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Starting from the semirelativistic Hamiltonian for aQ q̄ system with Coulomb and linear confining scalar
potentials, and operating just once with the naive Foldy-Wouthuysen-Tani transformation on the heavy quark,
we have calculated the heavy meson mass spectra ofD andB together with higher spin states. Based on the
formulation recently proposed, their masses and wave functions are expanded up to second order in 1/mQ with
a heavy quark massmQ and the lowest-order equation is examined carefully to obtain a complete set of

eigenfunctions for the Schro¨dinger equation. Heavy quark effective theory parametersL̄, l1, andl2 are also
determined at first and second order in 1/mQ . @S0556-2821~97!06521-1#

PACS number~s!: 12.39.Hg, 12.40.Yx

I. INTRODUCTION

Hadrons are composed of quarks and antiquarks and are
considered to be governed by quantum chromodynamics
~QCD!, at least in principle. Since QCD describes a strong
coupling interaction, a perturbative calculation of physical
quantities of hadrons is not so reliable other than in the deep
inelastic region where the coupling constant becomes weak
due to asymptotic freedom and hence other methods such as
lattice gauge theory have been developed to take into ac-
count nonperturbative effects. However, the situation dra-
matically changes when it is discovered that the system of
heavy hadrons, composed of one heavy quarkQ and light

quarksq or antiquarksq̄ , can be systematically expanded in
1/mQ with a heavy quark massmQ . The numerator of this
expansion in 1/mQ could be eitherLQCD or mq .

This theory, heavy quark effective theory~HQET! @1# is
applied to many aspects of high-energy theories and many
kinds of physical quantities of QCD which can be perturba-
tively calculated in 1/mQ . Especially those regardingB me-
son physics, e.g., the lowest order form factor~which is now
called Isgur-Wise function! of the semileptonic weak decay
processB→Dl n and the Kobayashi-Maskawa matrix ele-
mentVcb , have been calculated by many people@2#. How-
ever, since applications of HQET to higher-order perturba-
tive calculations are very restricted, only forms of higher-
order operators are obtained. Their Wilson coefficients are
calculable, but some of the matrix elements of those opera-
tors are obtained so that the whole quantity be somehow
fitted with the experimental data@3#. This is because most of
the calculations based on HQET do not introduce realistic
heavy meson wave functions and hence there is no way to
determine those quantities completely within the model.

In previous papers@4,5#, using the Foldy-Wouthuysen-
Tani transformation@6# we have developed a formulation so

that the Schro¨dinger equation for aQ q̄ bound state can be
expanded in terms of 1/mQ ; i.e., the resulting eigenvalues as
well as wave functions are obtained order by order in 1/mQ .
In this paper, as one of the applications of our formulation
we will calculate the heavy meson spectra ofD andB, and
their higher spin states. In order to do so, we would like to
start from introducing phenomenological dynamics, i.e., as-
suming Coulomb-like vector and confining scalar potentials
to Q q̄ bound states~heavy mesons!, expand a Hamiltonian
in 1/mQ then perturbatively solve the Schro¨dinger equation
in 1/mQ . Angular part of the lowest-order wave function is
exactly solved. After extracting asymptotic forms of the
lowest-order wave function at bothr→0 and r→` and
adopting the variational method, we numerically obtain the
radial part of the trial polynomial wave function which is
expanded in powers of radial variabler . Then fitting the
smallest eigenvalues of a Hamiltonian with masses ofD and
D* mesons, a strong couplingas , and other parameters in-
cluded in scalar and vector potentials are determined
uniquely. Using parameters obtained this way, other mass
levels are calculated and compared with the experimental
data forD/B mesons up to the second order of perturbation.
The lowest degenerate eigenvalues of the Schro¨dinger equa-
tion gives the so-calledL̄ parameters foru, d, and s light
quarks, which is defined by

L̄5 lim
mQ→`

~EH2mQ!,

whereEH is a calculated heavy meson mass andmQ a heavy
quark mass@3#. Meson wave functions obtained thereby and
expanded in 1/mQ may be used to calculate ordinary form
factors as well as Isgur-Wise functions and its corrections in
1/mQ for semileptonic weak decay processes.

All the above calculations are calculated up to 1/mQ
2 and

analyzed order by order in 1/mQ to determine parameters as
well as to compare with results of heavy quark effective
theory, e.g., the parameters,l1, l2, and L̄ in Sec. IV. The
final goal of this approach is to obtain higher-order correc-
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tions to Isgur-Wise functions, decay constants of heavy me-
sons, and the Kobayashi-Maskawa matrix element,Vcb , by
using wave functions of heavy mesons obtained so that
heavy meson spectrum is fitted with the experimental data.

Below in Secs. II and III we will first give formulation of
this study and next in Secs. IV and V give quantitative and
qualitative discussions on the obtained results.

II. HAMILTONIAN

The Hamiltonian density for our problem is given by

H05E dx3 @q† c~x! ~aW q•pW q1bqmq! qc~x!

1Q†~x!~aW Q•pW Q1bQmQ!Q~x! #, ~1!

Hint5E E dx3dx83qc̄~x!Oiq
c~x!

3Vi~x2x8!Q̄~x8!OiQ~x8!, ~2!

where we consider only a scalar confining potential,
Os51,Vs5S(r ), and a vector potential,Ov5gm ,Vv5V(r ),
with a relative radial variabler , which we think is the best
choice to describe phenomenologically the meson mass lev-
els @7,8#. The state ofQ q̄ is defined by

uc&5E d3xE d3ycab~x2y!qa
c †~x!Qb

†~y!u0&, ~3!

whereqc(x) is a charge conjugate field of a light quarkq and
the conjugate state ofQ q̄ by ^cu5uc&† with ^0u[u0&†.
From these definitions, we obtain the Fermi-Yang equation
@9# or the Schro¨dinger equation as

Hc5~mQ1Ẽ!c, ~4!

where the bound state mass,E, is split into two parts,mQ

andẼ (5E2mQ), so that it expresses the fact that the heavy
quark mass is dominant in the bound state,Q q̄, and c is
nothing, but the wave function which appears in the right-
hand side~RHS! of Eq. ~3!.

Operating with the FWT transformation and a charge con-
jugation operator, which are defined in Appendix A, only on
the heavy quark sector in this equation at the center of the
mass system of a bound state, one can modify the Schro¨-
dinger equation given by Eq.~4! as

~HFWT2mQ! ^ cFWT5ẼcFWT, ~5!

where a notation̂ is introduced to denote that gamma ma-
trices of a light anti-quark is multiplied from left while those
of a heavy quark from right or, more explicitly,

OqOQ^ cFWT5~Oq!ab~cFWT!bg~OQ!gd , ~6!

whereOq andOQ represent gamma matrices related to light
anti-quark and heavy quark, respectively. The problem of
this paper is to solve this equation, Eq.~5!, in powers of
1/mQ . As described first in this section, interaction terms are

given by a confining scalar potential and a Coulomb vector
potential with transverse interaction@10# and a total Hamil-
tonian is given by

H5~aW q•pW q1bqmq!1~aW Q•pW Q1bQmQ!1bqbQ S

1$12 1
2 @aW q•aW Q1~aW q•nW !~aW Q•nW ! #%V, ~7!

where scalar and vector potentials are given by

S~r !5
r

a2 1b, V~r !52
4

3

as

r
, and nW 5

rW

r
, ~8!

and the vector potential is averaged over longitudinal as well
as transverse as given in the last term of Eq.~7!. The trans-
formed Hamiltonian is expanded in 1/mQ as

HFWT2mQ5H211H01H11H21••• , ~9!

where

H2152~11bQ!mQ , ~10a!

H05aW q•pW 1bqmq2bqbQ S1$11 1
2 @ aW q•aW Q

1~aW q•nW !~aW Q•nW ! #%V, ~10b!

H152
1

2 mQ
bQ pW 21

1

mQ
bq aW Q•S pW 1

1

2
qW D S1

1

2mQ
gW Q•qW V

2
1

2mQ
FbQS pW 1

1

2
qW D1 i qW

3bQ SW QG•@ aW q1~aW q•nW !nW #V, ~10c!

H25
1

2mQ
2 bqbQ S pW 1

1

2
qW D 2

S2
i

4mQ
2

qW 3pW •bqbQ SW Q S

2
1

8mQ
2

qW 2V2
i

4mQ
2

qW 3pW •SW Q V

2
1

8mQ
2 $~pW 1qW ! ~aW Q•pW !

1pW @aW Q•~pW 1qW !#1 iqW 3pW gQ
5 %•@ aW q1~aW q•nW !nW # V,

~10d!

•

•

•

HereHi stands for thei th order expanded Hamiltonian, the
Dirac gamma matrices,b, aW , andSW are defined as

b5S 1 0

0 21D , aW 5S 0 sW

sW 0D , SW 5S sW 0

0 sW D ,

~11!

and since a bound state is at rest,
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pW 5pW q52pW Q , pW 85pW q852pW Q8, qW 5pW 82pW , ~12!

are defined, where primed quantities are final momenta and
the relation of these momenta with particles is depicted in
Fig. 1.

Details of derivation of equations in this section are given
in Appendix A.

III. PERTURBATION

Using the Hamiltonian obtained in the last section, we
give in this section the Schro¨dinger equation order by order
in 1/mQ . Details of the derivation in this section are given in
Appendix B. First we introduce the projection operators:

L75
17bQ

2
, ~13!

which correspond to positive-/negative-energy projection op-
erators for a heavy quark sector at the rest frame of a bound
state. The notation might be confusing since these expres-
sions are opposite to the ordinary definition. As described
just before Eq.~5! or at the end of Appendix A, heavy quarks
in the Schro¨dinger equation are transformed by the charge
conjugation operator,Uc , and the projection operators are
given by Eq.~A5! or in the present notation usinĝ by Eq.
~13!. These correspond to (16v” )/2 in a moving frame of a
bound state withvm the four-velocity of a bound state. Then
we expand the mass and wave function of a bound state in
1/mQ as

Ẽ5E2mQ5E0
l 1E1

l 1E2
l 1••• , ~14!

cFWT5c0
l 1c1

l 1c2
l 1••• , ~15!

wherel stands for a set of quantum numbers that distinguish
independent eigenfunctions of the lowest-order Schro¨dinger
equation, and a subscripti of Ei

l andc i
l stands for the order

of 1/mQ .

A. 21st order

The 21st-order Schro¨dinger equation in 1/mQ gives a
434 matrix wave function as

c0
l 5L2 ^ c0

l 5c0
l L2 , ~16!

whose explicit form is solved in Appendix C and is given by

c0
l 5C l

15„0 C j m
k ~rW !…. ~17!

The notation might be confusing; however, one may under-
stand Eq.~16! by noting

UcL1Uc
21

^ c0
l 5L2 ^ c0

l 5c0
l L2 .

Herel stands for a set of quantum numbers,j , m, andk and
a 432 matrix wave function,C j m

k (rW), is given by

C j m
k ~rW !5

1

r S uk~r !

2 i vk~r !~sW •nW !
D yj m

k ~V!, ~18!

where j is a total angular momentum of a meson,m is its z
component,k is a quantum number which takes only values,
k56 j , 6( j 11) and Þ0, uk(r ) and vk(r ) are scalar
polynomials of a radial variabler , and are tacitly assumed to
be multiplied by a 232 unit matrix.yj m

k (V) are functions of
angles and 232 matrix bi-spinors of a total angular momen-
tum, jW5lW 1sWq1sWQ with a definition of an orbital angular
momentumlW 52 irW3¹, andsWq andsWQ being spin operators
of light anti-quark and heavy quark, respectively. Note again
that the positive projection operator of a heavy quark is
given byL2 instead ofL1 as described early in this section
and should be multiplied from right as shown in Eq.~16!.
The corresponding operator for the quantum numberk is
given by @4#

2bq~SW q•lW 11!, ~19!

which satisfies

2bq~SW q•lW 11!„0 C j m
k ~rW !…5k„0 C j m

k ~rW !…, ~20!

i.e.,

@2bq~SW q•lW 11!, H0
22#50, ~21!

with H0
22 being given in Appendix D, the lowest-order non-

trivial Hamiltonian,

H0
22

^ c0
l 5E0

kc0
l .

The operator given by Eq.~19! has a form of the spin-orbit
coupling of light anti-quark and so is an intrinsic property of
the light degree of freedom. Therefore pairs of states with the
same value ofk are in the near-degeneracy in mass, e.g., the
two states ofJP502,12 with k521, whose details are de-
scribed at the end of Appendix C.

Note that since charge conjugation operates on the heavy
quark sector, theL2 projection operator appears in Eq.~16!,
i.e., positive components ofQ corresponds to negative com-
ponents ofUcQ.

FIG. 1. Each momentum is defined.
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B. Zeroth order

The zeroth order equations are given by

@aW q•pW 1bq~mq1S!1V # ^ c0
l 5E0

l c0
l , ~22!

22mQL1 ^ c1
l 1 1

2 L2@aW q•aW Q1~aW q•nW !~aW Q•nW ! #V^ c0
l

50. ~23!

Equation~22! gives the lowest nontrivial Schro¨dinger equa-
tion with a solution given by Eq.~17! andnW 5rW/r . A detailed
analysis of this equation is given in Appendix C.L1 com-
ponents of wave functions can be expanded in terms of the
eigenfunctions:

C l
25„C j m

k ~rW ! 0…. ~24!

ExpandingL1 ^ c1
l in terms of this set of eigenfunctions,

one can obtain the solution for Eq.~23! as

L1 ^ c1
l 5(

l 8
c12

l l 8C l 8
2 , ~25!

with the coefficients

c12
l l 85

1

4mQ
^C l 8

2 u@aW q•aW Q1~aW q•nW !~aW Q•nW ! #VuC l
1&.

~26!

Here the inner product is defined to be

^C l
auOuC l 8

b &5E d3r tr@C l
a†~O^ C l 8

b
!#, ~27!

where the notation̂ is defined by Eq.~6! and the zeroth
order wave functions are normalized to be 1:

^C l
auC l 8

b &5d l l 8d
a b for a, b51 2. ~28!

C. 1st order

The 1st-order equation is given by

22mQL1 ^ c2
l 1H0^ c1

l 1H1^ c0
l 5E0

l c1
l 1E1

l c0
l .

~29!

Multiplying projection operatorsL6 from right with the
above equation, and expandingc1

l in terms ofC l
6 as

c1
l 5(

l
~c11

l l 8C l 8
1

1c12
l l 8C l 8

2
!, ~30!

one obtains

E1
l 5(

l 8
c12

l l 8^C l
1uL1H0L2uC l 8

2 &

1^C l
1uL2H1L2uC l

1&, ~31!

which gives the first-order perturbation correction to the
mass when one calculates matrix elements of the RHS
among eigenfunctions and

c11
l k5

1

E0
l 2E0

k F(
l 8

c12
l l 8^Ck

1uL1H0L2uC l 8
2 &

1^Ck
1uL2H1L2uC l

1&G , for kÞl , ~32!

c11
k k50. ~33!

This completes the solution forc1
l sinceL1 ^ c1

l , or c12
l l 8,

is obtained in the last subsection. Here we have used the
normalization for the total wave function,c l , as

^c l uc l 8&5d l l 8, ~34!

where we have neglected color indices in this paper and
hence a color factor,Nc53, in the above equation since it
does not change the essential arguments. This definition of
Eq. ~34! is admitted because here we are not calculating the
absolute value of the form factors. The appropriate normal-
ization ~normally given by 2E with a bound state massE)
will be adopted in future papers in which we will calculate
some form factors. This way of obtaining the expressions for
E1

l andc16
l k by manipulating Eq.~29! is unique and we will

use this method below to obtain similar expressions appear-
ing in Sec. III D. Actually this method has been already used
to obtain Eqs.~22! and ~23! and to solve Eq.~23! obtaining

the coefficientsc12
l l 8 by Eq. ~26!.

One obtainsL1 ^ c2
l as in the former subsection,

L1 ^ c2
l 5(

l 8
c22

l l 8C l 8
2 , ~35!

with the coefficients

c22
l l 85

1

2mQ
^C l 8

2 u@~H02E0
l !L1 ^ c1

l 1H1L1 ^ c0
l #&.

~36!

D. 2nd order

The 2nd-order equation is given by

22mQL1 ^ c3
l 1H0^ c2

l 1H1^ c1
l 1H2^ c0

l

5E0
l c2

l 1E1
l c1

l 1E2
l c0

l . ~37!

As in the above case~1st order!, we obtain

E2
l 5(

l 8
c22

l l 8^C l
1uL1H0L2uC l 8

2 &1^C l
1uH1L2 ^ c1

l &

1^C l
1uL_H2L2uC l

1&, ~38!

which gives the second-order perturbation corrections to the
mass and
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c21
l k5

1

E0
l 2E0

k F(
l 8

c22
l l 8^Ck

1uL1H0L2uC l 8
2 &

1^Ck
1uL1H1^ c1

l &1^Ck
1uL2H2L2uC l

1&

2E1
l c11

l kG , for kÞl , ~39!

c21
k k52

1

2(l
~ uc11

k l u21uc12
k l u2!. ~40!

This completes the solution forc2
k sinceL2c2

k , or c22
l l 8, is

obtained in the last subsection.
Although we do not need in this paper, one obtains

L1 ^ c3
l as

L1 ^ c3
l 5(

l 8
c32

l l 8C l 8
2 , ~41!

with the coefficients

c32
l l 85

1

2mQ
^C l 8

2 u@~H02E0
l !L1 ^ c2

l 1~H12E1
l !L1

^ c1
l 1H2L1 ^ c0

l #&. ~42!

IV. NUMERICAL ANALYSIS

In this section, we give numerical analysis of our analyti-
cal calculations obtained in the former sections order by or-
der in 1/mQ . In order to solve Eq.~22!, we have to obtain
numerically a radial part of the wave function,
C l

15(0 C j m
k ), given by

C j m
k ~rW !5

1

r S uk~r !

2 i vk~r !~sW •nW !D yj m
k ~V!, ~43!

detailed properties of which are described in Appendix C. As
described in the same Appendix, the lowest-order, nontrivial
Schrödinger equation is reduced into Eq.~C25!:

S mq1S1V 2] r1
k

r

] r1
k

r
2mq2S1VD S uk~r !

vk~r !D 5E0
kS uk~r !

vk~r !D .

~44!

This eigenvalue equation is numerically solved by taking
into account the asymptotic behaviors at bothr→0 and
r→` and the forms of scalar functions,uk(r ) andvk(r ), are
given by

uk~r !, vk~r !;wk~r ! S r

aD g

expF2~mq1b! r 2
1

2S r

aD 2G ,
~45!

where

g5Ak22S 4as

3 D 2

~46!

andwk(r ) is a finite series of a polynomial ofr

wk~r !5 (
i 50

N21

ai
k S r

aD i

, ~47!

which takes different coefficients foruk(r ) andvk(r ).
~i! We have fixed the value of a light quark mass,mq , to

be 0.01 GeV as listed in Table I since only in the vicinity of
this value theD and D* masses can be fitted with the ex-
perimental values. We believe that when the mass,
mq5mu5md , is running with momentum, these are close to
the current quark mass since the momentum is given by the
order of theB meson mass (;5 GeV! @14# though we have
not used the running mass to solve the Schro¨dinger equation.
From Eqs.~44!–~47!, we have a 2N dimensional eigenvalue
matrix. The lowest eigenvalue of the positive energies is as-
signed to the physical state adopted here, whose wave func-
tion has no node. In practice, we have found that the eigen-
value equation withN58 gives the zero node solution for
the lowest positive eigenvalue, while otherN gives a rather
oscillatory solution, i.e., a solution with some nodes for the
lowest positive eigenvalue. Therefore we have adopted
N2157 for the highest power ofr that gives sixteen solu-
tions to Eq.~44!, half of which corresponds to negative en-
ergies and another half to positive ones ofqc state. That is,
although we have a node quantum number,n, other thanj ,
m, andk, for Eq. ~44!, we take only then50 solution for
each value ofk and j quantum numbers and we do not assign
higher node solutions to any physical states in this paper.

In the case of a hydrogen atom, for instance, only the
Coulomb potentialV;1/r survives in the above problem and
a radial function,wk(r ), becomes a hypergeometric function

TABLE I. Input values to determine parameters~units are in
GeV!.

mq5mu5md MD MD* MDs
MD

s*
MB MB*

0.01 1.867 2.008 1.969 2.112 5.279 5.325

TABLE II. Most optimal values of parameters determined by the least chi square method.

Parameters as a (GeV21) b ~GeV! mc ~GeV! ms ~GeV! mb ~GeV!

first order 0.3998 2.140 20.04798 1.457 0.09472 4.870
second order 0.2834 1.974 20.07031 1.347 0.08988 4.753
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and its finite series of a polynomial gives discrete energy
levels. In our case, since the potential includes a scalar term,
we cannot analytically solve the above reduced Schro¨dinger
equation, Eq.~44!. If we force to make the functions,uk(r )
and vk(r ), finite series and relate the coefficients of those
functions via recursive equations, it leads us to inconsistency
among coefficients of each term,r i , of a polynomial. We just
assume in this paper thatuk(r ) and vk(r ) are trial finite
polynomial functions ofr .

~ii ! To determine the parameters,as , a, andb appearing
in the potentials given by Eq.~8!, and the quark masses,mc ,
mb , andms , we have calculated the chi square defined by

x25 (
X5D,D* ,Ds ,Ds* ,B,B*

~MX2EX!2

sX
2

, ~48!

whereMX andEX are the observed and calculated masses of
a mesonX, respectively, andsX is the experimental error for
each meson mass. As mentioned alreadymq5md5mu is
fixed to be 10 MeV. Mass, e.g.,MD , is averaged over
charges,MD6 and MD0, since we have not taken into ac-
count the electromagnetic interaction, the same is true for
MD* , etc. We have determined the values for these six pa-
rameters,as , a, b, mc , mb , andms , by setting the value of
x2 as 1024. The input values are given in Table I.

~iii ! There are two types of solutions to optimal values for
these parameters, i.e., one set forb,0 which is listed in
Table II, and another forb.0. However, the solution for
b.0 gives large difference between calculated values and
observed ones for higher order spins and also gives negative
values for some spectrum even though the lowest lying states
are in good agreement with the observed ones. Hence we
disregard this set of parameters.

Tables III–X give calculated values,M calc, together with

the zeroth order masses,M0 that are degenerate with the
same value ofk, ratios,pi /M0 andni /M0, and the observed
values,Mobs. Here the heavy meson mass,EH , is expanded
in 1/mQ up to thenth order as

EH5M01(
i 51

n

pi1(
i 51

n

ni , ~49!

with M05mQ1E0 being the degenerate mass,pi the i th
order correction from positive components of a heavy meson
wave function, andni the i th order correction from negative
components. Note also that the exponential factor in the
brackets in the first row of each table should be multiplied
with a value of each column except for those with the ex-
plicit exponential factor.

Strictly speaking each state is classified by two quantum
numbers,k and j , and also approximately classified by the
upper component of the light anti-quark sector in terms of
the usual notation,2S11LJ . Studying the functionsyj m

k care-

fully, one finds the upper component ofC j m
k (rW) corresponds

to the following Table XI, respectively. HereJ in JP and
2S11LJ is the same as a total angular momentum,j , in the
Table XI. Although the states can be completely classified in
terms of two quantum numbers,k and j , we would like or-
dinarily to classify them in terms of2S11LJ . However, the
states classified byJP511 and 22, are mixtures of two
states in terms of2S11LJ as given by the Table XI. We
would approximately regard the state (k, j )5~1, 1! with
‘‘ 3P1,’’ ~22, 1! with ‘‘ 1P1’’ and ~2, 2! with ‘‘ 3D2,’’ re-
spectively, whose legitimacy can be supported by calculating
the coefficient of each state2S11LJ included in the mixture
state. We denote them with double quotations so that they

TABLE IV. Ds meson mass spectrum~first order!.

State (JP) M0 p1 /M0 n1 /M0 M calc Mobs

1S0 (02) 1.986 22.66(31022) 1.67(31022) 1.966 1.969
3S1 (12) 6.95 0.0851 2.125 2.112~?!
3P0 (01) 2.288 0.769 1.45 2.339 -
‘‘ 3P1’ ’ (1 1) 8.62 0.0835 2.487 2.535
‘‘ 1P1’ ’ (1 1) 2.335 6.87 0.0194 2.496 -
3P2 (21) 8.79 8.8731027 2.540 2.574~?!
3D1 (12) 2.401 159 0.0282 6.230 -
‘‘ 3D2’ ’ (2 2) 126 8.6331027 5.428 -

TABLE III. D meson mass spectrum~first order!.

State (JP) M0 p1 /M0 n1 /M0 M calc Mobs

1S0 (02) 1.869 22.01 (31022) 1.93 (31022) 1.867 1.867
3S1 (12) 7.37 0.101 2.008 2.008
3P0 (01) 2.276 20.373 1.59 2.304 -
‘‘ 3P1’ ’ (1 1) 7.50 0.0883 2.449 2.422~?!

‘ ‘ 1P1’ ’ (1 1) 2.216 7.51 0.0210 2.383 -
3P2 (21) 9.54 4.7231027 2.428 2.459
3D1 (12) 2.440 181 0.0242 6.850 -
‘‘ 3D2’ ’ (2 2) 177 4.2831027 6.747 -
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remind us an approximate representation of the state in terms
of 2S11LJ . Using Eq.~C6! in Appendix C, their relations are
given by

S u ‘ ‘ 3P1’ ’ &

u ‘ ‘ 1P1’ ’ &
D 5

1

A3
S A2 1

21 A2
D S u 3P1&

u 1P1&
D , ~50!

S u ‘ ‘ 3D2’ ’ &

u ‘ ‘ 1D2’ ’ &
D 5

1

A5
S A3 A2

2A2 A3
D S u3D2&

u1D2&
D . ~51!

~iv! From Tables III–X we see that the perturbative cal-
culation with these parameters might not work well for
higher k. Namely masses of 12 and 22 for k512 give
some odd values. They become even negative for ‘‘3D2’ ’ of
Ds andBs at the second order as shown in Tables VIII and
X. Hence we disregard in this paper all calculated masses of
3D1(12) and ‘‘3D2’ ’(2 2) states in any order. In order to
remedy this problem, we may need to improve the potential
form or adopt some other methods@15#. Hence here only the
first-order mass spectra are depicted without higher spin
states@3D1(12) and ‘‘3D2’ ’(2 2)] in Figs. 2–5.

One may also notice that thes quark mass listed in Table
II is relatively small (;90 MeV! compared with the conven-
tionally used values,;150 GeV, which is regarded as the
current quark mass. It is interesting to note that these values
are also obtained asm̄s(m52GeV) in the recent lattice QCD
calculations@16#.

~v! Two states, pseudoscalar (02) and vector (12), are
degenerate at the zeroth order in 1/mQ since the eigenvalue
E0

k for these states depends on the same quantum number
k521, which are split into two via the heavy quark spin
interaction terms, like2V8(aW q•SW Q3nW ) in H1

22 and all

terms inH1
21 given by Eq.~D10!. Similar resolution of the

degeneracy among the states with the same value ofk occurs
via the same interaction terms.

~vi! The simple-minded heavy meson mass formula given
by

mc ~ED* 2ED!5mb ~EB* 2EB! ~52!

holds exactly at the first order calculation. This is because
the zeroth order mass of two states with the samek is de-
generate and by definition the first-order correction to this
mass is proportional to 1/mQ as given byH1 of Eq. ~10! or
by H1

a b of Eq. ~D10!. To see Eq.~52! as a prediction, re-
placingEX with the observed valuesMX we obtain, to first
order,

MB* 2MB

MD* 2MD

5
mc

mb
50.299, ~53!

which should be compared with the experimental value,
0.326. This discrepancy between the calculated and the ob-
served comes from our calculation ofB meson mass spec-
trum listed in Table V which giveB andB* meson masses
slightly different values from the observed ones. Hold also
equations similar to Eq.~52! for higher spin states with the
samek quantum number because of the same reason given
above.

~vii ! The so-calledL̄ parameter can be calculated using
the definition@3#

L̄5 lim
mQ→`

~EH2mQ!5M02mQ5E0
21, ~54!

TABLE V. B meson mass spectrum~first order!.

State (JP) M0 p1 /M0 n1 /M0 M calc Mobs

1S0 (02) 5.281 22.13(31023) 2.05(31023) 5.281 5.279
3S1 (12) 7.80 0.107 5.323 5.325
3P0 (01) 5.689 20.447 1.90 5.697 -
‘‘ 3P1’ ’ (1 1) 8.98 0.106 5.740 -
‘‘ 1P1’ ’ (1 1) 5.629 8.85 0.0247 5.679 -
3P2 (21) 11.2 5.5631028 5.692 -
3D1 (12) 5.853 225 0.0302 7.172 -
‘‘ 3D2’ ’ (2 2) 220 5.3431028 7.141 -

TABLE VI. Bs meson mass spectrum~first order!.

State (JP) M0 p1 /M0 n1 /M0 M calc Mobs

1S0 (02) 5.399 22.92(31023) 1.84(31023) 5.393 5.369
3S1 (12) 7.65 0.0936 5.440 -
3P0 (01) 5.701 0.923 1.74 5.716 -
‘‘ 3P1’ ’ (1 1) 10.3 0.100 5.760 -
‘‘ 1P1’ ’ (1 1) 5.748 8.35 0.0236 5.796 -
3P2 (21) 10.7 1.0831027 5.809 -
3D1 (12) 5.814 197 0.0348 6.959 -
‘‘ 3D2’ ’ (2 2) 156 1.0731027 6.719 -
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whereEH , M0, andmQ are calculated heavy meson mass,
the lowest degenerate bound state mass, and a heavy quark
mass, respectively. Difference ofM0 andmQ is nothing but
the lowest leading eigenvalue,E0

k , with k521 in our
model. From Tables III and IV andmc51.457 listed in Table
II, one obtains, to first order,

L̄u,d5M0D2mc5M0D* 2mc50.412 GeV, ~55!

L̄s5M0Ds
2mc5M0D

s*
2mc50.529 GeV, ~56!

and from Tables III and IV andmc51.347 listed in Table II,
one obtains, to second order,

L̄u,d5M0D2mc5M0D* 2mc50.518 GeV, ~57!

L̄s5M0Ds
2mc5M0D

s*
2mc50.629 GeV, ~58!

whereM0D(s)
, M0D

(s)
* are the calculated lowest-orderD me-

son mass defined by Eq.~54!.
~viii ! Parameters which give nonperturbative corrections

to inclusive semileptonicB decays are defined as@17,18#

l15
1

2mQ
^H~v !u h̄ v~ iD !2hvuH~v !&, ~59!

l25
1

2mQ
K H~v !U h̄ v

g

2
sm nGm nhvUH~v !L , ~60!

wherehv is the heavy quark field in the HQET with velocity
v. dH53, 21 for pseudoscalar or vector mesons, respec-
tively. Then the heavy meson mass can be expanded in terms
of the heavy quark mass,l1, l2, andL̄, as

EH5mQ1L̄2
l11dHl2

2mQ
1••• . ~61!

The first-order calculation in 1/mQ makes 2l2 equal to Eq.
~52! and thel1 can be calculated using the above equation as

l152mb~mb1L̄u2ẼB!23l2 , ~62!

l25
mb

2
~ ẼB* 2ẼB!, ~63!

whereẼB andẼB* are the calculatedB meson masses with-
out the second-order corrections. The results are given by, to
first order,

l1520.378 GeV2, l250.112 GeV2, ~64!

and to second order,

l1520.238 GeV2, l250.0255 GeV2. ~65!

Here we notice that although the first term in Eq.~62! is
expected to be;1, we find it to be small from Table Vto
first order and obtain the approximate relation

l1;23l2 . ~66!

These values should be compared with those in Ref.@19#,
which give L̄u50.3960.11 GeV,l1520.1960.10 GeV2,
andl2.0.12 GeV2.

~ix! Recently, it has been pointed out that the kinetic en-
ergy of heavy quark inside a heavy meson plays an important
role in the determination of the ratiosf B / f D ,
(MB* 2MB)/(MD* 2MD), anduVub /Vcbu, in which use has
been made the Gaussian form for the heavy meson wave

TABLE VII. D meson mass spectrum~second order!.

State (JP) M0 p1 /M0 n1 /M0 p2 /M0 n2 /M0 M calc Mobs

1S0 (02) 1.865 0.457(31024) 1.03(31022) 21.86(310217) 21.40(31022) 1.867 1.867
3S1 (12) 7.41 0.0540 22.9531024 0.209 2.008 2.008
3P0 (01) 2.319 2.33 0.828 3.44 0.689 2.408 -
‘‘ 3P1’ ’ (1 1) 7.00 0.164 3.6331024 20.0107 2.486 2.422~?!

‘ ‘ 1P1’ ’ (1 1) 2.205 8.22 0.0532 23.8231024 20.0541 2.388 -
3P2 (21) 8.67 0.0156 20.157 0.112 2.399 2.459
3D1 (12) 2.584 8.29 0.154 2.1431024 20.177 2.798 -
‘‘ 3D2’ ’ (2 2) 8.13 0.0133 3.17 20.134 2.791 -

TABLE VIII. Ds meson mass spectrum~second order!.

State (JP) M0 p1 /M0 n1 /M0 p2 /M0 n2 /M0 M calc Mobs

1S0 (02) 1.976 0.150(31022) 90.6(31024) 2.81(310217) 21.60(31022) 1.965 1.969
3S1 (12) 7.76 4.65 27.0231024 0.243 2.133 2.112~?!
3P0 (01) 2.331 3.20 76.8 2.08 0.956 2.446 -
‘‘ 3P1’ ’ (1 1) 8.12 3.87 2.2031023 0.0361 2.527 2.535
‘‘ 1P1’ ’ (1 1) 2.317 7.29 0.925 22.2231023 0.0229 2.482 -
3P2 (21) 8.31 2.9631028 25.98 20.00166 2.509 2.574~?!
3D1 (12) 2.582 702 0.770 5.3831024 20.00632 2.072 -
‘‘ 3D2’ ’ (2 2) 24470 2.6531028 212 0.000139 2113 -
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function and has been adopted the so-called Cornell poten-
tial, the same as ours@20#. They have derived the relation of
these physical quantities in terms of the Fermi momentum,
pF , introduced in@21# in which pF is related to a heavy
quark recoil momentum,pW , by

^pW 2 &5E d3p pW 2 f~pW !5 3
2 pF

2 , ~67!

where the momentum probability distribution function is
given by

f~pW !5S 2

AppF
D 3

e2pW 2/pF
2
. ~68!

They calculated the left-hand side~LHS! of Eq. ~67! to ob-
tain pF by using the Gaussian form of the wave function and
then derived the relations between physical quantities and
this pF @20#. We have the radial wave function given by Eq.
~45! different from a Gaussian one and hence should have
relations among physical quantities and our parameters,a, b,
as , andmc , independent ofpF and hence we may calculate
the LHS of Eq.~67! to check if our calculation gives the
value similar to other calculations. Our value of the LHS of
Eq. ~67! gives, for^pW 2 & of the B meson to first order,

^pW 2 &50.560 GeV2, ~69!

and the second order giveŝpW 2 &50.562 GeV2, which
should be compared with the latest valuespF50.520.6 GeV
calculated in @20# which correspond to

^pW 2 &50.37520.540 GeV2.

~x! When one takes an overall look at the calculated
masses, the negative component contributions,ni /M0, are
relatively large for both scalar states, 06, at the first as well
as second order even though they become very small for
higher spin states. Positive components constantly contribute
to all states. When one compares the first-order with the
second-order calculations, one cannot conclude that the sec-
ond order is better than the first as a whole although higher
spin states ofD and B are largely improved at the second
order. This conclusion may be also supported by the com-
parison of the first- and second-order calculations of the pa-
rameters,l1, l2, andL̄ with other calculations@19#. In order
to incorporate the second-order effects properly, one may
need to introduce a different potential and/or method from
ours as mentioned in~iv! in this section.

We have used the following algorithms to calculate nu-
merically the heavy meson masses, Gauss-Hermite quadra-
ture to evaluate integrals, and the tridiagonal QL implicit
method to determine the eigenvalues and eigenvectors of a
finite dimensional real matrix@22#.

V. COMMENTS AND DISCUSSIONS

In this paper, we have calculated heavy meson masses,
D (s) , D (s)* , B(s) , B(s)* , etc., based on the formulation pro-
posed before@4#, which develops the perturbation potential
theory in terms of inverse power of a heavy quark mass. The
first and second-order calculations of masses are in good
agreement with the experimental data except for the higher
spin states even though the second-order calculation does not
much improve the first order. The first-order calculation of
the HQET quantities,l1, l2, andL̄, are also in good agree-
ment with the other calculations@19#. A new study on the

TABLE IX. B meson mass spectrum~second order!.

State (JP) M0 p1 /M0 n1 /M0 p2 /M0 n2 /M0 M calc Mobs

1S0 (02) 5.271 0.212(31022) 10.3(31024) 2.80(310217) 23.97(31024) 5.286 5.279
3S1 (12) 0.862 0.541 28.4131026 0.593 5.317 5.325
3P0 (01) 5.725 0.387 9.50 23.54 2.24 5.754 -
‘‘ 3P1’ ’ (1 1) 0.965 1.89 1.1831025 20.0347 5.782 -
‘‘ 1P1’ ’ (1 1) 5.611 1.08 0.593 21.2131025 0.171 5.672 -
3P2 (21) 1.23 0.174 21.06 0.352 5.680 -
3D1 (12) 5.990 1.18 1.88 7.4031026 20.614 6.061 -
‘‘ 3D2’ ’ (2 2) 1.28 0.163 26.48 20.465 6.066 -

TABLE X. Bs meson mass spectrum~second order!.

State (JP) M0 p1 /M0 n1 /M0 p2 /M0 n2 /M0 M calc Mobs

1S0 (02) 5.382 0.161(31022) 9.43(31024) 27.46(310217) 24.72(31024) 5.393 5.369
3S1 (12) 0.882 0.483 22.0731025 0.717 5.430 -
3P0 (01) 5.739 0.505 8.84 3.1231024 3.12 5.773 -
‘‘ 3P1’ ’ (1 1) 1.11 0.446 7.1931025 0.118 5.801 -
‘‘ 1P1’ ’ (1 1) 5.723 1.03 0.106 27.2131025 0.0743 5.782 -
3P2 (21) 1.19 3.3931029 23.78 20.00540 5.791 -
3D1 (12) 5.988 43.9 0.0940 1.8631025 20.0219 8.618 -
‘‘ 3D2’ ’ (2 2) 2136 3.2431029 22.06 4.8231028 22.174 -
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HQET introduced the Fermi momentum,pF , to obtain other
physical quantities@20#. Although we have not hadpF in our
mind at the begining of this study, the obtained value given
by Eq. ~69! is in good agreement with what they have ob-
tained@20#.

We have also found a new symmetry already mentioned
in the paper@4# and realized by the operator, Eq.~19!,

2bq~SW q•lW 11!,

which is always present when one considers a centrally sym-
metric potential model for two particles or when one takes a
rest frame limit of a general relativistic form of the wave
function and is related to a light quark spin structure, i.e.,
yj m

k (V). That is, this is quite a general symmetry, not a
special feature peculiar to our potential model.

One can easily see degeneracy among the lowest lying
pseudoscalar and vector states as follows. Define

uP&5Uc
21~0 C00

21!, uV,l&5Uc
21~0 C1l

21!, ~70!

where the inverse of the charge conjugate operator,Uc
21 , is

defined in Appendix A. Equations~A2!, C jm
k is an eigen-

function obtained in the last chapter. The explicit forms of
these wave functions are given in Appendix C, Eqs.~C28!
and ~C29!, and the quantum numberk can take only6 j , or
6( j 11). Assigning these states toD mesons, one can have

uP&5uD6&, or uD0&, uV,l&5uD* &. ~71!

Since these states have the same quantum numberk521,
these have the same masses as well as the same wave func-
tions up to the zeroth order calculation in 1/mQ . That is, the
degeneracy among these states is simply the result of the

FIG. 2. The first-order plot ofD meson masses. Values in the
brackets are the observed values.

FIG. 3. The first-order plot ofDs meson masses. Values in the
brackets are the observed values.

FIG. 4. The first-order plot ofB meson masses. Values in the
brackets are the observed values.

FIG. 5. The first-order plot ofBs meson masses. Values in the
brackets are the observed values.
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special property of the eigenvalue equation. Higher-order
corrections can be obtained by developing perturbation of
energy and wave function for each state in terms of
LQCD/mQ as given by Eqs.~14! and ~15!:

Ẽ[E2mQ5E0
l 1E1

l 1E2
l 1••• ,

cFWT5c0
l 1c1

l 1c2
l 1••• .

Finally we would like to discuss qualitative features of
form factors/ Isgur-Wise functions. Let us think about calcu-
lating form factors for the semileptonic decay ofB meson
into D. Taking a simple form for the lowest lying wave
function both forB andD as

C1S;e2b2 r 2/2,

where a parameterb is determined by a variational principle,
d(C1S †HC1S)50. Then form factors are given by

F~q2!;exp@const3Ẽ2~q22qmax
2 !#, or j~v!;exp@const

3Ẽ2~v21!#,

where

q25~pB2pD!2, v5vB•vD ,

qmax
2 5~mB2mD!2↔vmax51,

with vB,D
m being four-velocity ofB and/or D meson. This

means behavior of form factors strongly depends on an ei-
genvalue,Ẽ5E2mQ of the eigenvalue equation, Eq.~23!,
which is often called ‘‘inertia’’ parameterL̄q whenmQ→`.
This quantityẼ does not depend on any heavy quark prop-
erties at the zeroth order. This result also means that the
slope at the origin of the Isgur-Wise function includes the
term proportional toẼ2. The constant term (21/4 like the
Bjorken limit @23#! for this slope should be given by a kine-
matical factor multiplied with the above expression.

To conclude, although there have been various relativistic
bound state equations proposed so far, nobody has yet deter-
mined what the most preferable is. We believe that our ap-
proach presented here must be a promising candidate.
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APPENDIX A: SCHRÖ DINGER EQUATION

In order to derive Eq.~4! or Eq. ~5!, we need to calculate
the expectation value

^cu~H01Hint2E!uc& ~A1!

by using the equal-time anticommutation relations among
quark fields,

$qa
c ~x!, qb

c †~x8!%x05x
08
5da bd3~xW2xW8!,

$Qa~x!, Qb
†~x8!%x05x

08
5da bd3~xW2xW8!.

Since the wave function,ca b(x2y) defined in Eq.~3!, has
a constant normalization, what we need to do is to variate
Eq. ~A1! in terms ofca b* (x2y) and to set it equal to zero.
Then we can easily obtain Eq.~4! with the effective Hamil-
tonian given by Eq.~7!. In the course of this derivation, it
appears to be clear thatpW andpW 8 operates on the initial and
final wave functions, respectively, whileqW only on poten-
tials.

To derive the FWT and charge conjugate transformed
Schrödinger equation given by Eq.~5!, we have used the
following definitions:

HFWT5UcUFWT~pQ8 !HUFWT
21 ~pQ!Uc

21 ,

cFWT5UcUFWT~pQ!c, ~A2a!

UFWT~p!5exp„W~p!gW Q• p̂W …5cosW1gW Q• p̂W sinW,
~A2b!

p̂W 5
pW

p
, tanW~p!5

p

mQ1E
, E5ApW 21mQ

2 ,

~A2c!

Uc5 i gQ
0 gQ

2 52Uc
21 . ~A2d!

Note that the argument of the FWT transformation,UFWT,
operating on a Hamiltonian from left is different from the
right-operating one, since an outgoing momentum,pW Q8, is
different from an incoming one,pW Q . However, here in our
study we work in a configuration space which means mo-
menta are nothing, but the derivative operators and when we
write them differently, for instance aspW Q and pW Q8 , their ex-
pressions are reminders of their momentum representation.
Hence although the arguments ofUFWT andUFWT

21 look dif-

ferent pW Q and pW Q8 are the same derivative operator,2 i¹W .

Here the difference betweenpW Q andpW Q8 is qW which operates
only on potentials and gives nonvanishing results. The FWT
transformation is introduced so that a heavy quark inside a

TABLE XI. States classified by various quantum numbers.

k 21 21 1 1 22 22 2 2
j 0 1 0 1 1 2 1 2
JP 02 12 01 11 11 21 12 22

2S11LJ
1S0

3S1
3P0

3P1, 1P1
1P1, 3P1

3P2
3D1

3D2, 1D2
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heavy meson be treated as a nonrelativistic color source. The
charge conjugation operator,Uc , is introduced to make the
wave function,Ucc, a true bi-spinor, i.e., gamma matrices of
a light anti-quark are multiplied from left while those of a
heavy quark from right, which is expressed by using a nota-
tion ^ .

To derive Eqs.~10!, we need to first expandHFWT in
1/mQ and then take into account the following properties of a
charge conjugation operator,Uc5 igQ

0 gQ
2 , to obtain the final

expressions

Uc
21gQ

m Uc52gQ
mT, ~A3!

i.e.,

UcbQUc
2152bQ

T,

UcaW QUc
2152aW Q

T, UcSW QUc
2152SW Q

T,

UcgW QUc
2152gW Q

T, UcgQ
5 Uc

2152gQ
5 T, ~A4!

where a superscriptT means its transposed matrix. Hence the
projection operators are given by

Uc

16bQ

2
Uc

215
17bQ

T

2
. ~A5!

APPENDIX B: DERIVATION OF PERTURBATION

In this Appendix we will follow the paper@4# to derive
perturbative Schro¨dinger equation for a Hamiltonian given
by Eq. ~7! for consistency. Following that paper, we will
give an equation at each order by using the explicit interac-
tion terms given by Eqs.~10!. Here we quote the same equa-
tions given in the former sections for clarification of deriva-
tion. The fundamental Schro¨dinger equation is given by

~HFWT2mQ! ^ cFWT5ẼcFWT, ~B1!

and expansion of each quantity in 1/mQ is given by

HFWT2mQ5H211H01H11H21••• , ~B2a!

Ẽ5E0
l 1E1

l 1E2
l 1••• , ~B2b!

cFWT5c0
l 1c1

l 1c2
l 1••• . ~B2c!

With a help of projection operators defined by

L65
16bQ

2
, ~B3!

we will derive the Schro¨dinger equation at each order.

1. 21st order

From Eqs. ~B1! and ~B2!, the -1st-order Schro¨dinger
equation in 1/mQ is given by

22mQL1 ^ c0
l 50, ~B4!

which means

c0
l 5L2 ^ c0

l . ~B5!

Remember that matrices of a heavy quark should be multi-
plied from right. That is, the zeroth-order wave function has
only a positive component of the heavy quark sector and is
given by

c0
l 5C l

15S 0 f l ~rW !

0 gl ~rW !D , ~B6!

where f l andgl are 2 by 2 matrices. More explicit form of
this wave function is given in Appendix C.

2. Zeroth order

The zeroth-order equation is given by

22mQL1 ^ c1
l 1H0^ c0

l 5E0
l c0

l . ~B7!

Multiplying projection operators,L7 , from right, respec-
tively, we obtain

H0L2 ^ c0
l 5E0

l c0
l , ~B8!

22mQL1 ^ c1
l 1H0L1 ^ c0

l 50, ~B9!

whose explicit forms are given by Eqs.~22! and~23!, where
use has been made of

L1 ^ c0
l 50.

Detailed analysis of Eq.~B8! is given in Appendix C. When
one expandsL1 components ofc1

l in terms of the eigen-
functions,

C l
25S f l ~rW ! 0

gl ~rW ! 0D , ~B10!

like

L1 ^ c1
l 5(

l 8
c12

l l 8C l 8
2 , ~B11!

one can solve Eq.~B9! to obtain coefficients,c12
l l 8, as

c12
l l 85

1

2mQ
^C l 8

2 uL2H0L1uC l
1&, ~B12!

whose explicit form is given by Eq.~26!. Here in this paper
the eigenfunctions,C l

6 are normalized to be 1,

^C l
auC l 8

b &5d l l 8d
a b for a, b512. ~B13!

The inner product likêC l
auOuC l 8

b & is defined by Eq.~27!.

3. 1st order

The 1st-order equation is given by

22mQL1 ^ c2
l 1H0^ c1

l 1H1^ c0
l 5E0

l c1
l 1E1

l c0
l .
~B14!
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As in the above case, multiplying projection operators from
right, we obtain

H0L2 ^ c1
l 1H1L2 ^ c0

l 5E0
l L2 ^ c1

l 1E1
l c0

l ,
~B15!

22mQL1 ^ c2
l 1H0L1 ^ c1

l 1H1L1 ^ c0
l 5E0

l L1 ^ c1
l .

~B16!

The first equation, Eq.~B15!, can be solved like in the ordi-
nary perturbation theory of quantum mechanics. First ex-
pandingc1

k in terms ofCk
6 as

c1
l 5(

l 8
~c11

l l 8C l 8
1

1c12
l l 8C l 8

2
!, ~B17!

and next taking the inner product of the whole Eq.~B15!
with ^Ck

1u, one obtains

E0
k c11

l k1(
l 8

c12
l l 8^Ck

1uL1H0L2uC l 8
2 &

1^Ck
1uL2H1L2uC l

1&5E0
l c11

l k1E1
k d l k ,

~B18!

where we have used the orthogonality condition, Eq.~B13!,
and the lowest Schro¨dinger equation, Eq.~B8!, to obtain the
first term of the LHS and two terms of the RHS of Eq.~B18!.
When one setsk5l in Eq. ~B18!, one obtains

E1
l 5(

l 8
c12

l l 8^C l
1uL1H0L2uC l 8

2 &

1^C l
1uL2H1L2uC l

1&, ~B19!

which gives the first-order perturbation correction to the
mass when one calculates matrix elements of the RHS
among eigenfunctions,Ck

6 , like in the ordinary perturbation
of quantum mechanics. When one setskÞl in Eq. ~B18!,
one obtains

c11
l k5

1

E0
l 2E0

k F(
l 8

c12
l l 8^Ck

1uL1H0L2uC l 8
2 &

1^Ck
1uL2H1L2uC l

1&G . ~B20!

The coefficientc11
k k cannot be determined by the above equa-

tion, which can be derived by calculating a normalization of
the total wave function up to the first order,

^c l uc l 8&5d l l 8, ~B21!

giving

c11
k k50. ~B22!

This completes the solution forc1
l sinceL2c1

l , or c12
l l 8, is

obtained in the last chapter, Eq.~B12!. The definition of the
normalization, Eq.~B21!, is already mentioned in the main
text below Eq.~34! and hence we will not repeat that argu-

ment here. This way of solving Eq.~B15! is unique and we
will use this method below to solve similar equations appear-
ing in Sec. III D as well.

Equation~B16! gives aL1 component ofc2
l as in the

case ofL1 ^ c1
l in the Sec. III B, i.e., setting

L1 ^ c2
l 5(

l 8
c22

l l 8C l 8
2 , ~B23!

one obtains coefficients,c22
l l 8, as

c22
l l 85

1

2mQ
^C l 8

2 u@~H02E0
l !L1 ^ c1

l 1H1L1 ^ c0
l #&.

~B24!

4. 2nd order

The 2nd-order equation is given by

22mQL1 ^ c3
l 1H0^ c2

l 1H1^ c1
l 1H2^ c0

l

5E0
l c2

l 1E1
l c1

l 1E2
l c0

l . ~B25!

As in the above cases, multiplying projection operators from
right we obtain

H0L2 ^ c2
l 1H1L2 ^ c1

l 1H2L2 ^ c0
l

5E0
l L2 ^ c2

l 1E1
l L2 ^ c1

l 1E2
l c0

l , ~B26!

22mQL1 ^ c3
l 1H0L1 ^ c2

l 1H1L1 ^ c1
l 1H2L1 ^ c0

l

5E0
l L1 ^ c2

l 1E1
l L1 ^ c1

l . ~B27!

Again to solve the first equation, Eq.~B26!, first expanding
c2

l in terms ofC l
6 as

c2
l 5(

l
~c21

l l 8C l 8
1

1c22
l l 8C l 8

2
!, ~B28!

and next taking the inner product of the whole Eq.~B26!
with ^Ck

1u, one obtains

E0
k c21

l k1(
l 8

c22
l l 8^Ck

1uL1H0L2uC l 8
2 &

1^Ck
1uH1L2 ^ c1

l &1^Ck
1uL2H2L2uC l

1&

5E0
l c21

l k1E1
l c11

l k1E2
l d l k , ~B29!

where we have used the orthogonality condition, Eq.~B13!,
and the lowest Schro¨dinger equation, Eq.~B8!, to obtain the
first term of the LHS and three terms of the RHS of Eq.
~B29!. When one setsk5l in Eq. ~B29!, sincec11

l l 50 one
obtains

E2
l 5(

l 8
c22

l l 8^C l
1uL1H0L2uC l 8

2 &1^C l
1uH1L2 ^ c1

l &

1^C l
1uL2H2L2uC l

1&, ~B30!
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which gives the second-order perturbation corrections to the
mass when one calculates matrix elements of the RHS
among eigenfunctions. When one setskÞl in Eq. ~B29!,
one obtains

c21
l k5

1

E0
l 2E0

k F(
l 8

c22
l l 8^Ck

1uL1H0L2uC l 8
2 &

1^Ck
1uH1L2 ^ c1

l &1^Ck
1uL2H2L2uC l

1&

2E1
l c11

l kG . ~B31!

The coefficientc21
k k can be derived by calculating a normal-

ization of the total wave function up to the second order, Eq.
~B21!, which gives

c21
k k52

1

2(l
~ uc11

k l u21uc12
k l u2!. ~B32!

This completes the solution forc2
k sinceL2c2

k , or c22
l l 8, is

obtained in the last chapter, Eq.~B24!.
Although we do not use, Eq.~B27! gives aL1 compo-

nent ofc3
l as in the cases ofL1 ^ c1

l andL1 ^ c2
l given in

the Secs. III B and III C, i.e., setting

L1 ^ c3
l 5(

l 8
c32

l l 8C l 8
2 , ~B33!

one obtains coefficients,c32
l l 8, as given by Eq.~42!.

APPENDIX C: ZEROTH-ORDER SOLUTION

There have been a couple of trials to solve Eq.~22!
@11,12,7#. In order to solve the lowest nontrivial eigenvalue
equation given by Eq.~22!, i.e.,

@aW q•pW 1bq~mq1S!1V# ^ c0
l 5E0

l c0
l , ~C1!

we summarize and refresh the previous results. First we need
to introduce the so-called vector spherical harmonics which
are defined by

YW j m
~L! 52nW Yj

m , ~C2!

YW j m
~E! 5

r

Aj ~ j 11!
¹W Yj

m , ~C3!

YW j m
~M!52 inW 3YW j m

~E! 5
2 ir

Aj ~ j 11!
nW 3¹W Yj

m , ~C4!

whereYj
m are spherical polynomials~or surface harmonics!.

These vector spherical harmonics satisfy the orthogonality
condition:

E dVYW j m
~A!~V!†

•YW j 8 m8
~B!

~V!5d j j 8dm m8d
A B,

where dV5sinududf. This is nothing, but a set of eigen-
functions for a spin-1 particle. In this paper we need their

spinor representation and also need to unitary-transform
them to obtain the functions,yj m

k , as

S yj m
2~ j 11!

yj m
j D 5US Yj

m

sW •YW j m
~M!D , S yj m

j 11

yj m
2 j D 5US sW •YW j m

~L!

sW •YW j m
~E! D ,

~C5!

where to diagonalize the leading Hamiltonian in thek space
the orthogonal matrixU is introduced,

U5
1

A2 j 11
S Aj 11 Aj

2Aj Aj 11
D . ~C6!

Here the values of the new quantum numberk are distin-
guished by the operator given by Eq.~19!. YW j m

(A) ~A5L, M, E!

are eigenfunctions ofjW2 and j z , having the eigenvalues,
j ( j 11) and m. Parities are assigned as
(2) j 11,(2) j ,(2) j 11 for A5L, M, E, respectively, andYj

m

has a parity (2) j . Here

jW5lW 1sWq1sWQ , ~C7!

andsWq5sW q/2 andsWQ5sW Q/2 are spin operators of light anti-
quark and heavy quark, respectively.yj m

k are 232-matrix

eigenfunctions of three operators,jW 2, j z , andsW •lW with ei-
genvalues,j ( j 11), m, and2(k11), and satisfy

1

2
trS E dVyj 8m8

k8 †yjm
k D5dk k8d j j 8dm m8. ~C8!

Here the quantum numberk can take only values,6 j , or
6( j 11), andÞ0 sinceYW 0 0

(M) does not exit. The eigenfunc-
tion of the zeroth order Hamiltonian depends on three quan-
tum numbers,j , m, andk as described next. Functions,YW j m

(A)

andyj m
k , have the following correspondence to those defined

in Ref. @7# as
yj m

2~ j11!↔y1
j m , yj m

j ↔y2
j m ,

~C9!

yj m
j 11↔y1

j m , yj m
2 j↔y2

j m ,

and

YW j m
~L!↔YW j ~2 !

m , YW j m
~E!↔YW j ~1 !

m ,
~C10!

YW j m
~M!↔XW j j

m .

The explicit expressions of the first fewyj m
k are given by

y00
215

1

A4p
, y00

1 52
1

A4p
~sW •nW !, ~C11!

y1m
215

i

A4p
sm, y1m

1 52
i

A4p
~sW •nW !sm, ~C12!

where we have used

Y0
05

1

A4p
, Y1

05 iA 3

4p
cosu,
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Y1
657 iA 3

8p
sin ue6 iw. ~C13!

In order to solve Eq.~C1!, one can in general assume the
form of the solution as

c0
l 5C l

15„0 C j m
k ~rW !…, ~C14!

wherel stands for all the quantum numbers,j , m, andk and

C j m
k ~rW !5S Fk~rW !

Gk~rW !
D yj m

k ~V!. ~C15!

Since the effective lowest order Hamiltonian does not in-
clude the heavy quark matrices, one can exclude the symbol
^ from Eq. ~C1!. The form of a radial wave function is in
general given by

S Fk~rW !

Gk~rW !
D 5S f 1 k~r !2 f 2 k~r !~sW •nW !

g1 k~r !2g2 k~r !~sW •nW !
D . ~C16!

Substituting this into Eq.~C1!, multiplying yj m
k † from left,

and using the orthogonality equation foryj m
k , Eq. ~C8!, the

simultaneous equations forf i k andgi k are obtained and af-
ter some calculations the final form of the wave function is
determined to be either

C j m
k 5S f 1 k~r !

2g2 k~r !~sW •nW !
D yj m

k 5S f 1 k~r ! yj m
k

g2 k~r ! yj m
2k D ,

~C17!

or

C j m
k 5S 2 f 2 k~r !~sW •nW !

g1 k~r !
D yj m

k 5S f 2 k~r ! yj m
2k

g1 k~r ! yj m
k D

5S f 2 k~r !

2g1 k~r !~sW •nW !
D yj m

2k . ~C18!

Since Eq.~C18! assumes the same form as Eq.~C17!, we
generally define the eigenfunction,C j m

k , given by Eq.
~C17!. Then the reduced Schro¨dinger equation is given by

F i S ] r1
1

r D r11
k

r
r21@mq1S~r !#r31V~r !GCk~r !

5E0
k Ck~r !, ~C19!

with

Ck~r ![S f 1 k~r !

g2 k~r !
D . ~C20!

Here defined also are

aW q5S 0 sW q

sW q 0
D 5r1 sW , bq5S 1 0

0 21D 5r3 1232 ,

~C21!

r15S 0 1

1 0D , r25S 0 2 i

i 0 D , r35S 1 0

0 21D .

~C22!

Finally introducing the unitary matrix,

R5S 1 0

0 2 i D , R215S 1 0

0 i D , ~C23!

one can transform eigenvalue equations as well as eigenfunc-
tions into

H r RF i S ] r1
1

r D r11
k

r
r21@mq1S~r !#r3

1V~r !G 1

r
R21J Fk~r !5E0

k Fk~r !, ~C24!

or

S mq1S1V 2] r1
k

r

] r1
k

r
2mq2S1V

D S uk~r !

vk~r !
D 5E0

k S uk~r !

vk~r !
D ,

~C25!

with

Fk~r ![S uk~r !

vk~r !
D 5r R Ck~r !5S r f 1 k~r !

2 ir g 2 k~r !
D .

~C26!

Then the solution to Eq.~22! is given by

C j m
k 5

1

r S uk~r !

2 i vk~r !~sW •nW !
D yj m

k ~V!

5
1

r S uk~r ! yj m
k ~V!

i vk~r ! yj m
2k~V!

D . ~C27!

Throughout the above derivation, use has been made of for-
mulas given in the next Appendix.

In order to see the spin-flavor symmetry in our case, the
explicit form of each lowest-order wave function is given as
follows in the case ofJP502,12. That these states are de-
generate can be easily seen from the eigenvalue equation
where the eigenvalueE0

k depends only on the quantum num-
ber k and these states have the same valuek521. Or more
explicitly we can show the degeneracy by calculating the
wave functions for the two states,JP502,12. The pseudo-
scalar state (JP502) is given by

~0 C0 0
21!5

1

A4p r
S 0 u21~r !

0 2 i v21~r ! ~nW •sW !
D , ~C28!

and the vector state (JP512) is given by

(
m

em~0 C1 m
21!5

i

A4p r
S 0 u21~r !

0 2 i v21~r ! ~nW •sW !
D ~eW•sW !,

~C29!
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where use has been made of Eqs.~C11! and~C12!. These are
transformed into each other via the unitary rotation

expS p

2
eW•sW D . ~C30!

Here one has to remember thateW 2521 and also that we
omit theUc

21 operation on the wave function for simplicity.
Similar degeneracy can be seen for a pair of states with the
same value ofk.

APPENDIX D: MATRIX ELEMENTS

In this appendix, we evaluate matrix elements of the RHS
of Eqs. ~31! and ~38! to obtain mass corrections,E1

k , E2
k ,

those of the RHS of Eqs.~32!, ~39!, and ~40! to obtain the
corrections of L2 components of wave functions,
c11

l k , c21
l k , and to evaluate Eqs.~26! and ~36! to obtain the

corrections ofL1 components of wave functionsc i
l up to

the second order (i 51, 2), c12
l k ,c22

l k .
SummarizingL22L2 and/orL22L1 matrix elements

of the Hamiltonian, the following equations are obtained.
The RHS of Eq.~26! is given here again as

c12
l k5

1

2mQ
^Ck

2uH0
21uC l

1&

5
1

4mQ
^Ck

2u@aW q•aW Q1~aW q•nW !~aW Q•nW ! #VuC l
1&,

~D1!

which requires one to calculate the zeroth order matrix ele-
ments. Here one must notice the following relation,

c12
l k5c12

k l * 5
1

2mQ
^C l

1uH0
12uCk

2&†. ~D2!

The coefficientc11
l k is given by, forl Þk,

c11
l k5

1

E0
l 2E0

kF2mQ(
l 8

c12
l l 8c12

l 8 k1^Ck
1uH1

22uC l
1&G .

~D3!

Using Eq.~D2!, the first-order energy correction is given by

E1
l 52mQ(

l 8
uc12

l l 8u21^C l
1uH1

22uC l
1&. ~D4!

Simplifying Eq. ~36!, one obtains

c22
l k5(

l 8
c11

l l 8c12
l 8 k1

1

2mQ
F ~E0

k2E0
l !c12

l k

22(
l 8

c12
l l 8^Ck

2ubq SuC l 8
2 &1^Ck

2uH1
21uC l

1&G ,

~D5!

c21
l k5

1

E0
l 2E0

k F2mQ(
l 8

c22
l l 8c12

l 8 k

1(
l 8

~c11
l l 8^Ck

1uH1
22uC l 8

1 &

1c12
l l 8^Ck

1uH1
12uC l 8

2 &!1^Ck
1uH2

22uC l
1&

2E1
l c11

l kG for l Þk, ~D6!

E2
l 52mQ(

l 8
c22

l l 8c12
l 8 l 1(

l 8
~c11

l l 8^C l
1uH1

22uC l 8
1 &

1c12
l l 8^C l

1uH1
12uC l 8

2 &!1^C l
1uH2

22uC l
1&. ~D7!

Although it is apparent thatE1
k is always real from Eq.~D4!,

it is not clear whether Eq.~D7! is real or not. We will rewrite
Eq. ~D7! so that reality ofE2

k is manifest as follows.

E2
l 5(

l 8
(
l 9

c12
l 8l ^C l 8

2 uH0
11uC l 9

2 & c12
l l 92E0

l (
l 8

uc12
l l 8u2

12Re (
l 8

c12
l 8l ^C l 8

2 uH1
21uC l

1&

1(
l 8

1

E0
l 2E0

l 8S 4mQ
2U(

l 9
c12

l l 9c12
l 9l 8U2

1U^C l
1uH1

22uC l 8
1 &U2

14mQRe(
l 9

c12
l l 9c12

l 9l 8^C l
1uH1

22uC l 8
1 & D

1^C l
1uH2

22uC l
1&, ~D8!

whose expression is apparently real.
In the above derivation, we have used the projected

Hamiltonian at each order,Hi
a b , which is defined by

LaHiLb[LaHi
a bLb5LaHi

a b5Hi
a bLb , ~D9!

whereHi
a b is composed of Dirac matrices,aW , b, SW , andg5

@13#:

H0
225aW q•pW 1bq~mq1S!1V, ~D10a!

H0
215 1

2 @aW q•aW Q1~aW q•nW !~aW Q•nW ! #V, ~D10b!

H0
125H0

21 , ~D10c!

H0
115aW q•pW 1bq~mq2S!1V, ~D10d!

H1
225

1

2mQ
H pW 21V@~aW q•pW !2 i ~aW q•nW !] r #2V8F i ~aW q•nW !

1
1

2
~aW q•SW Q3nW !G2

1

r
VF i ~aW q•nW !

2
1

2
~aW q•SW Q3nW !G J , ~D10e!
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H1
215

1

mQ
F2Sbq ~aW Q•pW !1

i

2
~bq S81V8!~aW Q•nW !G ,

~D10f!

H1
125

1

mQ
F2Sbq ~aW Q•pW !1

i

2
~bq S82V8!~aW Q•nW !G ,

~D10g!

H1
1152H1

22 , ~D10h!

H2
225

1

2mQ
2 H 2bq S pW 1

1

2
qW D 2

S1
1

4
DV

1
1

2r
~bq S82V8! ~SW Q•lW !J , ~D10i!

H2
2152

1

8mQ
2 H 2V@~aW q•pW !2 i ~aW q•nW !] r #~aW Q•pW !

22iV8~aW q•nW !~aW Q•pW !2 iV8~aW Q•nW !@~aW q•pW !

2 i ~aW q•nW !] r #1
1

r
V8~aW q•lW !gQ

5 J
1

1

8mQ
2 r

V H 3i ~aW q•nW !~aW Q•pW !1@~aW q•aW Q!

22~aW q•nW !~aW Q•nW !#] r1
1

r
~aW q•lW ! gQ

5 J , ~D10j!

H2
125H2

21 , ~D10k!

H2
115

1

2mQ
2 H bq S pW 1

1

2
qW D 2

S1
1

4
DV

2
1

2r
~bq S81V8! ~SW Q•lW !J . ~D10l!

Use has been made of the following formulas for the gamma
matrices,

bQL656L6 , aW QL65L7aW Q , SW QL65L6SW Q ,

gW QL65L7gW Q57aW QL6 ,

bQSW QL656L6SW Q , gQ
5 L65L7gQ

5 . ~D11!

Matrix elements of interaction terms among eigenfunctions
are calculated below. Degeneracy can be resolved by heavy
quark spin-dependent terms which includesaW Q and/or SW Q

dependent terms, i.e., the last terms ofH1
22 and H2

22 to-
gether with contributions from negative components of the
wave functions coming fromH0

21 andH1
21 .

The formulas necessary for calculating the matrix ele-
ments are given below when operators, (sW q•nW ), (sW q•lW ),
(sW q•pW ), (sW Q•lW ), sW q•(sW Q3nW ), (sW q•sW Q), (sW Q•nW ), and
(sW Q•pW ), operate on the function,yj m

k (V) or f (r ) yj m
k (V).

The symbol, ^ , is used in the same meaning for 434
gamma matrices, i.e., Pauli matrices for a light anti-quark are
multiplied from left while those for a heavy quark from
right:

~sW q•nW ! ^ yj m
k 52yj m

2k , ~D12!

~sW q•lW ! ^ yj m
k 52~k11! yj m

k , ~D13!

~sW q•pW ! ^ f ~r ! yj m
k 5 i S ] r1

k11

r D f ~r ! yj m
2k52 i S ] r1

k11

r D f ~r ! ~sW q•nW ! ^ yj m
k , ~D14!

~sW Q•lW ! ^ S yj m
2~ j 11!

yj m
j D 5

1

2 j 11S j ~2 j 13! 2Aj ~ j 11!

2Aj ~ j 11! 2~2 j 21!~ j 11!
D S yj m

2~ j 11!

yj m
j D , ~D15!

~sW Q•lW ! ^ S yj m
j 11

yj m
2 j D 5S j 12 0

0 2~ j 21!
D S yj m

j 11

yj m
2 j D ,

~sW q•sW Q3nW ! ^ S yj m
2~ j 11!

yj m
j D 5

2i

2 j 11S 2~ j 11! Aj ~ j 11!

Aj ~ j 11! 2 j
D S yj m

j 11

yj m
2 j D , ~D16!

~sW q•sW Q3nW ! ^ S yj m
j 11

yj m
2 j D 5

22i

2 j 11S 2~ j 11! Aj ~ j 11!

Aj ~ j 11! 2 j
D S yj m

2~ j 11!

yj m
j D .

~sW q•sW Q! ^ S yj m
2~ j 11!

yj m
j D 5

1

2 j 11S 2 j 13 24Aj ~ j 11!

24Aj ~ j 11! 2 j 21
D S yj m

2~ j 11!

yj m
j D , ~D17!
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~sW q•sW Q! ^ S yj m
j 11

yj m
2 j D 52S yj m

j 11

yj m
2 j D ,

~sW Q•nW ! ^ S yj m
2~ j 11!

yj m
j D 5

21

2 j 11S 1 22Aj ~ j 11!

22Aj ~ j 11! 21
D S yj m

2~ j 11!

yj m
j D , ~D18!

~sW Q•nW ! ^ S yj m
j 11

yj m
2 j D 5

21

2 j 11S 1 22Aj ~ j 11!

22Aj ~ j 11! 21
D S yj m

j 11

yj m
2 j D ,

~sW Q•pW ! ^ S f ~r ! yj m
2~ j 11!

f ~r ! yj m
j D 5

i

2 j 11S ] r2
j

r
22Aj ~ j 11!S ] r1

j 11

r D
22Aj ~ j 11!S ] r2

j

r D 2S ] r1
j 11

r D D S f ~r ! yj m
2~ j 11!

f ~r ! yj m
j D , ~D19!

~sW Q•pW ! ^ S f ~r ! yj m
j 11

f ~r ! yj m
2 j D 5

i

2 j 11S ] r1
j 12

r
22Aj ~ j 11!S ] r1

j 12

r D
22Aj ~ j 11!S ] r2

j 21

r D 2S ] r2
j 21

r D D S f ~r ! yj m
j 11

f ~r ! yj m
2 j D ,

1. L22L2 matrix elements

a. First-order terms

To calculate Eqs.~31! and ~32!, one needs the followingL22L2 matrix elements,

^C l 8
1 uH1

22uC l
1&5 K C l 8

1 U 1

2mQ
$pW 21V@~aW q•pW !2 i ~aW q•nW !] r #2V8~aW q•SW Q3nW !%UC l

1L
5

1

2
trE d3rC j m

k8 †
1

2mQ
$pW 21V@~aW q•pW !2 i ~aW q•nW !] r #2V8~aW q•sW Q3nW !% ^ C j m

k , ~D20!

where the sets of quantum numbers are given byl 5( j , m, k) and l 85( j , m, k8). Some simplification occurs because
V(r );1/r henceV852V/r . Each matrix element of the first-order interaction terms is given below.

1

2
trE d3rC j m

k †pW 2
^ C j m

k 5
1

2
trE d3rC j m

k †~SW q•pW !2
^ C j m

k 5E drFk
†S 2] r

21
k~k11!

r 2 0

0 2] r
21

k~k21!

r 2

D Fk ,

~D21!

1

2
trE d3rC j m

k †V@~aW q•pW !2 i ~aW q•nW !] r # ^ C j m
k 5E drFk

†S 0 2VS 2] r2
k11

r D
VS 2] r1

k21

r D 0
D Fk , ~D22!

whereFk(r ) is defined by Eq.~C26! in the Appendix C. Some nonvanishing matrix elements of the last term of Eq.~D20! are
given by
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^C l 8
1 uV8~aW q•SW Q3nW ! uC l

1&5

{
22k

2k11E drFk
†V8S 0 1

1 0DFk for k52~ j 11!, j ,

2k

2k21E drFk
†V8S 0 1

1 0DFk for k5 j 11, 2 j ,

2Aj ~ j 11!

2 j 11 E drF j
†V8 S 0 1

1 0DF2~ j 11! ,

2
2Aj ~ j 11!

2 j 11 E drF2 j
† V8 S 0 1

1 0DF j 11 ,

~D23!

and their complex conjugates.

b. Second-order terms

To calculate Eqs.~38! and ~39!, one needs the followingL22L2 matrix elements,

^C l 8
1 uH2

22uC l
1&5K C l 8

1 U 1

2mQ
2 H 2bq S pW 1

1

2
qW D 2

S1
1

4
DV1

1

2r
~bq S82V8! ~aW Q•lW !J UC l

1L ,

5
1

2
trE d3rC j m

k8 †
1

2mQ
2 H 2bq S pW 1

1

2
qW D 2

S1
1

4
DV1

1

2r
~bq S82V8! ~sW Q•lW !J ^ C j m

k . ~D24!

Each matrix element of the second-order interaction terms is given below.

1

2
trE d3rC j m

k †bqS pW 1
1

2
qW D 2

S ^ C j m
k 5E drFk

†S S1 0

0 2S2
DFk , ~D25!

where

S65SF2] r
21

k~k61!

r 2 G2S8S ] r2
1

2r D . ~D26!

SinceV524as/3r andD 1/r 524pd3(rW), we need to calculate

1

2
trE d3rC j m

k8 †D
1

r
^ C j m

k 52uFk~0!u2 dk, k8. ~D27!

Nonvanishing matrix elements of the last term of Eq.~D24! are given by

K C l 8
1 U1r ~bq S82V8! ~aW Q•lW ! UC l

1L

5

{
E dr Fk

†S 2
~k11!~2k21!

2k11 S S8

r
2

V8

r D 0

0 ~k21!S S8

r
1

V8

r D D Fk for k52~ j 11!, j ,

E dr Fk
†S ~k11!S S8

r
2

V8

r D 0

0 2
~k21!~2k11!

2k21 S S8

r
1

V8

r D D Fk for k5 j 11, 2 j ,

2Aj ~ j 11!

2 j 11 E drF j
†S S8

r
2

V8

r D S 1 0

0 0DF2~ j 11! ,

2
2Aj ~ j 11!

2 j 11 E drF2 j
† S S8

r
1

V8

r D S 0 0

0 1DF j 11 ,

~D28!

and their complex conjugates.
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2. L22L1 matrix elements

a. Zeroth-order terms

Among the manyL22L1 components, that of the RHS of Eq.~26! is the only matrix element to be needed in the later
calculations at the zeroth order, which is again given here:

^C l 8
2 uH0

21uC l
1&5 K C l 8

2 U 1

2
@ aW q•aW Q1~aW q•nW !~aW Q•nW ! #VUC l

1L ,

5
1

2
trE d3rC j m

k8 †
1

2
@ aW q•sW Q1~aW q•nW !~sW Q•nW ! #V^ C j m

k . ~D29!

Nonvanishing matrix elements are given by

^C l 8
2 u~aW q•aW Q! VuC l

1&55 E dr F2k
† S 0 21

2k21

2k11
0 D VFk for k52~ j 11!, j ,

2
4Aj ~ j 11!

2 j 11 E dr F2 j
† S 0 0

0 1D VF2~ j 11! ,

2
4Aj ~ j 11!

2 j 11 E dr F j
†S 1 0

0 0D VF j 11 ,

~D30!

and

^C l 8
2 u~aW q•nW !~aW Q•nW !VuC l

1&55
i

2k11E dr F2k
† S 0 21

1 0 D VFk for k52~ j 11!, j ,

2iAj ~ j 11!

2 j 11 E dr F2 j
† S 0 21

1 0 D VF2~ j 11! ,

~D31!

and their complex conjugates.

b. First-order terms

The first orderL22L1 matrix element is given by

^C l 8
2 uH1

21uC l
1&5 K C l 8

2 U 1

mQ
F2Sbq ~aW Q•pW !1

i

2
~bq S81V8!~aW Q•nW !GUC l

1L ,

5
1

2
trE d3rC j m

k8 †
1

mQ
F2Sbq ~sW Q•pW !1

i

2
~bq S81V8!~sW Q•nW !G ^ C j m

k . ~D32!

Nonvanishing matrix elements are given by, fork52( j 11), or j ,

^C l 8
2 uSbq ~aW Q•pW !uC l

1&55
2 i

2k11 E dr F2k
† SS ] r1

k11

r
0

0 2] r1
k21

r

D Fk ,

22iAj ~ j 11!

2 j 11 E dr Fk11
† SS ] r2

k

r
0

0 2] r1
k21

r

D Fk ,

~D33!

and
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^C l 8
2 u~bq S81V8!~aW Q•nW !uC l

1&55
1

2k11E dr Fk
†S S81V8 0

0 2S81V8
DFk ,

2Aj ~ j 11!

2 j 11 E dr F j
†S S81V8 0

0 2S81V8
DF2~ j 11! ,

~D34!

and their complex conjugates. Note that when one takes complex conjugate, derivative operators do not operate onS8 andV8,
but on a wave function,F l .

Calculating all the matrix elements of the Hamiltonian given in Sec. II or Appendix D, the results are summarized in the
following two matrices. Matrix elements of the Hamiltonian among^C l

1u and uC l 8
1 &, or those of the interaction terms,mQ ,

H0
22 , H1

22 , andH2
22 , among eigenfunctionsC j m

k † andC j m
k8 obtained above are given by, up to the second order in 1/mQ ,

1
U21,0 0 0 0 0 0 0 0

0 U21,1 0 0 0 0 V21,2
1 0

0 0 U1,0 0 0 0 0 0

0 0 0 U1,1 V1,22
1 0 0 0

0 0 0 V22,1
1 U22,1 0 0 0

0 0 0 0 0 U22,2 0 0

0 V2,21
1 0 0 0 0 U2,1 0

0 0 0 0 0 0 0 U2,2

2 , ~D35!

where

Uk, j5mQ1E0
k1Uk, j

~1! 1Uk, j
~2! , Vk, k8

j
5Vk, k8

~1! j
1Vk, k8

~2! j ,

^C l
1uHi uC l 8

1 &5
1

2
trE d3rC j m

k †Hi
22

^ C jm
k8 5Uk, j

~ i ! dk k81Vk,k8
~ i ! j for i 51,2. ~D36!

Here the matrix elements are written in thek and j space and subscriptsi for Ei
k and superscriptsi for Uk, j

( i ) andVk,k8
( i ) j mean

the i th order in 1/mQ , k andk8 for Ei
k , Uk, j

( i ) , andVk,k8
( i ) j stand fork quantum number, andj for the total angular momentum.

For instance,Vk,k8
(2) j means the matrix element of the third term ofH2

22 betweenC jm
k † andC jm

k8 given by 1/2 of Eq.~D24!, i.e.,

Vj , 2~ j 11!
~2! 5

Aj ~ j 11!

2 j 11 E drF j
†S S8

r
2

V8

r D S 1 0

0 0DF2~ j 11! .

As for theL22L1 matrix elements of the Hamiltonian, we only need nonvanishing matrix elements ofH0
21 or c12

l k as one
can see from Eqs.~D1!–~D8! up to the second order in 1/mQ , which are given below.

1
0 0 c12

21,1~0! 0 0 0 0 0

0 0 0 c12
21,1~1! c12

21,22~1! 0 0 0

c12
1,21~0! 0 0 0 0 0 0 0

0 c12
1,21~1! 0 0 0 0 c12

1,2~1! 0

0 c12
22,21~1! 0 0 0 0 c12

22,2~1! 0

0 0 0 0 0 0 0 c12
22,2~2!

0 0 0 c12
2,1~1! c12

2,22~1! 0 0 0

0 0 0 0 0 c12
2,22~2! 0 0

2 , ~D37!

where the integer in the brackets is a value of a total angular momentum,j , and it turns out that this matrix is Hermitian, i.e.,
c12

l k( j 0)5c12
k l ( j 0)* for the same value ofj 5 j 0. The L12L2 matrix elements are the complex conjugate of the above

matrix, Eq.~D37!.
With these matrix elements, the total energy,El , is calculated by Eqs.~D4! and~D8! together withmQ and an eigenvalue,

E0
k , of Eq.~C25! up to the second order in 1/mQ . Degeneracy between the states with the same value ofk in the leading order

can be resolved by diagonal as well as off-diagonal matrix elements of the last terms ofH1
22 and H2

22 together with
contributions from negative components of the wave functions coming fromH0

21 andH1
21 as mentioned earlier.
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