1),
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FIG. 4. The first-order plot 0B meson masses. Values in the
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One can easily see degeneracy among the lowest lying
pseudoscalar and vector states as follows. Define

IPy=U_'0 W¥og),

V) =U t0 wLh, (70

%/here the inverse of the charge conjugate oper«‘hi@ﬁ, is

efined in Appendix A. EquationA2), ‘Ifkm is an eigen-

function obtained in the last chapter. The explicit forms of
these wave functions are given in Appendix C, E@328
and(C29), and the quantum numbé&rcan take only* j, or
*(j+1). Assigning these states b mesons, one can have

|P)=|D"), or |DY),

[V.\)=|D*). (71)

rest frame limit of a general relativistic form of the wave Since these states have the same quantum nukiberl,
flf(l’lCtiOﬂ and is related to a light quark spin structure, i.e.these have the same masses as well as the same wave func-
yim(€2). That is, this is quite a general symmetry, not ations up to the zeroth order calculation imiy. That is, the

special feature peculiar to our potential model.

2.65

2.55

2.45

2.35

Mass (Gev)

2.25

2.15

205

Dg meson mass spectrum (first order)

(2.5747)
(2.535) —

2.540

2487 2496

2.339

2.125

21127

(1.969)
1.966

States

FIG. 3. The first-order plot oDg meson masses. Values in the

brackets are the observed values.

degeneracy among these states is simply the result of the
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TABLE XI. States classified by various quantum numbers.

k -1 -1 1 1 -2 -2 2 2

j 0 1 0 1 1 2 1 2

JP 0~ 1- 0* 1* 1" 2" 1- 2”

2SI, 'Sy ’s; *Po Py, Py Py, Py P, D, D,, 'D,
special property of the eigenvalue equation. Higher-order APPENDIX A: SCHRO DINGER EQUATION

corrections can be obtained by developing perturbation of .
energy and wave function for each state in terms of In order to derive Eq4) or Eq. (), we need to calculate

Aqcp/mg as given by Eqgs(14) and (15): the expectation value

_, L (| (Ho+ Hin— E)| ) (A1)
E=E-mq=Eg+E;+E;+
by using the equal-time anticommutation relations among
Y/ %/+ W+ ,/,2/+ cee guark fields,
Finally we would like to discuss qualitative features of {aS(x), af(x’ Vxg=x!= Oa p0%(X—X"),
form factors/ Isgur-Wise functions. Let us think about calcu-
lating form factors for the semileptonic decay Bf meson {Q.(%), QI;(X')}XO=X6: 8o pO°(X—X").

into D. Taking a simple form for the lowest lying wave

function both forB andD as Since the wave functiony,, z(x—y) defined in Eq(3), has

a constant normalization, what we need to do is to variate

Eqg. (A1) in terms of; z4(x—y) and to set it equal to zero.

) ] o o Then we can easily obtain E¢) with the effective Hamil-

WherlEéa;par?Smetér is determined by a variational principle, tonian given by Eq(7). In the course of this derivation, it

o HW*%)=0. Then form factors are given by appears to be clear thétandﬁ’ operates on the initial and

final wave functions, respectively, Whilé only on poten-

tials.

XE w—1)] To derive the FWT and charge conjugate transformed
' Schradinger equation given by Eq5), we have used the

following definitions:

Hewr=U U ppr( p(,g)H UF;V%IT( pQ)Ut;l !

Iewr=UcUpwi(Po) ¢, (A2a)

1S__ o—b? 1212
Po~e ,

F(g?) ~exd consx EX(q?—q3,)], or &(w)~exy const

where
0’=(pg—pPp)?, w=vg vp,
qrznax: (mB_ mD)szmax: 1,

with v§ , being four-velocity ofB and/orD meson. This Urwi(p)=exp(W(p) yq- p)=COSN'+ yo- p SinW,

means behavior of form factors strongly depends on an ei- (A2b)
genvalue,EzE—mQ of the eigenvalueﬂquation, E@R3), - 5 -

which is often called “inertia” parametef , whenmg— . p= o’ tarW(p) = Mo+ E’ E=Vp“+mg,

This quantityE does not depend on any heavy quark prop- (A2c)
erties at the zeroth order. This result also means that the

slope at the origin of the Isgur-Wise function includes the U.=i y%yé= -u.t. (A2d)

term proportional toE2. The constant term-{ 1/4 like the .

Bjorken limit [23]) for this slope should be given by a kine- NOt€ that the argument of the FWT transformati@hyyr,

matical factor multiplied with the above expression. operating on a Hamiltonian from left is different from the
To conclude, although there have been various relativisti¢ight-operating one, since an outgomg momenthg,,

bound state equations proposed so far, nobody has yet detefifferent from an incoming onepQ. However, here in our

mined what the most preferable is. We believe that our apstudy we work in a configuration space which means mo-

proach presented here must be a promising candidate.  menta are nothing, but the derivative operators and when we

write them differently, for instance aﬁsQ and 56 their ex-
ACKNOWLEDGMENTS pressions are reminders of their momentum representation.
_l .
The authors would like to thank Koichi Seo for critical €' although the arguments @fyr and Uy look dif
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like to thank the theory group of Institute for Nuclear Study Here the difference betweq:rb andp is g which operates
for a warm hospitality where a part of this work has beenonly on potentials and gives nonvamshmg results. The FWT
done. transformation is introduced so that a heavy quark inside a
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heavy meson be treated as a nonrelativistic color source. The
charge conjugation operatdd,., is introduced to make the

wave functionU.¢, a true bi-spinor, i.e., gamma matrices of Remember that matrices of a heavy quark should be multi-
a light anti-quark are multiplied from left while those of a plied from right. That is, the zeroth-order wave function has
heavy quark from right, which is expressed by using a notaenly a positive component of the heavy quark sector and is

Yo=A_®yj. (B5)

tion ®. given by
To derive Eqs.(10), we need to first expanélgy in .
1/mq and then take into account the following properties of a 0 f.r)

charge conjugation operatdd,=i ¥4, to obtain the final Y=} = (B6)

0 g.n]’
expressions 9.(r)

Uglyg Uc=- ygT, (A3) Wheref/ and g, are 2 t_)y 2 matrices. More explicit form of
. this wave function is given in Appendix C.
ie.,
UC/BQU;1= _BQTa 2. Zer'oth f)rde'r
The zeroth-order equation is given by
> -l _ 2T S -1 5 T
UcagUe™=~aq,, UcoUe =—2q., —2moA @ Y4+ How Wy =Eq . (B7)
UeyoUs'=—7o", UcyaUs'=—%". (A4  Multiplying projection operatorsA ., from right, respec-

. i ) tively, we obtain
where a superscrift means its transposed matrix. Hence the

projection operators are given by HoA_® gy =E{ 45, (B8)
1+ 15 B4 _ / /_
U, ZBQUC,l: ZBQ. (A5) 2mMoA . ® ] +HoA L @y =0, (B9)

whose explicit forms are given by Eq22) and(23), where

use has been made of
APPENDIX B: DERIVATION OF PERTURBATION

/_
In this Appendix we will follow the papef4] to derive Ay ®yp=0.

perturbative Schidinger equation for a Hamiltonian given
by Eq. (7) for consistency. Following that paper, we will
give an equation at each order by using the explicit interac

Detailed analysis of EqB8) is given in Appendix C. When
one expands\ . components ofa,l/{ in terms of the eigen-

tion terms given by Eq€10). Here we quote the same equa- functions,
tions given in the former sections for clarification of deriva- f (0
tion. The fundamental Schdinger equation is given by — A"
_ “\ g o] (B10
(Hrwr=MQ) ® Yrpwr= Edbpwr, (B1)

and expansion of each quantity imig is given by like

HFWT_mQ:H,l+H0+Hl+H2+"' , (BZa) A+®l//{:2 C{,/ ’\P;,, (Bll)

/ !
E=Ej+E;+Ej+-, (B2b) ,
one can solve EqBY) to obtain coefficientsc; ~ ', as
ewr= Yot YL Pt (B20) 1
70 - +
With a help of projection operators defined by €1- 2mQ<\P/ IA-HoA W), (B12
1*+Bq whose explicit form is given by Eq26). Here in this paper
A= 2 B3 the eigenfunctions¥ 7 are normalized to be 1,

we will derive the Schidinger equation at each order.

1. —1st order

From Egs.(B1) and (B2), the -1st-order Schodinger
equation in Ihg is given by
—2moA , ® ¢4 =0, (B4)

which means

(PWE y=5,,,6%F for a, pB=+—. (BL3

The inner product likd W¢|O|W* ) is defined by Eq(27).
3. 1st order

The 1st-order equation is given by

—2moA , ® ¢+ Ho® ¢y + Hy® Yo =Eg ¥, + E{¢§é14)
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As in the above case, multiplying projection operators fromment here. This way of solving EGB15) is unique and we

right, we obtain will use this method below to solve similar equations appear-
, L P ing in Sec. Il D as well.
HoA_@¢) +HIA_@yp=EqA_®yq +E1 ¢, Equation(B16) gives aA, component ofy as in the

(B15  case ofA, @y in the Sec. lll B, i.e., setting

—2MoA . @ P+ HoA L @ Y]+ HiA @y =EGA, @] . ) o
(B16) A+®¢2=; v, (B23)

The first equation, EqB15), can be solved like in the ordi-
nary perturbatlon theory of quantum mechanics. First ex-

one obtains coefficients;, ~ ', as
pandmgz,//l in terms of ¥, as

1
;0 - / % /
=——(¥, |[(Ho—E{)A +H,A :
‘ﬂ{:z, (el W), +eil v, (B17) C2- 2mQ< M(Ho=Bo)A @ yatHA @ Yo])
7 (B24)
and next taking the inner product of the whole EB15)
with (¥,7|, one obtains 4. 2nd order

The 2nd-order equation is given by

k Vv
Eo C1++2 c1f (W IAHoA W, ) —2moA L ® P4+ Ho® ¢+ H1® ] + Ha®

(WA HA W) =Ef c{X+EY 54, =Eq ¢y +E{ Y7 +E5p. (B25)
(B1§) As in the above cases, multiplying projection operators from

where we have used the orthogonality condition, @13,  ght we obtain

and the lowest Schdinger equation, EqB8), to obtain the y y y
first term of the LHS and two terms of the RHS of EB18). HoA_®@ ¢y +H A @) +HA_® 4y

When one setk=/"in Eq. (B18), one obtains :ESA,®¢§+E{A,®¢{+EZ/¢6, (B26)

E{=; 1/ (WA HA_|W) ) —2moA @ 4+ HoA L ® Y+ HiA L @+ HoA L ©

(WA HA W), (819) ~Eoh.eyi+EiAL @Y. (B27)
which gives the first-order perturbation correction to theAga'n to solve the first equation, E€B26), first expanding
mass when one calculates matrix elements of the RH$’/2 in terms of V' as
among eigenfunctiongl’, , like in the ordinary perturbation

of quantum mechanics. When one skts/ in Eq. (B18), , /g
Of quantum 9. (B18) W= (¢! W+ W), (B28)
and next taking the inner product of the whole EB26)
with (7|, one obtains

1 ’ -
crf= 7k > ¢/ (WA HoA ¥ )

(W [A HA _|P)) ). (B20) gc§+k+2 5 (WA HoA_|¥ ) )

p
The coefficienck ¥ cannot be determined by the above equa- (W HA @)+ (T A HA [ ))

tion, which can be derived by calculating a normalization of —E/ ¢ k+E/ / k+ E/ S B29
the total wave function up to the first order, 0 Ca+ ! Z ko (B29)

' where we have used the orthogonality condition, 3),
Wl )=, (B2 and the lowest Schdinger equa?ion, E¥(.BS), to obtg?r?‘t%e
first term of the LHS and three terms of the RHS of Eq.
(B29). When one setk=/"in Eq. (B29), sincec{fzo one
C';jzo_ (B22) obtains

giving

This completes the solution fa¥, sinceA _y4, orc;/'is  o/_ OB A L HA T S+ (T HAA @
obtained in the last chapter, E®12). The definition of the E G2~ (W/IAHoA [, )+ (¥ [HiA_@yn)
normalization, Eq(B21), is already mentioned in the main N .

text below Eq.(34) and hence we will not repeat that argu- H(WI[A_HA_|V7), (B30)
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which gives the second-order perturbation corrections to thepinor representation and also need to unitary-transform
mass when one calculates matrix elements of the RH$hem to obtain the functionsy,}‘m, as
among eigenfunctions. When one s&ts/ in Eq. (B29),

one obtains y; ary Y i oYt
i )7 gym ) - =Y - o )

/K 1 anrs - Yim 7 him Yim 7 Yim

Cor=—/ =« > (W [AHoA W, ) (CH
. p . N where to diagonalize the leading Hamiltonian in thepace
H(WHIA @)+ (P [A_HA_|V ) the orthogonal matrixJ is introduced,
—E{ [ (B31) o1 (Vitl g -
TN = T)

The_ coefficiemcgf can be derived by calculating a normal- Here the values of the new quantum numkeare distin-
ization of the total wave function up to the second order, Eq. . ) SA) (A
(B21), which gives guished by the operatgr given by E@9). Yi'y, (A=L, M, E)
are eigenfunctions of2 and j,, having the eigenvalues,
ke 1 K12 Lk /12 ji+1) and m. Parites are assigned as
CZ*__iz/: (e 1P+l 215, (B32) (=)L (=)L (=) for A=L, M, E, respectively, and/]"
has a parity ¢)!. Here
This completes the solution faf sinceA _ ¢, orc; ', is I,
obtained in the last chapter, E@®24). J=/+sqtsq, (C7)
Although we do not use, EqB27) gives aA, compo- L . . . _
nent Of%/ as in the cases 0‘+®¢i/ andA+®<p2/ given in andsy=o4/2 andsy=0/2 are spin operators of light anti-

the Secs. llI B and Il C, i.e., setting quark and heavy quark, respective}g{.m are 2x2-matrix
eigenfunctions of three 0perat0rj§?, j-, and o-/ with ei-
A+®¢3/:2 cgf "P; . (B33) genvaluesj(j+1), m, and—(k+1), and satisfy
/ !
1 k, !
, ~trl | dQy¥, ,T-k)=5kk5--,5 .. C8
one obtains coefficients; ” ', as given by Eq(42). 2 f Yirme Yim Jirmm €8
APPENDIX C: ZEROTH-ORDER SOLUTION Here the quantum numbéer can take only values;j, or

_ +(j+1), and#0 sinceY does not exit. The eigenfunc-
Thgre haved been al couhplel of trials to §0|Iv¢ EZIZ)I tion of the zeroth order Hamiltonian depends on three quan-
[11,12,2. In order to solve the lowest nontrivial eigenvalue numbersj, m, andk as described next. Functiong{)
equation given by Eq22), i.e., i

andy}‘m, have the following correspondence to those defined
[ag P+ By(Mg+S)+VIyi=Efy},  (cp MnRetlas
—(+1) _\im J jm
Yim 7Y, YimeY2 (C9)
we summarize and refresh the previous results. First we need _ _ _ _
to introduce the so-called vector spherical harmonics which Yimey™ yiheyl™,
are defined by
and
Y =—nym C2 L),y () ym
ym J © Yim=o Yo Yime Y, (C10
r (M) om
JE __  Fym YM _oxm
Yim= WVYJ , (C3 jm i
jG+1) . _ : :
The explicit expressions of the first feyx?m are given by
- - - —ir . .
Yi'h=—inxY{H = ——==nx VY] (C4 1

(o-n), (C1))

ViGi+1) b Yoo =

whereYjrn are spherical polynomial®r surface harmonig¢s
These vector spherical harmonics satisfy the orthogonality i

1
— 1 —_— —_—
Jan YO i

[
-1 m 1 m
ition: =——0", =———(o-n)c™, (C12
condition: Yim \/EU Yim \/E(U o (C12
f dQ\?J(An:(Q)T.?J@m,(Q): 8 i Omm NE, where we have used
where dQ) =singddd¢. This is nothing, but a set of eigen- ygzii yg:i \ /icos 0,
functions for a spin-1 particle. In this paper we need their Va 4m
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(C13

I -
YI=Fi gsmee*"".

In order to solve Eq(C1), one can in general assume the

form of the solution as

Yo=T)=(0 T¥.(N), (C14)

where/ stands for all the quantum numbejsm, andk and

. Fi(r)
k (r)= . k (Q).
im(r) @ Yjm(€2)

(C15
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0 1 0 —i 1 0
p1= 1 0/ p2= i 0/ p3= 0 -1/
(C22
Finally introducing the unitary matrix,
1 0 1 10 23
R= |, R7*= 1,
0 —i 0 i (€23

one can transform eigenvalue equations as well as eigenfunc-
tions into
(r R[i

1 k
ot T p1t FP2+[mq+ S(r)]ps

Since the effective lowest order Hamiltonian does not in-

clude the heavy quark matrices, one can exclude the symbol
® from Eq.(C1). The form of a radial wave function is in

general given by

Fi(r)
Gi(r)

fou(r)—f
=( 1k(r) 2k<r>(<ir1>)_ c16
91k(r)—gzk(r)(o-n)

Substituting this into Eq(C1), multiplying y;," from left,
and using the orthogonality equation fgojfm, Eq. (C8), the

simultaneous equations féy, andg; , are obtained and af-

=

+V(r)} Rl]cpk(r):Eg O (r), (C29

r
or

k
my+S+V — 0+ —

r (uk(r)>—Ek (Uk(r)>
=EK ,
'9r+§ —mg—S+V vi(r) vk(r)

(C29

ter some calculations the final form of the wave function isWith

determined to be either

A O R R b PP O B

"”‘_( —92k<r)<&-ﬁ>>yj ’“_(gmm yjrﬁ)’
c17)

or
o :(—fZK(r)(&.ﬁ)> . :(fZK(r) y;n'ﬁ)
m 91k(r) I ga(n) v
fau(r) .

:(_glk(l’)(t;'ﬁ)) Yim- (C18

Since EQg.(C18 assumes the same form as EG17), we

generally define the eigenfunction{’}‘m, given by Eg.

(C17). Then the reduced Schdimger equation is given by

I

=E§ W(n),

k
prt ;p2+[mq+s<r>]p3+V<r>}\1fk<r>
(C19

with

f
1k(1) ) (€20

W”E(gzkm '

Here defined also are

. [0 o N 10
ag=| . =p10, PBg= 0 -1 =p3 Lo,

Gq O
(C21)

rfir) )

® =<uk(r))— RW —(
)= Uk - = —ir gz i(r)

(r)
(C26)

Then the solution to Eq22) is given by

K _l( U(r)
I =i u(rn)(a-n)
_3( U(r) Yy m(©) )
Tl v(r) yya(@))”

Throughout the above derivation, use has been made of for-
mulas given in the next Appendix.

In order to see the spin-flavor symmetry in our case, the
explicit form of each lowest-order wave function is given as
follows in the case 08”=0",1". That these states are de-
generate can be easily seen from the eigenvalue equation
where the eigenvaIuEE depends only on the quantum num-
berk and these states have the same vétie-1. Or more
explicitly we can show the degeneracy by calculating the
wave functions for the two state3"=0",1". The pseudo-
scalar stateJ*=0") is given by

) Y m(Q)

(C27)

0 vk —L(O Hoa() ) (C29
( °°)_mr 0 —iv_q(r)(n-o))
and the vector state]l=1") is given by
N I U-y(r) ) . .
% <0 ¥iw mr(o —iv_y(r) (n-0) (e
(C29
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where use has been made of E@&11) and(C12). These are
transformed into each other via the unitary rotation

ms >
exp s€-o|.

2
Here one has to remember that=—1 and also that we
omit theU_ * operation on the wave function for simplicity.

(C30

Similar degeneracy can be seen for a pair of states with the

same value ok.

APPENDIX D: MATRIX ELEMENTS
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1

O_O

2mQ2 ¢y cq K

+2 (ci/

+ci/ (‘lfk|Hf W N)+H(WH, T [))

W HTIY )

—Ejci k| for /#Kk, (D6)

E; 2mQ2 c; ')’ /+; (¢ (WrHL |

In this appendix, we evaluate matrix elements of the RHS

of Egs. (31) and (39) to obtain mass correction&, EX,
those of the RHS of Eq€32), (39), and(40) to obtain the
corrections of A_ components of wave functions,
¢/ X, c5.X, and to evaluate Eq$26) and (36) to obtain the
corrections ofA components of wave functionﬁi/ up to
the second orderi €1, 2), cl, ,cz,

SummarizingA _ — A _ and/orA _— A, matrix elements

of the Hamiltonian, the following equations are obtained.

The RHS of Eq.(26) is given here again as
7k 1 -+t
017=m<‘1’leo V)

1 L e L
= amg (Ykllaq ag+ (aq M (ag:m) VIV ),

(D)

which requires one to calculate the zeroth order matrix ele-

ments. Here one must notice the following relation,

1 o
2—mQ<‘1’;|H3 W) (D2)

The coefﬂmenlc ks given by, for/#k,

L 1

Civ =7
£

o KW HD [P

Vs

H42mg>, ¢
0 7!

(D3)

Using Eq.(D2), the first-order energy correction is given by

Ef=2moX |cf/ |2+(V)IH{ |[¥)).  (D4)
/!

Simplifying Eq. (36), one obtains

1
s kK_=/\n/ K
¢y = E Cly cl_ Kt S (Eg—Eg)ci’

2m

—22 )/

<‘l' |Bq SIW, )+ (W [HL [ )) ],

(D5)

g (WIHT TV, ) (W H, W), (D7)
Although it is apparent thaEX is always real from Eq(D4),
it is not clear whether EqD?7) is real or not. We will rewrite
Eqg. (D7) so that reality ofE'g is manifest as follows.
E;=2 /E e (W, [Hg 1w, cff —E/E [k
/ ! / n

+2Re Z ¢l (W, [H W)

2
//H /H/ ’
Cy
2

=

E/,(4mQ

JIH;

” "
+4mQReE c// c{_/
/H

W IH; W),

<\If;|H1__|‘If;,>)

(DY)

whose expression is apparently real.
In the above derivation, we have used the projected
Hamiltonian at each ordeH® #, which is defined by
AHAg=A HPAg=A HP=H{PA,, (D9)
whereH/" # is composed of Dirac matrices, B, S, and y°
[13]:

Ho  =aq p+By(Mmg+S)+V, (D103
Ho " =3[aq ag+(ag-n)(ag-n) IV, (D10b
Hg  =Hg ", (D109
Ho " =aq p+Bq(mg—9)+V, (D10d)
__ 1 ) > > P e 2 A
Hy 2m P +V[(aq p)=i (ag-n)d]=V'|i(aqn)
1 N N
+§(aq-EQ><n) —=V]i (ag-n)
1. .
_E(aq’Ean) , (D10e
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1] .. ]
H1+:m_Q _S,Bq (aQ'p)-i-E(,Bq S,‘"V/)(CYQ‘n) )
) (D10f)
+- 1] A I ’ YD -]
Hq :m_Q__S’Bq (ag-p)+ E(ﬁq S'-V )(aQ'n)_,
(D109
Hi "=—H[ ", (D10h)
Hy = p 1*25 Lav
T ~Bq|Pt5a] Sty
1 ; .
+ 5 (Bg S V) (EQ-/)}, (D10i)
. 1 . I
H, :_W ZV[(aq'p)_| (a'q'n)ar](aQ'p)
Q

—2iV'(aq-n)(ag p)—iV'(ag N[ (aqp)

.. 1 . .
—i (aq~n)&r]+FV’(aq~/)'y‘g]

J’_

V {3i (aq-n)(ag p)+[(ay @

By { (ag-n)(ag-p)+[(ag ag)
S 1. - ,
—2(aq-n)(aQ-n)]o7,+;(aq/) Y5(» (D10j
Hy =H,", (D10Kk)
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2

1
Hy "= S+ AV

1 I
Z—méﬁq P+549

1 . .
~ 57 (Bq S'+V') (EQ-/)]. (D10I)

Use has been made of the following formulas for the gamma
matrices,

ﬁQAt:iAi , &QAi:AI&Q’ S_jQAi:/\iEQ’

7oA+=Asv5.  (D1D)
Matrix elements of interaction terms among eigenfunctions
are calculated below. Degeneracy can be resolved by heavy
quark spin-dependent terms which includ[éé and/oriQ
dependent terms, i.e., the last termskof  andH, ~ to-
gether with contributions from negative components of the
wave functions coming frond, © andH; *.

The formulas necessary for calculating the matrix ele-
ments are given below when operators,(n), (oq-/),
(0gq-P), (0qg-/), oq:(0gXn), (o4-0q), (0qg-n), and
(o' P), operate on the functiory (Q) or f(r) yi,(Q).

The symbol, ®, is used in the same meaning for<4
gamma matrices, i.e., Pauli matrices for a light anti-quark are
multiplied from left while those for a heavy quark from
right;

(0qM® Ym=—y/ K, (D12)
(0q-)® Yim=—(k+1) y¥p,, (D13)
. . _ k+1 ~ _ k+1 . .
(0q-P)® f(r) yf =i ‘“T) f(r) y;m=—i ‘“T) f(r) (oq- M@ Yo, (D14)
G )e yj,ﬂ'“)) 1 [i2i+3)  2\i(+1D) (y,—&"*”) 015
© Lo |2+ 2iG+D) —@j-n(+n) | i,
(6928 %1): R )(y>
© Yih ~G-0/) \yj i)
G Goxie y,-rﬂ'“)) 2i [ —(j+1D Wi+ (y}tﬁ) 019
Oq 0 : = — ) ) ,
are Vim | 2710+ - yih
Godoxine yjitnl) —2i [ —(i+1) \j(j+D) (M*“)
Oq° O | =mEe— — . ] .
e Yiml 21+10\jG+1) -] Y m
Goior yjn&"“)) 1 2j+3  -4\j(j+1) (yjn?“)) o1
0q- 0 ; = — . : ,
R e R AT N T DR | Yim
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N ﬂ#
(0q-0Q)® S |= ,
jm y]m
(0o N)® ng+h) -1 1 —2Vi(j+1) (y1*+h) (D18)
ogo- ; - — '
° Yim | 2i+1\ =2\j(j+1) -1 Yim
o y}Tnl) -1 1 —24j(j+1) (y}t})
g0 —1i = a1 . 1
Tyl A =2y -t Yim
i _ j+1
o) f(r) yj,%”l)) i Iy —2NGHD] ot = ) (f(r)yJ ”l) 019
oo P)® — : : , (D1
f(r) yi 2j+1 +1 f(r) y!
O Yim [ AT j<j+1>((9r—Jr> ‘(’“_Jr ) o
j+2 _ j+2
(a 9) f(r)y‘+1 i &r+—r —=2Vj(j+1) o7+—r ) f(r)y‘”
0o P)® =— _ ,
f(ryy;m/ 2it1 — j—1 j—1 f(r) ya
o —2Vj(+ D) o= —— i m

1. A_—A_ matrix elements
a. First-order terms

To calculate Egs(31) and(32), one needs the following - — A _ matrix elements,

1 . R, - -
<\P;,|H1|‘P;)=<\I’;, z—mQ{pZ-i—V[(aq.p)—l (aq-n)é’r]—V’(aq.iQXn)}‘\I’;>

1 A L L.
=§nJ-d%qﬁmfiﬁg{pl+vnaq¢n—|(awn)a]—vwxm-aQXnn»®q¢m, (D20)

where the sets of quantum numbers are givervby(j, m, k) and/ '=(j, m, k). Some simplification occurs because
V(r)~1k henceV’'=—V/r. Each matrix element of the first-order interaction terms is given below.

k(k+1
L -9+ (rz ) 0
Eufd%w$;62®qq an3w*1'(]@2®q¢m=Jcn¢l K(k—1) Dy,
2
0 —dt 2
r
(D21)
k+1
1 0 \% Zﬂr—T
?4d3wkﬁqmqm i (aq-n)d ] @K, fdmﬁ 1 o, (D22
v2@+—TJ 0

where®,(r) is defined by Eq(C26) in the Appendix C. Some nonvanishing matrix elements of the last term qC2§) are
given by
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(W7 |V (aq-Sox ) [W))=f

and their complex conjugates.

b. Second-order terms
To calculate Egs(38) and (39), one needs the following - — A _ matrix elements,

2

1 _ 1. 1 1 ,
P ﬁq(p+§q S+ 7 AV+ 5 (B S'=V') (ag- )| V] ),

1
——trJ ekt j[ Bq|p

(W) [Hy v )= < /o

2 1
S+ AV+ (,Bq S — V)(crQ /)

Each matrix element of the second-order interaction terms is given below.

1 . 1.\2 S, O
Etrf d3r‘I’:-‘mT,8q p+§q S®\If}‘m=fdr<bl< 0 —S)q)k'
where
k(k+1) 1
_q _ 92 _arl g =
S.=S o+ i S(&, Zr)'

SinceV=—-4a//3r andA 1/r= —47r83(F), we need to calculate
1 3k’ T 1 k 2
Etr d I’\Ifjm AF ®\I’]m:_|q)k(0)| 6k, K-

Nonvanishing matrix elements of the last term of Hg24) are given by

+ 1 ’ ! - 7 +
VT (B S =V (ag ) |V
(k+1)(2k—1)(S" V' 0
i o - 2k+1  \r o e .
f r k s’ \Vi (I)k or __(J+1)1J1
0 (k=1)| —+—
rr
S! V/
(k+1) T_T) 0
_¢Jdr D, ; (k=1)(2k+1)(S V' ®, for k=j+1,—j,
T k-1 v T
2\/1(1+1J s 10 ®
2j+1 Tt r)\o o Uty
2Vj(j+1 s v'\(0 O
—LJ dro’. —+— D,
2j+1 i o 1/ !

and their complex conjugates.

k
Wk,

(D23)

(D24)

(D25)

(D26)

(D27)

(D28)
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2. A_— A matrix elements
a. Zeroth-order terms

Among the manyA _ — A, components, that of the RHS of E@6) is the only matrix element to be needed in the later
calculations at the zeroth order, which is again given here:

o R
(v, ,|Ho+|\If;’)=<\If/, 5[ aqagt(ag-n)(ag-n) ]V"I’;>,

1
=§trf a3t E[ aq oo+ (agN)(og-n) Verk (D29)

Nonvanishing matrix elements are given by

( 0o -1
fdrq)ik 2k=1 | V@ for k=—(j+1), ]
2k+1

(U] |(aq-ag) VI¥ )=¢ 4i(i+1) f

S 2j+1 ( ) V-

4\/j(j+l 0
— f <I>T o o Voi

L 2]+1

(D30)

and

i [0 -1 _ .
2k+1fdrd)_k 1 0 Vo, for k=—(j+1), j,

ZI\/j(jTlfd (

2j+1

(¥, |(ag-n)(ag-nV|¥}))= (D3D)

-1
Vo _ (j+1)»
and their complex conjugates.

b. First-order terms
The first orderA _ — A, matrix element is given by

+

:—trf derwk ! { SBq (0q- B+ = 5(BqS'+V’ )(og-n)|®

- gttt -1 N L g, o 2
(¥, ,|H; |‘I’/>:<\I’// m_Q[_Sﬂq(aQ'p)+§(BqS+V )(ag-n)

(D32

Nonvanishing matrix elements are given by, kot —(j+1), orj,

( k+1
. (9r+T 0

|
t

(¥ 1Sy (ag-P)W))=1 (D33)

—2I\/j(j+l

C2j+1 fd r oS k-1 | P
0 —gt+—

and
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1 SV 0
) o 2k+1j are 5 gy Pe
v, S +V’ n)|¥rY= D34
< / |(:8q )(aQ )l /> 2 ](]+1) J.d (I)T SRV 0 o ( )
21 +1 P 0 —sgvPure

and their complex conjugates. Note that when one takes complex conjugate, derivative operators do not operatd\bh

but on a wave functiond , .
Calculating all the matrix elements of the Hamiltonian given in Sec. Il or Appendix D, the results are summarized in the

following two matrices. Matrix elements of the Hamiltonian amdnig; | andl‘l’},), or those of the interaction termsy,
Hy, ,H; ,andH, , among eigenfunction‘if}‘ . and\If}"m obtained above are given by, up to the second ordemir, 1/

U4 0O 0 0 0 0 0 o0
0

0 U, 0 0 0 Vi, O
0 0 Uy, O 0 0 0 0
0 0 0 Uy Vi, O 0 0
1 : (D35)
0 0 0 Vi,, U,y O 0 0
0 0 0 0 0 U,, O 0
0 V3, O 0 0 0 Uy O
0 0 0 0 0 0 0 U,,
where
U =g B U P U V=
+ + 1 3k ty—-— k' (i) (i) j .
<q,/|Hi|\I,/'>: Etr d I“I’j m Hi ®\I’jm:Uk,j O k'+vk,k’ for i=1,2. (D36)

Here the matrix elements are written in thendj space and subscripisfor EX and superscripts for U} andV{},! mean
theith order in 1o, k andk’ for EF, U{), andV{},’ stand fork quantum number, anfifor the total angular momentum.
For instance\/f(ig,J means the matrix element of the third term-bf ~ between‘l’}‘mJr and\lf}(r/n given by 1/2 of Eq(D24), i.e.,

—_— , N (10
V(2 MJ’ d,—@;r(s?_v_) (

N TR r/lo o)q)‘(j“)'
/

As for theA _— A, matrix elements of the Hamiltonian, we only need nonvanishing matrix elemehits bfor c; * as one
can see from EqgD1)—(D8) up to the second order inrhf, which are given below.

0 0 c; 1%0) 0 0 0 0 0
0 0 0 M) et A1) 0 0 0
c1~1(0) 0 0 0 0 0 0 0
0 ci~ (1) 0 0 0 0 ci?(1) 0
0 c 27 Y1) 0 0 0 0 c; A1) 0 ’ (b3n
0 0 0 0 0 0 ¢ %2
0 0 c2l(1)  c¢27?1) 0 0 0
0 0 0 0 c273(2) 0 0

where the integer in the brackets is a value of a total angular momenpfamd it turns out that this matrix is Hermitian, i.e.,
c{,k(jo)zc'{f(jo)* for the same value of=j,. The A, —A_ matrix elements are the complex conjugate of the above
matrix, Eq.(D37).

With these matrix elements, the total energy, is calculated by EqgD4) and(D8) together withmg and an eigenvalue,
EK, of Eq.(C29 up to the second order inrh, . Degeneracy between the states with the same valkénothe leading order
can be resolved by diagonal as well as off-diagonal matrix elements of the last terhhg ofand H, ~ together with
contributions from negative components of the wave functions coming Hgm andH; © as mentioned earlier.
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