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of reconstructed signals
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A spherical geometry for a resonant-mass gravitational wave antenna offers significant improvements over
traditional cylindrical antennas. However, completing a detector requires breaking the bare antenna’s spherical
symmetry by attaching multiple mechanical resonators and transducers. To fully assess the merits of such
detectors, it is essential to be able to calculate the detector’'s sensitivity and the accuracy of the extractable
signal information without relying on exact mathematical transducer or resonator symmetries to simplify the
analysis, as has been done in previous work. Without making such assumptions, this paper generalizes the
fundamental sensitivity limits, known for cylindrical detectors, that arise from the back-action noise present in
any linear amplifier, and from thermal Brownian motion noise when detection bandwidth is limited. Optimal
signal detection and estimation methods are derived by generalizing techniques used for one-dimensional
detectors to the case of multiple interacting transducers. Formulas for the optimized signal-to-noise ratio are
derived which generalize the connection between bandwidth and sensitivity known for one-dimensional de-
tectors. A demand for isotropic sensitivity then gives requirements on transducer placement and matching.
Comparing bandwidth anisotropies, the detector design proposed by Johnson and Merkowitz is found to be
superior to an alternative proposal by Lobo and Serrano, and to be reasonably robust against asymmetries. In
addition to sensitivity limits and optimal data analysis methods, limits are derived for the accuracy of recon-
structed signal parameters such as direction, polarization, phase, and arrivdS%586-282(97)01614-7

PACS numbd(s): 04.80.Nn, 95.55.Ym

I. INTRODUCTION been one of the reasons why the benefits of using a spherical
antenna were not pursued until Johnson and Merkol@}z
To open up the era of gravitational wave astronomy,showed that it is possible to locate six identical, radial trans-
gravitational wave detectors must have both sufficient sensducers in positions with a special symmetry so that the read-
tivity to detect actual signals and the ability to extract asout problem is greatly simplified. Zhou and Michels[8]
much signal information as possible. The use of sphericaihen found an alternative set of five transducer locations
geometry for resonant-mass gravitational wave antennas ofvhich results in even greater conceptual simplification.
fers a number of advantages over the traditional cylindricalfowever, any realistic experimental effort will not be able to

bar shape in both these respects. The advantages are so cdi{arantee completely identical transducers or positioning to
arbitrary precision. Understanding how symmetric is sym-

pelling that construction of a new generation of resonant:
mass spherical detectors is being proposed by a number 4 . < : :
P g prob y or the experimental groups now beginning to design spheri-

expenm.ental ar oup§l] V\.”th the goal of operating concur- cal resonant-mass detectdig with the potential to detect a
rently with the first laser interferometers now under construc-

. - . : variety of realistic target sourcgd0,11. This paper pro-
tion [2—4] ano! providing compl_e_m_entary |nfo_rmat_|on. _HOW' vides a rigorous analysis of the effects of transducer asym-
ever, analysis of the sensitivity and direction-finding

i . metries on the capabilities of such detectors.
accuracy of a spherical detector involves a number of com- pravious work on this problem has provided only partial

plications, compared to the analysis of cylindrical detectorsgns\wers. In Johnson and Merkowitz’s ground-breaking work
wh_ich must bg addressed before optimized detectors can lP@,lZ], they derived equations of motion for five degenerate
built with confidence. quadrupole spheroidal modes coupled\tadentical, radial,
Although a spherical antenna’s enhanced gravitationagingle-mode, resonant transducers located at arbitrary points
cross section, its isotropic response and its ability to measurgn the sphere’s surface. Since for bar antennas the frequency
signal direction and polarization were recognized decadesplitting between the coupled antenna and transducer modes
ago[5-7], building a practical detector requires breaking theis an important measure of coupling which must be opti-
spherical symmetry by attaching at least five additional memized, they conjectured an optimal design might correspond
chanical resonators to readout the sphere’s motion. In gene one in which all mode splittings were equal. They found
eral, isotropic sensitivity is then lost and one has a rathethat for N=5 there apparently is no such configuration,
complicated readout and signal reconstruction problem inwhile for N=6, placing the transducers at the centers of half
volving multiple transducer signals with correlated noise andhe faces of a regular dodecahedron gives a spectrum with
complicated frequency response functions. This may havewo degenerate quintuplets and a singlet. For that special set
of transducer locations, Johnson and Merkowitz found
that they could simplify the equations of motion to obtain an
*Electronic address: ts88@umail.umd.edu analytical solution,(ii) by forming linear combinations of

etric enough for the transducers is an important question
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transducer outputs, one could form “mode channels,” eacho-noise ratio theory for a spherical detector and that
of which coupled to one and only one of the five quadrupoledeveloped for bar antennf$3-15.
components of the gravitational wave field thereby solving This approach leads to a variety of powerful results. First,
the signal deconvolution problem, afid) the frequency re- it explicitly shows how to form statistically independent out-
sponse for each mode channel was the same and had that channels, even in the absence of symmetries, which gen-
same form as for a bar antenna with a single transducer. Bgralize the Johnson-Merkowitz mode channels or the Zhou-
numerical integration, they were then able to compute théMichelson independent transducers. Second, it allows Price’s
sensitivity of such a detector. They made no effort to provemethod[15] for proving Giffard’s amplifier limit[13] to be
their arrangement was optimal, but they conjectured that deapplied to a general linear detector with multiple transducers
tector sensitivity changes would be of second order in smallo yield a generalized theorem valid in particular for a spheri-
departures from perfect dodecahedral symmetry and perfecal detector which lacks any special symmetries. Third, it
transducer matching. As will be shown here, this is not comyields formulas generalizing Price’s high- expansion
pletely correct. Also, Johnson and Merkowitz did not empha{ 15,11 of the detector’s energy sensitivity. The higGhex-
size the importance of assuming that the transducers amansion simplifies the discussion of the effects of asymme-
identical not only in the mechanical parameters of their resotries on detector performance, since particular values of tem-
nators, but also with respect to the magnitudes of the noisperature and antenn@ need not be assumed—rather the
sources in each transducer. Only then are Johnsormperformance is characterized by the effective noise tempera-
Merkowitz mode channels statistically independent; if not,ture in the lossless limit together with an effective bandwidth
the sensitivity analysis needs modification. A third limitation which characterizes the degradation of sensitivity with in-
is that Johnson and Merkowitz did not explicitly characterizecreasing thermal noise in the antenna. With the symmetries
the parameters of the equivalent bar detector which gives thessumed by Johnson and Merkowitz, or Zhou and Michel-
same frequency response and noise spectrum as each of &, the effective noise temperature and the effective band-
mode channels. width are independent of source direction and polarization,
The concepts of statistically independent transducer charbut detector asymmetries produce anisotropies in these quan-
nels and effective antenna mass played a central role in thities. This paper includes a numerical study of the size of
Zhou-Michelson analysig]. By using a combination of one those anisotropies in order to evaluate the tolerances required
radial and four tangential transducers located in a specifizvhen designing a detector with the Johnson-Merkowitz pro-
way, they demonstrated a different way of obtaining statistiposed dodecahedral symmetry. SNR anisotropy is also used
cally independent transducer channels. With their proposetb compare the merits of the dodecahedral arrangement with
configuration, no linear combinations of transducer output®ther alternatives. A fourth product of the general theory is a
need be formed: each transducer couples to only one quadet of analytical formulas giving the uncertainties in maxi-
rupole antenna mode, and consequently the detector's reaum likelihood estimates of the signal parameters in the
sponse to a gravitational wave is manifestly equivalent tdimit of high SNR. The formulas are applied first to repro-
attaching each transducer to a single-mode bar antenna, addce the Zhou-Michelson analytical and Monte Carlo results
since the transducer’s back-action noise drives only its corfor their special design, and then they are used to investigate
responding antenna mode, the transducer outputs are statidtie effects of breaking the symmetry with nonidentical trans-
cally independent. Zhou and Michelson calculated the effecducer noise temperatures.
tive antenna masses felt by each transducer and found Some of the results described here were presented briefly
different values for the radial and tangential transducersin two earlier paper$16,17], but the present paper offers a
Therefore, to make each independent channel have an idemore detailed explanation and extends and applies the meth-
tical frequency response, one would have to choose differerdds in new ways. Merkowitz and Johnson have carried their
parameters for each transducer. However, if each transducesork further by constructing a prototype truncated icosahe-
had the same noise temperatiitg and if thermal noise was dral (Tl) antenna instrumented with simple room-
negligible, they proved that the total signal-to-noise ratiotemperature nonresonant and resonant transdydergd.
(SNR) for detecting a known signal, using an optimal linear With their prototype, they have experimentally investigated
filter to combine the transducer outputs, is simply the energyhe effects of imperfect spherical symmetry in tstenna
E that an impulsive signal would deposit in an antenna ini-Their results and this paper are complementary as the focus
tially at rest, divided bykgT,, independent of source direc- here is on asymmetries in tieansducerlocations and pa-
tion and polarization. This generalized Giffard’s amplifier rameters. Lobo and Serrafid0] have recently published an
limit for the sensitivity of bar antennd4.3] to a spherical analysis of the resonant mode splitting and transfer functions
detector using the proposed transducer configuration. Zhofor N radial transducers mounted on a spherical antenna.
and Michelson also analyzed the accuracy of maximum likeThey limited their analysis to identical transducers, and they
lihood estimates of the source direction and polarization usdid not consider noise, but based on their analysis they sug-
ing such a transducer configuration. gested an alternative way to locate transducers which is
This paper extends the analysis of Johnson and Merkowevaluated here based on its SNR anisotropy.
itz, and Zhou and Michelson, by generalizing optimal linear The first half of this paper gives an overview of the math-
filtering, and signal detection and estimation theory, for aematics needed to calculate the SNR for a spherical gravita-
detector with vector output rather than a scalar output. Théional wave detector with arbitrary transducer locations and
generalized equations are written in a matrix notation deparameters. In particular, Sec. Il explains why the optimal
signed not only to give a simple, compact, and intuitive no-strategy for detecting a known signal with a general linear
tation, but also to clarify the connection between the signaldetector withvector output is to perform an optimal linear



566 THOMAS R. STEVENSON 56

filtering operation which produces acalar output with  difference: independent df, a variety of different hypoth-
maximal SNR. An explicit matrix formula for the optimal esis testing criteria all lead to a decision rule based on opti-
linear filter is derived and compared with the well-known mal linear filtering to maximize the SNR. Second, on a more
scalar formula. It is shown that by linear operations one carmonstructive level, generalized formulas are derived for the
always form a set ostatistically independenbutput chan-  optimal filter and the resulting SNR whiclre different from
nels, in terms of which the maximal SNR can be expressethe N=1 case, but which have a very similar form to the
very simply. Then a generalization of Giffard’s theorem isscalar formulas when written in matrix notation. Third, more
proved in which the SNR for a lossless detector is related taubstantive differences are shown to appear when one con-
the signal energy and the noise temperatures ofthians-  siders the limitations on detector sensitivity arising from
ducers. Section Il details how multidimensional optimal lin- back action of multiple transducer noise sources on the an-
ear filtering and a matrix description of spherical detectortenna.
dynamics combine to give general formulas for the SNR and The material in this section provides not only justification
its high-Q expansion in terms of an effective pulse detectionfor the methods used in Secs. IlI-VI to investigate a spheri-
noise temperaturel ﬁ“ and effective fractional bandwidth cal detector’'s SNR anisotropy, but also a foundation for fur-
5%, After reviewing the effects of transducer symmetries inther theoretical development in Sec. VII when the accuracy
Sec. IV, the main focus in the second half of the paper is ®f signal parameter estimation is discussed. In addition, this
numerical investigation of the effects of breaking those symsection contains the most general results of this paper, results
metries. Section V examines the effects of variations in theapplicable to any linear detector without assuming spherical
location, tuning, and noise temperatures of the transduce8ymmetry, particular transducer orientations, or other sym-
on T¢" and 6°T. In Sec. VI, calculations of SNR anisotropy Metries.
are used to evaluate the merits of alternative transducer lo-
cations, such as proposed by Lobo and Serf@®) and to
examine the robustness of the regular dodecahedral arrange-
ment under a failure of one transducer. Section VII shows First, this section presents the abstract argument that the
how the vector optimal filtering theory developed here carcasesN>1 andN=1 are essentially the same. For both
be used to analytically evaluate the uncertainties in maxicases, the signal detection problem involves deciding be-
mum likelihood estimates of signal parameters such as amween the hypothesibl, that the output is only noise and
plitude, direction, polarization, arrival time, and phase. ThehypothesisH; that the output is noise plus the known signal.
theory is first applied to reproduce and extend the ZhouThere are a variety of reasonable criteria one could use to
Michelson results for their special transducer arrangemermake an “optimal” decision. For example, one could choose
[9], and then the effects of some transducer asymmetries atdg or H; based on which is most likely given the observed
numerically investigated. Finally, Sec. VIII summarizes thedata, one could try to minimize the probability of making an
results. error, one could assign costs to the different types of errors
and try to minimize the expected ca®ayes criteriof, or
one could maximize the detection probability for a fixed
false alarm probability(Neyman-Pearson criteripn The
Suppose a general detector has a vector outfijtcon-  theory of hypothesis testingeee Chap. 5 of23]) says that
sisting ofN real functions of time: all of these criteria are equivalent to the “likelihood ratio
test:”

A. Signal detection and hypothesis testing

II. MULTIDIMENSIONAL OPTIMAL LINEAR FILTERING

X(D=0a(0), - Xn (b)), @) chooseH; if A=\, 2
and assume that a particular signal, if it is present, is known
to give an outpuk=Xgq in the absence of noise, but that the where the likelihood ratio
actual output is a linear superposition of the signal and noise
processes. Theignal detection problers a case of hypoth-
esis testing: decide, in an optimal way according to some _ P1(x) &)
reasonable criterion, whether or not the signal is in fact Po(x)
present. For a cylindrical gravitational wave detector with

one transducer outpu=1, and one may draw on an ex- , the ratio of the conditional probabilities of observir
tensive body of hypothesis-testing and signal detection anff . P 9
givenH, or Hy, and\ is some threshold.

estimation theory which was largely developed in the effort L0 . : .
Y gey P If the noise in the detector is Gaussian and stationary,

to optimally design radar receivef@1-23. ; oo
For a spherical antenna instrumented with multiple transt'€N\ can be evaluated and a connection made with linear

ducers,N>1, and the question arises: is the theory for de_filtering as fOHOWSZ Letx;(t,) be samples of the datq at a
large number of timeg,. Although those samples likely

tector with vector output different from that for one with . . .
scalar output, and if so, how? It seems that the generalizatio'ﬁave correlated noise, a linear transformation can be made to

of the theory toN>1 does not appear explicitly in the lit- Produce uncorrelated “samplesy; [23]. Then
erature, at least not in the form needed for the analysis pre-

sented here. Hence, this section develops the answer. In fact, Ay, —(y, _y;ig)z
at three different levels three different answers are provided. P.x) =11 ' ex;{ > } 4
First, on an abstract level, it is shown that there really is no i V2mo 20,
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whereo? is the variance of; andy®?is the expected value wherek is a vector transfer function. From the abstract ar-
of y; if the signal is present. K, is true, therPy is given by gumen_ts _above, the problem is _how to do the filte_ring SO as
a similar formula withy? set to zero. The log-likelihood to maximize(at some instant of time,) the SNR defined by
ratio is then found to be

=2,

SIN=|vy(to)|?/(v2), (12

. 1
YiSIQyi_E(yiSIg)Z} / of (5 wherev, is the scalar output produced by the signal without
noise andv, is the output produced by the noise.
The noise in the detector can be characterized by observ-
ing the noisy detector output in the absence of any signals
and experimentally measuring the spectral density matrix

and the optimal decision rule is choode if

) 1 )
zi: yiyis'g/oizzln)\oJrzzi: (y992/ o2 . (6) S whosemnth component
+ o X
The left-hand side of the above inequality is the value of the SM(w)= J e 1 (Xm(D) X, (t—7))d7 (13
linear filter v, -
is the Fourier transform of the correlation function for the
v= 2 ayi, (7)  mth andnth outputs. Then the signal and the noise factors in
! Eqg. (12) are
which maximizes the energy SNR defined by rede
’ Vs(to):f Ze""tokT(w)Xsig(w), (14
Vg _
SIN=—5 ®)
(2 de
(voy= f > K'(@)S(w)k(w). (15

Here VSig is the filter output value for a noiseless signal,
while (7)) is the variance of the output if there is only noise.
As shown for example if9], choosing filter coefficients pro- Using the calculus of variations to  solve

portional to S8(SIN)/ 8ki(w) =0 [24], one finds that choosing

a=y%o? 9 K'(0)=x{®)S (o) (16)
gives a maximal SNR of maximizes the SNRatt,=0 for conveniencg and that the

value of the optimal SNR reduces from the ratio of two in-
S/sz (yisig)zla_iz (10 tegrals to a single integral
|
(" dw

and the decision rule is simply choosg, if the optimal S/N_f_w o(w)5—, (17)

linear filter outputy exceeds some threshold.

The value ofN does not appear in the above argumentyhere the integrand,
reducing the signal detection problem to optimal linear fil-
tering. Thus for detectors with either scalar or vector output, g'(w):Xlig(w)s;l(w)xsig(w)' (18
the optimal strategy for detecting a known signal is generally
to compute the value of the optimal linear filter wbalar  gives the available SNR density per unit bandwidth. For
outputr which maximizes the SNR. ¥ passes above some N=1, Eq.(16) and Eq.(18) reduce to the well-known result
threshold, then a detection is claimed. This justifies the emf23,25 for detectors with scalar output: the optimal filter
phasis given the SNR in Secs. IlI-VI. Section VII uses thetransfer function is the conjugate of the Fourier transform of
connection between the log-likelihood ratio and the optimakhe signal divided by the noise spectral density atfe) is
filter, given by Eq.(5), to analyze the accuracy with which the absolute square of the signal spectrum divided by the
unknown signal parameters may be estimated. First, howhoise spectral density. In the vector case the formatas
ever, rather than appealing abstractly to the existence of ursomewhat different since matrix inversion 8f is involved,
correlated sampleg;, a more explicit formula for the opti- and the factors do not commute, but in matrix notation the

mal linear filter is needed in order to proceed further. formulas are no more complicated than in the scalar case.
While uncorrelated samplgs were not needed above to
B. Explicit formula for the optimal filter compute the optimal filter, it is easy to show explicitly how

to construct linear combinations of the transducer outputs
Xm(t) which are statistically independent. Inspection of the
definition of S((w) in Eq. (13) shows thatS(w) is an
"N N Hermitian matrix,

A practical formula for evaluating the optimal filter can
be derived without having to compute uncorrelated sample
yi . In general, a linear filtering operation can be described i
the Fourier domain by

v(w) =k (0)X(0), (11) S=¢, (19
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and hence it can be diagonalized by a unitary mattfw). X(0)=Ys(@)fs(@)+ Y (o)), (27)
A new vector outpuy defined by
. whereY,s andY,; are matrices which describe respectively
Y(w)=U'(0)X(w) (200 the response to signal forcésacting on the(“spherical”)
antenna and the response to back-action fofcasising in

then has a spectral density matrix the transducers(Explicit formulas for Y, and Y for a

Sy=UTSxU (21) spherical antenna with radial transducers are derived in Sec.
Il below.) Lets,, s, ands;, be, respectively, vectors listing
=diag{y(w), . . . In(w)). (22)  the velocity, force, and force-velocity noise spectral densities

of the transducers. With the transducer output vextoali-
Each new output channei(t) is statistically independent brated, say, to measure the transducer velocitjeshe ex-
from the others, and it has a noise spectral densifw) pected signal is
which is an eigenvalue o§,. One finds the total optimal

SNR given by Eqs(17) and(18) is the sum of the available Xsig= Ysfs (28)
SNR in each statistically independent output channel: . -
and the detector’s spectral density matrix is
SNRONG . _ o .
SIN=> (23 S=diag'sy) + Yydiag(sy) +diagsyy) 'Y+ Ydiads) Yy -
=1 (YD) (29)
EN: +2|y¥9 )% do The signal-to-noise ratio density is then
= —_— (24
=) Glw) 2w () =fIY{S MY iefs. (30
C. Amplifier limit for N>1 If the transducer systems are lossless and passive as is the

Gravitational wave detectors look for such small signalslart'.tenrﬁ’_th_er\'(enirgy conservatlﬁn |m_pI|Iedehe reciprocity re-
that maximizing the SNR as far as fundamental limits allow'310" T¢t= — Y- FOr many ampli 'eT"”C uding supercon-
ducting quantum interference devid&QUID) amplifiers

is vital. Braginsky[26] was the first to recognize that the . )
effect of amplifier noise on the antenna’s motion must becoupled through lossless passive electromechanical transduc-

considered in calculating the limit of sensitivity. Giffaps] €S [28]), the time-reversal symmetries of the amplifier's
showed that, for a cylindrical antenna with a nonresonanfduations of motion imply thag, is pure imaginary. With
transducer coupled to a linear amplifier, the SNR for detect!€S€ Wo assumptions, the spectral density matrix can be
ing a burst signal approaches the limit written as

E Sc=diagsy) +]Yydiad Im(st,) ]+ diad Im(squ) 1] Yt
SIN=— (25 :
kBTn - Yttd|aqu)Ytt . (31)

as the thermal noise in the antenna is reduced to zero by For the caseN=1, Price[15] showed that there is an

lowering the physical temperature to zero or increasing it%quivalent physical model for the behavior ofw). He
mechanical quality facto® to infinity. HereE is the energy  ghowed thatr(w) = e(w)/ksT,, Wheree(w) is the spectrum
that the gravitational wave burst would deposit in an antenngf energy which would be dissipated if the signal force was
initially at rest, andT, is the noise temperature of the me- gppjied to the lossless detector after replacing the amplifier
chanical amplifier, defined by by a mechanical impedance equal to its noise impedance

KeTh=VStS,—[IM(Sty) 1%, (g  Zn defined by

= +]j .
where S;, S, are respectively the spectral densities of the Zn=[kaTnt1IM(St) /S, (32

amplifier's back-action force noise and its additive velocity £, the caseN>1, suppose that each amplifier is replaced
noise, andSy, is the force-velocity cross-spectral density. v its noise impedance. Then reaction forcefs
(To avoid violating the Heisenberg uncertainty principle, = —diag(z,)u, appear in Eq(27). The resulting transducer
kgTo,=%hw [27].) Michelson and Taberl4] proved that Eq. velocity response to the signal ig=v, with

(25) is a general limit applying also for any lossless, passive,

transducer. _ v=[1+Yydiag z,) ] Yisfs, (33
For a detector with vector output, EQR5) needs to be
generalized since there is in principle a differ@itfor each  wherel is the identity matrix and, is the vector listing the
of theN transducers. Below, Price’s methfib] for proving  noise impedance of each transducer. Then the spectrum of

Eq.(295) is used to derive a generalized theorem applicable t@nergy which would be dissipated in the noise impedances is
a spherical gravitational wave detector with arbitrary asym-

metries. e(w)=v'diad Re(z,)]v. (34)
Assuming that the detector is linear and thermal noise is

negligible compared to back-action noise, the output of thaJsing the relations betweeqT,, Z,, S, S,, andsy,, to-

detector can be written as gether with the assumptions th\aft= —Yy and s, is pure
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imaginary, the above expression fefw) can be expanded The general case of interacting transducers, Withnot

out and some terms canceled to give diagonal, is more complicated sino€w) ande(w) are not
fot o1 so closely related as in Price’s equivalent model for the sca-
e(w)=fsYsB™ Y, (39 Jar case. However, numerical experiments show that the ef-

fect of the extra commutator term in E(B8) is always to

where shift the eigenvalues ofA(w) closer to the average of
4 s, {{Im(sfu)} g{m(sm)} kgT,/Re(Z,) without changing the sum of the eigenvalues.
B=dia +jYdia +dia i Yit Therefore, the inequalities in Eq0) and(41) are valid for
kBTn kBTn kBTn

the general case also, as is verified by the numerical results
. St of Sec. V C.
—Yndlﬁqﬁ}\(n- (36) Equation(41) generalizes Giffard’s amplifier limit theo-
Bin rem to a lossless linear detector with vector output having a
Comparison of Eqs(30) and (31) with Egs.(35) and (36)  range of amplifier noise temperatures. If all the noise tem-
shows thato(w) ande(w) have very similar forms. If the Peratures are identical, then the lower and upper bounds on
transducers all have identical noise temperatures, it is cledf® SNR are both simpl§£/kgT, and the minimum detect-

that o(w) = e(w)/KgT, just as for the casbl=1. able energyfor SNR=1) is kgT,. Of course, to attain this
If the transducer noise temperatures are not identical, the#{miting sensitivity an experimenter has to fully characterize
o(w) can still be put into a form analogous to EG4): the detector by measuring;y andS, and then implement the
optimal filter given by Eq(16).
o(w)=VIA 1y, 37 One might wonder why there seems to be no improve-
ment in sensitivity if several identical transducers are placed
where close together on the antenna so that they essentially monitor

the motion of the same point on the antenna and form a
A=dia% ksTh composite transducer. Even after averaging the outputs of the
Re(z,) N transducers the minimum detectable energy is unchanged

) 1t from the valuekgT, which would be obtained if only one
X{[I+Yydiagz,)] 7} (38)  transducer were used. The explanation is that while the ad-

. : ditive noise is reduced by averagings¢/N, the total force
The commutator in the second term/Atabove is zero when noise for the composite transducer is increaseNgo with

Y is diagonal so that the transducers do not affect one argfu andkgT, unchanged. However, the composite transducer

other as in the Zhou-Michelson independent transducef '\ -." s times larger noise impedance which, as ex-
schemd9]. In that case,

plained in Sec. Il below, increases the detection bandwidth,
and improves the sensitivity when the detector is not lossless
v, (399  and thermal noise is significant.

+[1+Yydiagz,) ] ‘{diagkgTy), Y]

Re(z,)
kBTn

O'(w)ZVTdia%

so that, for independent transducers, the SNR is the weighted
sum of the energies dissipated in the noise impedances, each Ill. SPHERICAL DETECTOR DYNAMICS

energy being divided by its corresponding noise temperature. e the preceding section considered the sensitivity of a
Since each component @f, and Reg,) is positive, Eq(39)  general linear detector with vector output, the rest of this
and Eq.(34) imply that o(w) satisfies the inequalities paper specializes to a spherical gravitational wave antenna
with N transducer systems coupling only to radial motion.
&w) <o(w)< &) (40) Perfect spherical symmetrfor at least degenerate quadru-
maxkgTp) min(kgTp) pole modesis assumed, but the transducers may be located
_ ) ) arbitrarily and may have completely different mechanical
Integrating over all frequencies gives and noise parameters. Although the methods used below
could be adapted to consider nonradial transducers as pro-
E <S/N= — E (41) posed by Zhou and Michelsd®], radial transducers were
maxkgT,) min(kgTp) '’ chosen for several reason§) to provide the basis for a
concrete analysis of possible detector behayiormost ex-
where isting detectors use transducers monitoring motion normal to
the antenna surface, afid) the Johnson-Merkowitz dodeca-
E— JOC e(w)d_‘”_ (42 hedral arrangeme8] employs identical radial transducers,
w 2 which is a definite practical advantage over the Zhou-
Michelson mix of radial and tangential transducers which
Since the detector is assumed lossless, energy conservatimqguire resonator masses differing by a factor of abou®13
implies that the total enerdgy dissipated in the noise imped- to give matched responses.
ances equals the total energy an impulsive signal would ini- The dynamics of a sphere interacting with radial transduc-
tially deposit in an antenna initially at rest irrespective ofers and gravitational waves is described below using matri-
whether or not the amplifiers are replaced by their noise imees suited to evaluating the optimal filter and SNR. Antenna
pedances. thermal noise is included, and a high-Q expansion derived
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which forms the basis for analyzing the effects of transducefive terms with poles at- wy. Keeping just those terms, one
asymmetries. has the following simple form fo¥ :

Yo~[u(s+ wd/s+we/Qp)] M for w=~=+ wo,

4
Before showing how matrix notation can be used to com- “0
pactly describe the dynamics of a spherical gravitationalvhere u is the effective mass of the antenna avdis the
wave antenna interacting witN resonant-mass transducer matrix with elements
systems, consider the dynamics of a bare sphere. The veloc-
ity JS of the sphere at positiaﬁcan be written as a sum over
normal modes:

A. Bare sphere

M ap=(3c0€0,,—1)/2, (48)

where 6,, is the angle between, andry..
L. . Mathematically,u is one half the reciprocal of the residue
Us(r, @)=, an(w)dn(r), (43 of the radial driving point admittance of the sphere at
" s=jwg. Physically, if the sphere is driven aly with a radial
I L , force at any single point, the ratio of energy stored in the
where the,(r) are the orthogonal elastic eigenfunctions of yqtion of the sphere to squared radial velocity at that point is

the sphere. the same as if one was driving a magsattached to an
When transducers are attached to the sphere, the Valuesiminite mass by a springwé. The response of the sphere at

uy(r,) at the attachment points will be of primary impor- |ocations other than the drive point is encodedNby Equa-

tance. So let tion (48) can be derived from Edq46) using properties of the
e e spherical harmonics for'=2, but the result can be inferred:
Us(w)=(r1-Ug(ry,m), ... Iy Us(fy,@)) (44 inacoordinate system in which the drive point is at the north

pole, the only quadrupole spherical harmonic excited is the
be the N-dimensional vector of radial sphere velocities atone withm=0, which has the angular form appearing in Eq.
N Ioca’cionsfa on the sphere’s surface. LEtbe a vector of (48).

N radial forces applied at the points. Then the response of _ For the fundamental quadrupole frequency of a sphere,
the bare sphere can be described by a mechanical admittanéB0U and Michelsori9] evaluatedu as a function of the
matrix Y, which gives the values of the sphere velocities asantenna material’s Poisson ratio. For a Poisson ratio of 0.33,

a linear response to the applied forces: n=0.30Mg, where Mg is the total physical mass of the
sphere. Interest has also been expressed in other sets of quad-
Us(@)=Yo(w)f( ). (45)  rupole modes for gravity wave detection, especially the next

higher frequency grouf®9,30. The radial eigenfunction for
The general eigenmode expansion of the admittance matrie second quadrupole modes nearly has a node at the sphere

of a linear System gives the ComponentsYQfaS Surface[31,6,2q, so those modes do not Couple as ea.Sin to
surface mounted transducers as do the lowest modes. For the
1 P b (T do(r second quadrupole modes at the surface, this author calcu-
Y=y 5 [Ta Go(Ta)ILro- énl b)], latesu =455\, but if holes were bored into the sphere so
n St wy/stwn/Qy f (D) dn(F)|2dr that radial transducers could be mounted al0.46R; at the
antinode of the modes, then=0.281M4 is quite similar to

(46)  the value for the fundamental guadrupole modes at the sur-

where w,, and Q,, are the resonance frequency and qualityface
factor of thenth mode,s=jw, andp is the density.

Equation(46) is nothing more than the result of applying
the usual eigenfunction method of solving the elastic equa- Armed with the admittance matriX, for a bare sphere, it
tions of motion, but with the normalization chosen to giveis relatively simple to describe the dynamics of the sphere
admittance matrix elements. When E@.3) is substituted when instrumented wittN radial, resonant-mass transducer
into the equations of motion, the denominator\rti}lb arises  systems attached to its surface. The simplest such transducer

from multiplying the differential operator acting am, by ~ Systems WOUld ConS_iSt of a set meagses attaphed to the
é.(1) and integrating over volume. Tﬁ%- (Zn(Fb) factor in sphere by springs with electromechanical amplifiers measur-

the numerator comes from the overlap integral between th&'J the radial displacement of each mass relaiive to its at-
- ) A IR . A~ tachment point on the sphere surfa¢blore complicated,
point force applied at, and ¢,(r), while ther,- ¢,(r,)

. _ . multimode, transducer systems with several mass-spring
factor comes from evaluating the solution for the veIOC|tyStages chained togethE82] can be handled similarly as is
response at, in the radial direction. Spherical symmetry described latey.
implies that the radial eigenfunctioms- ¢,(r,) are propor- If N single-mode transducer systems are used/rlgt
tional to the real spherical harmonitsee Sec. Il D beloyv k¢, u;, andf, be, respectivelyN-vectors listing the trans-
For a gravitational wave antenna, the amplitudes of thelucer masses, the transducer springs, and the relative veloci-
five degenerate quadrupole spheroidal modes are of primaties and external forces applied between the transducer
interest. At frequencies sufficiently near the lowest quadrumasses and their attachment points. Then the dynamics of
pole frequencyw,, the expansion foY , is dominated by the the detector is described by

B. Sphere with N radial transducers
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:Y[

where the grand admittance matikis a 2NX 2N matrix

f D. Interaction with a gravitational wave
uS S

! (49

The radial motion of the bare sphere’s quadrupole modes
is given by the five real spherical harmonigs for /=2,

Ut

comprised of fouNx N submatrices(ss, Ysr, Yis, Yit: [ o] [ 3coso-1
W — y3cospsin26
Yos Ve ¢ 5 o
= (509 Us | =\ —| — J3 singsin26 (543
Yis Yu 16
Wac J3cos2psintd
[Yo'+diagms)  diagms) ] (500, [ s ] | \3sin2¢sirte |
diag m;s) diagk,/s+mys)|
" 32%/r2—1 7
2
As Eq. (50b indicates, the detector's impedance matrix 5 —2x2r
Z=Y ! is given by the composite impedance matrix de- =\/—o7V -—2yzr? |. (54b)
scribing N isolated transducer systems, but with the bare 1 (x2—y?)/r2
sphere’s impedance matrh((gl added to the sphere-sphere )
submatrix. This simply states that, if the velocities of the L 2xyIr

transducer masses and the sphere attachment points are

specified, the required forces are the forces needed to make Assuming that general relativity correctly describes the

isolated transducer systems move as prescribed, plus extirateraction, a plane gravitational wave excites only ifg

forces on the transducer attachment points equal to the forcesd ¢, modes in a coordinate system with the wave travel-

needed to move the bare sphere to follow the attachmeribg down thez axis. More general metric gravitational theo-

points. ries can produce a different interactif®9], but in this paper
For the case of multimode transducer systems, the genegeneral relativity will be assumed to hold. In the wave-

alization of Eq.(50b) uses the impedance matrix elementsdirected frame, the overlap integrals of the gravitational tidal

for chains of mass-spring stages, which, although more confoerces with the sphere modes 464

plicated, can be readily calculated using partial fraction tech-

nigue§[33]. For example, for_a two-mode traqsducer system fr’n=(w/wo)zm(o,o,om(w),—hx(w)),

with final masses and springs,, k, and intermediate (55)

masses and springs,, k; the transducer impedance matrix

for the isolated system is whereh, (0w) andhy(w) are the Fourier amplitudes of the

1 1 two polarization components of the wayeanduv are, re-
m,s m,s S : . : i
m;s 0 ~ 0 spectively, the density and extensional sound velocity of the
ko |+ +| kg . antenna material, and ~0.201 is the reduced energy cross
mzs m23+ ? 0 0

0 0 section of the spherical antenna. The expressionffots
(51) normalized so that

C. Spectral density matrix 1, ,
| _ E= 5[fn(@0)]ff(wo) (56)
The transducers which measurecan be characterized as

electromechanical amplifiers with additive velocity noise
spectral densities,, producing back-action noise forcés is the energy deposited in the antenna. If coordinatem

with spectral densities; . Correlation between the force and the wave frame are related to detector coordinatés a
velocity noise of each amplifier is described by the crossygtation matrixR

spectral densities;,. Then the cross-spectral density matrix
appearing in Eq(13) is

. | . L , 1" =R(Sgu. Ogu: Ygu)' (57)
S=diag s,) + Yydiag sy,) + diag(sy,) Y + Y diag s) Y,
with Euler anglespg,,, 64y, andiy,,, then the force overlap
+2ksT Re(Yy), (52 components in the detector frame are given by a transforma-

where the term proportional to the real part\gf gives the tion law,
thermal noise required by the fluctuation-dissipation theorem
[34] for a detector at temperatufie =S $ (RF 5

If all five of the antenna’s quadrupole modes have the 2 m¥n(") ; m #n(R), 58

same quality facto®, as assumed in E¢47), then expand-

ing Eq. (50 to first order inQ, *, one finds[35] which is well known for the spherical harmonif8]. With

1ot the sign conventions chosen in E§44a, the transformation
Re(Yi) = (rwo/Qo)YsM ™ Yis. (53 lawis
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fm:(w/wO)Z\/mgfal For a given set of detector parameter valuegy) can be
computed; for given source direction and polarization ampli-

- J3 - tudes, a value foffg can be found, then Eq63) allows
—sirtoh, o(w) to be evaluated, finally, numerical integration gives the
2 value of the SNR. However, before launching into a numeri-

1 cal study of how the SNR behaves, it is desirable to have a
Esinzecosﬁm + sindsingh deeper analytical understanding of how the SNR depends on
the signal wave form and on the detector design. Much the-
oretical insight can be gained in this regard by drawing par-
allels with the theory developed for resonant-bar detectors.
1 The performance of bar detectors is often characterized by
§(1+co§6)c052¢h++cosﬁsm2<;/>hX their sensitivity to impulsive burst signals which have Fou-
rier components which vary little over the detection band-

1
X Esinzasinqu —sinfcosph , (59

1 width whereo(w) is large. For impulsive signals, the SNR is
5(1+CO§'9)Sin2¢h+ —cosgcos2ph proportional to the energl that the signal would deposit in
- - the antenna if it were initially at rest. The pulse detection
provided a detector coordinate convention is chosen so th&CiSe temperaturg, is then defined as
Ygu=0. £
If N=5, then there are sufficient degrees of freedpro- ke Tp= IN- (65)

vided no two transducers have the same or antipodal attach-
ment point$ to excite any linear combination of the five
qguadrupole modes using the point fordgs Therefore, the
description of the detector dynamics derived above can b
used to model the detector interaction with a gravitational
wave by finding point forces which mimic the effects of the
distributed gravitational forces on the anten(he gravita-
tional forces on the transducer masses are neglected beca
of their much smaller size compared to the sphefee re-
quired equation fofy is

While E for a bar-antenna depends on source direction and
olarization, T, does not. As described in Sec. Il C, Giffard
53] showed thafT, approaches the amplifier's noise tem-
peratureT, [defined by Eq.(26)] in the limit that the me-
chanicalQ’s approach infinity. For high but finitQ's, T,
lg((aceedsTn by a sum of terms of ordekgT/(Q;5), where
i is the Q of the ith resonator in an antenna-multimode-
resonator chain and is the fractional bandwidth shown by
o(w) for a given detector design. Pri¢&5] explored the
— AoE T sensitivity of T, to dissipation as the basis of optimal detec-
fm= 4m/SLCTs, (60 tor design: in {)he “lossless limit,” any choice of transducer
masses and springs givds=T,, but in the presence of
dissipation, it is best to choose masses and springs in a clever
Gan= (T ). 61 Way to make the d_etector as “Ios_s _tolerant” as po_ssi_ble.
an-rmia Price found that typically the sensitivity to antenna dissipa-
If N=6, then solutions fof, are not unique. Any solution to tion was as great as the dissipation in any of the transducer

Eq. (60) gives a valid description of the detector responseresonators. His work leads to a natural, precise, definition for

for definiteness and numerical stability, the pseudoinvers€ [11] which characterizes the sensitivity to the antenna

[36] of GT was used to solve EG60). Q. and he showed how to choose masses and springs to
Apart from different normalization, the matri@” is the ~ Maked large by makingr(w) “maximally flat.”

same as the “pattern matrix” defined by Johnson and How does the theory for bar detectors carry over to

where theN X5 matrix G has components

Merkowitz [8], and is related td/ by spheres? Equ_atior(§2) and(53), ar_1d(63) _and(64) hold the
answer. Defining the pulse detection noise temperature as for
A bars, and then expanding to first orderTifQ,, one finds
M=—GG". (62)
> E
keTo(fs)= gy (662
E. SNR and highQ expansion
All the ingredients needed to compute the SNR for a <l Teff kB_T ™
spherical gravitational wave detector using the general for- ke T (fs) + o 6%(fy)" (660)
mulas of Sec. Il are now in place. According to E49), the
N transducers give a vector outpug,= Y,sfs, wheref is a where
solution of Eq.(60). With S, given by Eq.(52), Eq. (18) for T (1/2u)M]f
the signal-to-noise density becomes ke TM(f) = > # S (67)
NS [T o(w) dwl27r]f
o(w)=fIK(w)fs, (63
and

where tr 4o 2
575 = (ml wo)[f5[ 22 Ko(w)dw/27]f] 69
(s CIMEGE [T EK o(0)M K o(w)dw/27]fs

K(@)=Y{{S(®)] Y. (64)
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For the spherical detectof,, is a function of the source . (ms+k/s) 72

direction and polarization encoded hy Likewise, the loss- eig(Ysy = 2 (72
mS+ K¢ /S) w/ 7i(s+ wpls) + mik

less limit of T, Tﬁ“(fs) and the effective fractional band- (m; S ul (st wpls)+ mik

width 8°(f,) are also generally dependent on source direc- —ms

tion and polarization. Sections IV—-VI explore the anisotropy eig(Y) = : (73

2 .
of T and 5° over the sky as a function of the locations and (Mis+ke/s) ul 7i(S+ wols) + miky

parameters of the transducers attached to the sphere. The above formulas do not explicitly depend dh their

form is always the same as for the cade=1. The only
IV. SPECIAL TRANSDUCER SYMMETRIES difference forN>1 is that the effective mass of the antenna
If the transducer parameters or attachment locations ex? 'S replaced by new effective massgsz;. Thus, if the
transducers are identical, the total SNR is the sum of SNR’s

hibit certain symmetries, then the behavior Bﬁ“(fs) or Y i .
FrE N e i i . ; for statistically independent output channels, each of which
5°"(fy) is simplified considerably. Three symmetries are ex has a form equivalent to that for a two-mode bar detector,

amined here(i) identical transducer noise temperaturgs, . : .
completely identical transducer systems, andii) with effective antenna masses for the bars given by the val-

dodecahedral/icosahedral transducer locations. Previod’ses'“/ 7 -

work [16] examined the consequences of each of these sym- Th_e elgentvaflttjewi ((j:an relad|I)t/_ be f(k))ur:(ilhnumgncally forb
metries for a spherical detector. The results are summarize y given Set ot transducer focations, but th€y obey a numboer
below. of analytical properties. The; are hon-negative and sum up

As described in Sec. Il C, Pridd5] showed thato () to N, and at most five of them are nonzef®he zero eigen-
for a lossless multimode bar ’detector equele)/ (ks T,) SO values are equivalent to infinitely massive bars which do not
B n . . . .
that T,=T, for any lossless bar detector. For a lossles?'Ve transi)ducelz's;]gngls n rfe7ponse to fqrces acting (?cn the
spherical detectore(w) and o(w) are generally no longer antenna, but which give useful vetoes against spurious forces
proportional to each other, except when all figs of the acting on a transducgrAs Johnson and Merkowitz discov-

e . - ered[8], if the transducer attachment points are located at the
amplifiers are equal. Then once agaw)/(kgTn) = o(w) centers of six, nonopposite, faces of a regular dodecahedron,

and . ; . )
then a very special symmetry exists. From the point of view
eff e\ described here, what is special is that the nonzgie dis-
KgTy'(fs) =kgTn forall fs. (69 play the maximum, fivefold, degeneracy:
If all the transducer systems not only have equglbut 7=N/5, i=1,...5. (74)

are equal in every respe@qual masses, springs,,, and

Z,)), then this stronger symmetry gives an equivalence with @ivefold degeneracy is also achieved for ten transducers cen-
set of bar detectors: the SNR is the same as if the identicakred on half the faces of a regular icosahedron. In either
transducer systems were mountedMrseparate bar anten- case, it does not matter hot# is divided up among the

nas, with effective antenna masses equivalent bar detectors since the spectral shape of each con-
tribution to o(w) is identical, so Eq(69) holds true once
mi=plnyi, i=1,... N, (70) again, and the total SNR is direction and polarization inde-
pendent.
where ther; are the eigenvalues d&fl, and with the signal As found by Johnson and Merkowitz, the quadrupole
energyE divided up among the bar antennas in a sourcecomponents of the antenna motion are statistically indepen-
direction- and polarization-dependent way. dent output channels when the transducers are identical and

This equivalence can be derived as follows. If the translocated with dodecahedral symmetry. This is easily shown
ducers are identical, then E€R9) shows that a basis which using the methods of this paper as follows. Expressing the
diagonalizes Y, also diagonalizesS,. Furthermore, antenna velocity as;=Ga, wherea is the vector of mode
diag(m;s) and diagk;/s) are both scalar multiples of the amplitudes, then, in general,is found by solving the equa-
identity matrix, and hence commute witty. Then Eq.(50b)  tion
shows that, if anNXN unitary matrix U diagonalizesyY

(and M), then the NX 2N matrix diagU,U) diagonalizes Ga=Yds (75)
each of theN XN submatrices irY, and hence diagonalizes .
Y, in particular. Since the submatrices ¥f 1 commute =Yss¥is X (76)

with each other they act as scalars, ahdhay be computed . _ o
explicitly by applying the formula for the inverse of a If N>5, the equations fora are overdetermined giving
2% 2 matrix to the submatrices of. If UTMU =diag(n;), N—5 veto conditions, but there is always a least-square error
then one obtains statistically independent output channegolution

y=U"x. The eigenvalueg; of S, [see Eq.(22)] and their B _

contributions too(w) can be read from Eq29) using the a=(G'G) 1G VY 'x. (77)

following eigenvalues of;, Y., andY: . .
geg t Tss s For the dodecahedr#br icosahedralarrangement, the five

quadrupole spherical harmonics are not only orthogonal
= > , (71  When integrated over the entire sphere, but also when re-
(ms+k/s) wl mi(s+ wpls) +mek; stricted to the transducer attachment points. Then

wl pi(s+ wdls)+ms

eig(Yi)



574 THOMAS R. STEVENSON 56

N
GTG=Ediag{1,1,1,l,l, (78)

which according to Eq(62) implies that the columns doB
are eigenvectors d¥l each with eigenvalueg=N/5. There-
fore, one can choose the orthogonal matliso that its first
five columns equal (4/N)*?G. The solution for the mode
amplitudes in Eq(77) then reduces to being proportional to
the first five components of=U"x:

a=\N s Yi (79

47 .
= \/We@,(YSS)(UTfS)i , fori=1,...,5. (80

FIG. 1. Bandwidth anisotropy for a dodecahedral arrangement

Thus, for a dodecahedral or icosahedral arrangement d¢fith 15° location ftolerance. Plot of maee™") versus ,0);
transducers, the statistically independent output channel8@%.s(6)=0.184.

with nonzero coupling to the sphere are proportional to the
qguadrupole mode amplitudes, and the wave form of each
a; is proportional to the velocity of an effective antenna mas
5u/N in an equivalent bar detector.

Figure 3 helps explain how the bandwidth asymmetry de-
velops by showing the eigenvaluef Ky(w). The analysis
%f identical-transducer symmetry in Sec. IV shows that the
shapes of the five nonzerq’s are the shapes af(w) for

the equivalent bar detectors. Some of thgs are larger

V. EFFECTS OF TRANSDUCER ASYMMETRIES (smalley than the 6/5 for the symmetrical case, correspond-
ing to a lighter (heaviej bar, increasing(decreasing the

: ; . %hode splitting and bandwidth. Depending oa, 0, ¢), the
Egs.(67) and(68) when transducer asymmetries exist. Start-Channels are weighted differently in(w) giving rise to the

ing with symmetrically located, identical transducers, vari- 5 asymmetry
t .
ous tolerances were relaxed, a-ﬁgjf and 5™ were evaluated Figure 4 summarizes the results of all the random trials

on a grid covering the sky using the linear algebra p""Ck"’lgﬁnd shows that, as expected, deviation from regular dodeca-

MATLAB [37]. hedral locations increases™ for some directions and polar-
izations, and decreases it for others. From the figure, it is
A. Location asymmetry also apparent that the size of the asymmetry grows linearly

Sets of six transducer locations perturbed around reguldp the angular tolerance.
dodecahedral locations were randomly generated. Using _
identical, single-mode transducers with parameters chosen to B. Tuning asymmetry

give Price’s “maximally flat” matching networK15] for Figure 5 shows a maximally flat transducer system with

effective antenna mags/ 7= 5/6u, one finds asymmetries in perfect locations but mistuned spring constants deviating up
5°" as shown in Figs. 1 and 2 for one trial with 15° toler-

ance. Price’s bandwidth parameter was choserda$.1,
giving a theoretical valug®~0.17/2 for perfect dodecahe-
dral locations(For single-mode transducer8,is the square
root of the ratio of the transducer mass to the effective an-
tenna mas$. ldentical-transducer symmetry implies
Tﬁ“zTn, but 5°" depends on source directior(¢) and
polarization state) [38].

Single-mode transducer systems were chosen for simplic-
ity, for even though multimode systems may be handled as
indicated by Eq.51), little qualitative difference would be
expected in the anisotropy effects. The main effect of using
additional resonators is an impedance transformation in
which the transducer is made to appear to the antenna as
more massive transducer with a larger noise impedgtige
To achieve the order 15% fractional bandwidths assumed in %~ > 3 ) 5 6
the examples presented here, existing or projected transduce o
technology would likely require at least two-mode transducer
systemq 11], but this will not affect the conclusions derived  FIG. 2. Plot of min(s®") versus ¢, 6) for the example in Fig.
here. 1; ming,, (5 =0.095.
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FIG. 3. Eigenvaluex of SNR kernalK o(w) for the example in
Fig. 1; »={1.67,1.53,1.26,0.89,0.54 giving bandwidths of
{0.18,0.17,0.15,0.12,0.89Dashed line: fivefold« for perfect sym-
metry hass®f=0.15.

FIG. 5. Eigenvaluesc of the SNR kernaKy(w) for a regular
dodecahedral arrangement with 20% tolerance on transducer spring
constants. This example has spring constants perturbed by factors
1.072, 1.174, 0.953, 1.008, 1.132, 0.814.

to 20%. The transducers are thus not identical and equiveshape as for the symmetric case. Thaf§ is unchanged.
lence to a set of bar detectors is lost; howelersymmetry  Figure 8 summarizes the results and shows Titasym-

still gives Tﬁ“ = T,, so one only need look a" asymme- metry develops linearly with the tolerance, and respects the
try. Figure 6 shows thas®" is always decreased, substan-bounds from Eq(41):

tially for some directions and polarizations, but hardly at all
for others. The effect is second order in spring constant tol-
erance.

min(T,) <T&"(fo)<maxT,). (81)
In fact, the numerical results show that there are usually
directions and polarizations for whicit" is quite close to

max(T,) or min(T,).

C. Noise temperature asymmetry

The final asymmetry considered here is variabjgbut
identical Z,,. Figure 7 shows an example for 20%; toler-
ance. Since both the identical-transducer and idenfigal-

. . eff
symmetries are broken, one might expect hathand T to Calculation of SNR anisotropy can be used to evaluate the

be anisotropic, however, the numerical results show that, almerits of alternative transducer locations relative to the
though thex become nondegenerate, they all retain the same

VI. ALTERNATIVE TRANSDUCER LOCATIONS

0.1
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0.14}
L E
02 0.13f
0-18 0.12_
0.16 0.1+
= # 5
w 0.14 w’ 0.1f
012 0.09}
0.08} 3
0.1
0.07}
0.08
0.06 : : :
0.06 , 0 5 10 15 20

0 5 1'0 15 spring constant tolerance (%)

location tolerance (degrees)
FIG. 6. Maximum and minimum effective bandwidth for regular
FIG. 4. Fractional bandwidth for dodecahedral arrangementslodecahedral arrangements with 0—20 % spring tolerance. Plotted
with 0°—15° location tolerance. Plotted for each random trial arefor each random trial are the max)(and min ©) of 5°" and max
max (*) and min ©) of 5°" and max ¢) and min (x) of (+) and min (x) of(éeff>,/,. Lines join averages of trials at each
(5™ ,. Lines join averages of trials at each tolerance. tolerance.
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FIG. 7. Eigenvaluesc of the SNR kernaKo(w) for a regular FIG. 9. Nonzero eigenvalueg (which determine equivalent bar
dodecahedral arrangement with 20% toleranc& pnFor this ex-  antenna masspsersus transducer latitude for fivefold arrange-
ample,T,=0.999,1.182,1.099,1.022,1.156,1.050. ments of transducers with or without a transducer at the north pole.

In both cases, the five eigenvalues form a singlet and two doublets.
dodecahedral arrangement. The regular dodecahedral amgle curves for the doublets are the same with or without a polar
icosahedral arrangements with identical transducers are spgansducer.
cial in that they give isotropic and polarization-independent
SNR. So far this paper has examined the effects of perturbajuencies, they suggested placing five transducers equally
tions around the regular dodecahedral arrangement withpaced around the sphere’s north pole at a latitude chosen to
identical transducers. One might also ask what happens dive approximately equally spaced mode splittings. They felt
large changes are made in transducer locations or pararthat this criterion might yield a preferred location for the
eters. For example, how anisotropic is the SNR for othetransducers, and they found that the resulting angle between
transducer arrangements which have been prod@&®dand the pole and the transducefs- 1.180 allowed the transduc-
how robust is the regular dodecahedral arrangement undereas to be placed on five of the 60 faces of a pentagonal
failure of one transducer? hexacontahedron. Another reasonable sounding criterion for
placing five transducers might be to choose their latitude so
that the ratio between the largest and smallest mode split-
tings is made as small as possible to try to approximate the

Lobo and Serrano have proposed using only five transdujgdecahedral behavior.
ers, instead of six, to monitor the five spheroidal quadrupole The Lobo-Serrano arrangement and the minimal-splitting-
modeg20]. Rather than seeking to maximize the degeneracyatio criterion can be rigorously evaluated in terms of the
in the eigenvalueQ/ which determine the COUpled mode fre- anisotropy they produce ujeff Figure 9 shows the eigenva|_

uesy as functions of the latitudé at which five transducers
- are placed, equally spaced in longitude, with or without a

A. Five or six transducers?

/x*” % sixth transducer at the pole. The nonzero eigenvalues form a
1157 e T singlet and two doublets. Fa#=0.9553,N=5 gives only
i el | four nonzero eigenvalues because all transducers lie on
5 y,a({ nodes ofiy. The dodecahedral arrangement of six transduc-
%1_05. i * 1 ers occurs aP=1.1071 and gives the maximal fivefold de-
€ o generacy with ally=6/5, as shown in Eq74). The Lobo-
s 1w i Serrano pentagonal hexacontahedral arrangement is
%l—':o ol o Pego | #=1.180,N=5. The minimal splitting ratio criterion for five
X \\\8 transducers is achieved at+ 1.258, where there is a degen-
€ ool “vo € o | eracy between the singlet and one doublet, giving a maximal
Tl o value of 0.416 for ming;)/max(»,).
0.85} \\\\ ° 1 Figure 10 compares®" for the three proposed transducer
Tl arrangements. The pentagonal hexacontahedral arrangement
0385 0.05 01 015 02 is highly anisotropic and polarization dependent wifi'
' max(T,)-1 or 1-min(T;) varying by about a factor of 2 over the sky and, although it

gives greater bandwidth for sources over the poles, for some
FIG. 8. Maximum and minimum effective noise temperature for polarizations it gives inferior bandwidtfand hence inferior
a regular dodecahedral arrangement with 0, 5, 10, and 2Q,% Sensitivity if antenna dissipation is not negligiplégnan the
tolerances. Values of mak{") and min{e") are plotted versus dodecahedral arrangement over 78% of the area on the sky.
max(T,)—1 or 1—min(T,), respectively. The minimal-splitting-ratio arrangement is less polarization
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FIG. 10. Effective bandwidtt§.; versus source directioé for
three cases: the Lobo-Serrano arrangem@alid curvesg, the
#=1.258N=5 arrangement(dashed curvgs and the regular
dodecahedral arrangemeddash-dot ling For each case, maximum
and minimum bandwidth over all polarization states are shown.

FIG. 11. Eigenvalues ok y(w) for a regular dodecahedral ar-
rangement with excess additive noise in one transducer. Four of five
nonzero eigenvalues remain unchandddshed curve The fifth
decreases &S, increases $,=2,4,8,100,1000) for the bad trans-
ducer. TheS,=1000 curve essentially gives the lin8t— .

dependent than the pentagonal hexacontahedral arrangementrhg rejative robustness of the dodecahedral and icosahe-
and gives even larger bandwidth at the poles, but it is alsgy g arrangements is compared in Figs. 14-16 with

inferior to the dodecahedral arrangement over most of th%hzlooo for the bad transducer, which practically gives the

sky. limiting behavior forS,— . The worst case value @' is
N o better by a factor of 1.6 for the icosahedral arrangement, and
B. Excess additive noise in one transducer the corresponding®” is better by a factor of 1.8. It should be

If six or ten transducers need to be placed on a Spherica]Ointed out, however, that the mass for the icosahedral trans-
antenna to give an optimal, isotropic sensitivity, how robustducers was chosen to be 6/10 times that for the dodecahedral
is the detector to a failure of one transducer? There are sefansducers so as to scale with the lighter effective antenna
eral ways in which a transducer could fail. This section ex-mass in the icosahedral case. However, if the transducer de-
amines the effects of excess additive noise in one transducetign hasS; dominated by amplifier back-action noise rather
For both the dodecahedral and icosahedral maximally flathan by transducer mechanical dissipation, then it is more
systems,Tﬁﬁ and &°" were calculated a§, for one of the reasonable to assume that is held fixed rather than the
transducers was gradually increased to infinity. The limit ofmass ratiom/(u/7). Then the single-mode, icosahedral
infinite S, corresponds to a transducer which gives no signafransducers would optimally be lighter by (6/16)-0.84
output. The value o&; for the bad transducer is assumed to
be the same as for the other transducers.

Figure 11 shows the effects of excess additive noise o1
the SNR eigenvalues using the dodecahedral arrangement.
Four of the eigenvalues remain unchanged, but one develoyg
a zero neamw = w,.

Figures 12 and 13 show thaf™ and 6°" are unaffected
by the excess noise for a source directly over the bad trans
ducer. This is to be expected since such a source excites
sphere mode which has no coupling to that transducer. On
finds thatT‘,ﬁff and & depend only on the spherical angle
A 6 between the bad transducer and the source direction. C
a band around the sky 90° from the bad transducer
maxp(Tﬁﬁ) is degraded by a factor of 2.4. The corresponding
value of 6" is degraded by a factor of 1.9, further eroding
the sensitivity if antenna dissipation is significant. 1 : : : = ;

If the regular icosahedral arrangement is used instead, fic 0 0.5 1 1'2’9 2 25 3
ures analogous to Figs. 11-13 look very similar, except for
their vertical scale. Once again, a zero develops in one of the |G, 12. Effective noise temperature for a regular dodecahedral
x values, Ti" and 6°" are unaffected for a source directly arrangement with excessive additive noise in one transducer. Worst
over the bad transducer, and they depend only on the sourceaseT¢" (maximum over source polarizatipplotted versus the
transducer angla 6. angleA 6 between the bad transducer and the source direction.

25

max( T,%)

1.5r

2
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FIG. 13. Effective bandwidth for a regular dodecahedral ar- FIG. 15. Effective noise temperature for regular dodecahedral
rangement with excess additive noise in one transducer. Value qiN=6) and icosahedralN=10) arrangements when one trans-
Serr giving max(Te™ is plotted versus 6. ducer hasS,—o. Worst casele" (maximum over source polariza-

tion) is plotted versus the anglied between the bad transducer and

giving an increase in bandwidth by a factor of (10/8) the source direction.

=1.19 when all transducers are good. Therefore, when one
transducer is very bad, one would expé®f to be larger for
the icosahedral arrangement by 1.19 for sources over the bad The theory developed in Secs. Il and Ill can be applied to
transducer and 1:81.19=2.1 for sources 90° away. investigate other questions. For example, how accurately can
Thus the icosahedral arrangement is modestly more rosignal parameters such as the source direction and polariza-
bust against a transducer failure, with improvements in worstion be reconstructed? Magakiet al. [39] gave a method
caseTe" and 5" by roughly the ratio of the numbers of Of solving for the signal and polarization when noiseless,
transducers used, but whether this effect is enough to justif{]adlal, nonresonant transducers are used to monitor a spheri-

usingN=10 transducers instead bf=6 will depend on the cal antenna. Zhou and Michelsdf] used analytical and

cost of an increased number of transducers in terms of syd/onté Carlo methods to find the accuracy of estimated pa-

tem complexity and increased risk of failure weighed againsfam('}ters in the case v_vhere linear complnatlons of resonant

the benefits of lighter transducer masses or enhanced banﬁgnsducer outputs which give Fhe amphtgdes qf the anten-

width. na's quadrupole modes are five statistically independent
channels all with identical noise. This happens for the Zhou-
Michelson independent transducer arrangement and, as ex-

5 plained in Sec. IV, also for the dodecahedral and icosahedral

VIl. MAXIMUM LIKELIHOOD ESTIMATION

10 ' ' ' ' ' ' arrangements of identical transducers. Merkowitz and
104 0.16
0.15¢ 1
0.14
10>
0.13
3 0.12
10° w 0.
0.11
101 ‘ . . ) ) ) ) 0.1
08 085 09 095 1 1.05 11 1.5
/o 0.09
FIG. 14. Eigenvalues df ;(w) for regular dodecahedrdbwer 0'080 05 1 15 > 25 3
dashed and solid curveand icosahedralupper dashed and solid A8

curvesg arrangements when one transducer has excess additive

noise. Four of the nonzero eigenvalues are unaffected by the excess FIG. 16. Bandwidth for regular dodecahedrill=€ 6) and icosa-
noise(dashed curvgsThe fifth decreases to a limiting valdsolid hedral (N=10) arrangements when one transducer$as«. The
curvesg asS,— . value of 5 giving max(Te") is plotted versus the angles.
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Johnsor{19] have also investigated the reconstruction prob- P(x|a)P(a)

lem experimentally with a prototype truncated icosahedral P(af|X)=T- (84)

gravitational wave antenn@IGA). To investigate estima-

tion accuracy for an asymmetrical detector analytically, theif a cost function is not given, then a reasonable criterion is

explicit formula for o(w) given by Eq.(63) can be used to choose the most likely value af given the data, i.e.,

together with the connection between optimal filtering andchoose the mode rather than the mean of ahgosteriori

the likelihood ratio described in Sec. Il A. distribution. If thea priori probabilitiesP(a) are unknown
Just as for the signal detection problem, there exists a welr nearly uniform, then maximizing(a|x) is equivalent to

developed theory for the signal estimation proble28], but  maximizing P(x| @) or to maximizing the conditional likeli-
the literature appears to be lacking formulas written in a formhgod ratio

so that they may be easily applied to a detector with vector

output in general, and to a spherical gravitational wave de- _ P(x|a)

tector in particular. This section first briefly develops the T Po(x) (85)
required formulas, and then applies them to determine the

accuracy of signal reconstruction for a spherical detector. Finding the value fora which maximizes\ produces the

maximum likelihood estimate.

Two desirable properties of an estimator are that it be
_ ) ) ~_unbiasedthe mean of estimated values should equal the true

The first formula needed is one which shows explicitly harameter valugsand efficient (have the lowest possible
how to calculate the likelihood ratid comparing the prob-  yariance given by the Cramer-Rao bound described below
abilities of observing the data under the hypothedgsthe  |f an unbiased efficient estimator exists, then it can be shown
datax is only noise, andH,, the data is noise plus a known to equal the maximum likelihood estimatee Sec. 10.5 of
signalxsi( @), wherea is a vector listing the various signal [23]), and it is often found that the maximum likelihood
parameters on whicksjy depends. The explicit formula for estimator approaches the minimum variance bound as the
\ can be derived somewhat laboriously by assuming that thgNR gets large. The Cramer-Rao bo(iad] gives a formula
components ok are sampled at a large number of discretefor the covariance matrix of an unbiased efficient estimator
times, and then writing down and manipulating a generalizegvhich can be evaluated using If there are several unknown

version of Eq.(4) which takes into account the correlations parameters, then the Cramer-Rao bound involves “Fisher’s
between all the samples. However, the same result can hgformation matrix” v, which has elements

obtained much more quickly by starting with the abstract

A. Estimation theory for a detector with vector output

result for I\ given by Eq.(5), and using the abstract formula dInP(x| @) NP (x| @)

for the peak output of the optimal linear filter Eq3) and vi=E da Ja; (863
(9) to substitute in the explicit form found for the optimal

linear filter for a detector with vector output Eq41), (14), JIN\ (@) JIN\ (@)

and(16). The result is - da; Ja; |’ (86h)

82) where the expectation value in the above equations is the
conditional expectation given the value @fand the deriva-
tives are supposed to be evaluated at the true valua. of

where ( , ) is a convenient notation for the inner product Then the covariance matrix of the unbiased efficient estima-

1
In\= (Xsigax)x_ E(Xsigvxsig)x-

defined by tor is the inverse of Fisher's matrix,
o= (Y i (87)
- [Caws by, @3 '
(a.b)x %a (©)S(@)b(w 27 Equation(87) gives a powerful way to evaluate the accu-

racy of maximum likelihood estimates once it is seen how to
evaluate the expectation values which appear. Fronigy,
when evaluated at the true parameter values, the derivatives
of the log-likelihood ratio are

[This is a real-valued inner producta(t) andb(t) are real]
In words, Eq.(82) says that Ik equals thgpeak output of
the optimal linear filter designed fog;y when applied to the

data x, minus one-half the filter output when applied to dn\(@) [ dxgq IXsig
Xsig, this latter quantity also being the variance of the noisy T:( Eyo ) - (W’ Sig) (883
filter output according to Eq15). : : : X
The usefulness of a concrete formula fostems from the P
connection between and estimation of signal parameters. :< S'g,n> (88b)
Just as for the detection problem for a known signal, one da; N
reasonable criterion for forming estimates of unknown pa-
rameters is to assign costs for errors in the estimates, and _ [ do[ dXsg i 1
then to choose the estimates so as to minimize the expected - J,wﬁ da; S (o), (880

cost (the Bayes criterion If the cost function is the mean-
square error, then the optimal estimate is to compute thehere n=x—Xgq is the noise in the data. Thus the Fisher
mean of thea posterioriprobability distribution matrix elements are
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= do (= do' | X ®) T . phases of the two amplitudes, and the signal’s arrival time.
Yij:f %J 27 da (@) Thus a consists of these five parameters artdf). The
e ' ambiguity function is then
_ axsig(w/)
XE[N(w)n'(e")]S Yo' )—— (893 , = do ,
> da e )=f7 S-flwiaK(w)(via) (949
» do [* do’ | IXg(w)\T )
T LRl
—w T ) -0 £ & =2Rd Efs(w;a)K(w)fS(w;a’) (94b
0
_ MXgig(w") )
XSd@)S o) —— (89b)
| =2Re-fT(w Lal )de—wei“’(T'T)K(w)
. ‘9XSig &Xsig 89 I s o 7=0 0 2
B &ai ,070’]' X, ( C)

, _ _ _— st(wo;a’|r/—o)}- (940
where in the second line the Wiener-Khintchine theorem
[41] was used to expresg Bn'] in terms ofS,. The matrix

elements can be expressed even more neatly by defining c. Lossless narrow-band spherical detector with identical,'s

X' )= (Xeg @) Xsig @)y (90) Consider first the case of a spherical detector which is
lossless, narrow band, and has identitabymmetry.(Other
for then cases are considered below, but this case provides a connec-
tion with the Zhou-Michelson work9].) With these assump-
Py tions, Eq.(94¢ for y simplifies considerably. If the band-
= aal : (9)  width of the detector is so narrow that it is not useful to
U le=a model the signal phase and arrival time independefshe

i , _ .. Sec. VIIB, or if the arrival timer is known exactly by other
Equation(91) is used below to study the uncertainties in means, therr can be set to zero and removed as a signal

signal estimation for a spherical gravitational wave detectop, ameter. If the detector is lossless, so that thermal noise is
by explicitly evaluatingy and its derivatives. The function absent, therK =K. For a lossless detector with identical
x is what would be called the “ambiguity function” in radar T, symmetry,kgTe=ksT, for all signalsf,, so from Eq.
detection theory[42]. The physical significance of can (87) the integ,raEI} ofk rﬁu;t be s’
perhaps be made clearer by noting théix,a’) is the peak 0
output of an optimal filter designed to detegl(a) when © dw 1
the actual data igg(a'), andx (e, @) is the variance of that fﬁ EKO(Q)) ZWM,
filter's noisy output, so that the SNR obtained when using * BN
the wrong optimal filter to detect;(a’) is

Yij

(95

independent of the transducer locations and other param-
eters. Substituting this result into E(40 with =0, and

\12
S/N= [X((a’—a;] (92)  using Egs(60) and(62), the formula fory simplifies to
xXla,a

1

The more sharply peakegdis abouta= a’, the more accu- xlea')=o— — R fl(wo;a@)Mf((wo;a’)] (963

rately the true value ofr can be estimated. #E8In

B. Ambiguity function for a spherical GW detector =ﬁRe[f;rn(wo;a)fm(wo; a')]. (96b)

B'n

The ambiguity functiony for a spherical gravitational
wave detector can be evaluated using the results of Sec. lll.
The expected signal is;io( @) =Y fs with fs given in terms Before proceeding to evaluate the Fisher matrix and its
of the source directiond, ¢) andh, (w) andh,(w) accord- inverse, the estimation covariance matrix, it is worth com-
ing to Egs.(59) and (60). If the signal power spectrum is menting that the expression fgrgiven by Eq.(96b) is pre-
essentially flat over the detector's bandwidth, thep(w)  cisely the same ambiguity functievhich would apply if the

andh (w) can be parametrized as Zhou-Michelson independent arrangement of five transduc-
_ _ ers was used instead of the arbitrarily located, statistically
h, (w)=hcogge/s9@)e+ ~Jor, (939  dependent, nonidenticalradia) transducer channels for
which Eq.(96b) was derived here. This is easily seen: since
hy(w)=hsingelsI@ex—jor (93b  the Zhou-Michelson proposed transducers are designed to

independently monitor the five quadrupole mode amplitudes
whereh, B, €., €x, and 7 are real parameters describing of the antenna with the same noise in each channel, an opti-
respectively the total magnitude of the strain spectrum, thenal filter designed for an impulsive force with signal param-
relative magnitudes of the polarization amplitudes, theetersa but acting on a signal with parametess gives an
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output proportional to the sum of the expected mode ampli- Yge. =SiNA€ cosd sin2B SIN, (979
tudes times the actual mode amplitudese Eqs.(7) and i

(9)], but this is exactly what E((96b) prescribes. Therefore, Ve =SiNA e cosd sin28 SN, (979
for a lossless spherical narrow-band detector with identical x

T, symmetry, not only is the SNR for detecting a known vs5=SIN (979
signal independent of the other transducer parametersobut BB '

is the detector’'s ambiguity function, and hence also its di- y. . =cop SIN, (97h

N

rection and polarization reconstruction accuradhis result
shows rigorously that the results of the Zhou-Michelson
analysis apply to a much broader class of detectors.

In fact, the assumptions of a spherical antenna and radi?l!/hereAe— e, —e. . Inverting y to find the covariance ma
—€x + - -

B L Ofsimuancous s elood etmtestfs,
' P , B, €., €x gives the nonzero elements

tures to be identical, and the signal to be impulsive. Then

Ye e, =SIPB SN, (97i)

Ko(w) will still integrate to a constant matrid, which, o2, =h2(SIN) "1, (983
even though its elements are no longer given by @8§),

must give fory(a,a'), a bilinear form inf,(wqy; @) and 0%0:(8”\')—1, (98b)
fm(wo; @) which evaluates tde/(kgT,) for a=a’. Since

the energyE deposited by the impulsive signal in an antenna U(zﬁ(ﬁ:CS(?g(S/N)*l’ (980
initially at rest is a quantity dependent only on the antenna

and not the transducers and since Ezf) is a general ex- UéﬁZZCOSAE cosd cs@O(SIN) L, (98d)
pression forE requiring only knowledge of the eigenmodes

of the bare antenna without transducers, B6b) is seen to Ués = —2sin\ e cosd cs@6 tanB(S/IN) "L, (980
hold in general. Thembiguity functionand hence alsthe *

signal reconstruction accuragyof a lossless narrow-band U<2756X: —2siM e cosd cs@6 cotB(SIN)~L, (98

detector with identicall,, symmetry is independent of the
other transducer parameters. Of course, if the antenna is not
spherical, therf,, will not be given by Eq.59) andE will
generally depend on source direction and polarization. Simi-
larly, if the antenna is spherical but there are less than
N=5 distinct transducer locations, then the transducers will

055=(1+4codA e cofd)(S/N) 2, (989

05, =—2sin2Ae cofd tanB(SIN) ", (98h)

not couple to all the degenerate quadrupole modes and some CT,%EX= —2sin2Ae cof'f cotB(S/N) 7, (98i)

of the energy in the quadrupole modes will be hidden from

the transducers and should not be include jrwhich will o =(seéB+4sirtAe cof tarfB)(SIN) L,

then be direction and polarization dependent. o (98j)
Next, it is shown that evaluating the estimation covari-

ance matrix by the abstract techniques described above does o® . =4sirfAe cofO(SIN) L, (98Kk)

indeed reproduce the Zhou-Michelson results obtained by B

more direct analytical and Monte Carlo methdghis giving 05 . =(cs@B+4asiPAe cofd colB)(SIN) L.

some analytical formulas they misgedvith the difference (98))
that the results are valid now femny lossless, narrow-band,

spherical detector witiN=5 radial or nonradial transducers  From Eq.(98a), the percentage error in determining the
having identicalT,'s. This serves to illustrate the abstract magnitude of the strain spectrum dés,/h=(S/N) "2 The

techniques before they are applied to analyze the effects ¢haximum likelihood estimates af and ¢ are uncorrelated
breaking theT, symmetry, for example. and result in a circular error box on the sky with a mean-

Substituting Eq(59) for f, and Egs(93a and(93b) for  square radius covering a solid angi€) given by
h, andhy into Eq.(96b) gives an explicit analytical formula

for y from which its derivatives and the Fisher matrix ele- AQ=7T(0§9+ sinza(ré(/,) (993
mentsy;; can be computed from E¢91). The calculations

are straightforward, but tedious by hand. The progkexmH- 2

EMATICA [43] is helpful in finding the nonzero elements of :(S/—N)' (990

the symmetric matrixy,
The results fora?3,, cr(ZM, and AQ agree with Zhou and

Yan=h"2SIN, (979 Michelson’s analytical and Monte Carlo resul@&| despite
an apparent factor of 2 discrepancy. Zhou and Michelson
yoo=SIN, (97b) used a slightly different definition d/N based on the opti-

mal receiver for a narrow-band signal of unknown phase.
The optimal detection criterion is then to use two optimal

filters designed for signal phases 90° apart, and to look for
threshold crossings of the sum of the squares of the two filter
Yg¢p= —2C0s\ € cos SIN, (970 outputs[23]. In this paper,S/IN always denotes the SNR

Ys=(1+3cog0)SIN, (970
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obtained with the optimal filter when the signal parameters
including phase, are known. This definition giv8sN a
value twice that of the Zhou-Michelson definition.
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afp=0p+(P)?=(|P|)% (108

The Zhou-Michelson Monte Carlo simulations cover not just

Zhou and Michelson also used Monte Carlo methods tosery high SNR values, but also low values for which the
evaluate the uncertainty in measurements of the coordinafi@rst-order expansion, Eq101), is not valid. Expandind? to

independent “polarization factorP defined by

P=sin2B sinAe. (100

As Zhou and Michelson found? is a rather nonlinear func-
tion, but if the SNR is high enough that only first order terms
in 8 and A e are important, then

SP~sin2B cosA eSAe+2cos2B sindesB, (101
and the variance of estimates Bfis
o5~4c0$2p sifAecs+sinf2 cosAeas,
+4c0s28 Sin2B cos\e SN\ ea, . (102
Using Egs. (98) through (98l) to evaluate O-ie
=0l . tol . —202 _ andof, =05, —op gives
o4 =4(cs@2B+4cofd sifAe cof2B)(SIN) L, (103
o5pe=—4cofo sinf2Ae cot2B(SIN) 1. (109

Substituting the above into EGL02) gives, after simplifica-
tion, the remarkably simple formula

o5~4(1-P?)(SIN) L. (105

second order instead of just first order, and using Egs.
(1063—(1069 under the assumption of known direction, the
mean valug P) deviates from the true value according to

<P)~( 1—%a§e—2ag) P (109

=[1-2(csE2B+1)(SIN)"1]P. (110
The deviation of the mean from the true valueRPotlepends
not only on the value oP, but also onB. Assuming Zhou
and Michelson used sif@z=1 (and variedA e to changeP)
reproduces their data well. One final complication needs to
be taken into account before comparing this theory with the
Zhou-Michelson data: foP=1, 28=A e= /2 and the first-
order terms in the expansion & are both zero. Thus, for
P=1, higher order terms must be considered, which gives to
leading order
oplp=1~16(S/N) 2. (11

Figures 17 and 18 compare the above analytical expres-
sions for the mean and standard deviation|®f with the
Monte Carlo results in the Zhou-Michelson Fig[#4]. The
agreement is excellent f&N>60. The analytical formulas
accurately describe both the asymptotic behavior at high
SNR and, at intermediate SNR, the effects of the nonlinearity

Actually, Zhou and Michelson measured the absoluteof P and of taking its absolute value.

value of P and calculatedrfp‘ assuming that the source di-
rection is known. Ifg and ¢ are known, then the prescription

for calculating the estimation covariance matrix is to cross

out the rows and columns iy corresponding ta@ and ¢,

D. Effect of unequal T,,’'s on direction accuracy

If a narrow-band lossless spherical detector has radial
transducers which do not have identi@als, then the detec-

and then invert the reduced Fisher matrix to find the newqprs girection-finding accuracy becomes anisotropic. In this

covariance matrix. The result is

o55=(SIN)"1, (1063

o2, ., =se¢B(SIN) 1, (106b

o2 . =CsCB(SIN) 1, (1069

with o5, =05, =02 _ =0. Substituting into Eq(102

gives, after simplification, the same simple result as in Eq
(105 calculated for the case of unknown direction. With a

spherical antenna, direction accuracy and polarization accu-

racy are independent.

Comparison with the Zhou-Michelson results is compli-
cated by the effects of measurihg| instead ofP. The dif-
ference is most pronounced whénis near zero. Assuming
P has an approximately Gaussian probability distribution,
the mean and standard deviation Bf are related to those of

P by
N
+ ;UPEX ,

~(P?
20',2;

(P)
\/EUP

<|P|>=<P)eff< (107

case, instead of reducing to E@6b), Eq. (940 for y be-
comes(with 7=7'=0)

x(a,a'>=Re[f*mmo;amfjmwg—‘;’Km)Hfm(wo;a')},
(112

whereH is the matrix used to solve E0) for the effective
forcesf, using the pseudoinverse &' [36]:

[Su
H= E(GT)+.

For a given set of transducer locations and parameters,
HT[”_ Kdw/27H is a constant matrix, which can be evalu-
ated numerically. Then the analytical formulas fgrcan be
differentiated to evaluate E¢Q1) for the Fisher matrix ele-
ments.

With identical T,, symmetry, the estimates éfand ¢ are
uncorrelated. When that symmetry is broken, the two direc-
tion angles may become correlated and the direction error
box changes from a circle to an ellipse with afegiven in
general by

(113
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Comparison of the Zhou-Michelson Monte Carlo simulations SPherical detectors with dodecahedrally located transducers but bro-

(points joined by solid linesand the analytical formulas derived
here(dashed curves

A= Wsiné’\/agoi— (U§¢)2.

The effects of brokef,, symmetry were studied numeri-
cally for a lossless detector with transducers in the regul

(114

dodecahedral locations. As in Sec. V C, a set of six maxi-

mally flat single-mode transducer systems was perturbed
changing individual transducer noise temperatures by up

+20% while holding noise impedances fixed. For any spe
cific source direction and polarization state, the Fisher an

covariance matrices were evaluated by the method describé
above. For circularly polarized signals, the correlation coef-

ficient pyy= 0%,/ (050%)"? was found to always be zero,
but, for linearly polarized signals, was found to be a
sinusoidal functionasin2(8—8;) with an amplitude depen-
dent on source direction. As befofé‘;ff was found to depend

kenT, symmetry. Units ofA are relative to the value for unbroken
symmetry. Maximum(+) and minimum Q) values ofA over all
source directions are plotted versus nfax{1 or 1—min(T,).

the areaA was found to beompletely polarization indepen-
dent However, the aredd was less than its identicdl;
ayalue for some directions and larger for others.
Figure 19 shows the size of the anisotropyArfor five
b ndom trials at each of th§, tolerance levels 5, 10, and
tg?) %. Figure 20 shows maximum value fy4| over all
irections and polarizations. Empirically, the percentage de-
iations of A are typically of the same order as, but smaller
an, the percentage deviationsTf. Likewise, max|p,q))
ows a first-order effect with values approximately as large
as 0.8<[max(T,)—min(T,)]/2.

S

E. Arrival time estimation

When the arrival timer is an unknown parameter, Eq.

on direction and polarization, but for a fixed signal energy,(94¢ can be used to calculate the accuracy of arrival time

0.3

0.1

standard deviation of |PI

TUTOD
NN
*OO00
S0
I=3-:3-32.: 23

O+ X ¥ ¢

1/2 SN

estimates. If the detector has a small fractional bandwidth,
then there is trouble distinguishing between arrival time and
signal phase. A special case which illustrates this effect most
simply is to assume thdtd, ¢,h,8,A€} are known param-
eters whiler andeg= (€, + €x)/2 are unknown. The param-
eter ¢, represents the phase of the true signal wave form
relative to its envelope within the detection band. Since
dfsldeg=jsgn(w)fs anddfs/dm= — j wf, it is easy to evalu-

ate the reduced Fisher matrix

FIG. 18. Standard deviation of maximum likelihood estimates of

|P|. Comparison of the Zhou-Michelson Monte Carlo simulations

(points joined by solid linesand the analytical formulas derived
here(dashed curves

Yeoeo = (SIN), (115a
Yegr= —{®)a( SIN), (115h
V2= (@?) o(SIN), (1150
where("), is defined by
T n
<wn>a:2R€{fsf0(dw/27T)w K(w)fs] 116

2REfl[5(dw/2m)K(w)fs]
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0.16 . . . exhibit other symmetries which mak&" a constant, such as
happens for identical radial transducers in the dodecahedral
L 014F A or icosahedral arrangements, or for the Zhou-Michelson in-
& /0’ dependent transducer design. For the maximally flat, single-
£0.12 T mode transducer systems considered in Sec. V, the value of
§ oAl | the fractional bandwidth which determines sensitivity to loss
s N has the values®=0.148, while the fractional bandwidth de-
%008 ; termining timing accuracy i$%"=0.043. As the number of
5 el modes in a multimode maximally flat transducer system is
©0.067 B 1 increased,o(w) becomes boxlike and®*"™ approaches the
Eo o4l e | fractional width of the box, whiles®" approaches a value
g C/// © \/1—2 times smaller. Even for single-mode transducers, the
“0.02 /d/%’ % . . boxlike approximation works WeII'cS‘iff is only about 10%
bigger thans®"/\12.
% 0.05 01 015 0.2 If the direction and polarization are not really known, then

(max(T,)-min(T, ))/2 the full Fisher matrix is more complicated than the reduced
matrix given by Eqs(1159—(1159. A more detailed analy-
FIG. 20. Correlation coefficient,,, betweens and ¢ estimates ~ Sis of the interplay between direction-polarization and phase-
for lossless spherical detectors with dodecahedrally located trandiming uncertainties could be made using the above methods.
ducers but brokeiT, symmetry. Maximum value dfp,,| over all  However, for a narrow-band lossless detector, it was shown
directions and polarizations is plotted versus the fractional spread inabove that the direction and polarization uncertainties are of
noise temperatures. order (S/N) %, which is smaller than the above timing and
phase uncertainties by the factéf". Thus, if 5°"<1, the
The value of(w"), is thenth moment of a probability dis- direction and polarization are essentially known compared to
tribution proportional to the signal-to-noise ratio density for r ande, and it seems reasonable to assume known direction
detecting a signals(a). Inverting the Fisher matrix to find and polarization when estimating and e, and calculating

the covariance matrix gives their uncertainties.
5 Although a single narrow-band detector suffers a serious
2 _ (@) (SIN)~1 (1173 penalty in trying to measure the arrival time of a signal with

g A NV ..
0% (w?),—(w): an unknown shape, the timing accuracy of a networkieh-

tical detectors is not so bad. With one detector, an error in
the value ofey used to construct the optimal filter template
gives a modest loss of SNR, but a large error in the measured

arrival time. However, if groups operating two identical,
1 similarly oriented detectors agree to use arbitrary but equal

o2, =—5———5(SIN)" L. (1179  values ofeg, then even though the arrival times they report

(0% (w)q will suffer a systematic error, the difference between the

The timing accuracy in Eq1170 may be contrasted with measured arrival times will have an uncertainty given ap-

the result ife, is known in advance: proximately by Eq.(118), rather than Eq(1179. Cerdonio
et al. [45] have shown that, if the signal shape is assumed

) 1 known, a global network of 1 kHz bar antennas can have
T o) (SIN)~%. (118  enough timing accuracy according to Ej18) to give useful

“ source direction information via time delays starting at mod-
Thus, if € is not known and the detection bandwidth is €St SNR's of §/N)*?~8. A network of spherical detectors.
narrow, then the uncertainties in estimates of phase and ah@s the advantage that any two spheres in the network give
rival time are highly correlated, and the standard deviation ot accurate time delay, whereas two bars must be aligned to
the arrival time estimate is worse by a factor 0(33[77 where Measure t_he same component of the gravity wave in order for
5§ﬁ is a measure of effective fractional bandwidth defined bythe true signal shape to be the same for each.

<w2>a—<w>i>l’zl

2
w
e The approach developed here gives both an intuitive ex-
This reproduces a standard result of signal estimatiomension to the signal detection and estimation theory for one-
theory for detectors with scalar outpf23], but the above dimensional detectors and provides a numerically efficient
calculations show how this applies for a vector detector. Theneans of studying the behavior of spherical gravitational
timing accuracy depends on the valuea‘ﬁff evaluated for a wave detectors when various asymmetries exist. Several re-
particular source direction and polarization. Although a losssults were derived which are valid for a general gravitational
less detector with identicdl;, symmetry was shown above wave detector employing multiple transducers. Without as-
to have isotropic direction and polarization accuracy, its tim-suming any particular antenna or transducer symmetries, it
ing accuracy will be anisotropic if the transducers do notwas shown that the optimal signal detection algorithm in the

o (o)
o (0, (@)

(SIN)™ 1, (117b
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presence of Gaussian noise is unchanged from the scalar deavess®™ unchanged, but gives an asymmetryTil' which
tector case: the optimal decision rule for detecting a knowrtoyvers most of the allowed range between fijh(and
signal is always to compute the linear filtaith a scalar  max(r,).

outputwhich maximizes the SNR and to look for the optimal Anisotropy in T or 6° was also used to compare dif-
filter output to exceed a threshold. Explicit matrix formulas¢,ant detector designs and to evaluate their robustness
were derived for computing the optimal linear filter and theagainst various transducer failures. Based on its bandwidth

;(ietsu:;;?rifNas d'r:htgrg:(sggtg:jerggteocr:g;St:rt?is'ksr?:vigaslidﬁ;ﬁnisotmpy, the proposed five-transducer arrangement of
y P b 93 0bo and Serrand20] was found to be inferior to the

An explicit construction was given for statistically mdepen&]ohnson-Merkowitz TIGA arrangement of six transducers

dent linear combinations of the transducer outputs whic 81 The dodecahedral found to be fairl
simplify the expression for the SNR. The existence of suc |. The dodecahedral arrangement was found to be fairly

statistically independent output channels is thus not a cons&oPust against exgesswe additive noise in one transducer;
quence of any special symmetries. By introducing admit-£xtreme excess noise in one transducer degrﬁﬁféby only
tance matrices which describe the response of the linear dé-factor of 2.4 in the worst case. A regular icosahedral ar-
tector to signal forces and transducer back-action forcegangement of ten transducers is more robust against such a
Price’s method15] of proving Giffard’s amplifier limit[13]  transducer failure, but only modestly so. The numerical
was generalized to show that, for a lossless detector, theethods used here could also be used to examine other types
effective pulse detection noise temperature is bounded by thef transducer failure, such as one transducer having excess
minimum and maximum of the noise temperatures of theforce noise, perhaps because of a poor mechafical
individual transducers. If the transducer noise temperatures The effects of asymmetries on the accuracy with which a
are identical, then the SNR for detecting an impulsive signakpherical detector can reconstruct source direction, polariza-
with a lossless detector simply equélsthe energy the sig- tion, phase, and arrival time information were studied by
nal deposits in an antenna initially at rest, divided by thegeneralizing maximum likelihood estimation theory from the
noise temperaturks T, of one transducer. Thus, if the detec- scalar to vector case. Deriving formulas for the ambiguity
tor is close enough to being lossless, the details of detectdunction whose derivatives give the accuracy of the esti-
design, including the existence of unintended asymmetriesnates, it was shown that a lossless gravitational wave detec-
are unimportant since the detector’s sensitivity is indepentor with identicalT,, symmetry looking for impulsive signals
dent of all other parameters besideandT, . If the antenna  has an ambiguity function which is independent of the other
is also spherical and if there are enough transducers to coupleansducer parameters. Thus for such a detector, not only is
to all the quadrupole modes, the detector’s sensitivity is inits sensitivity independent of the details of the detector de-
dependent of source direction and polarization slégetoo.  sign, but so is the accuracy with which it can reconstruct
How lossless the detector must be to approach the amplifigfignal direction and polarization. Consequently, the Zhou-
limit was shown to depend on the detection bandwidth  Michelson analysi9] of direction and polarization accuracy
through matrix formulas analogous to those for scalar detecapplies not only to their “independent transducer” design,
tors. Thus for a detector with significant thermal noise tobut also to any lossless spherical detector with idenfigal-
have isotropic sensitivity, an isotropic bandwidth is requiredsymmetry. The ambiguity function method developed here
in addition to identicall,’s and an isotropic. was shown to reproduce the Zhou-Michelson analytical and
Matrix equations were derived which describe a sphericaMonte Carlo results. The solid angle and polarization factor
antenna interacting with a gravitational wave described byiccuracies were shown to b&AQ=2#/(S/N) and
general relativity when coupled té nonidentical, arbitrarily  ¢2=4(1—P?)/(S/N), the latter formula being an analytical
located, multimode transducer systems. If the transducer sygne not derived by Zhou and Michelson. A numerical study
tems are identical in all respects, then this symmetry wagf the effects of breaking th&, symmetry showed that es-
shown to give the equivalence that Johnson and MerkOWitﬁmates of the direction ang|e§’(¢) become correlated giv-
[8] discovered between the SNR spectrum for the sphericahg an elliptical rather than circular error box in the sky. For
detector and a set of bar antennas. It was shown how tg given source direction, the area of the error box is polar-
evaluate the effective antenna masses of the equivalent bajgation independent, but the area does depend on the direc-
and the dodecahedral and icosahedral arrangements wefgn, exhibiting an anisotropy first order in the deviations of
shown to give bandwidth isotropy as a consequence of thos@e noise temperatures. The area is increased in some direc-
arrangements giving the maximal, fivefold, degeneracy ofions and decreased in others by fractional amounts almost as
effective masses. large as the fractional changes in the maximum and mini-
The effects of transducer asymmetries were studied NunumT,,. The peakd—¢ correlation coefficient is as large as
merically for the dodecahedral design with identical trans-0.8x [ max(T,)—min(T,)}/2. The accuracy of arrival time es-
ducers. Location asymmetry was found to |93W.§f un-  timates was shown to depend on the detection bandwidth, so
changed, but to improves®" for some directions while asymmetries which give bandwidth anisotropy will also give
degrading it for others, giving an anisotropy linear in toler- an arrival time uncertainty which varies in inverse proportion
ance and equal tar 10% for~ *4° tolerance. Tuning asym- to the bandwidth.
metry also leaved ﬁ“ unchanged, but it always decreases While the analysis presented here has not exhaustively
5% little in some directions, and more in others, with acovered the effects of all possible detector asymmetries,
second-order dependence on tolerance. The maximum dseme of the results are general enough to show that both the
crease i is limited to 10% for~5% tolerance. Breaking sensitivity and the signal reconstruction abilities of a spheri-
T, symmetry while keeping identical noise impedanZgs cal gravitational wave detector are reasonably immune to
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even fairly large asymmetries, provided care is taken to exfilters should prove useful when the day comes for such de-
perimentally characterize the detector’'s noise and its retectors to begin observing the gravitational sky.
sponse to signal so that the required optimal filters may be

constructed. One of the theoretical questions which remain is
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