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A spherical geometry for a resonant-mass gravitational wave antenna offers significant improvements over
traditional cylindrical antennas. However, completing a detector requires breaking the bare antenna’s spherical
symmetry by attaching multiple mechanical resonators and transducers. To fully assess the merits of such
detectors, it is essential to be able to calculate the detector’s sensitivity and the accuracy of the extractable
signal information without relying on exact mathematical transducer or resonator symmetries to simplify the
analysis, as has been done in previous work. Without making such assumptions, this paper generalizes the
fundamental sensitivity limits, known for cylindrical detectors, that arise from the back-action noise present in
any linear amplifier, and from thermal Brownian motion noise when detection bandwidth is limited. Optimal
signal detection and estimation methods are derived by generalizing techniques used for one-dimensional
detectors to the case of multiple interacting transducers. Formulas for the optimized signal-to-noise ratio are
derived which generalize the connection between bandwidth and sensitivity known for one-dimensional de-
tectors. A demand for isotropic sensitivity then gives requirements on transducer placement and matching.
Comparing bandwidth anisotropies, the detector design proposed by Johnson and Merkowitz is found to be
superior to an alternative proposal by Lobo and Serrano, and to be reasonably robust against asymmetries. In
addition to sensitivity limits and optimal data analysis methods, limits are derived for the accuracy of recon-
structed signal parameters such as direction, polarization, phase, and arrival time.@S0556-2821~97!01614-7#

PACS number~s!: 04.80.Nn, 95.55.Ym

I. INTRODUCTION

To open up the era of gravitational wave astronomy,
gravitational wave detectors must have both sufficient sensi-
tivity to detect actual signals and the ability to extract as
much signal information as possible. The use of spherical
geometry for resonant-mass gravitational wave antennas of-
fers a number of advantages over the traditional cylindrical
bar shape in both these respects. The advantages are so com-
pelling that construction of a new generation of resonant-
mass spherical detectors is being proposed by a number of
experimental groups@1# with the goal of operating concur-
rently with the first laser interferometers now under construc-
tion @2–4# and providing complementary information. How-
ever, analysis of the sensitivity and direction-finding
accuracy of a spherical detector involves a number of com-
plications, compared to the analysis of cylindrical detectors,
which must be addressed before optimized detectors can be
built with confidence.

Although a spherical antenna’s enhanced gravitational
cross section, its isotropic response and its ability to measure
signal direction and polarization were recognized decades
ago@5–7#, building a practical detector requires breaking the
spherical symmetry by attaching at least five additional me-
chanical resonators to readout the sphere’s motion. In gen-
eral, isotropic sensitivity is then lost and one has a rather
complicated readout and signal reconstruction problem in-
volving multiple transducer signals with correlated noise and
complicated frequency response functions. This may have

been one of the reasons why the benefits of using a spherical
antenna were not pursued until Johnson and Merkowitz@8#
showed that it is possible to locate six identical, radial trans-
ducers in positions with a special symmetry so that the read-
out problem is greatly simplified. Zhou and Michelson@9#
then found an alternative set of five transducer locations
which results in even greater conceptual simplification.
However, any realistic experimental effort will not be able to
guarantee completely identical transducers or positioning to
arbitrary precision. Understanding how symmetric is sym-
metric enough for the transducers is an important question
for the experimental groups now beginning to design spheri-
cal resonant-mass detectors@1# with the potential to detect a
variety of realistic target sources@10,11#. This paper pro-
vides a rigorous analysis of the effects of transducer asym-
metries on the capabilities of such detectors.

Previous work on this problem has provided only partial
answers. In Johnson and Merkowitz’s ground-breaking work
@8,12#, they derived equations of motion for five degenerate
quadrupole spheroidal modes coupled toN identical, radial,
single-mode, resonant transducers located at arbitrary points
on the sphere’s surface. Since for bar antennas the frequency
splitting between the coupled antenna and transducer modes
is an important measure of coupling which must be opti-
mized, they conjectured an optimal design might correspond
to one in which all mode splittings were equal. They found
that for N55 there apparently is no such configuration,
while for N56, placing the transducers at the centers of half
the faces of a regular dodecahedron gives a spectrum with
two degenerate quintuplets and a singlet. For that special set
of transducer locations, Johnson and Merkowitz found~i!
that they could simplify the equations of motion to obtain an
analytical solution,~ii ! by forming linear combinations of*Electronic address: ts88@umail.umd.edu
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transducer outputs, one could form ‘‘mode channels,’’ each
of which coupled to one and only one of the five quadrupole
components of the gravitational wave field thereby solving
the signal deconvolution problem, and~iii ! the frequency re-
sponse for each mode channel was the same and had the
same form as for a bar antenna with a single transducer. By
numerical integration, they were then able to compute the
sensitivity of such a detector. They made no effort to prove
their arrangement was optimal, but they conjectured that de-
tector sensitivity changes would be of second order in small
departures from perfect dodecahedral symmetry and perfect
transducer matching. As will be shown here, this is not com-
pletely correct. Also, Johnson and Merkowitz did not empha-
size the importance of assuming that the transducers are
identical not only in the mechanical parameters of their reso-
nators, but also with respect to the magnitudes of the noise
sources in each transducer. Only then are Johnson-
Merkowitz mode channels statistically independent; if not,
the sensitivity analysis needs modification. A third limitation
is that Johnson and Merkowitz did not explicitly characterize
the parameters of the equivalent bar detector which gives the
same frequency response and noise spectrum as each of the
mode channels.

The concepts of statistically independent transducer chan-
nels and effective antenna mass played a central role in the
Zhou-Michelson analysis@9#. By using a combination of one
radial and four tangential transducers located in a specific
way, they demonstrated a different way of obtaining statisti-
cally independent transducer channels. With their proposed
configuration, no linear combinations of transducer outputs
need be formed: each transducer couples to only one quad-
rupole antenna mode, and consequently the detector’s re-
sponse to a gravitational wave is manifestly equivalent to
attaching each transducer to a single-mode bar antenna, and
since the transducer’s back-action noise drives only its cor-
responding antenna mode, the transducer outputs are statisti-
cally independent. Zhou and Michelson calculated the effec-
tive antenna masses felt by each transducer and found
different values for the radial and tangential transducers.
Therefore, to make each independent channel have an iden-
tical frequency response, one would have to choose different
parameters for each transducer. However, if each transducer
had the same noise temperatureTn , and if thermal noise was
negligible, they proved that the total signal-to-noise ratio
~SNR! for detecting a known signal, using an optimal linear
filter to combine the transducer outputs, is simply the energy
E that an impulsive signal would deposit in an antenna ini-
tially at rest, divided bykBTn , independent of source direc-
tion and polarization. This generalized Giffard’s amplifier
limit for the sensitivity of bar antennas@13# to a spherical
detector using the proposed transducer configuration. Zhou
and Michelson also analyzed the accuracy of maximum like-
lihood estimates of the source direction and polarization us-
ing such a transducer configuration.

This paper extends the analysis of Johnson and Merkow-
itz, and Zhou and Michelson, by generalizing optimal linear
filtering, and signal detection and estimation theory, for a
detector with vector output rather than a scalar output. The
generalized equations are written in a matrix notation de-
signed not only to give a simple, compact, and intuitive no-
tation, but also to clarify the connection between the signal-

to-noise ratio theory for a spherical detector and that
developed for bar antennas@13–15#.

This approach leads to a variety of powerful results. First,
it explicitly shows how to form statistically independent out-
put channels, even in the absence of symmetries, which gen-
eralize the Johnson-Merkowitz mode channels or the Zhou-
Michelson independent transducers. Second, it allows Price’s
method@15# for proving Giffard’s amplifier limit@13# to be
applied to a general linear detector with multiple transducers
to yield a generalized theorem valid in particular for a spheri-
cal detector which lacks any special symmetries. Third, it
yields formulas generalizing Price’s high-Q expansion
@15,11# of the detector’s energy sensitivity. The high-Q ex-
pansion simplifies the discussion of the effects of asymme-
tries on detector performance, since particular values of tem-
perature and antennaQ need not be assumed—rather the
performance is characterized by the effective noise tempera-
ture in the lossless limit together with an effective bandwidth
which characterizes the degradation of sensitivity with in-
creasing thermal noise in the antenna. With the symmetries
assumed by Johnson and Merkowitz, or Zhou and Michel-
son, the effective noise temperature and the effective band-
width are independent of source direction and polarization,
but detector asymmetries produce anisotropies in these quan-
tities. This paper includes a numerical study of the size of
those anisotropies in order to evaluate the tolerances required
when designing a detector with the Johnson-Merkowitz pro-
posed dodecahedral symmetry. SNR anisotropy is also used
to compare the merits of the dodecahedral arrangement with
other alternatives. A fourth product of the general theory is a
set of analytical formulas giving the uncertainties in maxi-
mum likelihood estimates of the signal parameters in the
limit of high SNR. The formulas are applied first to repro-
duce the Zhou-Michelson analytical and Monte Carlo results
for their special design, and then they are used to investigate
the effects of breaking the symmetry with nonidentical trans-
ducer noise temperatures.

Some of the results described here were presented briefly
in two earlier papers@16,17#, but the present paper offers a
more detailed explanation and extends and applies the meth-
ods in new ways. Merkowitz and Johnson have carried their
work further by constructing a prototype truncated icosahe-
dral ~TI! antenna instrumented with simple room-
temperature nonresonant and resonant transducers@18,19#.
With their prototype, they have experimentally investigated
the effects of imperfect spherical symmetry in theantenna.
Their results and this paper are complementary as the focus
here is on asymmetries in thetransducerlocations and pa-
rameters. Lobo and Serrano@20# have recently published an
analysis of the resonant mode splitting and transfer functions
for N radial transducers mounted on a spherical antenna.
They limited their analysis to identical transducers, and they
did not consider noise, but based on their analysis they sug-
gested an alternative way to locate transducers which is
evaluated here based on its SNR anisotropy.

The first half of this paper gives an overview of the math-
ematics needed to calculate the SNR for a spherical gravita-
tional wave detector with arbitrary transducer locations and
parameters. In particular, Sec. II explains why the optimal
strategy for detecting a known signal with a general linear
detector withvector output is to perform an optimal linear
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filtering operation which produces ascalar output with
maximal SNR. An explicit matrix formula for the optimal
linear filter is derived and compared with the well-known
scalar formula. It is shown that by linear operations one can
always form a set ofstatistically independentoutput chan-
nels, in terms of which the maximal SNR can be expressed
very simply. Then a generalization of Giffard’s theorem is
proved in which the SNR for a lossless detector is related to
the signal energy and the noise temperatures of theN trans-
ducers. Section III details how multidimensional optimal lin-
ear filtering and a matrix description of spherical detector
dynamics combine to give general formulas for the SNR and
its high-Q expansion in terms of an effective pulse detection
noise temperatureTn

eff and effective fractional bandwidth
deff. After reviewing the effects of transducer symmetries in
Sec. IV, the main focus in the second half of the paper is a
numerical investigation of the effects of breaking those sym-
metries. Section V examines the effects of variations in the
location, tuning, and noise temperatures of the transducers
on Tn

eff anddeff. In Sec. VI, calculations of SNR anisotropy
are used to evaluate the merits of alternative transducer lo-
cations, such as proposed by Lobo and Serrano@20#, and to
examine the robustness of the regular dodecahedral arrange-
ment under a failure of one transducer. Section VII shows
how the vector optimal filtering theory developed here can
be used to analytically evaluate the uncertainties in maxi-
mum likelihood estimates of signal parameters such as am-
plitude, direction, polarization, arrival time, and phase. The
theory is first applied to reproduce and extend the Zhou-
Michelson results for their special transducer arrangement
@9#, and then the effects of some transducer asymmetries are
numerically investigated. Finally, Sec. VIII summarizes the
results.

II. MULTIDIMENSIONAL OPTIMAL LINEAR FILTERING

Suppose a general detector has a vector outputx(t) con-
sisting ofN real functions of time:

x~ t !5„x1~ t !, . . . ,xN~ t !…, ~1!

and assume that a particular signal, if it is present, is known
to give an outputx5xsig in the absence of noise, but that the
actual output is a linear superposition of the signal and noise
processes. Thesignal detection problemis a case of hypoth-
esis testing: decide, in an optimal way according to some
reasonable criterion, whether or not the signal is in fact
present. For a cylindrical gravitational wave detector with
one transducer output,N51, and one may draw on an ex-
tensive body of hypothesis-testing and signal detection and
estimation theory which was largely developed in the effort
to optimally design radar receivers@21–23#.

For a spherical antenna instrumented with multiple trans-
ducers,N.1, and the question arises: is the theory for de-
tector with vector output different from that for one with
scalar output, and if so, how? It seems that the generalization
of the theory toN.1 does not appear explicitly in the lit-
erature, at least not in the form needed for the analysis pre-
sented here. Hence, this section develops the answer. In fact,
at three different levels three different answers are provided.
First, on an abstract level, it is shown that there really is no

difference: independent ofN, a variety of different hypoth-
esis testing criteria all lead to a decision rule based on opti-
mal linear filtering to maximize the SNR. Second, on a more
constructive level, generalized formulas are derived for the
optimal filter and the resulting SNR whicharedifferent from
the N51 case, but which have a very similar form to the
scalar formulas when written in matrix notation. Third, more
substantive differences are shown to appear when one con-
siders the limitations on detector sensitivity arising from
back action of multiple transducer noise sources on the an-
tenna.

The material in this section provides not only justification
for the methods used in Secs. III–VI to investigate a spheri-
cal detector’s SNR anisotropy, but also a foundation for fur-
ther theoretical development in Sec. VII when the accuracy
of signal parameter estimation is discussed. In addition, this
section contains the most general results of this paper, results
applicable to any linear detector without assuming spherical
symmetry, particular transducer orientations, or other sym-
metries.

A. Signal detection and hypothesis testing

First, this section presents the abstract argument that the
casesN.1 andN51 are essentially the same. For both
cases, the signal detection problem involves deciding be-
tween the hypothesisH0 that the output is only noise and
hypothesisH1 that the output is noise plus the known signal.
There are a variety of reasonable criteria one could use to
make an ‘‘optimal’’ decision. For example, one could choose
H0 or H1 based on which is most likely given the observed
data, one could try to minimize the probability of making an
error, one could assign costs to the different types of errors
and try to minimize the expected cost~Bayes criterion!, or
one could maximize the detection probability for a fixed
false alarm probability~Neyman-Pearson criterion!. The
theory of hypothesis testing~see Chap. 5 of@23#! says that
all of these criteria are equivalent to the ‘‘likelihood ratio
test:’’

chooseH1 if l>l0 , ~2!

where the likelihood ratio

l5
P1~x!

P0~x!
~3!

is the ratio of the conditional probabilities of observingx
givenH1 or H0, andl0 is some threshold.

If the noise in the detector is Gaussian and stationary,
thenl can be evaluated and a connection made with linear
filtering as follows. Letxj (tk) be samples of the data at a
large number of timestk . Although those samples likely
have correlated noise, a linear transformation can be made to
produce uncorrelated ‘‘samples’’yi @23#. Then

P1~x!5)
i

Dyi

A2ps i

expF2~yi2yi
sig!2

2s i
2 G , ~4!
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wheres i
2 is the variance ofyi andyi

sig is the expected value
of yi if the signal is present. IfH0 is true, thenP0 is given by
a similar formula withyi

sig set to zero. The log-likelihood
ratio is then found to be

lnl5(
i

Fyisigyi21

2
~yi

sig!2G Y s i
2 ~5!

and the optimal decision rule is chooseH1 if

(
i
yiyi

sig/s i
2> lnl01

1

2(i ~yi
sig!2/s i

2 . ~6!

The left-hand side of the above inequality is the value of the
linear filter n,

n5(
i
aiyi , ~7!

which maximizes the energy SNR defined by

S/N5
nsig
2

^nn
2&
. ~8!

Here nsig is the filter output value for a noiseless signal,
while ^nn

2& is the variance of the output if there is only noise.
As shown for example in@9#, choosing filter coefficients pro-
portional to

ai5yi
sig/s i

2 ~9!

gives a maximal SNR of

S/N5(
i

~yi
sig!2/s i

2 ~10!

and the decision rule is simply chooseH1 if the optimal
linear filter outputn exceeds some threshold.

The value ofN does not appear in the above argument
reducing the signal detection problem to optimal linear fil-
tering. Thus for detectors with either scalar or vector output,
the optimal strategy for detecting a known signal is generally
to compute the value of the optimal linear filter withscalar
outputn which maximizes the SNR. Ifn passes above some
threshold, then a detection is claimed. This justifies the em-
phasis given the SNR in Secs. III–VI. Section VII uses the
connection between the log-likelihood ratio and the optimal
filter, given by Eq.~5!, to analyze the accuracy with which
unknown signal parameters may be estimated. First, how-
ever, rather than appealing abstractly to the existence of un-
correlated samplesyi , a more explicit formula for the opti-
mal linear filter is needed in order to proceed further.

B. Explicit formula for the optimal filter

A practical formula for evaluating the optimal filter can
be derived without having to compute uncorrelated samples
yi . In general, a linear filtering operation can be described in
the Fourier domain by

n~v!5k†~v!x~v!, ~11!

wherek is a vector transfer function. From the abstract ar-
guments above, the problem is how to do the filtering so as
to maximize~at some instant of timet0) the SNR defined by

S/N5uns~ t0!u2/^nn
2&, ~12!

wherens is the scalar output produced by the signal without
noise andnn is the output produced by the noise.

The noise in the detector can be characterized by observ-
ing the noisy detector output in the absence of any signals
and experimentally measuring the spectral density matrix
Sx whosemnth component

Sx
mn~v!5E

2`

1`

e2 jvt^xm~ t !xn~ t2t!&dt ~13!

is the Fourier transform of the correlation function for the
mth andnth outputs. Then the signal and the noise factors in
Eq. ~12! are

ns~ t0!5E
2`

1`dv

2p
ejvt0k†~v!xsig~v!, ~14!

^nn
2&5E

2`

1`dv

2p
k†~v!Sx~v!k~v!. ~15!

Using the calculus of variations to solve
d(S/N)/dki(v)50 @24#, one finds that choosing

k†~v!5xsig
† ~v!Sx

21~v! ~16!

maximizes the SNR~at t050 for convenience!, and that the
value of the optimal SNR reduces from the ratio of two in-
tegrals to a single integral

S/N5E
2`

1`

s~v!
dv

2p
, ~17!

where the integrand,

s~v!5xsig
† ~v!Sx

21~v!xsig~v!, ~18!

gives the available SNR density per unit bandwidth. For
N51, Eq.~16! and Eq.~18! reduce to the well-known result
@23,25# for detectors with scalar output: the optimal filter
transfer function is the conjugate of the Fourier transform of
the signal divided by the noise spectral density ands(v) is
the absolute square of the signal spectrum divided by the
noise spectral density. In the vector case the formulasare
somewhat different since matrix inversion ofSx is involved,
and the factors do not commute, but in matrix notation the
formulas are no more complicated than in the scalar case.

While uncorrelated samplesyi were not needed above to
compute the optimal filter, it is easy to show explicitly how
to construct linear combinations of the transducer outputs
xm(t) which are statistically independent. Inspection of the
definition of Sx(v) in Eq. ~13! shows thatSx(v) is an
N3N Hermitian matrix,

Sx5Sx
† , ~19!
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and hence it can be diagonalized by a unitary matrixU(v).
A new vector outputy defined by

y~v!5U†~v!x~v! ~20!

then has a spectral density matrix

Sy5U†SxU ~21!

5diag„z1~v!, . . . ,zN~v!…. ~22!

Each new output channelyi(t) is statistically independent
from the others, and it has a noise spectral densityz i(v)
which is an eigenvalue ofSx . One finds the total optimal
SNR given by Eqs.~17! and~18! is the sum of the available
SNR in each statistically independent output channel:

S/N5(
i51

N
@yi

sig~ t !#2

^yi
2&

~23!

5(
i51

N E
2`

1` uyi
sig~v!u2

z i~v!

dv

2p
. ~24!

C. Amplifier limit for N>1

Gravitational wave detectors look for such small signals
that maximizing the SNR as far as fundamental limits allow
is vital. Braginsky@26# was the first to recognize that the
effect of amplifier noise on the antenna’s motion must be
considered in calculating the limit of sensitivity. Giffard@13#
showed that, for a cylindrical antenna with a nonresonant
transducer coupled to a linear amplifier, the SNR for detect-
ing a burst signal approaches the limit

S/N5
E

kBTn
~25!

as the thermal noise in the antenna is reduced to zero by
lowering the physical temperature to zero or increasing its
mechanical quality factorQ to infinity. HereE is the energy
that the gravitational wave burst would deposit in an antenna
initially at rest, andTn is the noise temperature of the me-
chanical amplifier, defined by

kBTn5ASfSu2@ Im~Sfu!#
2, ~26!

whereSf , Su are respectively the spectral densities of the
amplifier’s back-action force noise and its additive velocity
noise, andSfu is the force-velocity cross-spectral density.
~To avoid violating the Heisenberg uncertainty principle,
kBTn>\v @27#.! Michelson and Taber@14# proved that Eq.
~25! is a general limit applying also for any lossless, passive,
transducer.

For a detector with vector output, Eq.~25! needs to be
generalized since there is in principle a differentTn for each
of theN transducers. Below, Price’s method@15# for proving
Eq. ~25! is used to derive a generalized theorem applicable to
a spherical gravitational wave detector with arbitrary asym-
metries.

Assuming that the detector is linear and thermal noise is
negligible compared to back-action noise, the output of the
detector can be written as

x~v!5Yts~v!fs~v!1Ytt~v!ft~v!, ~27!

whereYts andYtt are matrices which describe respectively
the response to signal forcesfs acting on the~‘‘spherical’’!
antenna and the response to back-action forcesft arising in
the transducers.~Explicit formulas for Yts and Ytt for a
spherical antenna with radial transducers are derived in Sec.
III below.! Let su , sf , andsf u be, respectively, vectors listing
the velocity, force, and force-velocity noise spectral densities
of the transducers. With the transducer output vectorx cali-
brated, say, to measure the transducer velocitiesut , the ex-
pected signal is

xsig5Ytsfs , ~28!

and the detector’s spectral density matrix is

Sx5diag~su!1Yttdiag~sf u!1diag~sf u!
†Ytt

†1Yttdiag~sf !Ytt
† .

~29!

The signal-to-noise ratio density is then

s~v!5fs
†Yts

†Sx
21Ytsfs . ~30!

If the transducer systems are lossless and passive as is the
antenna, then energy conservation implies the reciprocity re-
lation Ytt

†52Ytt . For many amplifiers„including supercon-
ducting quantum interference device~SQUID! amplifiers
coupled through lossless passive electromechanical transduc-
ers @28#…, the time-reversal symmetries of the amplifier’s
equations of motion imply thatsf u is pure imaginary. With
these two assumptions, the spectral density matrix can be
written as

Sx5diag~su!1 jYttdiag@ Im~sf u!#1diag@ Im~sf u!# jYtt

2Yttdiag~sf !Ytt . ~31!

For the caseN51, Price @15# showed that there is an
equivalent physical model for the behavior ofs(v). He
showed thats(v)5e(v)/kBTn , wheree(v) is the spectrum
of energy which would be dissipated if the signal force was
applied to the lossless detector after replacing the amplifier
by a mechanical impedance equal to its noise impedance
Zn defined by

Zn5@kBTn1 j Im~Sfu!#/Su . ~32!

For the caseN.1, suppose that each amplifier is replaced
by its noise impedance. Then reaction forcesft
52diag(zn)ut appear in Eq.~27!. The resulting transducer
velocity response to the signal isut5v, with

v5@ I1Yttdiag~zn!#
21Ytsfs , ~33!

whereI is the identity matrix andzn is the vector listing the
noise impedance of each transducer. Then the spectrum of
energy which would be dissipated in the noise impedances is

e~v!5v†diag@Re~zn!#v. ~34!

Using the relations betweenkBTn , Zn , sf , su , andsf u , to-
gether with the assumptions thatYtt

†52Ytt andsf u is pure
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imaginary, the above expression fore(v) can be expanded
out and some terms canceled to give

e~v!5fs
†Yts

†B21Ytsfs , ~35!

where

B5diagS su
kBTn

D1 jYttdiagF Im~sf u!

kBTn
G1diagF Im~sf u!

kBTn
G jYtt

2YttdiagF sf
kBTn

GYtt . ~36!

Comparison of Eqs.~30! and ~31! with Eqs. ~35! and ~36!
shows thats(v) ande(v) have very similar forms. If the
transducers all have identical noise temperatures, it is clear
thats(v)5e(v)/kBTn just as for the caseN51.

If the transducer noise temperatures are not identical, then
s(v) can still be put into a form analogous to Eq.~34!:

s~v!5v†A21v, ~37!

where

A5diagF kBTn

Re~zn!
G1@ I1Yttdiag~zn!#

21@diag~kBTn!,Ytt#

3$@ I1Yttdiag~zn!#
21%†. ~38!

The commutator in the second term ofA above is zero when
Ytt is diagonal so that the transducers do not affect one an-
other as in the Zhou-Michelson independent transducer
scheme@9#. In that case,

s~v!5v†diagFRe~zn!kBTn
Gv, ~39!

so that, for independent transducers, the SNR is the weighted
sum of the energies dissipated in the noise impedances, each
energy being divided by its corresponding noise temperature.
Since each component ofTn and Re(zn) is positive, Eq.~39!
and Eq.~34! imply thats(v) satisfies the inequalities

e~v!

max~kBTn!
<s~v!<

e~v!

min~kBTn!
. ~40!

Integrating over all frequencies gives

E

max~kBTn!
<S/N<

E

min~kBTn!
, ~41!

where

E5E
2`

`

e~v!
dv

2p
. ~42!

Since the detector is assumed lossless, energy conservation
implies that the total energyE dissipated in the noise imped-
ances equals the total energy an impulsive signal would ini-
tially deposit in an antenna initially at rest irrespective of
whether or not the amplifiers are replaced by their noise im-
pedances.

The general case of interacting transducers, withYtt not
diagonal, is more complicated sinces(v) ande(v) are not
so closely related as in Price’s equivalent model for the sca-
lar case. However, numerical experiments show that the ef-
fect of the extra commutator term in Eq.~38! is always to
shift the eigenvalues ofA(v) closer to the average of
kBTn /Re(Zn) without changing the sum of the eigenvalues.
Therefore, the inequalities in Eqs.~40! and~41! are valid for
the general case also, as is verified by the numerical results
of Sec. V C.

Equation~41! generalizes Giffard’s amplifier limit theo-
rem to a lossless linear detector with vector output having a
range of amplifier noise temperatures. If all the noise tem-
peratures are identical, then the lower and upper bounds on
the SNR are both simplyE/kBTn and the minimum detect-
able energy~for SNR51! is kBTn . Of course, to attain this
limiting sensitivity an experimenter has to fully characterize
the detector by measuringxsig andSx and then implement the
optimal filter given by Eq.~16!.

One might wonder why there seems to be no improve-
ment in sensitivity if several identical transducers are placed
close together on the antenna so that they essentially monitor
the motion of the same point on the antenna and form a
composite transducer. Even after averaging the outputs of the
N transducers the minimum detectable energy is unchanged
from the valuekBTn which would be obtained if only one
transducer were used. The explanation is that while the ad-
ditive noise is reduced by averaging tosu /N, the total force
noise for the composite transducer is increased toNsf , with
sf u andkBTn unchanged. However, the composite transducer
does have anN times larger noise impedance which, as ex-
plained in Sec. III below, increases the detection bandwidth,
and improves the sensitivity when the detector is not lossless
and thermal noise is significant.

III. SPHERICAL DETECTOR DYNAMICS

While the preceding section considered the sensitivity of a
general linear detector with vector output, the rest of this
paper specializes to a spherical gravitational wave antenna
with N transducer systems coupling only to radial motion.
Perfect spherical symmetry~or at least degenerate quadru-
pole modes! is assumed, but the transducers may be located
arbitrarily and may have completely different mechanical
and noise parameters. Although the methods used below
could be adapted to consider nonradial transducers as pro-
posed by Zhou and Michelson@9#, radial transducers were
chosen for several reasons:~i! to provide the basis for a
concrete analysis of possible detector behavior,~ii ! most ex-
isting detectors use transducers monitoring motion normal to
the antenna surface, and~iii ! the Johnson-Merkowitz dodeca-
hedral arrangement@8# employs identical radial transducers,
which is a definite practical advantage over the Zhou-
Michelson mix of radial and tangential transducers which
require resonator masses differing by a factor of about 13@9#
to give matched responses.

The dynamics of a sphere interacting with radial transduc-
ers and gravitational waves is described below using matri-
ces suited to evaluating the optimal filter and SNR. Antenna
thermal noise is included, and a high-Q expansion derived
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which forms the basis for analyzing the effects of transducer
asymmetries.

A. Bare sphere

Before showing how matrix notation can be used to com-
pactly describe the dynamics of a spherical gravitational
wave antenna interacting withN resonant-mass transducer
systems, consider the dynamics of a bare sphere. The veloc-
ity uW s of the sphere at positionrW can be written as a sum over
normal modes:

uW s~rW,v!5(
n

an~v!fW n~rW !, ~43!

where thefW n(rW) are the orthogonal elastic eigenfunctions of
the sphere.

When transducers are attached to the sphere, the values of
uW s(rW,v) at the attachment points will be of primary impor-
tance. So let

us~v!5„r̂ 1•uW s~rW1 ,v!, . . . ,r̂ N•uW s~rWN ,v!… ~44!

be theN-dimensional vector of radial sphere velocities at
N locationsrWa on the sphere’s surface. Letfs be a vector of
N radial forces applied at the pointsrWa . Then the response of
the bare sphere can be described by a mechanical admittance
matrix Y0 which gives the values of the sphere velocities as
a linear response to the applied forces:

us~v!5Y0~v!fs~v!. ~45!

The general eigenmode expansion of the admittance matrix
of a linear system gives the components ofY0 as

Y0
ab5(

n

1

s1vn
2/s1vn /Qn

@ r̂ a•fW n~rWa!#@ r̂ b•fW n~rWb!#

E r~rW !ufW n~rW !u2d3r
,

~46!

wherevn andQn are the resonance frequency and quality
factor of thenth mode,s5 jv, andr is the density.

Equation~46! is nothing more than the result of applying
the usual eigenfunction method of solving the elastic equa-
tions of motion, but with the normalization chosen to give
admittance matrix elements. When Eq.~43! is substituted
into the equations of motion, the denominator ofY0

ab arises

from multiplying the differential operator acting onuW s by
fW n(rW) and integrating over volume. Ther̂ b•fW n(rWb) factor in
the numerator comes from the overlap integral between the
point force applied atr̂ b and fW n(rW), while the r̂ a•fW n(rWa)
factor comes from evaluating the solution for the velocity
response atr̂ a in the radial direction. Spherical symmetry
implies that the radial eigenfunctionsr̂ a•fW n(rWa) are propor-
tional to the real spherical harmonics~see Sec. III D below!.

For a gravitational wave antenna, the amplitudes of the
five degenerate quadrupole spheroidal modes are of primary
interest. At frequencies sufficiently near the lowest quadru-
pole frequencyv0, the expansion forY0 is dominated by the

five terms with poles at6v0. Keeping just those terms, one
has the following simple form forY0:

Y0'@m~s1v0
2/s1v0 /Q0!#

21M for v'6v0 ,
~47!

wherem is the effective mass of the antenna andM is the
matrix with elements

Mab5~3cos2uab21!/2, ~48!

whereuab is the angle betweenr aW and r bW .
Mathematically,m is one half the reciprocal of the residue

of the radial driving point admittance of the sphere at
s5 jv0. Physically, if the sphere is driven atv0 with a radial
force at any single point, the ratio of energy stored in the
motion of the sphere to squared radial velocity at that point is
the same as if one was driving a massm attached to an
infinite mass by a springmv0

2. The response of the sphere at
locations other than the drive point is encoded byM . Equa-
tion ~48! can be derived from Eq.~46! using properties of the
spherical harmonics forl 52, but the result can be inferred:
in a coordinate system in which the drive point is at the north
pole, the only quadrupole spherical harmonic excited is the
one withm50, which has the angular form appearing in Eq.
~48!.

For the fundamental quadrupole frequency of a sphere,
Zhou and Michelson@9# evaluatedm as a function of the
antenna material’s Poisson ratio. For a Poisson ratio of 0.33,
m50.302Ms , whereMs is the total physical mass of the
sphere. Interest has also been expressed in other sets of quad-
rupole modes for gravity wave detection, especially the next
higher frequency group@29,30#. The radial eigenfunction for
the second quadrupole modes nearly has a node at the sphere
surface@31,6,29#, so those modes do not couple as easily to
surface mounted transducers as do the lowest modes. For the
second quadrupole modes at the surface, this author calcu-
latesm5455Ms , but if holes were bored into the sphere so
that radial transducers could be mounted atr50.46Rs at the
antinode of the modes, thenm50.281Ms is quite similar to
the value for the fundamental quadrupole modes at the sur-
face.

B. Sphere withN radial transducers

Armed with the admittance matrixY0 for a bare sphere, it
is relatively simple to describe the dynamics of the sphere
when instrumented withN radial, resonant-mass transducer
systems attached to its surface. The simplest such transducer
systems would consist of a set ofN masses attached to the
sphere by springs with electromechanical amplifiers measur-
ing the radial displacement of each mass relative to its at-
tachment point on the sphere surface.~More complicated,
multimode, transducer systems with several mass-spring
stages chained together@32# can be handled similarly as is
described later.!

If N single-mode transducer systems are used, letmt ,
kt , ut , and ft be, respectively,N-vectors listing the trans-
ducer masses, the transducer springs, and the relative veloci-
ties and external forces applied between the transducer
masses and their attachment points. Then the dynamics of
the detector is described by
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Fusut G5YF fsft G , ~49!

where the grand admittance matrixY is a 2N32N matrix
comprised of fourN3N submatricesYss, Yst , Yts , Ytt :

Y5FYss Yst

Yts Ytt
G ~50a!

5FY0
211diag~mts! diag~mts!

diag~mts! diag~kt /s1mts!
G21

. ~50b!

As Eq. ~50b! indicates, the detector’s impedance matrix
Z5Y21 is given by the composite impedance matrix de-
scribing N isolated transducer systems, but with the bare
sphere’s impedance matrixY0

21 added to the sphere-sphere
submatrix. This simply states that, if the velocities of the
transducer masses and the sphere attachment points are
specified, the required forces are the forces needed to make
isolated transducer systems move as prescribed, plus extra
forces on the transducer attachment points equal to the forces
needed to move the bare sphere to follow the attachment
points.

For the case of multimode transducer systems, the gener-
alization of Eq.~50b! uses the impedance matrix elements
for chains of mass-spring stages, which, although more com-
plicated, can be readily calculated using partial fraction tech-
niques@33#. For example, for a two-mode transducer system
with final masses and springsm2, k2 and intermediate
masses and springsm1, k1 the transducer impedance matrix
for the isolated system is

H S Fm2s m2s

m2s m2s1
k2
s
G1Fm1s 0

0 0G D 21

1F s

k1
0

0 0
G J 21

.

~51!

C. Spectral density matrix

The transducers which measureut can be characterized as
electromechanical amplifiers with additive velocity noise
spectral densitiessu , producing back-action noise forcesft
with spectral densitiessf . Correlation between the force and
velocity noise of each amplifier is described by the cross-
spectral densitiessf u . Then the cross-spectral density matrix
appearing in Eq.~13! is

Sx5diag~su!1Yttdiag~sf u!1diag~sf u!
†Ytt

†1Yttdiag~sf !Ytt
†

12kBT Re~Ytt!, ~52!

where the term proportional to the real part ofYtt gives the
thermal noise required by the fluctuation-dissipation theorem
@34# for a detector at temperatureT.

If all five of the antenna’s quadrupole modes have the
same quality factorQ0, as assumed in Eq.~47!, then expand-
ing Eq. ~50b! to first order inQ0

21, one finds@35#

Re~Ytt!5~mv0 /Q0!YtsM
21Yts

† . ~53!

D. Interaction with a gravitational wave

The radial motion of the bare sphere’s quadrupole modes
is given by the five real spherical harmonicscn for l 52,

F c0

cc

cs

c2c

c2s

G5A 5

16pF 3cos2u21

2A3cosfsin2u
2A3sinfsin2u
A3cos2fsin2u
A3sin2fsin2u

G ~54a!

5A 5

16pF 3z2/r 221

22xz/r 2

22yz/r 2

~x22y2!/r 2

2xy/r 2

G . ~54b!

Assuming that general relativity correctly describes the
interaction, a plane gravitational wave excites only thec2c
andc2s modes in a coordinate system with the wave travel-
ing down thez axis. More general metric gravitational theo-
ries can produce a different interaction@29#, but in this paper
general relativity will be assumed to hold. In the wave-
directed frame, the overlap integrals of the gravitational tidal
forces with the sphere modes are@9#

fm8 5~v/v0!
2APprvs

5f 0
21
„0,0,0,h1~v!,2h3~v!…,

~55!

whereh1(v) andh3(v) are the Fourier amplitudes of the
two polarization components of the wave,r andvs are, re-
spectively, the density and extensional sound velocity of the
antenna material, andP'0.201 is the reduced energy cross
section of the spherical antenna. The expression forfm8 is
normalized so that

E5
1

2
@ fm8 ~v0!#

†fm8 ~v0! ~56!

is the energy deposited in the antenna. If coordinatesrW8 in
the wave frame are related to detector coordinatesrW by a
rotation matrixR,

rW85R~fgw ,ugw ,cgw!rW, ~57!

with Euler anglesfgw , ugw , andcgw , then the force overlap
components in the detector frame are given by a transforma-
tion law,

(
n

f m
ncn~rW !5(

n
f m8

ncn~RrW !, ~58!

which is well known for the spherical harmonics@9#. With
the sign conventions chosen in Eq.~54a!, the transformation
law is
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fm5~v/v0!
2APprvs

5f 0
21

33
A3
2
sin2uh1

1

2
sin2ucosfh11sinusinfh3

1

2
sin2usinfh12sinucosfh3

1

2
~11cos2u!cos2fh11cosusin2fh3

1

2
~11cos2u!sin2fh12cosucos2fh3

4 , ~59!

provided a detector coordinate convention is chosen so that
cgw50.

If N>5, then there are sufficient degrees of freedom~pro-
vided no two transducers have the same or antipodal attach-
ment points! to excite any linear combination of the five
quadrupole modes using the point forcesfs . Therefore, the
description of the detector dynamics derived above can be
used to model the detector interaction with a gravitational
wave by finding point forces which mimic the effects of the
distributed gravitational forces on the antenna.~The gravita-
tional forces on the transducer masses are neglected because
of their much smaller size compared to the sphere.! The re-
quired equation forfs is

fm5A4p/5mGTfs , ~60!

where theN35 matrixG has components

Gan5cn~ r̂ a!. ~61!

If N>6, then solutions forfs are not unique. Any solution to
Eq. ~60! gives a valid description of the detector response;
for definiteness and numerical stability, the pseudoinverse
@36# of GT was used to solve Eq.~60!.

Apart from different normalization, the matrixGT is the
same as the ‘‘pattern matrix’’ defined by Johnson and
Merkowitz @8#, and is related toM by

M5
4p

5
GGT. ~62!

E. SNR and highQ expansion

All the ingredients needed to compute the SNR for a
spherical gravitational wave detector using the general for-
mulas of Sec. II are now in place. According to Eq.~49!, the
N transducers give a vector outputxsig5Ytsfs , wherefs is a
solution of Eq.~60!. With Sx given by Eq.~52!, Eq. ~18! for
the signal-to-noise density becomes

s~v!5fs
†K ~v!fs , ~63!

where

K ~v!5Yts
† @Sx~v!#21Yts . ~64!

For a given set of detector parameter values,K (v) can be
computed; for given source direction and polarization ampli-
tudes, a value forfs can be found, then Eq.~63! allows
s(v) to be evaluated; finally, numerical integration gives the
value of the SNR. However, before launching into a numeri-
cal study of how the SNR behaves, it is desirable to have a
deeper analytical understanding of how the SNR depends on
the signal wave form and on the detector design. Much the-
oretical insight can be gained in this regard by drawing par-
allels with the theory developed for resonant-bar detectors.

The performance of bar detectors is often characterized by
their sensitivity to impulsive burst signals which have Fou-
rier components which vary little over the detection band-
width wheres(v) is large. For impulsive signals, the SNR is
proportional to the energyE that the signal would deposit in
the antenna if it were initially at rest. The pulse detection
noise temperatureTp is then defined as

kBTp[
E

S/N
. ~65!

While E for a bar-antenna depends on source direction and
polarization,Tp does not. As described in Sec. II C, Giffard
@13# showed thatTp approaches the amplifier’s noise tem-
peratureTn @defined by Eq.~26!# in the limit that the me-
chanicalQ’s approach infinity. For high but finiteQ’s, Tp
exceedsTn by a sum of terms of orderkBT/(Qid), where
Qi is theQ of the i th resonator in an antenna-multimode-
resonator chain andd is the fractional bandwidth shown by
s(v) for a given detector design. Price@15# explored the
sensitivity ofTp to dissipation as the basis of optimal detec-
tor design: in the ‘‘lossless limit,’’ any choice of transducer
masses and springs givesTp5Tn , but in the presence of
dissipation, it is best to choose masses and springs in a clever
way to make the detector as ‘‘loss tolerant’’ as possible.
Price found that typically the sensitivity to antenna dissipa-
tion was as great as the dissipation in any of the transducer
resonators. His work leads to a natural, precise, definition for
d @11# which characterizes the sensitivity to the antenna
Q0, and he showed how to choose masses and springs to
maked large by makings(v) ‘‘maximally flat.’’

How does the theory for bar detectors carry over to
spheres? Equations~52! and~53!, and~63! and~64! hold the
answer. Defining the pulse detection noise temperature as for
bars, and then expanding to first order inT/Q0, one finds

kBTp~ fs![
E

S/N
~66a!

'kBTn
eff~ fs!1

kBT

Q0

p

deff~ fs!
, ~66b!

where

kBTn
eff~ fs!5

fs
†@~1/2m!M #fs

fs
†@*2`

1`K0~v!dv/2p#fs
~67!

and

deff~ fs!5
~p/v0!@ fs

†@*2`
1`K0~v!dv/2p#fs#

2

fs
†Mf sfs

†@*2`
1`K0~v!M21K0~v!dv/2p#fs

. ~68!
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For the spherical detector,Tp is a function of the source
direction and polarization encoded byfs . Likewise, the loss-
less limit of Tp , Tn

eff(fs) and the effective fractional band-
width deff(fs) are also generally dependent on source direc-
tion and polarization. Sections IV–VI explore the anisotropy
of Tn

eff anddeff over the sky as a function of the locations and
parameters of the transducers attached to the sphere.

IV. SPECIAL TRANSDUCER SYMMETRIES

If the transducer parameters or attachment locations ex-
hibit certain symmetries, then the behavior ofTn

eff(fs) or
deff(fs) is simplified considerably. Three symmetries are ex-
amined here:~i! identical transducer noise temperatures,~ii !
completely identical transducer systems, and~iii !
dodecahedral/icosahedral transducer locations. Previous
work @16# examined the consequences of each of these sym-
metries for a spherical detector. The results are summarized
below.

As described in Sec. II C, Price@15# showed thats(v)
for a lossless multimode bar detector equalse(v)/(kBTn) so
that Tp5Tn for any lossless bar detector. For a lossless
spherical detector,e(v) ands(v) are generally no longer
proportional to each other, except when all theTn’s of the
amplifiers are equal. Then once againe(v)/(kBTn)5s(v)
and

kBTn
eff~ fs!5kBTn for all fs . ~69!

If all the transducer systems not only have equalTn but
are equal in every respect~equal masses, springs,Tn , and
Zn), then this stronger symmetry gives an equivalence with a
set of bar detectors: the SNR is the same as if the identical
transducer systems were mounted onN separate bar anten-
nas, with effective antenna masses

m i5m/h i , i51, . . . ,N, ~70!

where theh i are the eigenvalues ofM , and with the signal
energyE divided up among the bar antennas in a source-
direction- and polarization-dependent way.

This equivalence can be derived as follows. If the trans-
ducers are identical, then Eq.~29! shows that a basis which
diagonalizes Ytt also diagonalizes Sx . Furthermore,
diag(mts) and diag(kt /s) are both scalar multiples of the
identity matrix, and hence commute withY0. Then Eq.~50b!
shows that, if anN3N unitary matrixU diagonalizesY0
~andM ), then the 2N32N matrix diag(U,U) diagonalizes
each of theN3N submatrices inY, and hence diagonalizes
Ytt in particular. Since the submatrices ofY21 commute
with each other they act as scalars, andY may be computed
explicitly by applying the formula for the inverse of a
232 matrix to the submatrices ofY. If U†MU5diag(h i),
then one obtains statistically independent output channels
y5U†x. The eigenvaluesz i of Sx @see Eq.~22!# and their
contributions tos(v) can be read from Eq.~29! using the
following eigenvalues ofYtt , Yss, andYts :

eigi~Ytt!5
m/h i~s1v0

2/s!1mts

~mts1kt /s!m/h i~s1v0
2/s!1mtkt

, ~71!

eigi~Yss!5
~mts1kt /s!

~mts1kt /s!m/h i~s1v0
2/s!1mtkt

, ~72!

eigi~Yts!5
2mts

~mts1kt /s!m/h i~s1v0
2/s!1mtkt

. ~73!

The above formulas do not explicitly depend onN; their
form is always the same as for the caseN51. The only
difference forN.1 is that the effective mass of the antenna
m is replaced by new effective massesm/h i . Thus, if the
transducers are identical, the total SNR is the sum of SNR’s
for statistically independent output channels, each of which
has a form equivalent to that for a two-mode bar detector,
with effective antenna masses for the bars given by the val-
uesm/h i .

The eigenvaluesh i can readily be found numerically for
any given set of transducer locations, but they obey a number
of analytical properties. Theh i are non-negative and sum up
to N, and at most five of them are nonzero.~The zero eigen-
values are equivalent to infinitely massive bars which do not
give transducer signals in response to forces acting on the
antenna, but which give useful vetoes against spurious forces
acting on a transducer.! As Johnson and Merkowitz discov-
ered@8#, if the transducer attachment points are located at the
centers of six, nonopposite, faces of a regular dodecahedron,
then a very special symmetry exists. From the point of view
described here, what is special is that the nonzeroh i ’s dis-
play the maximum, fivefold, degeneracy:

h i5N/5, i51, . . . ,5. ~74!

Fivefold degeneracy is also achieved for ten transducers cen-
tered on half the faces of a regular icosahedron. In either
case, it does not matter howE is divided up among the
equivalent bar detectors since the spectral shape of each con-
tribution to s(v) is identical, so Eq.~69! holds true once
again, and the total SNR is direction and polarization inde-
pendent.

As found by Johnson and Merkowitz, the quadrupole
components of the antenna motion are statistically indepen-
dent output channels when the transducers are identical and
located with dodecahedral symmetry. This is easily shown
using the methods of this paper as follows. Expressing the
antenna velocity asus5Ga, wherea is the vector of mode
amplitudes, then, in general,a is found by solving the equa-
tion

Ga5Yssfs ~75!

5YssYts
21x. ~76!

If N.5, the equations fora are overdetermined giving
N25 veto conditions, but there is always a least-square error
solution

a5~GTG!21GTYssYts
21x. ~77!

For the dodecahedral~or icosahedral! arrangement, the five
quadrupole spherical harmonics are not only orthogonal
when integrated over the entire sphere, but also when re-
stricted to the transducer attachment points. Then
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GTG5
N

4p
diag~1,1,1,1,1!, ~78!

which according to Eq.~62! implies that the columns ofG
are eigenvectors ofM each with eigenvalueh5N/5. There-
fore, one can choose the orthogonal matrixU so that its first
five columns equal (4p/N)1/2G. The solution for the mode
amplitudes in Eq.~77! then reduces to being proportional to
the first five components ofy5U†x:

ai5A4p

N Smts1kt /s

2mts
D yi ~79!

5A4p

N
eigi~Yss!~U

Tfs! i , for i51, . . . ,5. ~80!

Thus, for a dodecahedral or icosahedral arrangement of
transducers, the statistically independent output channels
with nonzero coupling to the sphere are proportional to the
quadrupole mode amplitudesai , and the wave form of each
ai is proportional to the velocity of an effective antenna mass
5m/N in an equivalent bar detector.

V. EFFECTS OF TRANSDUCER ASYMMETRIES

This section presents the results of numerically evaluating
Eqs.~67! and~68! when transducer asymmetries exist. Start-
ing with symmetrically located, identical transducers, vari-
ous tolerances were relaxed, andTn

eff anddeff were evaluated
on a grid covering the sky using the linear algebra package
MATLAB @37#.

A. Location asymmetry

Sets of six transducer locations perturbed around regular
dodecahedral locations were randomly generated. Using
identical, single-mode transducers with parameters chosen to
give Price’s ‘‘maximally flat’’ matching network@15# for
effective antenna massm/h55/6m, one finds asymmetries in
deff as shown in Figs. 1 and 2 for one trial with 15° toler-
ance. Price’s bandwidth parameter was chosen asd50.1,
giving a theoretical valuedeff'0.1p/2 for perfect dodecahe-
dral locations.~For single-mode transducers,d is the square
root of the ratio of the transducer mass to the effective an-
tenna mass.! Identical-transducer symmetry implies
Tn
eff5Tn , but deff depends on source direction (f,u) and

polarization statec @38#.
Single-mode transducer systems were chosen for simplic-

ity, for even though multimode systems may be handled as
indicated by Eq.~51!, little qualitative difference would be
expected in the anisotropy effects. The main effect of using
additional resonators is an impedance transformation in
which the transducer is made to appear to the antenna as a
more massive transducer with a larger noise impedance@15#.
To achieve the order 15% fractional bandwidths assumed in
the examples presented here, existing or projected transducer
technology would likely require at least two-mode transducer
systems@11#, but this will not affect the conclusions derived
here.

Figure 3 helps explain how the bandwidth asymmetry de-
velops by showing the eigenvaluesk of K0(v). The analysis
of identical-transducer symmetry in Sec. IV shows that the
shapes of the five nonzerok i ’s are the shapes ofs(v) for
the equivalent bar detectors. Some of theh i ’s are larger
~smaller! than the 6/5 for the symmetrical case, correspond-
ing to a lighter ~heavier! bar, increasing~decreasing! the
mode splitting and bandwidth. Depending on (f,u,c), the
channels are weighted differently ins(v) giving rise to the
deff asymmetry.

Figure 4 summarizes the results of all the random trials
and shows that, as expected, deviation from regular dodeca-
hedral locations increasesdeff for some directions and polar-
izations, and decreases it for others. From the figure, it is
also apparent that the size of the asymmetry grows linearly
in the angular tolerance.

B. Tuning asymmetry

Figure 5 shows a maximally flat transducer system with
perfect locations but mistuned spring constants deviating up

FIG. 1. Bandwidth anisotropy for a dodecahedral arrangement
with 15° location tolerance. Plot of maxc(d

eff) versus (f,u);
maxu,f,c(d

eff)50.184.

FIG. 2. Plot of minc(d
eff) versus (f,u) for the example in Fig.

1; minu,f,c(d
eff)50.095.
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to 20%. The transducers are thus not identical and equiva-
lence to a set of bar detectors is lost; however,Tn symmetry
still givesTn

eff 5 Tn , so one only need look atd
eff asymme-

try. Figure 6 shows thatdeff is always decreased, substan-
tially for some directions and polarizations, but hardly at all
for others. The effect is second order in spring constant tol-
erance.

C. Noise temperature asymmetry

The final asymmetry considered here is variableTn but
identicalZn . Figure 7 shows an example for 20%Tn toler-
ance. Since both the identical-transducer and identical-Tn
symmetries are broken, one might expect bothdeff andTn

eff to
be anisotropic, however, the numerical results show that, al-
though thek become nondegenerate, they all retain the same

shape as for the symmetric case. Thusdeff is unchanged.
Figure 8 summarizes the results and shows thatTn

eff asym-
metry develops linearly with the tolerance, and respects the
bounds from Eq.~41!:

min~Tn!<Tn
eff~ fs!<max~Tn!. ~81!

In fact, the numerical results show that there are usually
directions and polarizations for whichTn

eff is quite close to
max(Tn) or min(Tn).

VI. ALTERNATIVE TRANSDUCER LOCATIONS

Calculation of SNR anisotropy can be used to evaluate the
merits of alternative transducer locations relative to the

FIG. 3. Eigenvaluesk of SNR kernalK0(v) for the example in
Fig. 1; h5$1.67,1.53,1.26,0.89,0.64% giving bandwidths of
$0.18,0.17,0.15,0.12,0.09%. Dashed line: fivefoldk for perfect sym-
metry hasdeff50.15.

FIG. 4. Fractional bandwidth for dodecahedral arrangements
with 0°–15° location tolerance. Plotted for each random trial are:
max (* ) and min (s) of deff, and max (1) and min (3) of
^deff&c . Lines join averages of trials at each tolerance.

FIG. 5. Eigenvaluesk of the SNR kernalK0(v) for a regular
dodecahedral arrangement with 20% tolerance on transducer spring
constants. This example has spring constants perturbed by factors
1.072, 1.174, 0.953, 1.008, 1.132, 0.814.

FIG. 6. Maximum and minimum effective bandwidth for regular
dodecahedral arrangements with 0–20 % spring tolerance. Plotted
for each random trial are the max (* ) and min (s) of deff and max
(1) and min (3) of ^deff&c . Lines join averages of trials at each
tolerance.
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dodecahedral arrangement. The regular dodecahedral and
icosahedral arrangements with identical transducers are spe-
cial in that they give isotropic and polarization-independent
SNR. So far this paper has examined the effects of perturba-
tions around the regular dodecahedral arrangement with
identical transducers. One might also ask what happens if
large changes are made in transducer locations or param-
eters. For example, how anisotropic is the SNR for other
transducer arrangements which have been proposed@20#, and
how robust is the regular dodecahedral arrangement under a
failure of one transducer?

A. Five or six transducers?

Lobo and Serrano have proposed using only five transduc-
ers, instead of six, to monitor the five spheroidal quadrupole
modes@20#. Rather than seeking to maximize the degeneracy
in the eigenvaluesh which determine the coupled mode fre-

quencies, they suggested placing five transducers equally
spaced around the sphere’s north pole at a latitude chosen to
give approximately equally spaced mode splittings. They felt
that this criterion might yield a preferred location for the
transducers, and they found that the resulting angle between
the pole and the transducersu51.180 allowed the transduc-
ers to be placed on five of the 60 faces of a pentagonal
hexacontahedron. Another reasonable sounding criterion for
placing five transducers might be to choose their latitude so
that the ratio between the largest and smallest mode split-
tings is made as small as possible to try to approximate the
dodecahedral behavior.

The Lobo-Serrano arrangement and the minimal-splitting-
ratio criterion can be rigorously evaluated in terms of the
anisotropy they produce indeff. Figure 9 shows the eigenval-
uesh as functions of the latitudeu at which five transducers
are placed, equally spaced in longitude, with or without a
sixth transducer at the pole. The nonzero eigenvalues form a
singlet and two doublets. Foru50.9553,N55 gives only
four nonzero eigenvalues because all transducers lie on
nodes ofc0. The dodecahedral arrangement of six transduc-
ers occurs atu51.1071 and gives the maximal fivefold de-
generacy with allh56/5, as shown in Eq.~74!. The Lobo-
Serrano pentagonal hexacontahedral arrangement is
u51.180,N55. The minimal splitting ratio criterion for five
transducers is achieved atu51.258, where there is a degen-
eracy between the singlet and one doublet, giving a maximal
value of 0.416 for min(hi)/max(hi).

Figure 10 comparesdeff for the three proposed transducer
arrangements. The pentagonal hexacontahedral arrangement
is highly anisotropic and polarization dependent withdeff

varying by about a factor of 2 over the sky and, although it
gives greater bandwidth for sources over the poles, for some
polarizations it gives inferior bandwidth~and hence inferior
sensitivity if antenna dissipation is not negligible! than the
dodecahedral arrangement over 78% of the area on the sky.
The minimal-splitting-ratio arrangement is less polarization

FIG. 7. Eigenvaluesk of the SNR kernalK0(v) for a regular
dodecahedral arrangement with 20% tolerance onTn . For this ex-
ample,Tn50.999,1.182,1.099,1.022,1.156,1.050.

FIG. 8. Maximum and minimum effective noise temperature for
a regular dodecahedral arrangement with 0, 5, 10, and 20 %Tn
tolerances. Values of max(Tn

eff) and min(Tn
eff) are plotted versus

max(Tn)21 or 12min(Tn), respectively.

FIG. 9. Nonzero eigenvaluesh ~which determine equivalent bar
antenna masses! versus transducer latitudeu for fivefold arrange-
ments of transducers with or without a transducer at the north pole.
In both cases, the five eigenvalues form a singlet and two doublets.
The curves for the doublets are the same with or without a polar
transducer.
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dependent than the pentagonal hexacontahedral arrangement
and gives even larger bandwidth at the poles, but it is also
inferior to the dodecahedral arrangement over most of the
sky.

B. Excess additive noise in one transducer

If six or ten transducers need to be placed on a spherical
antenna to give an optimal, isotropic sensitivity, how robust
is the detector to a failure of one transducer? There are sev-
eral ways in which a transducer could fail. This section ex-
amines the effects of excess additive noise in one transducer.
For both the dodecahedral and icosahedral maximally flat
systems,Tn

eff and deff were calculated asSu for one of the
transducers was gradually increased to infinity. The limit of
infinite Su corresponds to a transducer which gives no signal
output. The value ofSf for the bad transducer is assumed to
be the same as for the other transducers.

Figure 11 shows the effects of excess additive noise on
the SNR eigenvaluesk using the dodecahedral arrangement.
Four of the eigenvalues remain unchanged, but one develops
a zero nearv5v0.

Figures 12 and 13 show thatTn
eff anddeff are unaffected

by the excess noise for a source directly over the bad trans-
ducer. This is to be expected since such a source excites a
sphere mode which has no coupling to that transducer. One
finds thatTn

eff and deff depend only on the spherical angle
Du between the bad transducer and the source direction. On
a band around the sky 90° from the bad transducer,
maxc(Tn

eff) is degraded by a factor of 2.4. The corresponding
value ofdeff is degraded by a factor of 1.9, further eroding
the sensitivity if antenna dissipation is significant.

If the regular icosahedral arrangement is used instead, fig-
ures analogous to Figs. 11–13 look very similar, except for
their vertical scale. Once again, a zero develops in one of the
k values,Tn

eff and deff are unaffected for a source directly
over the bad transducer, and they depend only on the source-
transducer angleDu.

The relative robustness of the dodecahedral and icosahe-
dral arrangements is compared in Figs. 14–16 with
Su51000 for the bad transducer, which practically gives the
limiting behavior forSu→`. The worst case value ofTn

eff is
better by a factor of 1.6 for the icosahedral arrangement, and
the correspondingdeff is better by a factor of 1.8. It should be
pointed out, however, that the mass for the icosahedral trans-
ducers was chosen to be 6/10 times that for the dodecahedral
transducers so as to scale with the lighter effective antenna
mass in the icosahedral case. However, if the transducer de-
sign hasSf dominated by amplifier back-action noise rather
than by transducer mechanical dissipation, then it is more
reasonable to assume thatZn is held fixed rather than the
mass ratiom/(m/h). Then the single-mode, icosahedral
transducers would optimally be lighter by (6/10)1/350.84

FIG. 10. Effective bandwidthdeff versus source directionu for
three cases: the Lobo-Serrano arrangement~solid curves!, the
u51.258,N55 arrangement~dashed curves!, and the regular
dodecahedral arrangement~dash-dot line!. For each case, maximum
and minimum bandwidth over all polarization states are shown.

FIG. 11. Eigenvalues ofK0(v) for a regular dodecahedral ar-
rangement with excess additive noise in one transducer. Four of five
nonzero eigenvalues remain unchanged~dashed curve!. The fifth
decreases asSu increases (Su52,4,8,100,1000) for the bad trans-
ducer. TheSu51000 curve essentially gives the limitSu→`.

FIG. 12. Effective noise temperature for a regular dodecahedral
arrangement with excessive additive noise in one transducer. Worst
caseTn

eff ~maximum over source polarization! plotted versus the
angleDu between the bad transducer and the source direction.
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giving an increase in bandwidth by a factor of (10/6)1/3

51.19 when all transducers are good. Therefore, when one
transducer is very bad, one would expectdeff to be larger for
the icosahedral arrangement by 1.19 for sources over the bad
transducer and 1.831.1952.1 for sources 90° away.

Thus the icosahedral arrangement is modestly more ro-
bust against a transducer failure, with improvements in worst
caseTn

eff and deff by roughly the ratio of the numbers of
transducers used, but whether this effect is enough to justify
usingN510 transducers instead ofN56 will depend on the
cost of an increased number of transducers in terms of sys-
tem complexity and increased risk of failure weighed against
the benefits of lighter transducer masses or enhanced band-
width.

VII. MAXIMUM LIKELIHOOD ESTIMATION

The theory developed in Secs. II and III can be applied to
investigate other questions. For example, how accurately can
signal parameters such as the source direction and polariza-
tion be reconstructed? Magalha˜eset al. @39# gave a method
of solving for the signal and polarization when noiseless,
radial, nonresonant transducers are used to monitor a spheri-
cal antenna. Zhou and Michelson@9# used analytical and
Monte Carlo methods to find the accuracy of estimated pa-
rameters in the case where linear combinations of resonant
transducer outputs which give the amplitudes of the anten-
na’s quadrupole modes are five statistically independent
channels all with identical noise. This happens for the Zhou-
Michelson independent transducer arrangement and, as ex-
plained in Sec. IV, also for the dodecahedral and icosahedral
arrangements of identical transducers. Merkowitz and

FIG. 13. Effective bandwidth for a regular dodecahedral ar-
rangement with excess additive noise in one transducer. Value of
deff giving max(Tn

eff) is plotted versusDu.

FIG. 14. Eigenvalues ofK0(v) for regular dodecahedral~lower
dashed and solid curves! and icosahedral~upper dashed and solid
curves! arrangements when one transducer has excess additive
noise. Four of the nonzero eigenvalues are unaffected by the excess
noise~dashed curves!. The fifth decreases to a limiting value~solid
curves! asSu→`.

FIG. 15. Effective noise temperature for regular dodecahedral
(N56) and icosahedral (N510) arrangements when one trans-
ducer hasSu→`. Worst caseTn

eff ~maximum over source polariza-
tion! is plotted versus the angleDu between the bad transducer and
the source direction.

FIG. 16. Bandwidth for regular dodecahedral (N56) and icosa-
hedral (N510) arrangements when one transducer hasSu→`. The
value ofdeff giving max(Tn

eff) is plotted versus the angleDu.
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Johnson@19# have also investigated the reconstruction prob-
lem experimentally with a prototype truncated icosahedral
gravitational wave antenna~TIGA!. To investigate estima-
tion accuracy for an asymmetrical detector analytically, the
explicit formula for s(v) given by Eq.~63! can be used
together with the connection between optimal filtering and
the likelihood ratio described in Sec. II A.

Just as for the signal detection problem, there exists a well
developed theory for the signal estimation problem@23#, but
the literature appears to be lacking formulas written in a form
so that they may be easily applied to a detector with vector
output in general, and to a spherical gravitational wave de-
tector in particular. This section first briefly develops the
required formulas, and then applies them to determine the
accuracy of signal reconstruction for a spherical detector.

A. Estimation theory for a detector with vector output

The first formula needed is one which shows explicitly
how to calculate the likelihood ratiol comparing the prob-
abilities of observing the data under the hypothesesH0, the
datax is only noise, andH1, the data is noise plus a known
signalxsig(a), wherea is a vector listing the various signal
parameters on whichxsig depends. The explicit formula for
l can be derived somewhat laboriously by assuming that the
components ofx are sampled at a large number of discrete
times, and then writing down and manipulating a generalized
version of Eq.~4! which takes into account the correlations
between all the samples. However, the same result can be
obtained much more quickly by starting with the abstract
result for lnl given by Eq.~5!, and using the abstract formula
for the peak output of the optimal linear filter Eqs.~7! and
~9! to substitute in the explicit form found for the optimal
linear filter for a detector with vector output Eqs.~11!, ~14!,
and ~16!. The result is

lnl5~xsig,x!x2
1

2
~xsig,xsig!x , ~82!

where ( , )x is a convenient notation for the inner product
defined by

~a,b!x5E
2`

`

a†~v!Sx
21~v!b~v!

dv

2p
. ~83!

@This is a real-valued inner product ifa(t) andb(t) are real.#
In words, Eq.~82! says that lnl equals the~peak! output of
the optimal linear filter designed forxsig when applied to the
data x, minus one-half the filter output when applied to
xsig, this latter quantity also being the variance of the noisy
filter output according to Eq.~15!.

The usefulness of a concrete formula forl stems from the
connection betweenl and estimation of signal parameters.
Just as for the detection problem for a known signal, one
reasonable criterion for forming estimates of unknown pa-
rameters is to assign costs for errors in the estimates, and
then to choose the estimates so as to minimize the expected
cost ~the Bayes criterion!. If the cost function is the mean-
square error, then the optimal estimate is to compute the
mean of thea posterioriprobability distribution

P~aux!5
P~xua !P~a !

P~x!
. ~84!

If a cost function is not given, then a reasonable criterion is
to choose the most likely value ofa given the data, i.e.,
choose the mode rather than the mean of thea posteriori
distribution. If thea priori probabilitiesP(a) are unknown
or nearly uniform, then maximizingP(aux) is equivalent to
maximizingP(xua) or to maximizing the conditional likeli-
hood ratio

l5
P~xua !

P0~x!
. ~85!

Finding the value fora which maximizesl produces the
maximum likelihood estimateâ.

Two desirable properties of an estimator are that it be
unbiased~the mean of estimated values should equal the true
parameter values! and efficient ~have the lowest possible
variance given by the Cramer-Rao bound described below!.
If an unbiased efficient estimator exists, then it can be shown
to equal the maximum likelihood estimator~see Sec. 10.5 of
@23#!, and it is often found that the maximum likelihood
estimator approaches the minimum variance bound as the
SNR gets large. The Cramer-Rao bound@40# gives a formula
for the covariance matrix of an unbiased efficient estimator
which can be evaluated usingl. If there are several unknown
parameters, then the Cramer-Rao bound involves ‘‘Fisher’s
information matrix’’ g, which has elements

g i j5EF] lnP~xua!

]a i

] lnP~xua!

]a j
G ~86a!

5EF] lnl~a!

]a i

] lnl~a!

]a j
G , ~86b!

where the expectation value in the above equations is the
conditional expectation given the value ofa and the deriva-
tives are supposed to be evaluated at the true value ofa.
Then the covariance matrix of the unbiased efficient estima-
tor is the inverse of Fisher’s matrix,

sâi âj

2
5~g21! i j . ~87!

Equation~87! gives a powerful way to evaluate the accu-
racy of maximum likelihood estimates once it is seen how to
evaluate the expectation values which appear. From Eq.~82!,
when evaluated at the true parameter values, the derivatives
of the log-likelihood ratio are

] lnl~a!

]a i
5S ]xsig

]a i
,xD

x

2S ]xsig
]a i

,xsigD
x

~88a!

5S ]xsig
]a i

,nD
x

~88b!

5E
2`

` dv

2pS ]xsig
]a i

D †Sx21n~v!, ~88c!

wheren5x2xsig is the noise in the data. Thus the Fisher
matrix elements are
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g i j5E
2`

` dv

2pE2`

` dv8

2p S ]xsig~v!

]a i
D †Sx21~v!

3E@n~v!n†~v8!#Sx
21~v8!

]xsig~v8!

]a j
~89a!

5E
2`

` dv

2pE2`

` dv8

2p S ]xsig~v!

]a i
D †Sx21~v!2pd~v2v8!

3Sx~v!Sx
21~v8!

]xsig~v8!

]a j
~89b!

5S ]xsig
]a i

,
]xsig
]a j

D
x

, ~89c!

where in the second line the Wiener-Khintchine theorem
@41# was used to express E@nn†# in terms ofSx . The matrix
elements can be expressed even more neatly by defining

x~a,a8!5„xsig~a!,xsig~a8!…x , ~90!

for then

g i j5
]2x

]a i]a j8
U

a5a8

. ~91!

Equation~91! is used below to study the uncertainties in
signal estimation for a spherical gravitational wave detector
by explicitly evaluatingx and its derivatives. The function
x is what would be called the ‘‘ambiguity function’’ in radar
detection theory@42#. The physical significance ofx can
perhaps be made clearer by noting thatx(a,a8) is the peak
output of an optimal filter designed to detectxsig(a) when
the actual data isxsig(a8), andx(a,a) is the variance of that
filter’s noisy output, so that the SNR obtained when using
the wrong optimal filter to detectxsig(a8) is

S/N5
@x~a,a8!#2

x~a,a !
. ~92!

The more sharply peakedx is abouta5a8, the more accu-
rately the true value ofa can be estimated.

B. Ambiguity function for a spherical GW detector

The ambiguity functionx for a spherical gravitational
wave detector can be evaluated using the results of Sec. III.
The expected signal isxsig(v)5Ytsfs with fs given in terms
of the source direction (u,f) andh1(v) andh3(v) accord-
ing to Eqs.~59! and ~60!. If the signal power spectrum is
essentially flat over the detector’s bandwidth, thenh1(v)
andh3(v) can be parametrized as

h1~v!5hcosbejsgn~v!e12 jvt, ~93a!

h3~v!5hsinbejsgn~v!e32 jvt, ~93b!

whereh, b, e1 , e3 , and t are real parameters describing
respectively the total magnitude of the strain spectrum, the
relative magnitudes of the polarization amplitudes, the

phases of the two amplitudes, and the signal’s arrival time.
Thus a consists of these five parameters and (u,f). The
ambiguity function is then

x~a,a8!5E
2`

` dv

2p
fs
†~v;a !K ~v!fs~v;a8! ~94a!

52ReF E
0

`dv

2p
fs
†~v;a !K ~v!fs~v;a8!G ~94b!

52ReF fs†~v0 ;aut50!E
0

`dv

2p
e2 jv~t82t!K ~v!

3fs~v0 ;a8ut850!G . ~94c!

C. Lossless narrow-band spherical detector with identicalTn’s

Consider first the case of a spherical detector which is
lossless, narrow band, and has identicalTn symmetry.~Other
cases are considered below, but this case provides a connec-
tion with the Zhou-Michelson work@9#.! With these assump-
tions, Eq.~94c! for x simplifies considerably. If the band-
width of the detector is so narrow that it is not useful to
model the signal phase and arrival time independently~see
Sec. VIIE!, or if the arrival timet is known exactly by other
means, thent can be set to zero and removed as a signal
parameter. If the detector is lossless, so that thermal noise is
absent, thenK5K0. For a lossless detector with identical
Tn symmetry,kBTn

eff5kBTn for all signalsfs , so from Eq.
~67! the integral ofK0 must be

E
2`

` dv

2p
K0~v!5

1

2mkBTn
M , ~95!

independent of the transducer locations and other param-
eters. Substituting this result into Eq.~94c! with t50, and
using Eqs.~60! and ~62!, the formula forx simplifies to

x~a,a8!5
1

2mkBTn
Re@ fs

†~v0 ;a !Mf s~v0 ;a8!# ~96a!

5
1

2kBTn
Re@ fm

† ~v0 ;a !fm~v0 ;a8!#. ~96b!

Before proceeding to evaluate the Fisher matrix and its
inverse, the estimation covariance matrix, it is worth com-
menting that the expression forx given by Eq.~96b! is pre-
cisely the same ambiguity functionwhich would apply if the
Zhou-Michelson independent arrangement of five transduc-
ers was used instead of the arbitrarily located, statistically
dependent, nonidentical~radial! transducer channels for
which Eq.~96b! was derived here. This is easily seen: since
the Zhou-Michelson proposed transducers are designed to
independently monitor the five quadrupole mode amplitudes
of the antenna with the same noise in each channel, an opti-
mal filter designed for an impulsive force with signal param-
etersa but acting on a signal with parametersa8 gives an
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output proportional to the sum of the expected mode ampli-
tudes times the actual mode amplitudes@see Eqs.~7! and
~9!#, but this is exactly what Eq.~96b! prescribes. Therefore,
for a lossless spherical narrow-band detector with identical
Tn symmetry, not only is the SNR for detecting a known
signal independent of the other transducer parameters, butso
is the detector’s ambiguity function, and hence also its di-
rection and polarization reconstruction accuracy.This result
shows rigorously that the results of the Zhou-Michelson
analysis apply to a much broader class of detectors.

In fact, the assumptions of a spherical antenna and radial
transducers arenot needed for Eq.~96b! to hold. All that is
needed is for the detector to be lossless, the noise tempera-
tures to be identical, and the signal to be impulsive. Then
K0(v) will still integrate to a constant matrixM , which,
even though its elements are no longer given by Eq.~48!,
must give forx(a,a8), a bilinear form in fm(v0 ;a) and
fm(v0 ;a8) which evaluates toE/(kBTn) for a5a8. Since
the energyE deposited by the impulsive signal in an antenna
initially at rest is a quantity dependent only on the antenna
and not the transducers and since Eq.~56! is a general ex-
pression forE requiring only knowledge of the eigenmodes
of the bare antenna without transducers, Eq.~96b! is seen to
hold in general. Theambiguity function, and hence alsothe
signal reconstruction accuracy, of a lossless narrow-band
detector with identicalTn symmetry is independent of the
other transducer parameters. Of course, if the antenna is not
spherical, thenfm will not be given by Eq.~59! andE will
generally depend on source direction and polarization. Simi-
larly, if the antenna is spherical but there are less than
N55 distinct transducer locations, then the transducers will
not couple to all the degenerate quadrupole modes and some
of the energy in the quadrupole modes will be hidden from
the transducers and should not be included inE, which will
then be direction and polarization dependent.

Next, it is shown that evaluating the estimation covari-
ance matrix by the abstract techniques described above does
indeed reproduce the Zhou-Michelson results obtained by
more direct analytical and Monte Carlo methods~plus giving
some analytical formulas they missed!, with the difference
that the results are valid now forany lossless, narrow-band,
spherical detector withN>5 radial or nonradial transducers
having identicalTn’s. This serves to illustrate the abstract
techniques before they are applied to analyze the effects of
breaking theTn symmetry, for example.

Substituting Eq.~59! for fm and Eqs.~93a! and ~93b! for
h1 andh3 into Eq.~96b! gives an explicit analytical formula
for x from which its derivatives and the Fisher matrix ele-
mentsg i j can be computed from Eq.~91!. The calculations
are straightforward, but tedious by hand. The programMATH-

EMATICA @43# is helpful in finding the nonzero elements of
the symmetric matrixg,

ghh5h22S/N, ~97a!

guu5S/N, ~97b!

gff5~113cos2u!S/N, ~97c!

gfb522cosDe cosu S/N, ~97d!

gfe1
5sinDe cosu sin2b S/N, ~97e!

gfe3
5sinDe cosu sin2b S/N, ~97f!

gbb5S/N, ~97g!

ge1e1
5cos2b S/N, ~97h!

ge3e3
5sin2b S/N, ~97i!

whereDe5e32e1 . Invertingg to find the covariance ma-
trix of simultaneous maximum likelihood estimates ofh, u,
f, b, e1 , e3 gives the nonzero elements

shh
2 5h2~S/N!21, ~98a!

suu
2 5~S/N!21, ~98b!

sff
2 5csc2u~S/N!21, ~98c!

sfb
2 52cosDe cosu csc2u~S/N!21, ~98d!

sfe1

2 522sinDe cosu csc2u tanb~S/N!21, ~98e!

sfe3

2 522sinDe cosu csc2u cotb~S/N!21, ~98f!

sbb
2 5~114cos2De cot2u!~S/N!21, ~98g!

sbe1

2 522sin2De cot2u tanb~S/N!21, ~98h!

sbe3

2 522sin2De cot2u cotb~S/N!21, ~98i!

se1e1

2 5~sec2b14sin2De cot2u tan2b!~S/N!21,

~98j!

se1e3

2 54sin2De cot2u~S/N!21, ~98k!

se3e3

2 5~csc2b14sin2De cot2u cot2b!~S/N!21.

~98l!

From Eq.~98a!, the percentage error in determining the
magnitude of the strain spectrum issh /h5(S/N)21/2. The
maximum likelihood estimates ofu andf are uncorrelated
and result in a circular error box on the sky with a mean-
square radius covering a solid angleDV given by

DV5p~suu
2 1sin2usff

2 ! ~99a!

5
2p

~S/N!
. ~99b!

The results forsuu
2 , sff

2 and DV agree with Zhou and
Michelson’s analytical and Monte Carlo results@9# despite
an apparent factor of 2 discrepancy. Zhou and Michelson
used a slightly different definition ofS/N based on the opti-
mal receiver for a narrow-band signal of unknown phase.
The optimal detection criterion is then to use two optimal
filters designed for signal phases 90° apart, and to look for
threshold crossings of the sum of the squares of the two filter
outputs @23#. In this paper,S/N always denotes the SNR
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obtained with the optimal filter when the signal parameters,
including phase, are known. This definition givesS/N a
value twice that of the Zhou-Michelson definition.

Zhou and Michelson also used Monte Carlo methods to
evaluate the uncertainty in measurements of the coordinate
independent ‘‘polarization factor’’P defined by

P5sin2b sinDe. ~100!

As Zhou and Michelson found,P is a rather nonlinear func-
tion, but if the SNR is high enough that only first order terms
in db anddDe are important, then

dP'sin2b cosDedDe12cos2b sinDedb, ~101!

and the variance of estimates ofP is

sP
2'4cos22b sin2Desb

21sin22b cos2DesDe
2

14cos2b sin2b cosDe sinDesbDe
2 . ~102!

Using Eqs. ~98j! through ~98l! to evaluate sDe
2

5se1e1

2 1se3e3

2 22se1e3

2 andsbDe
2 5sbe3

2 2sbe1

2 gives

sDe
2 54~csc22b14cot2u sin2De cot22b!~S/N!21, ~103!

sbDe
2 524cot2u sin22De cot2b~S/N!21. ~104!

Substituting the above into Eq.~102! gives, after simplifica-
tion, the remarkably simple formula

sP
2'4~12P2!~S/N!21. ~105!

Actually, Zhou and Michelson measured the absolute
value ofP and calculateds uPu

2 assuming that the source di-
rection is known. Ifu andf are known, then the prescription
for calculating the estimation covariance matrix is to cross
out the rows and columns ing corresponding tou andf,
and then invert the reduced Fisher matrix to find the new
covariance matrix. The result is

sbb
2 5~S/N!21, ~106a!

se1e1

2 5sec2b~S/N!21, ~106b!

se3e3

2 5csc2b~S/N!21, ~106c!

with sbe1

2 5sbe3

2 5se1e3

2 50. Substituting into Eq.~102!

gives, after simplification, the same simple result as in Eq.
~105! calculated for the case of unknown direction. With a
spherical antenna, direction accuracy and polarization accu-
racy are independent.

Comparison with the Zhou-Michelson results is compli-
cated by the effects of measuringuPu instead ofP. The dif-
ference is most pronounced whenP is near zero. Assuming
P has an approximately Gaussian probability distribution,
the mean and standard deviation ofuPu are related to those of
P by

^uPu&5^P&erfS ^P&

A2sP
D 1A2

p
sPexpS 2^P&2

2sP
2 D , ~107!

s uPu
2 5sP

21^P&22^uPu&2. ~108!

The Zhou-Michelson Monte Carlo simulations cover not just
very high SNR values, but also low values for which the
first-order expansion, Eq.~101!, is not valid. ExpandingP to
second order instead of just first order, and using Eqs.
~106a!–~106c! under the assumption of known direction, the
mean valuê P& deviates from the true value according to

^P&'S 12
1

2
sDe
2 22sb

2 DP ~109!

5@122~csc22b11!~S/N!21#P. ~110!

The deviation of the mean from the true value ofP depends
not only on the value ofP, but also onb. Assuming Zhou
and Michelson used sin2b51 ~and variedDe to changeP)
reproduces their data well. One final complication needs to
be taken into account before comparing this theory with the
Zhou-Michelson data: forP51, 2b5De5p/2 and the first-
order terms in the expansion ofP are both zero. Thus, for
P51, higher order terms must be considered, which gives to
leading order

sP
2 uP51'16~S/N!22. ~111!

Figures 17 and 18 compare the above analytical expres-
sions for the mean and standard deviation ofuPu with the
Monte Carlo results in the Zhou-Michelson Fig. 9@44#. The
agreement is excellent forS/N.60. The analytical formulas
accurately describe both the asymptotic behavior at high
SNR and, at intermediate SNR, the effects of the nonlinearity
of P and of taking its absolute value.

D. Effect of unequal Tn’s on direction accuracy

If a narrow-band lossless spherical detector has radial
transducers which do not have identicalTn’s, then the detec-
tor’s direction-finding accuracy becomes anisotropic. In this
case, instead of reducing to Eq.~96b!, Eq. ~94c! for x be-
comes~with t5t850)

x~a,a8!5ReF fm† ~v0 ;a !H†E
2`

` dv

2p
K ~v!Hfm~v0 ;a8!G ,

~112!

whereH is the matrix used to solve Eq.~60! for the effective
forcesfs using the pseudoinverse ofGT @36#:

H5A5m

4p
~GT!1. ~113!

For a given set of transducer locations and parameters,
H†*2`

` Kdv/2pH is a constant matrix, which can be evalu-
ated numerically. Then the analytical formulas forfm can be
differentiated to evaluate Eq.~91! for the Fisher matrix ele-
ments.

With identicalTn symmetry, the estimates ofu andf are
uncorrelated. When that symmetry is broken, the two direc-
tion angles may become correlated and the direction error
box changes from a circle to an ellipse with areaA given in
general by

582 56THOMAS R. STEVENSON



A5psinuAsu
2sf

22~suf
2 !2. ~114!

The effects of brokenTn symmetry were studied numeri-
cally for a lossless detector with transducers in the regular
dodecahedral locations. As in Sec. V C, a set of six maxi-
mally flat single-mode transducer systems was perturbed by
changing individual transducer noise temperatures by up to
620% while holding noise impedances fixed. For any spe-
cific source direction and polarization state, the Fisher and
covariance matrices were evaluated by the method described
above. For circularly polarized signals, the correlation coef-
ficient ruf5suf

2 /(su
2sf

2 )1/2 was found to always be zero,
but, for linearly polarized signals,ruf was found to be a
sinusoidal functionasin2(b2b0) with an amplitude depen-
dent on source direction. As before,Tp

eff was found to depend
on direction and polarization, but for a fixed signal energy,

the areaA was found to becompletely polarization indepen-
dent. However, the areaA was less than its identical-Tn
value for some directions and larger for others.

Figure 19 shows the size of the anisotropy inA for five
random trials at each of theTn tolerance levels 5, 10, and
20 %. Figure 20 shows maximum value ofurufu over all
directions and polarizations. Empirically, the percentage de-
viations ofA are typically of the same order as, but smaller
than, the percentage deviations ofTn . Likewise, max(urufu)
shows a first-order effect with values approximately as large
as 0.83@max(Tn)2min(Tn)#/2.

E. Arrival time estimation

When the arrival timet is an unknown parameter, Eq.
~94c! can be used to calculate the accuracy of arrival time
estimates. If the detector has a small fractional bandwidth,
then there is trouble distinguishing between arrival time and
signal phase. A special case which illustrates this effect most
simply is to assume that$u,f,h,b,De% are known param-
eters whilet ande05(e11e3)/2 are unknown. The param-
eter e0 represents the phase of the true signal wave form
relative to its envelope within the detection band. Since
]fs /]e05 jsgn(v)fs and]fs /]t52 jvfs , it is easy to evalu-
ate the reduced Fisher matrix

ge0e0
5~S/N!, ~115a!

ge0t52^v&a~S/N!, ~115b!

gtt5^v2&a~S/N!, ~115c!

where^vn&a is defined by

^vn&a5
2Re@ fs

†*0
`~dv/2p!vnK ~v!fs#

2Re@ fs
†*0

`~dv/2p!K ~v!fs#
. ~116!

FIG. 17. Mean of the absolute value of the polarization factor.
Comparison of the Zhou-Michelson Monte Carlo simulations
~points joined by solid lines! and the analytical formulas derived
here~dashed curves!.

FIG. 18. Standard deviation of maximum likelihood estimates of
uPu. Comparison of the Zhou-Michelson Monte Carlo simulations
~points joined by solid lines! and the analytical formulas derived
here~dashed curves!.

FIG. 19. Solid angleA of the direction error ellipse for lossless
spherical detectors with dodecahedrally located transducers but bro-
kenTn symmetry. Units ofA are relative to the value for unbroken
symmetry. Maximum~1! and minimum (s) values ofA over all
source directions are plotted versus max(Tn)21 or 12min(Tn).
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The value of̂ vn&a is thenth moment of a probability dis-
tribution proportional to the signal-to-noise ratio density for
detecting a signalfs(a). Inverting the Fisher matrix to find
the covariance matrix gives

se0e0
2 5

^v2&a

^v2&a2^v&a
2 ~S/N!21, ~117a!

se0t
2 5

^v&a

^v2&a2^v&a
2 ~S/N!21, ~117b!

stt
2 5

1

^v2&a2^v&a
2 ~S/N!21. ~117c!

The timing accuracy in Eq.~117c! may be contrasted with
the result ife0 is known in advance:

stt
2 5

1

^v2&a
~S/N!21. ~118!

Thus, if e0 is not known and the detection bandwidth is
narrow, then the uncertainties in estimates of phase and ar-
rival time are highly correlated, and the standard deviation of
the arrival time estimate is worse by a factor of 1/dt

eff , where
dt
eff is a measure of effective fractional bandwidth defined by

dt
eff5S ^v2&a2^v&a

2

^v2&a
D 1/2. ~119!

This reproduces a standard result of signal estimation
theory for detectors with scalar output@23#, but the above
calculations show how this applies for a vector detector. The
timing accuracy depends on the value ofdt

eff evaluated for a
particular source direction and polarization. Although a loss-
less detector with identical-Tn symmetry was shown above
to have isotropic direction and polarization accuracy, its tim-
ing accuracy will be anisotropic if the transducers do not

exhibit other symmetries which makedt
eff a constant, such as

happens for identical radial transducers in the dodecahedral
or icosahedral arrangements, or for the Zhou-Michelson in-
dependent transducer design. For the maximally flat, single-
mode transducer systems considered in Sec. V, the value of
the fractional bandwidth which determines sensitivity to loss
has the valuedeff50.148, while the fractional bandwidth de-
termining timing accuracy isdt

eff50.043. As the number of
modes in a multimode maximally flat transducer system is
increased,s(v) becomes boxlike anddeff approaches the
fractional width of the box, whiledt

eff approaches a value
A12 times smaller. Even for single-mode transducers, the
boxlike approximation works well:dt

eff is only about 10%
bigger thandeff/A12.

If the direction and polarization are not really known, then
the full Fisher matrix is more complicated than the reduced
matrix given by Eqs.~115a!–~115c!. A more detailed analy-
sis of the interplay between direction-polarization and phase-
timing uncertainties could be made using the above methods.
However, for a narrow-band lossless detector, it was shown
above that the direction and polarization uncertainties are of
order (S/N)21, which is smaller than the above timing and
phase uncertainties by the factordt

eff . Thus, if dt
eff!1, the

direction and polarization are essentially known compared to
t ande0 and it seems reasonable to assume known direction
and polarization when estimatingt and e0 and calculating
their uncertainties.

Although a single narrow-band detector suffers a serious
penalty in trying to measure the arrival time of a signal with
an unknown shape, the timing accuracy of a network ofiden-
tical detectors is not so bad. With one detector, an error in
the value ofe0 used to construct the optimal filter template
gives a modest loss of SNR, but a large error in the measured
arrival time. However, if groups operating two identical,
similarly oriented, detectors agree to use arbitrary but equal
values ofe0, then even though the arrival times they report
will suffer a systematic error, the difference between the
measured arrival times will have an uncertainty given ap-
proximately by Eq.~118!, rather than Eq.~117c!. Cerdonio
et al. @45# have shown that, if the signal shape is assumed
known, a global network of 1 kHz bar antennas can have
enough timing accuracy according to Eq.~118! to give useful
source direction information via time delays starting at mod-
est SNR’s of (S/N)1/2'8. A network of spherical detectors
has the advantage that any two spheres in the network give
an accurate time delay, whereas two bars must be aligned to
measure the same component of the gravity wave in order for
the true signal shape to be the same for each.

VIII. SUMMARY

The approach developed here gives both an intuitive ex-
tension to the signal detection and estimation theory for one-
dimensional detectors and provides a numerically efficient
means of studying the behavior of spherical gravitational
wave detectors when various asymmetries exist. Several re-
sults were derived which are valid for a general gravitational
wave detector employing multiple transducers. Without as-
suming any particular antenna or transducer symmetries, it
was shown that the optimal signal detection algorithm in the

FIG. 20. Correlation coefficientruf betweenu andf estimates
for lossless spherical detectors with dodecahedrally located trans-
ducers but brokenTn symmetry. Maximum value ofurufu over all
directions and polarizations is plotted versus the fractional spread in
noise temperatures.
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presence of Gaussian noise is unchanged from the scalar de-
tector case: the optimal decision rule for detecting a known
signal is always to compute the linear filterwith a scalar
outputwhich maximizes the SNR and to look for the optimal
filter output to exceed a threshold. Explicit matrix formulas
were derived for computing the optimal linear filter and the
resulting SNR in terms of the detector’s cross-spectral den-
sity matrix and the expected response to the known signal.
An explicit construction was given for statistically indepen-
dent linear combinations of the transducer outputs which
simplify the expression for the SNR. The existence of such
statistically independent output channels is thus not a conse-
quence of any special symmetries. By introducing admit-
tance matrices which describe the response of the linear de-
tector to signal forces and transducer back-action forces,
Price’s method@15# of proving Giffard’s amplifier limit@13#
was generalized to show that, for a lossless detector, the
effective pulse detection noise temperature is bounded by the
minimum and maximum of the noise temperatures of the
individual transducers. If the transducer noise temperatures
are identical, then the SNR for detecting an impulsive signal
with a lossless detector simply equalsE, the energy the sig-
nal deposits in an antenna initially at rest, divided by the
noise temperaturekBTn of one transducer. Thus, if the detec-
tor is close enough to being lossless, the details of detector
design, including the existence of unintended asymmetries,
are unimportant since the detector’s sensitivity is indepen-
dent of all other parameters besidesE andTn . If the antenna
is also spherical and if there are enough transducers to couple
to all the quadrupole modes, the detector’s sensitivity is in-
dependent of source direction and polarization sinceE is too.
How lossless the detector must be to approach the amplifier
limit was shown to depend on the detection bandwidthdeff

through matrix formulas analogous to those for scalar detec-
tors. Thus for a detector with significant thermal noise to
have isotropic sensitivity, an isotropic bandwidth is required
in addition to identicalTn’s and an isotropicE.

Matrix equations were derived which describe a spherical
antenna interacting with a gravitational wave described by
general relativity when coupled toN nonidentical, arbitrarily
located, multimode transducer systems. If the transducer sys-
tems are identical in all respects, then this symmetry was
shown to give the equivalence that Johnson and Merkowitz
@8# discovered between the SNR spectrum for the spherical
detector and a set of bar antennas. It was shown how to
evaluate the effective antenna masses of the equivalent bars,
and the dodecahedral and icosahedral arrangements were
shown to give bandwidth isotropy as a consequence of those
arrangements giving the maximal, fivefold, degeneracy of
effective masses.

The effects of transducer asymmetries were studied nu-
merically for the dodecahedral design with identical trans-
ducers. Location asymmetry was found to leaveTn

eff un-
changed, but to improvedeff for some directions while
degrading it for others, giving an anisotropy linear in toler-
ance and equal to610% for'64° tolerance. Tuning asym-
metry also leavesTn

eff unchanged, but it always decreases
deff, little in some directions, and more in others, with a
second-order dependence on tolerance. The maximum de-
crease indeff is limited to 10% for'5% tolerance. Breaking
Tn symmetry while keeping identical noise impedancesZn

leavesdeff unchanged, but gives an asymmetry inTn
eff which

covers most of the allowed range between min(Tn) and
max(Tn).

Anisotropy inTn
eff or deff was also used to compare dif-

ferent detector designs and to evaluate their robustness
against various transducer failures. Based on its bandwidth
anisotropy, the proposed five-transducer arrangement of
Lobo and Serrano@20# was found to be inferior to the
Johnson-Merkowitz TIGA arrangement of six transducers
@8#. The dodecahedral arrangement was found to be fairly
robust against excessive additive noise in one transducer;
extreme excess noise in one transducer degradedTn

eff by only
a factor of 2.4 in the worst case. A regular icosahedral ar-
rangement of ten transducers is more robust against such a
transducer failure, but only modestly so. The numerical
methods used here could also be used to examine other types
of transducer failure, such as one transducer having excess
force noise, perhaps because of a poor mechanicalQ.

The effects of asymmetries on the accuracy with which a
spherical detector can reconstruct source direction, polariza-
tion, phase, and arrival time information were studied by
generalizing maximum likelihood estimation theory from the
scalar to vector case. Deriving formulas for the ambiguity
function whose derivatives give the accuracy of the esti-
mates, it was shown that a lossless gravitational wave detec-
tor with identical-Tn symmetry looking for impulsive signals
has an ambiguity function which is independent of the other
transducer parameters. Thus for such a detector, not only is
its sensitivity independent of the details of the detector de-
sign, but so is the accuracy with which it can reconstruct
signal direction and polarization. Consequently, the Zhou-
Michelson analysis@9# of direction and polarization accuracy
applies not only to their ‘‘independent transducer’’ design,
but also to any lossless spherical detector with identical-Tn
symmetry. The ambiguity function method developed here
was shown to reproduce the Zhou-Michelson analytical and
Monte Carlo results. The solid angle and polarization factor
accuracies were shown to beDV52p/(S/N) and
sP
254(12P2)/(S/N), the latter formula being an analytical

one not derived by Zhou and Michelson. A numerical study
of the effects of breaking theTn symmetry showed that es-
timates of the direction angles (u,f) become correlated giv-
ing an elliptical rather than circular error box in the sky. For
a given source direction, the area of the error box is polar-
ization independent, but the area does depend on the direc-
tion, exhibiting an anisotropy first order in the deviations of
the noise temperatures. The area is increased in some direc-
tions and decreased in others by fractional amounts almost as
large as the fractional changes in the maximum and mini-
mumTn . The peaku–f correlation coefficient is as large as
0.83@max(Tn)2min(Tn)#/2. The accuracy of arrival time es-
timates was shown to depend on the detection bandwidth, so
asymmetries which give bandwidth anisotropy will also give
an arrival time uncertainty which varies in inverse proportion
to the bandwidth.

While the analysis presented here has not exhaustively
covered the effects of all possible detector asymmetries,
some of the results are general enough to show that both the
sensitivity and the signal reconstruction abilities of a spheri-
cal gravitational wave detector are reasonably immune to

56 585LIMITS ON THE SENSITIVITY OF SPHERICAL . . .



even fairly large asymmetries, provided care is taken to ex-
perimentally characterize the detector’s noise and its re-
sponse to signal so that the required optimal filters may be
constructed. One of the theoretical questions which remain is
how best to determine, in a practical way, the expected re-
sponse to the bulk forces of a gravitational wave when only
surface forces can be applied to the antenna for calibration in
the laboratory. However, the detector characterization is
done, the matrix formulas derived here for the optimal linear

filters should prove useful when the day comes for such de-
tectors to begin observing the gravitational sky.
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