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The pion decay constant and mass are computed at low temperature within chiral perturbation theory to two
loops. The effects of the breaking of Lorentz symmetry by the thermal equilibrium state are discussed. The
validity of the Gell-Mann–Oakes–Renner relation at finite temperature is examined.@S0556-2821~97!04919-9#
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I. INTRODUCTION

The spontaneous breaking of chiral symmetry is believed
to be a property of the strong interaction at zero temperature.
If the temperature is finite, different regimes appear. For suf-
ficiently low temperatures chiral symmetry is still spontane-
ously broken, whereas for high temperatures it has to be
restored according to asymptotic freedom. The way this res-
toration happens is not yet known and the transition tempera-
ture is estimated to be around 150–250 MeV~for a review of
QCD at finite temperature see@1#!.

The low-temperature-regime hadronic phase is dominated
by the lightest particle occurring in the spectrum: the pion.
The nonzero but small masses of theu andd quarks, which
explicitly break chiral symmetry, make it a pseudo Gold-
stone boson of the theory. Because of the lightness of these
quarks, their masses can be treated as perturbations.

When the system is heated, the first particles to be pro-
duced are the pions, whereas the states that remain massive
in the chiral limit (mquarks→0) are exponentially suppressed.
The low-energy properties of the pions are essentially fixed
by chiral symmetry. This leads to a wealth of low-energy
theorems derived in current algebra atT50. For instance the
Gell-Mann–Oakes–Renner~GOR! relation relates the pion
decay constant and mass to the quark condensate and the
quark mass~for simplicity all the quarks are put to the same
massm̂) @2#:

Mp
2 Fp

2

m̂^0u q̄qu0&
5211O~m̂!. ~1.1!

A very efficient technique to analyze the corrections to these
theorems is the use of effective Lagrangians. The low-energy
effective theory of QCD is chiral perturbation theory~ChPT!
@3–5#. At zero temperature and nonzero quark masses, the
GOR relation ceases to hold@4#. The goal of the present
paper is to compute the temperature dependence of the quan-
tities involved in the GOR relation and to see whether the
latter still holds in the chiral limit.

The thermodynamics of a hadron gas and the quark con-
densate below the chiral phase transition have already been
studied up to three loops in ChPT@6#. The question of pion
propagation at finite temperature has been addressed: The
self-energy is known to two loops in ChPT@7#, but the pion
decay constant to one loop only@8#.

The thermal equilibrium state is not Lorentz invariant. In
ChPT this first explicitly shows up at two-loop order. It is
then important to compute up to this order to see what hap-
pens in the nonzero-temperature case. For instance the ap-
pearance of two distinct pion decay constants—one for time
and one for space—begins at this order. This was already
noted in@9# and is a known feature of some nonrelativistic
systems such as the antiferromagnet@10#.

A short presentation of ChPT at finite temperature in the
real-time formalism is the subject of the next section. The
two-point axial Green’s function is computed in Sec. III, the
pion decay constants and mass in Sec. IV. The GOR relation
at finite temperature is the subject of Sec. V. It is derived
from two Ward identities relating the axial and pseudoscalar
two-point Green’s functions. Some of the consequences of
these identities are also examined. The regularization and the
chiral limit of T-dependent functions appearing in the corpus
are given in Appendixes A and B.

II. COOL CHIRAL PERTURBATION THEORY

A finite-temperature effective theory rests on the zero-
temperature one. In the path integral formalism going from
one to another is essentially a change of manifold over which
one integrates: A torus replaces a plane@11#. The real-time
formalism is used because we are investigating time-
dependent Green’s functions.

To make the presentation simpler, we will only give those
results we consider necessary here. The reader is invited to
consult @4,5# for a more detailed discussion on ChPT at
T50. We will restrict ourself to the case where all quarks
have the same massm̂.

ChPT is an effective theory describing QCD at low ener-
gies. TheN-flavor massless-quark QCD Lagrangian is sym-
metric under SU(N)R3SU(N)L , the chiral group. It is as-
sumed that a spontaneous chiral symmetry breakdown
occurs,

SU~N!R3SU~N!L→SU~N!V ,

whose Goldstone bosons are identified as the pions.
The QCD Lagrangian can be approximated at a given

order in the momentum using an effective Lagrangian ex-
pressed in terms of a fieldUPSU(N) which transforms lin-
early under SU(N)R3SU(N)L ,

U→gRUgL
† ,
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and contains the fields of the pseudoscalar Goldstone bosons,

U5eipata /F, ~2.1!

where ta are the generators of SU(N) and F is the pion
decay constant in the chiral limit:Fp5F@11O(m̂)#.

CouplingU with external fields and expanding the effec-
tive Lagrangian in powers of the external momenta and of
quark masses gives

Leff5L~2!1L~4!1L~6!1•••. ~2.2!

The promotion of the global chiral symmetry to a local one
requires the introduction of a derivative¹mU which is cova-
riant with respect to the external axial and pseudoscalar
gauge fields.

To get the desiredO(p6) accuracy, the tree, one-, and
two-loop diagrams ofL(2), the tree and one-loop graphs of
L(4), and the tree graphs ofL(6) are needed.

We will restrict ourselves to the two-flavor case (N52)
and use the traditional notation of@5#: x52Bm̂ I12iBp,
¹m5]mU2 i $am ,U%, and FR,L

mn 56]man7]nam2 i @am,an#,
where B is proportional to the quark condensate in the
massless-quark limit. It is found that the parts of the La-
grangian that contribute to the axial and pseudoscalar two-
point Green’s functions toO(p6) are the following.

~1! Lowest order:

L~2!5
F2

4
^¹mU†¹mU1xU†1x†U&. ~2.3!

~2! Second order:

L~4!5L1^¹mU†¹mU&21L2^¹mU†¹nU&^¹mU†¹nU&

1L4^xU†1x†U&^¹mU†¹mU&1L6^xU†1x†U&2

1L8^xU†xU†1x†Ux†U&1L10̂ U†FR
mnUFLmn&

1H1^FR
mnFRmn1FL

mnFLmn&1H2^x
†x&. ~2.4!

~3! Third order: the singular part of the two-point function
we are interested in only receivesT-independent corrections
from the tree graphs ofLeff ~see Sec. III for an illustration of
this property at one loop!. HenceL(6) will not be explicitly
needed here.

When the temperatureb21 is nonzero, the fieldsU(x)
map the b-dependent torus onto SU(N). The generating
functional of the connected Green’s functions is

exp$ iZ@am ,p#%5E @dU#expH i E
C
d3xdtLeffJ . ~2.5!

The integration extends overR3 and a contourC. In the
real-time formalism~RTF! of quantum field theory at finite
temperature, which has been thoroughly studied in@11#, one
can choose different integration paths in the complext plane.

We take the so-called Keldysh path shown in Fig. 1. The
functional integral extends over field configurations with the
boundary conditionU(2`,xW )5U(2`2 ib,xW ), which is the
familiar periodicity condition. A generalization of time or-
dering has to be introduced:T is replaced byTC , an operator
which orders operators according to the occurrence of their
time arguments on the contour. Heaviside,uC , and Dirac,
dC , distributions are defined on the contour@11#.

The thermal propagator is a Green’s function on the con-
tour:

~hC1M2!Db~x2y!5dC~x2y!. ~2.6!

The unique solution satisfying the Kubo-Martin-Schwinger
boundary condition is

Db~t2t8;vk!52
i

2vk
ebvknB~vk!$@e2 ivk~t2t8!

1e2bvk1 ivk~t2t8!#uC~t2t8!1@eivk~t2t8!

1e2bvk2 ivk~t2t8!#uC~t82t!%, ~2.7!

where nB(x)51/(ebx21) is the Bose distribution and

vk5AkW21M2.
When Eq.~2.5! is used to compute Green’s functions with

arguments on the realt axis, only a part ofZ@am ,p# is rel-
evant: TheC1 and C2 contour segments are the important
ones.

The introduction of the usual 232 formalism allows us to
rewrite the generating functional as (j 5am ,p)

Z@ j 1 , j 2#5E @dU1#@dU2#expH i E S 1

2
UmDb

21mnUn

2V@U1#1V@U2#1 j nUnD J , ~2.8!

where m,n51,2, and j 1(x)5 j (x), j 2(x) are independent
sources.

FIG. 1. The Keldysh path of integration in the complext plane.
The arrows indicate the time ordering on each part of the contour.
Only C1 andC2 are relevant in the generating functional.
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The real-time Green’s functions are generated by differ-
entiating Eq.~2.8! with respect toj 1 and setting bothj 1 and
j 2 to zero. For instance the real-time two-point axial Green’s
function is given by

i ^TAm
a ~x!An

b~y!&T5
1

Tre2bH
Tr$e2bHTAm

a ~x!An
b~y!%

5
d2

da1m
a ~x!da1n

b ~y!

3Z@a1m ,a2m ,p1 ,p2#U
a1m5a2m5p15p250

.

~2.9!

In momentum space the propagatorDb
mn reads

iD b
11~k!5@ iD b

22~k!#*

5D̃~k!12pd~k22M2!nB~ uk0u!5:D̃b~k!,

iD b
12~k!5 iD b

21~k!e2buk0u52pd~k22M2!nB~ uk0u!,
~2.10!

whereD̃(k)5 i /(k22M21 i«) is the usual Feynman propa-
gator.

The topological and combinatorical structures of the
Feynman diagrams do not change, but the propagator has
now acquired a matrix structure and there are two kinds of
fields. In a real-time Green’s function only the type-1 field
can appear on an external leg and the type-2 field plays the
role of a ghost field. There are also two kinds of vertices,
which are equivalent up to a sign. The two different fields
interact through the off-diagonal terms of the propagator.

III. AXIAL TWO-POINT GREEN’S FUNCTION

The finite-temperature two-point Green’s function of the
axial vector current,

Am
a ~x!5 q̄~x!

ta

2
gmg5q~x!, ~3.1!

describes the dynamics of a pion in a strongly interacting gas
@ta are the SU~2! generators#. Let Gmn(x2y,T)dab

:5 i ^TAm
a (y)An

b(y)&T . In general the two-point axial Green’s
function at finite temperature can be written as

G̃mn~q,T!52
qmqnaA~q,T!1qmbn

A~q,T!1qnbm
A~q,T!1gmn

A ~q,T!

q0
22J~q,T!

1rmn
A ~q,T!. ~3.2!

It contains a singular piece and a finite part,rmn
A (q,T). To

get this Green’s function to orderT4 in SU~2! ChPT ~two
flavors!, one needs to compute the Feynman graphs shown in
Fig. 2 with the effective Lagrangian~2.2!.

The singular parts of the tree diagrams are temperature
independent. They just contain the zero-temperature Feyn-
man propagatorD̃(q). Most of them have already been com-
puted in@4,12#. The other components of the matrix propa-
gator generate imaginary parts of the finite term of the two-
point Green’s function. Thus they are not interesting in our
context. They will only be mentioned in the one-loop com-
putation given below and ignored elsewhere.

TheT dependence of the one-loop graphs is rather simple:
Only properties of the thermal propagator at the origin ap-
pear in that case@4#.

At lowest order the pion mass is

M2:52m̂B ~3.3!

and the variousO(p4) graphs are

G̃mn
~4.114!~q,T!5gmn@F2116M2L422Db~0!#

1@q2gmn2qmqn#~4H122L10!, ~3.4!

G̃mn
~4.215!~q,T!5qmqnS 8

3
Db~0!132L4M2D D̃b~q!,

~3.5!

G̃mn
~4.316!~q,T!5 iqmqnS 4q22M2

6
Db~0!1M2~216L4q2

132L6M2116L8M2! D
3$@D̃b~q!#22@ iD b

12~q!#2%. ~3.6!

The relation (h1M2)Db(x)5 id (d)(x) has been used to
simplify the expressions.

At first sight, the term in brackets in Eq.~3.6! seems to be
ill defined: It contains products of Dirac distributions with
the same argument. But the equation of motion implies that

]M2Db~x!5 i
d

dM2
Db

11~x!

52 i E ddy@Db
11~x2y!Db

11~y!

2Db
12~x2y!Db

12~y!#. ~3.7!
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Hence the products of thermal statistical weights at interme-
diate stages of the computation disappear when the different
types of vertices are combined. This is a generic feature of
the real-time formalism@11#.

Moreover, the terms coming from the thermal parts of
D̃b(q) and the alike only contribute tormn

A (q,T), the finite

term of the two-point function. To get the pole and residue of
the latter, it suffices to replaceD̃b(q) by the corresponding
Feynman propagator everywhere. This is the case to all or-
ders in the perturbation.

The functions appearing in Eq.~3.2! at first nonleading
order are already known@8#:

FIG. 2. The Feynman diagrams necessary to compute the axial two-point Green’s function to two loops. The various vertices correspond
to the part of the effective Lagrangian~2.2! involved: the ‘‘dot’’ for the L(2) vertices, the ‘‘4’’ ~respectively, ‘‘6’’! for those ofL(4)

~respectively,L(6)). The wiggled lines represent an external field, whereas the plain lines are the thermal propagators. The various parts of
the RTF propagator and the crossed graphs are not explicitly given.
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J~q,T!5qW 21M2H 11
M2

F2
@216L4132L6116L8#J

1
M2

2F2
Db~0!1O~p6!, ~3.8!

aA~q,T!5F2H 11
M2

F2
@16L4#J 22Db~0!1O~p6!,

bm
A5O~p6!, gmn

A 5O~p6!, ~3.9!

rmn
A ~q,T!5gmn@F2116M2L422Db~0!#1@q2gmn2qmqn#

3~4H122L10!1O~p6!. ~3.10!

Only rmn
A (q,T) really depends on the momentum. As al-

ready said, the Lorentz symmetry is not explicitly broken at
this order.

BecauseDb(0) contains the Feynman propagator at the
origin, it diverges. As usual in ChPT, because it preserves
the symmetry of the theory, dimensional regularization is
used@4,6#:

Db~0!5E ddk

~2p!d
D̃b~k!52M2l1NM~T!, ~3.11!

where

l5
md24

~4p!2F 1

d24
2

1

2
@ ln4p1G8~1!11#

1 lnS M

m D1O~d24!G ~3.12!

and

NM~T!5E d4k

~2p!3
d~k22M2!nB~vk!. ~3.13!

The renormalization of the theory at finite temperature has
to be the same as atT50. This is obviously here the case:
No divergence occurs in the temperature-dependent part of
the two-point function. The scale-independent parameters
used to renormalize the theory are

L̄ i5Li2g il, H̄ i5Hi2d il, ~3.14!

where g151/12, g251/6, g451/4, g653/32, g850,
g1052/3, d151/3, andd250. In ChPT atT50, the expan-
sion of the pion mass and decay constant atO(p4) can be
expressed in terms ofF, M , and L̄ i :

Mp
2 5M2H 11

M2

F2
@216L̄ 4132L̄ 6116L̄ 8#J 1O~p6!,

~3.15!

Fp
2 5F2H 11

M2

F2
@16L̄ 4#J 1O~p6!. ~3.16!

The O(p6) graphs are a bit more complicated than those
of O(p4). However, only theT-dependent terms are of in-
terest here. Thus the diagrams~6.23!–~6.28! will not be ex-
plicitly given @see @12–14# for an analysis of zero-
temperature ChPT toO(p6)#.

Some of the two-loop graphs,~6.1!–~6.3! and ~6.13!–
~6.16!, are just products of lower order ones.

The diagrams~6.4!–~6.6! and ~6.17!–~6.19! involve es-
sentially the same elements as those occurring at one loop.
Only their vertices are different: They contain some low-
energy coupling constants and derivatives. For instance the
graphs~6.5! and ~6.18! give

G̃mn
~6.5!52

8i

3F2
qmqnD̃~q!Db

2~0!, ~3.17!

G̃mn
~6.18!5

16i

F2
D̃~q!E ddk

~2p!d
D̃b~q!$~2L114L2!kq~knqm

1kmqn!1~6k2L112k2L22 17
3 M2L4!qmqn%.

~3.18!

The graphs~6.7!–~6.9! and~6.20!–~6.22! are special ones
for the real-time formalism. They are the only diagrams in
the whole set which contribute to the pole and residue of the
two-point function and contain type-2 fields. Their role is
very important for the consistency of the theory@11#. The
graphs~6.8! and ~6.21! are taken as examples:

G̃mn
~6.8!52

4

9F2
qmqnD̃~q!Db~0!E ddk

~2p!d
~4k22M2!

3$@ iD b
11~k!#22@ iD b

12~k!#2%, ~3.19!

where the fact that the type-2 tadpole is the same as the
type-1 tadpole has been used, and

G̃mn
~6.21!5

128M2

3F2
qmqnD̃~q!E ddk

~2p!d
~k2L422M2L6

2M2L8!$@ iD b
11~k!#22@ iD b

12~k!#2%. ~3.20!

As a consequence of Eq.~3.7!, the integrals in Eqs.~3.19!
and ~3.20! are essentially]M2Db(0). In d54, this quantity
contains a singular piece:

]M2Db~0!52l1
1

16p2
1]M2NM~T!. ~3.21!

Finally, we turn to the genuine two-loop graphs. These
are the closed-eye~6.10!, the guimbard~6.11!, and the sunset
~6.12!, given by
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G̃mn
~6.10!~q,T!52

4

9F2E ddk1ddk2

~2p!2d
D̃b~k1!D̃b~k2!D̃b~q2k12k2!$~3k1m13k2m22qm!~3k1n13k2n22qn!%, ~3.22!

G̃mn
~6.11!~q,T!5

2

9F2
qmD̃~q!E ddk1ddk2

~2p!2d
D̃b~k1!D̃b~k2!D̃b~q2k12k2!~2qn23k1n23k2n!

3$k1
21k2

214k1k21M212~k11k2!q22q2%1~m↔n!, ~3.23!

G̃mn
~6.12!~q,T!52

i

18F2
qmqnD̃2~q!E ddk1ddk2

~2p!2d
D̃b~k1!D̃b~k2!D̃b~q2k12k2!

3$3M41@k1
21k2

214k1k21M212~k11k2!q22q2#2%. ~3.24!

One readily sees that the polynomials appearing in the
integrands are essentially four-point functions at the tree
level. For instance the square of the tree-level isospin-
averagedp-p scattering amplitude appears in the sunset.
These integrals may first appear complicated, but using the
symmetry properties of the integrands they can be expressed
in terms of two independent integrals~cf. Appendix A for
more details!:

G̃mn
~6.10!~q,T!52

4

9F2
qmqnI ~q,T!1

9

F2
I mn~q,T!,

~3.25!

G̃mn
~6.11!~q,T!5

D̃~q!

F2 S 8

9
qmqnq2I ~q,T!24qmqrI nr~q,T!

24qnqrI mr~q,T!14qmqnDb
2~0! D , ~3.26!

G̃mn
~6.12!~q,T!52qmqn

D̃2~q!

18F2
$~5M428q4!I ~q,T!

172qrqsI rs~q,T!212~M223q2!Db
2~0!%.

~3.27!

The functionsI (q,T) and I mn(q,T) are defined as

I ~q,T!5 i E ddk1ddk2

~2p!2d
D̃b~k1!D̃b~k2!D̃b~q2k12k2!,

~3.28!

I mn~q,T!5 i E ddk1ddk2

~2p!2d
D̃b~k1!D̃b~k2!

3D̃b~q2k12k2!k1mk1n . ~3.29!

These integrals have to be regularized because they are di-
vergent ind54. Their finite parts are determined by the four
functionsNM(T), Nmn(M ,T), Ī (q,T), and Ī mn(q,T), given
in Appendix A.

The end result for the various terms appearing in the rep-
resentation~3.2! reads

J~q,T!5qW 21Mp
2 1

Mp
2

2Fp
2
NMp

~T!1
1

Fp
4 FMp

4 L̄ JNMp
~T!

1
Mp

4

4
NMp

~T!]M
p
2NMp

~T!2
11Mp

2

8
NMp

2 ~T!

1
Mp

4

6
Ī ~q,T!2qmqn k̄ mn~q,T!G1O~p8!,

~3.30!

aA~q,T!5Fp
2 22NMp

~T!1
1

Fp
2 @Mp

2 L̄ ANMp
~T!

2Mp
2NMp

~T!]M
p
2NMp

~T!12NMp

2 ~T!#

1O~p8!, ~3.31!

bm
A~q,T!5

1

Fp
2

qn k̄ mn~q,T!1O~p8!, ~3.32!

gmn
A 5O~p10!, ~3.33!

rmn
A ~q,T!5Rmn

A ~q!1gmnaA~q,T!1
1

Fp
2 F k̄ mn~q,T!

1~qmqn2gmnq2!S 2L̄ 102
1

72p2D G1O~p8!.

~3.34!

The function
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k̄ mn~q,T!:5 L̄Nmn~Mp ,T!14 Ī mn~q,T! ~3.35!

and different combinations of the renormalized low-energy
coupling constants were introduced to lighten the expres-
sions

L̄ 532L̄ 1164L̄ 22
7

18p2
,

L̄ J5248L̄ 1216L̄ 2148L̄ 4280L̄ 6240L̄ 81
55

576p2
,

~3.36!

L̄ A548L̄ 1116L̄ 2224L̄ 42
7

144p2
.

Expressed in terms of the coupling constants defined in@4#,
these are given by

L̄ 5S l̄ 114 l̄ 22
14

3 D Y 12p2,

L̄ J5S 224 l̄ 1216 l̄ 2115 l̄ 3112 l̄ 41
55

3 D Y 192p2,

~3.37!

L̄ A5S 6 l̄ 114 l̄ 229 l̄ 42
7

3D Y 48p2.

Note thataA(q,T) does not depend on the momentum at this
order.

An integral representation can be given for the different
functions of temperature and momentum appearing in the
previous expressions.NM(T) has already been introduced in
Eq. ~3.13!. The other function related to the properties of the
propagator at the origin isNmn(M ,T). It is given in Appen-
dix A together with the regular parts of the momentum-
dependent functionsI (q,T) and I mn(q,T) defined in Eqs.
~3.28! and ~3.29!. All these functions depend on the ratio
M /T in a nontrivial way.

The expressions~3.30!–~3.34! contain all the contribu-
tions to the finite-temperature axial two-point Green’s func-
tion to O(p6). Both M and T count as quantities ofO(p).
The dependence of the functionsJ(q,T), andbm

A(q,T) on
the external momentum begins at this order. There is an im-
portant qualitative change between the one-loop and the two-
loop results: The way the functions involved depend onq0

and onqW are now different, reflecting the breaking of Lorentz
symmetry by the heat bath. As it must be, theTÞ0 renor-
malization is the same as the one at zero temperature@4#.

IV. PION DECAY CONSTANTS AND MASS AT FINITE T

From the two-point axial Green’s function some interest-
ing quantities can be derived: the pion decay constants and

mass. In theT50 case the self-energy is defined as the pole
of G̃mn(q,T50) in theq0 complex plane and the pion decay
constant as its residue at the pole position.

The dispersion curve determines the position of the pole
in the q0 plane:

q05V~qW ,T!. ~4.1!

In our case a nontrivial momentum dependence occurs at
O(p6). Therefore the pole position at the same order can be

obtained by replacingq0 by vq5AqW 21Mp
2 , that is,

V2~qW ,T!5J~q0 ,qW ,T!uq05vq
1O~p8!. ~4.2!

A possible definition of the mass is
Mp(T):5ReV(qW ,T)uqW 50, i.e., the real part of the pole. With
the L̄ ’s defined in Eq.~3.36!, the ChPT result reads

Mp
2 ~T!5Mp

2 H 11
1

2Fp
2
NMp

~T!1
1

Fp
4 FMp

2 SNMp
~T! L̄ J

1
1

4
NMp

~T!]M
p
2NMp

~T! D1
Mp

2

6
Re@ Ī ~q,T!#

2
11

8
NMp

2 ~T!2 L̄N00~Mp ,T!

24Re@ Ī 00~q,T!# GU
q05M ,qW 50

J 1O~p8!. ~4.3!

This result agrees with@7#, where a somewhat different
representation is used. The imaginary part of the pole, which
determines the damping rate of the pions, has been thor-
oughly studied in the same context: Its mean approximately
behaves likeT5/Fp

5 above 100 MeV@7#.
To extract the residue atO(p6), J(q,T) has to be ex-

panded around the pole position:

J~q0 ,qW ,T!5V2~qW ,T!1~q02vq!
]J~q,T!

]q0
U

q05vq

1•••.

~4.4!

The thermal equilibrium state is invariant under spatial
rotations; it implies that

k̄ 0i~q,T!5qi k̄ ~q,T!, ~4.5!

and thusbm
A(q,T) can be rewritten as

b0
A~q,T!5q0b t

A~q,T!, b i
A~q,T!5qibs

A~q,T!. ~4.6!

The axial two-point function then takes the form

G̃mn~q,T!5Fmn
A ~q,T!2

f m~q,T! f n~q,T!

q0
22V2~qW ,T!

, ~4.7!
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whereFmn
A (q,T) is a finite term and

f 0~q,T!5q0Ft~qW ,T!,

f i~q,T!5qiFs~qW ,T!. ~4.8!

The ‘‘temporal’’ residue at the pole position is given by

Ft
2~qW ,T!5@aA~q,T!12b t

A~q,T!#

3S 11
1

2vq

]J~q,T!

]q0
D U

q05vq

1O~p8!.

~4.9!

The difference betweenb t(q,T) andbs(q,T) makes the dif-
ference inFt(qW ,T) andFs(qW ,T).

The pion decay constants can naturally be defined as
Fp

s,t(T):5Fs,t(qW ,T)uqW 50. The ChPT computation gives

@Fp
t ~T!#25Fp

2 H 12
2

Fp
2
NMp

~T!1
1

Fp
4 FMp

2 @NMp
~T! L̄ A

2NMp
~T!]M

p
2NMp

~T!#1
Mp

3

12

]

]q0
Ī ~q,T!

12NMp

2 ~T!1 L̄N00~Mp ,T!14 Ī 00~q,T!

22Mp

]

]q0
Ī 00~q,T!GU

q05M ,qW 50
J 1O~p8!,

~4.10!

and the difference between the two pion decay constants is

FIG. 3. The effective pion mass at nonzero temperature. The dash-dotted curve represents the trivial result at the tree level, the dashed
one the one-loop computation, and the solid one the two-loop approximation.

FIG. 4. The real part of the ‘‘temporal’’ pion decay constant at nonzero temperature. The dash-dotted curve represents the trivial result
at the tree level, the dashed one the one-loop computation, and the solid one the two-loop approximation.
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Fp
t ~T!2Fp

s ~T!

Fp
5

1

Fp
4 F1

3
L̄ @4N00~Mp ,T!2Mp

2NMp
~T!#

1
4

3
NM

2 ~T!2
4

3
Mp

2 Ī ~q,T!1
16

3
Ī 00~q,T!

2Mpk̄ ~q,T!GU
q05M ,qW 50

1O~p8!. ~4.11!

The various functions of temperature involved in the expres-
sions above are given in Appendix A.

The T dependence and the evolution along the perturba-
tion expansion of the mass and the ‘‘temporal’’ pion decay
constant are displayed in Figs. 3 and 4 in the case of the
physical pion mass and pion decay constant:Mp.140 MeV
and Fp.93 MeV. For bothMp(T) and Fp

t (T) the third-
order corrections have the opposite sign as those of the sec-
ond order. At one loop, the mass is enhanced by the effects
of the temperature, but the two-loop corrections bring it
down ~Fig. 3!. This may be a reflection of the fact that at
T50, the first correction is negative forM , Eq. ~3.15!. Ex-
actly the opposite happens to the pion decay constant@Fig. 4
and Eq.~3.16!#. The difference between the ‘‘temporal’’ and
‘‘spatial’’ pion decay constants is always positive~cf. Fig. 7
in the next section!.

V. MASSLESS QUARKS

In our problem, the smallMp and fixedT case is equiva-
lent to the limitT@Mp : Only the ratioMp /T is relevant. In
the chiral limit, that is, when the quark masses tends to zero,
Mp tends to zero. The expressions of the pion decay con-
stants and mass are much more readable (F.88 MeV is the
pion decay constant in the chiral limit@6#!:

Mp
2 ~T!

Mp
2 U

m̂50

511
T2

24F2
1

T4

36F4F 19

480
1K1 ln

T

m

2
192p2

5
@L1

r ~m!12L2
r ~m!#G1O~T6!,

~5.1!

Re@Fp
t ~T!#2

Fp
2 U

m̂50

512
T2

6F2
1

T4

36F4F 7

60
2K2 ln

T

m

1
192p2

5
@L1

r ~m!12L2
r ~m!#G1O~T6!,

~5.2!

Re@Fp
t ~T!2Fp

s ~T!#

Fp
U

m̂50

5
T4

27F4F2
2

15
2K2 ln

T

m

1
192p2

5
@L1

r ~m!12L2
r ~m!#G

1O~T6!, ~5.3!

where the number

K5 ln21
1

2
G8~1!1

45

p4
z8~4!21.05.20.68 ~5.4!

contains the Euler gamma and Riemann zeta functions and a
contribution from the integrals that had to be numerically
evaluated.m is the regularization scale used in Eq.~3.12! and
Li

r(m)5 L̄ i1g i ln(M/m)/(4p)2 are the scale-dependent renor-
malized effective coupling constants. The scale dependence
and the logarithmic divergences of the individual terms ap-
pearing in Eqs.~5.1!–~5.3! cancel, as they have to.

Our expressions for the pion mass and decay constants
can always be written in the form

Mp
2 ~T!

Mp
2 U

m̂50

511
T2

24F2
2

T4

36F4
ln

LM

T
1O~T6!, ~5.5!

Re@Fp
t ~T!#2

Fp
2 U

m̂50

512
T2

6F2
1

T4

36F4
ln

L t

T
1O~T6!,

~5.6!

Re@Fp
t ~T!2Fp

s ~T!#

Fp
U

m̂50

5
T4

27F4
ln

LD

T
1O~T6!, ~5.7!

whereLM ,t,D are various scales which sizes are determined
by the numbers and the values of the coupling constants
appearing in Eqs.~5.1!–~5.3!. We take the recent two-loop
evaluation@15# as reference:l̄ 1521.7 and l̄ 255.4, i.e.,
32p2( L̄ 112L̄ 2).1.66. The scales we find are rather large
compared to the ones usually involved in ChPT@6#:

LM.1.9 GeV, ~5.8!

L t.2.3 GeV, ~5.9!

LD.1.8 GeV. ~5.10!

In the range allowed for the temperature, lnLM,t,D /T is
positive. As already seen in the physical pion mass case, the
third-order corrections have the opposite signs to the second
ones inMp(T) andFp

t (T), whereas the latter is larger than
Fp

s (T). This is shown in Figs. 5–7 both in the chiral limit
and in the physical case.

To see what becomes the GOR relation at orderT4, we
need the quark condensate toO(p6). It has been computed to
O(p8) in @6#. In the general case it reads
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m̂^ q̄q&T5m̂^0u q̄qu0&1
3

2
Mp

2NMp
~T!1

Mp
2

Fp
2 FMp

2NMp
~T!

3S 224L̄ 4148L̄ 6148L̄ 81
3

64p2D
1

3Mp
2

4
NMp

~T!]M
p
2NMp

~T!1
3

8
NMp

2 ~T!G
1O~p8!, ~5.11!

and thus, in the chiral limit,

^ q̄q&Tum̂505^0u q̄qu0&H 12
T2

8F2
2

T4

384F4J 1O~T6!,

~5.12!

which means that a modified GOR relation can be written
down for massless quarks at finite temperature:

lim
m̂→0

Mp
2 ~T!Re$@~Fp

t ~T!#2%

m̂^ q̄q&T

5211O~T6!. ~5.13!

This was already noticed in@9# and @16# and is a conse-
quence of the Goldstone theorem at finite temperature as will
be seen in the next section.

As expected, the essential characteristics of the low-
temperature behavior of the three quantities examined are
already present when the quark masses are sent to zero.
Moreover, in this approximation a nice interpretation of the
difference between the two pion decay constants and the
imaginary parts of the residues of the two-point functions
can be given. The next section will come to that point.

Now, the symmetry groups occurring in the O~4! linear
sigma model~LSM! are the same as those of QCD with two
massless flavors. Hence the effective field theories of these
two systems are identical; only their effective coupling con-
stants differs. This implies that the results obtained above are
valid as they stand also for theO(4) model. In particular, the
temperature expression of the pion mass contains a specific

FIG. 5. TheT-dependent pion mass to two loops in the chiral limit~dashed curve! and in the physical case~solid one!.

FIG. 6. The real part of the ‘‘temporal’’ pion decay constant to two loops in the chiral limit~dashed curve! and in the physical case~solid
one!.
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logarithmic contribution at orderT4. It is absent in the LSM
calculation described in@9,17#, because these authors com-
puted only the first term in weak coupling at orderT4. The
coupling constantsL1

r (m), L2
r (m) can be evaluated for the

LSM with @4#. The logarithmic contributions may be viewed
as arising from a temperature-dependent effective coupling
constant of the LSM. Indeed, using the formula~34! in @9#

Mp
2 ~T!

Mp
2

511
T2

6F2
2

3p2

15

T4

F2ms
2

, ~5.14!

and replacingms with ms(T) defined by

1

ms
2~T!

:5
1

ms
2

2
5

24p2F2
ln

T

ams
, ~5.15!

one recovers our result, provided thata.0.68.
The same reasoning may be applied to the expressions

found in@9# for bothFp
s,t(T). Again the logarithms occurring

at orderT4 are not present at lowest order in 1/ms
2. These

expressions are compatible with ChPT ifms is replaced by
ms(T) like in Eqs.~5.14! and~5.15! but with a.0.62. In the
notation used above the difference between the two logarith-
mic scales arises fromLMÞL t . This difference also mani-
fests itself in the temperature dependence of the quark con-
densate at orderT4.

VI. GELL-MANN –OAKES–RENNER RELATION
AT FINITE T

To see why the Gell-Mann–Oakes–Renner relation has to
take the form~5.13! whenTÞ0 and to compute the correc-
tions in the quark mass is the main purpose of this section. A
possible way to do this is to go back where it originates at
T50. It may be derived from two Ward identities involving

the quark condensate and both the axial and pseudoscalar
two-point Green’s functions. As already mentioned the dif-
ference between theT50 and theTÞ0 cases is a change of
manifold in the path integral formalism. Hence the derivation
of Ward identities from the generating functional of QCD at
finite temperature goes through the same steps as atT50. In
the final equalities the vacuum expectation values of the in-
volved operators are just replaced by their thermal average.
These Ward identities will be used both as a consistency
check of the whole computation and as a source of the gen-
eralized relation. They will have by-products which are go-
ing to clarify the meaning of our results.

To construct the finite-temperature sisters of the Ward
identities which lead to the GOR relation atT50, one has to
use the axial-vector current~3.1! and the pseudoscalar den-
sity

Pa~x!5 q̄~x!
ta

2
ig5q~x!. ~6.1!

With the QCD Lagrangian, the following Ward identities are
obtained:

qmG̃mn~q,T!52m̂G̃n~q,T!, ~6.2!

qmG̃m~q,T!52m̂G̃~q,T!1 1
2 ^ q̄q&T , ~6.3!

whereGmn(x,T) is the axial two-point Green’s function de-
fined in Sec. III,

Gm~x2y,T!dab:5 i ^TAm
a ~x!Pb~y!&T ,

G~x2y,T!dab:5 i ^TPa~x!Pb~y!&T .

Note that atT50, both identities are fulfilled by ChPT.
The first one implies that

FIG. 7. The difference between the real parts of the ‘‘temporal’’ and ‘‘spatial’’ pion decay constants to two loops in the chiral limit
~dashed curve! and in the physical case~solid one!. In the chiral limit this quantity is related to the speed of the pions.
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2m̂Gp5Mp
2 Fp , ~6.4!

and together with Eq.~6.3! in the chiral limit, one finds the
GOR relation at zero temperature~1.1!.

The new two-point functions are represented in the same
way as the axial one, Eq.~4.7!:

G̃m~q,T!5Fmn
AP~q,T!2

f m~q,T!g~q,T!

q0
22V2~qW ,T!

, ~6.5!

G̃~q,T!5FP~q,T!2
g2~q,T!

q0
22V2~qW ,T!

. ~6.6!

V(qW ,T) is defined as in Eq.~4.2! and the residueg(qW ,T)
similarly as the one of the axial two-point function~4.9!.
Again the strength of the coupling of the pseudoscalar den-
sity to the pion is defined to beGp(T):5g(qW ,T)uqW 50, like in
the axial case.

The first Ward identity implies that

V2~qW ,T! f t~qW ,T!2qW 2f s~qW ,T!52m̂g~q,T!. ~6.7!

At qW 50, it generates a relation very similar to Eq.~6.4!:

2m̂Gp~T!5V2~qW ,T!uqW 50Fp
t ~T!. ~6.8!

Then the second Ward identity together with Eq.~6.7!
implies that

2Ft~qW ,T! g~qW ,T!1qmFm
AP~q,T!52m̂FP~q,T!

1 1
2 ^ q̄q&T . ~6.9!

The quark condensate is independent ofq. The previous
equality can thus be evaluated in the chiral limit and atq50
~or conversely!. Together with Eq.~6.7! it gives a generali-
zation of the GOR relation at finite temperature in a form
very close to the one atT50 ~and to all orders in the per-
turbation theory!:

lim
m̂→0

V~qW ,T!uqW 50 @Fp
t ~T!#2

m̂^ q̄q&T

521. ~6.10!

Because the quark condensate is a real quantity, the follow-
ing relation must hold:

lim
m̂→0

Im$V~qW ,T!uqW 50 @Fp
t ~T!#2%

m̂
50. ~6.11!

Our result explicitly verifies this property atO(p6).
In order to compute the first corrections in the quark mass

to the GOR relation at finite temperature, it is enough to
compute the pseudoscalar two-point function. It requires the
same building blocks as those of Sec. III. Therefore only the
end result will be given here. The graphs involved are the
same as those appearing in Fig. 2. The vertices are in general

different and the diagrams~2.1!, ~4.1!, ~6.4!, ~6.7!, and~6.20!
are zero, becauseL(2) is only linear in the pseudoscalar ex-
ternal field.

To present the result a representation similar as the one
we used for the axial case in Sec. III is introduced:

G̃~q,T!52
aP~q,T!

q0
22J~q,T!

1rP~q,T!. ~6.12!

The various functions appearing in the previous expression
are found to be

aP~q,T!5Gp
2 /B22NMp

~T!1
1

Fp
2 FMp

2 L̄ PNMp
~T!

2
1

2
Mp

2NMp
~T!]M

p
2NMp

~T!2
5

2
N Mp

2 ~T!

1
Mp

2

3
Ī ~q,T!G1O~p8!, ~6.13!

rP~q,T!5RP~q!1
1

Fp
2 F L̄ rNMp

~T!2
1

6
Ī ~q,T!G1O~p8!,

~6.14!

where two new combinations of coupling constants have
been used:

L̄ P5248L̄ 1216L̄ 21104L̄ 42224L̄ 62112L̄ 81
41

288p2
,

L̄ r532L̄ 628L̄ 82
3

32p2
. ~6.15!

The expression forJ(q,T) is the same as Eq.~3.30!. This
was a first test for the whole computation: The poles of the
two Green’s functions under consideration must be identical.

The corrections to the massless quark world can be com-
puted. The first one that appears is

V~qW ,T!uqW 50 @Fp
t ~T!#2

m̂^ q̄q&T

52112
Mp

Fp
4

]

]q0
Ī 00~q,T!U

q05M ,qW 50

1OS Mp
2 ln

Mp

T
,p8D , ~6.16!

and the expansion of the last integral in terms of the pion
mass is given in the Appendix B. We get
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Re$V~qW ,T!uqW 50 @Fp
t ~T!#2%

m̂^ q̄q&T

5212
MpT3

Fp
4 S 1

24
2

3

4p4
z~3!D

1OS Mp
2 ,MpT3ln

Mp

T D .

~6.17!

A small deviation linear in the pion mass is the first that
appears. It is of the order of 6% atT5100 MeV and around
20% at 150 MeV. This is in contradiction to the QCD sum
rule result obtained in@16#, where the first correction is qua-
dratic in Mp . However, both computations agree quantita-
tively.

The Ward identities~6.2! and~6.3! can be used as a con-
sistency check of the whole calculation. The expressions for
the quark condensate, Eq.~5.11!, the axial, Eq.~3.2!, and the
pseudoscalar, Eq.~6.12!, two-point Green’s functions must
satisfy the identities. It is here the case, irrespective of the
specific forms of the different independent functions in-
volved in them. This is also the case if one includes the
imaginary parts of the finite terms that were put aside~see
Sec. III!.

The relation~6.7! is very instructive in the chiral limit. It
implies that

V2~qW ,T!5
f s~qW ,T!

f t~qW ,T!
qW 2. ~6.18!

Thus the speed of the pions in the chiral limit is

vp
2 um̂50512

Re@Fp
t ~T!2Fp

s ~T!#

Fp
U

m̂50

1O~p8!.

~6.19!

It has to be smaller than the speed of light. Hence the differ-
ence between the real part of the two pion decay constants
has to be positive~this remark was already made in@9#!. Our
result verifies this property. But looking at Fig. 7 or at Eq.
~5.7!, one sees that the square of the speed tends to zero at
T.160 MeV and even turns negative beyond that point. This
is of course not allowed and it defines a natural limitation of
the O(p6) ChPT expansion.

Finally, because all the quantities involved in Eq.~6.18!
are complex, this identity is in fact a system of two equalities
containing six unknowns: the real and imaginary parts of the
pole and of the two residues. Hence in the chiral limit,
ImFp

s,t(T) are completely determined by the other four quan-
tities. Three of them are given in this article, whereas the
imaginary part of the pole has been deeply studied in@7#. As
a consequence, the physical content of the imaginary part of
the residues encodes that of the other quantities involved,
which physical interpretation is well known.

VII. SUMMARY AND CONCLUSION

The dynamic of a pion traveling through a gas of pions at
low temperature~up to ;150 MeV! can be computed with
the help of the ChPT Lagrangian. Knowledge of the effective
mass is important to understand how this happens. The two
different effective pion decay constants that appear because
of the breaking of Lorentz symmetry by the equilibrium state
are also quite meaningful. They were derived here to aT4

accuracy performing a two-loop calculation in ChPT. The
temperature dependence of these interesting quantities is
small. This is due to the size of the pion decay constant at
T50 which governs the ChPT expansion.

When the quark masses are sent to zero, contrary to the
result obtained within the linear sigma model in weak cou-
pling at orderT4 in @9#, we find a logarithmic dependence in
the temperature of the three mentioned observables at two-
loop order. The difference between the ‘‘temporal’’ and
‘‘spatial’’ pion decay constants is positive. This is related to
the fact that the velocity of the pions in the gas is smaller
than the speed of light. The Gell-Mann–Oakes–Renner rela-
tion is still satisfied, which is a reflection of the Goldstone
theorem at finiteT.

For realistic quark masses, the temperature dependence is
quite obscure: It is contained in complicated integrals and
some pictures are needed to see what happens. The behavior
of the pion decay constants and mass at finite temperature for
the physical pion mass is not very different from the mass-
less case.

The first corrections to the GOR relation are linear in the
pion mass; they have a small magnitude. This does not agree
with the result given in@16# using QCD sum rules.

Finally the presence of massive particles in the thermal
equilibrium state deserves a comment. Their effects have
been carefully analyzed in@6#. The lightest ones that appear
in our case areK(500) andh(550). Their masses do not
vanish in the chiral limit (mu,d→0). In our range of tem-
perature, they behave like a dilute gas. They are of course
exponentially suppressed, but their effects become more and
more important when the temperature is increased. In the
order parameter they generate a contribution of 0.5% at
T5100 MeV with respect to that of the pions, whereas at
T5150 MeV it becomes of the order of 10%. AtT.160
MeV, the mean distance between the massive states is ap-
proximately 1.6 fm and the number of massive particles per
unit volume is the same as the numbers of pions. This gives
a limitation to the ChPT approach. In the present calculation
this limitation shows up at a similar temperature: The square
of the velocity of propagation of the Goldstone bosons turns
negative. Our results are meaningless beyond that point.
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APPENDIX A: PROPERTIES OF THE T-DEPENDENT
INTEGRALS

A direct computation of the closed-eye, the guimbard, and
the sunset graphs brings different complicated integrals. But
taking into account the symmetry of the integrands one can
reduce them to two independent integral forms. A short no-
tation is first introduced:

^ f ~q,k1 ,k2!&:5 i E ddk1ddk2

~2p!2d
D̃b~k1!D̃b~k2!

3D̃b~q2k12k2! f ~q,k1 ,k2!. ~A1!
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Becausê f (q,k1 ,k2)&5^ f (q,k2 ,k1)&5^ f (q,q2k12k2 ,k2)&
and that^k1

2&5M2I (q,T)2Db
2(0), the expressions for the

closed-eye, the guimbard, and the sunset can be simplified
into Eqs.~3.25!, ~3.26!, and~3.27!.

They involve the two integralsI (q,T) and I mn(q,T)
which diverge ind54 dimensions. They have to be regular-
ized. They contain three types of contributions. The
T-independent terms are not of interest here. The parts in-
volving one Bose distribution diverge ford54 and the ones
with a product of two statistical weights are finite ford54.

The first function of interest can be written as

I ~q,T!5 Ī ~q,T!26lNM~T!2
3

16p2
NM~T!, ~A2!

whereNM(T), already introduced in Eq.~3.13!, is

NM~T!5E d4k

~2p!3
d~k22M2!nB~vk!, ~A3!

and Ī (q,T) is a finite integral given by

Ī ~q,T!53E d4k

~2p!3
d~k22M2!nB~vk! J̄ „~q1k!2

…13E d4k

~2p!3
d~k22M2!nB~vk!K~q1k,T!

1 i E d4k1d4k2

~2p!6
d~k1

22M2!nB~vk1
!d~k2

22M2!nB~vk2
!d„~q2k12k2!22M2

…nB~vq2k12k2
!, ~A4!

The second function we are interested in is

I mn~q,T!5 Ī mn~q,T!1lHNM~T!FgmnS 1

3
q22

5

3
M2D2

4

3
qmqnG2

10

3
Nmn~M ,T!J 1

1

16p2SNM~T!F 1

18
gmn~q21M2!

2
5

9
qmqnG2

14

9
Nmn~M ,T! D , ~A5!

whereNmn(M ,T) is

Nmn~M ,T!5E d4k

~2p!3
kmknd~k22M2!nB~vk!, ~A6!

and the finite integralĪ mn(q,T) is

Ī mn~q,T!5E d4k

~2p!3
d~k22M2!nB~vk! J̄ „~q1k!2

…H 5

3
kmkn1

2

3
qmqn1

2

3
~qmkn1qnkm!1S M2

2
2

q2

6
2

qk

3 Dgmn

2
2M2

3

~qm1km!~qn1kn!

~q1k!2 J 1E d4k

~2p!3
d~k22M2!nB~vk!$22kmKn~q1k,T!1K~q1k,T!@4kmkn1qmqn

12~qmkn1qnkm!#%1 i E d4k1d4k2

~2p!6
d~k1

22M2!nB~vk1
!d~k2

22M2!nB~vk2
!d„~q2k12k2!22M2

…nB

3~vq2k12k2
!$4k1mk1n1qmqn22~qmk1n1qnk1m!12k1mk2n%. ~A7!
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In Eqs. ~A4! and ~A7!, three one-loop functions have been
introduced to get a simpler representation. The usualT50
one,

J̄ ~q2!52
1

16p2E0

1

dxln@12q2x~12x!/M2#, ~A8!

together with temperature-dependent ones:

K~q,T!5 i E d4k

~2p!3
d~k22M2!nB~vk!D̃~q2k!

5
1

16p2uqW u
E

0

`

dk
k

vk
nB~vk!ln

~q222kuqW u!224vk
2q0

2

~q212kuqW u!224vk
2q0

2

1
i

8puqW u
E

0

`

dk
k

vk
nB~vk! ~A9!

and

Km~q,T!5 i E d4k

~2p!3
d~k22M2!nB~vk!D̃~q2k!km

5
1

qW 2S nmFq0

2
NM~T!1

q0q2

2
K~q,T!2q2K0~q,T!G

2qmF1

2
NM~T!1

q2

2
K~q,T!2q0K0~q,T!G D ,

~A10!

wheren5(1,0,0,0). An integral representation forK0(q,T)
can be given:

K0~q,T!5
1

16p2uqW u
E

0

`

dkknB~vk!ln
q424~vkq02kuqW u!2

q424~vkq01kuqW u!2
.

~A11!

Note that because of the symmetry of the problem under
spatial rotations,

Nik~M ,T!5 1
3 d ik„N00~M ,T!2M2NM~T!… ~A12!

and

Ī 0i~q,T!5qi k̄ ~q,T!/4, ~A13!

Ī ik~q,T!5d ik Ī 1~q,T!1qiqk Ī 2~q,T!. ~A14!

The examined observables are defined on shell atqW 50
andq05M . In that special case, a simplified representation
can be given. Note that becausevq>M , the different sums
of T-independent one-loop functions appearing in the inte-
grands can be rewritten as

J̄ ~2M212Mvk!1 J̄ ~2M222Mvk!

5
1

8p2S 21
vk

ukW u
lns~k!D ,

J̄ ~2M212Mvk!2 J̄ ~2M222Mvk!

5
1

8p2S 21
M

ukW u
lns~k!D , ~A15!

where

s~k!:5
Avk1M2Avk2M

Avk1M1Avk2M
. ~A16!

The following representations can be obtained:

Re@ Ī ~q,T!#uq05M ,qW 505
3

32p4E0

`

dk
k2

vk
nB~vk!S 21

vk

k
lns~k! D1

1

16p4E0

`

dkE
0

1

da
ak5

vavk
nB~v!nB~va!ln

11a

12a
,

~A17!

Re@ Ī 00~q,T!#uq05M ,qW 505
1

96p4E0

`

dk
k2

vk
nB~vk!H ~5k217M2!S 21

vk

k
lns~k! D12vkM S 22

M

k
lns~k! D J

1
1

16p4E0

`

dkE
0

1

daak3nB~vk!nB~va!lnt~a,k!. ~A18!
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The expressions given above involve some new functions:

va :5Aa2k21M2, ~A19!

t~a,k!:5
2k2a21M2~11a2!22avkva

2k2a21M2~11a2!12avkva

. ~A20!

In general these integrals cannot be algebraically evaluated, even if the mass is zero.
Finally Ī ik(q,T)uq05M ,qW 50 can be expressed in term of other known functions because of Eq.~A14!:

Ī ik~q,T!uq05M ,qW 505 1
3 d ik„ Ī 00~q,T!2M2 Ī ~q,T!1NM

2 ~T!…uq05M ,qW 50 . ~A21!

APPENDIX B: SOME FUNCTIONS IN THE CHIRAL LIMIT

As already mentioned all our integrals are in fact functions ofM /T. It is, however, not so easy to evaluate the desired ones
in the chiral limit. Some clever tricks can be found in@6#. The value of the four functions~3.13!, ~A3!, ~A17!, and~A18! in
the chiral limit M!T is

NM~T!um̂505
T2

2p2E0

`

dt t nB~ tT!2
M

2p2T
E

1

`

dt
1

tAt221
1OS M2

T2
ln

M

T D 5
T2

12
2

MT

4p
1OS M2

T2
ln

M

T D , ~B1!

N00~M ,T!um̂505
T4

2p2E0

`

dt t3 nB~ tT!1OS M

T D5
p2T4

30
1OS M2

T2 D , ~B2!

Re@ Ī ~q,T!#uq50,m̂505
T2

64p2
ln

M

T
1OS S M

T D 0D , ~B3!

Re@ Ī 00~q,T!#uq50,m̂505
1

2
ln

M

T
@NM~T!um̂50#21

5

48p2S ln
M

2T
12DN00~M ,T!um̂501

T4

2
ln

M

2T
@NM~T!#2

1
T4

8p4E0

`

dtE
0

1

daat3nB~ tT!nB~atT!ln
11a2

a2k2

5T4S 1

144
ln

M

T
2

1

144
ln21

1

1728
2

G8~1!

288
2

5z8~4!

16p4
10.0073D 1OS M

T D . ~B4!

The numbers appearing in the previous expressions are due to numerically evaluated integrals that come directly from the
representations shown in Appendix A:

k̄ ~q,T!uq50,m̂505
1

6M
@NM~T!um̂50#22

5

144Mp2
N00~M ,T!um̂505OS S M

T D 0D , ~B5!

]

]q0
Re@ Ī 00~q,T!#uq50,m̂505

1

2M
@NM~T!um̂50#22

5

48Mp2
N00~M ,T!um̂501

3T3

16p4E0

`

dt t2 nB~ tT!

5T3S 3

8p4
z~3!2

1

48p D 1OS M

T
ln

M

T D , ~B6!

The cancellation of the 1/M terms in the last integral in the chiral limit is very important for the safeguarding of the GOR
relation at finite temperature and theT3 term is responsible of theMpT3 corrections~6.16!.
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