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We have investigated QCD with two flavors of degenerate fermions using the Symanzik-improvement
program for both the gauge and fermion actions. Our study focuses on the deconfinement transition on an
Nt54 lattice. Having located the thermal transition, we performed zero temperature simulations nearby in
order to compute hadronic masses and the static quark potential. We find that this action reduces lattice
artifacts present in thermodynamics with the standard Wilson~gauge and fermion! actions. However, compari-
sons between improved Wilson and Kogut-Susskind actions show some disagreement.
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I. INTRODUCTION

An understanding of the high temperature behavior of
QCD is desirable in addressing problems such as heavy ion
collisions and the evolution of the early universe. It is be-
lieved that, at a temperature between 140 and 200 MeV
~where pions are produced copiously!, hadronic matter un-
dergoes a transition to a plasma of quarks and gluons. This
phenomenon is intrinsically nonperturbative, and Monte
Carlo lattice simulation provides the best theoretical tool
with which to study it.

Most lattice studies have used Kogut-Susskind~KS! fer-
mions because of their exact U~1! chiral symmetry at finite
lattice spacing. The full SU~2! chiral symmetry is recovered
in the continuum limit. Although in contrast Wilson fermions
explicitly break chiral symmetry, the continuum limit of the
different discretizations is expected to be the same. One ad-
vantage of simulating with two flavors of Wilson quarks ver-
sus two flavors of KS fermions is that the updating algorithm
is exact in the former case but has finite time step errors in
the latter. The price to be paid is that the explicit chiral

symmetry breaking gives rise to an additive mass renormal-
ization; thus, the location of the chiral limit is not knowna
priori .

Even more troublesome for dynamical Wilson fermions is
the presence of lattice artifacts which qualitatively affect
physics at large lattice spacing. In Refs.@1# and @2# it was
found that the deconfinement transition becomes very steep
for intermediate values of the hopping parameterk. In fact,
on anNt56 lattice the transition appears to be first order for
a range of intermediate hopping parameters and smooth oth-
erwise.

The lattice community has worked very hard recently to
construct actions which have fewer lattice artifacts than the
standard discretizations of the continuum action. One phi-
losophy is to add operators to the action which cancelO(an)
terms in the Taylor expansion of spectral observables. It is
plausible that an action which converges to the continuum
action faster in thea→0 limit would be free of the artificial
first order behavior. We adopt this improvement program,
attributed to Symanzik, in the present work.

An alternative approach is to search for an action which
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lies on or near the renormalized trajectory of some renormal-
ization group transformation. Since all irrelevant couplings
are zero along the renormalized trajectory, actions there have
no scaling violations, i.e., are quantum perfect. Such an ac-
tion was approximated by Iwasaki@3# and has been used to
study QCD thermodynamics with two flavors of unimproved
Wilson fermions@4#. Although it is still an open question to
what extent this action lies on a renormalized trajectory, the
results of Ref.@4# show improvement over standard Wilson
thermodynamics.

In this paper we report on our simulation of finite tem-
perature lattice QCD with two flavors ofO(a) Symanzik-
improved fermions andO(a2) Symanzik-improved glue. We
describe the action we used in Sec. II. In Sec. III we give the
details of our simulations, and we present our results in Sec.
IV. Finally, we give our conclusions in Sec. V.

II. ACTION

When one expands a lattice operator in a Taylor series
about zero lattice spacinga, one recovers its relevant~or
marginal! continuum operator plus higher dimensional irrel-
evant operators proportional to powers ofa. Symanzik sug-
gested that by selecting a favorable combination of lattice
operators in the lattice action, one might have cancellations
of the irrelevant operators up to some order in the lattice
spacing@5#. Lüscher and Weisz have applied this philosophy
to SU(N) gauge theories. They imposed an on-shell im-
provement condition whereby discretization errors are elimi-
nated order by order ina from physical observables and
constructed anO(a2)-improved gauge action@6#. Further-
more, they computed the coefficients of the operators in the
action through one-loop order in lattice perturbation theory
@7#. This improvement condition does not provide a unique
action. The choice which is the most efficient in terms of
computational effort adds a 132 rectangle and a 6-link

‘‘twisted’’ loop to the Wilson plaquette action.~See Fig. 1.!
It is well known now that lattice perturbation theory in the

bare couplingg0 is not trustworthy. Thea2 in the vertex of
the tadpole graph is canceled by the ultraviolet divergence of
the gluon loop. Therefore, hidden in the higher order terms
of the expansion ina are tadpole graphs which give an ef-
fectivea0(ncng2n contribution. A standard way to deal with
this problem is to define a mean linku0 and replace
Um→Um /u0 @8,9#. This introduces a ‘‘boosted’’ coupling
constantg25g0

2/u0
4.

Here we combine these two ideas, Symanzik improve-
ment of the action and ‘‘tadpole improvement’’ of lattice
perturbation theory. Our gauge action for this work is as
derived in Ref.@10#,

Sg5b(
plaq

1

3
ReTr~12Uplaq!1b1(

rect

1

3
ReTr~12U rect!

1b2(
twist

1

3
ReTr~12U twist!, ~1!

where b is a free parameter„in this normalization
b5 (6/g2u0

4)5/3@120.1020g21O(g4)#…, and

FIG. 1. The three Wilson loops in the one-loop Symanzik-
improved gauge action that we used.

FIG. 2. The clover term in the Sheikholeslami-Wohlert action.

FIG. 3. Polyakov loop vs hopping parameter—allb’s.

FIG. 4. Polyakov loop vs hopping parameter for the three lowest
b’s.
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b152
b

20u0
2 F110.4805S g2
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52
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20u0
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The subscripts ‘‘plaq,’’ ‘‘rect,’’ and ‘‘twist’’ refer to the
131 plaquette, the planar 132 rectangle, and the ‘‘
x,y,z,2x,2y,2z’’ loop, respectively. Following Ref.@9#
we have chosen to define the mean linku0 through

u0[S 1

3
ReTr̂ Uplaq& D 1/4

, ~4!

and the strong coupling constant is defined through the per-
turbative expansion of the plaquette@11#,

g2

4p
[2

lnS 1

3
ReTr̂ Uplaq& D
3.06839

. ~5!

In the Monte Carlo simulations, we tuneu0 in the action to
be consistent with the fourth root of the average plaquette.
This procedure is discussed in more depth in Sec. III.

The Wilson fermion action has errors ofO(a). The
Symanzik-improvement program can be extended to improv-
ing this action too. In thea→0 limit, the O(a) term in the
action is proportional toc̄D2c and can be removed by add-
ing a next-nearest-neighbor operator to the action@12# or,
after an isospectral transformation of the fermion fields, by
adding a magnetic interaction@13#. Thus, the tree-level
Symanzik-improved action is

FIG. 5. ^c̄c& vs hopping parameter.

FIG. 6. Space-space plaquette vs hopping parameter—allb’s.
The shaded octagons mark the zero temperature values.

FIG. 7. Space-space plaquette vs hopping parameter for the
three lowestb’s. The shaded octagons mark the zero temperature
values. The dashed lines indicate our determination ofkT(b) and
emphasize the agreement between the spacelike plaquettes mea-
sured on zero temperature and finite temperature lattices at the
crossover.

FIG. 8. Conjugate gradient matrix inversions vs hopping param-
eter.
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Sf5SW2
k

u0
3 (

x
(
m,n

@c̄~x!ismnFmnc~x!#, ~6!

whereSW is the usual Wilson fermion action, and

iF mn5
1

8
~ f mn2 f mn

† !. ~7!

f mn is the clover-shaped combination of links~see Fig. 2!. As
with the gauge action, the links here are also tadpole im-
proved. Note that one factor ofu0 is absorbed into the hop-
ping parameter.

Both these gauge and fermion actions have been used
widely, e.g., in studies of finite temperature SU~3! @14,15#
and quenched spectroscopy@16–18#. At least one group is in
the process of using this action to calculate spectroscopy on
unquenched configurations@19#. Therefore, we believe our
choice of action to be well justified and useful for compari-
son to other work.

Of course, further progress is being made in refining the
Symanzik-improvement program. One can attempt to set the
coefficients of the higher dimension operators nonperturba-
tively by demanding that, for example, Ward identities be
satisfied up to some order in the lattice spacing@20#. Also,
fermion actions which are constructed to have errors of
O(a3) –O(a4) are currently being tested@21,22#.

III. SIMULATION DETAILS

Our finite temperature simulations were on an 8334 lat-
tice. At fixed b ~56.4, 6.6, 6.8, 7.0, 7.2, 7.3, and 7.4! we
varied k in small increments across the crossover. For the
updating, we used the standard hybrid molecular dynamics
~HMD! algorithm@23# followed by a Monte Carlo accept or
reject step@hybrid Monte Carlo~HMC! algorithm# @24#. The
calculation of the ‘‘clover’’ contribution to the HMD equa-
tions of motion is tedious but straightforward.1 The even-odd
preconditioning technique developed for standard Wilson

fermions@26# is also implemented for the improved Wilson
fermion action@27#. Our microcanonical time step was such
that the acceptance rate was between 60% and 80%; typi-
cally Dt50.03, but for the stronger gauge coupling~lighter
quark mass! runsDt50.01. We accumulated over 1000 tra-
jectories at points close to the crossover.

Our companion zero temperature runs were performed on
an 83316 lattice at five~b,k! points along the crossover, as
well as at five other points neighboring the crossover line.
Some of these runs were extended in order to be able to
extract the heavy quark potential from Wilson loop expecta-
tion values. As with the finite temperature runs, we tried to
maintain a Monte Carlo acceptance rate around 60–80%, and
so our time step varied fromDt50.005 to 0.03. Measure-
ments of hadron correlators and Wilson loops were taken
every ten trajectories.

The large majority of our simulations were performed on
the IBM SP2 at the Cornell Theory Center, and two finite
temperature simulations were run on a cluster of IBM RS/
6000’s at the Supercomputer Computations Research Insti-
tute of Florida State University.

We used the conjugate gradient~CG! matrix inversion
algorithm to compute (M†M )21 with a maximum residue of
1026 during the HMC updating. For the spectroscopy calcu-
lations, where we wish to invertM , we found the stabilized
biconjugate gradient~biCGstab! algorithm to be twice as ef-
ficient as CG@28#.

We tunedu0 so that it agreed with the fourth root of the
spacelike plaquettes that we measured. It might have been

1Independent of our work, calculations of the HMD equations of
motion for this improved Wilson fermion action have been pub-
lished in @25#.

TABLE I. Best fits to the masses of the pseudoscalar and vector mesons on an 83316 lattice. Points marked by an asterisk lie on the
Nt54 crossover. The No. column lists the number of propagators used to compute spectroscopy.

b k u0 No. aMPS t range aMV t range MPS/MV

*6.40 0.145 0.826 81 0.931~4! 2–5 1.351~18! 4–7 0.689~10!
*6.40 0.1475 0.828 30 0.664~8! 4–8 1.26~6! 4–7 0.527~26!

6.60 0.140 0.834 64 1.173~4! 5–8 1.481~9! 4–7 0.792~6!
*6.60 0.143 0.841 144 0.927~4! 4–7 1.280~8! 3–8 0.724~6!

6.60 0.146 0.855 40 0.468~15! 3–6 1.04~13! 4–7 0.45~6!

6.80 0.1325 0.842 79 1.494~3! 6–8 1.700~7! 6–8 0.879~4!
*6.80 0.137 0.849 120 1.187~3! 4–7 1.421~6! 4–8 0.835~4!

6.80 0.140 0.857 43 0.885~8! 3–6 1.182~16! 4–7 0.749~12!
*7.20 0.118 0.864 143 1.915~3! 4–8 1.994~3! 4–8 0.960~2!
*7.30 0.114 0.8695 30 2.043~4! 3–8 2.106~5! 2–8 0.970~3!

TABLE II. Best fits to the mass of the nucleon.

b k u0 No. aMN t range MN /MV

6.40 0.145 0.826 81 2.14~3! 4–7 1.58~3!
*6.40 0.1475 0.828 30 1.63~11! 4–8 1.29~11!

6.60 0.140 0.834 64 2.30~3! 5–8 1.55~2!
*6.60 0.143 0.841 144 1.958~18! 3–6 1.530~15!

6.60 0.146 0.855 40 1.34~5! 2–5 1.29~17!

6.80 0.1325 0.842 79 2.651~13! 6–8 1.56~1!
*6.80 0.137 0.849 120 2.190~10! 3–6 1.541~10!

6.80 0.140 0.857 43 1.75~4! 2–8 1.48~4!
*7.20 0.118 0.864 143 3.110~5! 4–8 1.560~3!
*7.30 0.114 0.8695 30 3.297~11! 2–7 1.614~6!
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preferable to do this onT50 configurations; however, the
heavy cost of repeatedly equilibrating anNt516 lattice
forced us to perform this tuning procedure on theNt54
configurations. In the next section we will show that the
difference in the two ways of tuningu0 is small. This tuning
procedure would be dangerous if the system underwent a
first order phase transition, but we will also show that the
plaquette varies smoothly across the transition. Let us remark
that this tuning procedure is a prescription.u0 may be de-
fined in a number of ways since it is anestimateof the higher
order tadpole contributions to perturbation theory calcula-
tions. Therefore, while one might argue that tuningu0
strictly on a zero temperature lattice would better estimate
the tadpole contributions, our method is well defined and
self-consistent.

IV. RESULTS

A. Thermodynamics

The first task was to locate the thermal crossover line
kT(b). To this end we measured the expectation values of
the Polyakov loop, the plaquette, the quark condensate
^c̄c&, and the number of CG matrix inversion iterations as
we generated the 8334 configurations.

In pure gauge theory the Polyakov loop is an order pa-
rameter for the deconfinement transition:^P&50 in the con-
fined phase because the free energy for a single color triplet
charge is infinite, while in the deconfined phase the test
charge can be screened; so the free energy is finite and^P&
Þ0. For unquenched QCD, the Polyakov loop is not an order
parameter since it is nonzero even in the hadronic phase, but
it does increase dramatically at the transition. In this work,
we identify the thermal crossover as the place where the
derivative of^ReP& is greatest. Figure 3 shows^ReP& versus
the hopping parameterk for the seven values of fixed cou-
pling b. Figure 4 shows only the runs where the crossover is
at the lowest three values ofMPS/MV . Although the cross-
over becomes steeper at stronger coupling, there is no evi-
dence of a first order transition.

In continuum QCD with massless quarks, one expects to
see a restoration of the spontaneously broken chiral symme-
try at high temperatures. The order parameter for this transi-
tion is the chiral condensatêc̄c&. Since Wilson fermions
break chiral symmetry explicitly, the meaning of^c̄c& at k
Þkc is not so clear. Besides the usual multiplicative renor-

FIG. 9. Phase diagram for the Symanzik-improved action. Oc-
tagons represent theNt54 thermal crossover, and diamonds indi-
cate estimates of the locations of vanishing pion mass. Zero tem-
perature simulations were performed at the crosses. Dashed and
dotted lines are merely to guide the eye.

FIG. 10. Effective vector meson mass plots along the thermal
crossover forb56.4,6.6,6.8.

FIG. 11. Interpolation of the pseudoscalar mass squared as a function of 1/k for ~a! the improved action (b IW56.8) and~b! the
unimproved action (bW54.9). Squares denote computed masses and asterisks mark interpolated masses.
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malization one must make a subtraction to compensate for
the additive renormalization of the quark mass. A properly
subtracted^C̄C& can be defined through an axial vector
Ward identity@29#. However, since our study did not include
calculation of screening propagators, we can only look at the
unrenormalized̂ c̄c&. In spite of these problems, Fig. 5
shows a drop in̂ c̄c& at the crossover identified bŷReP&.

Since we use the plaquette~in the space-space planes! to
self-consistently tuneu0 , we must ensure that it varies
smoothly across the thermal crossover. Figures 6 and 7 show
that this is the case. In fact, the plaquette on the zero tem-
perature lattices agrees within errors with the plaquette at
finite temperatures on the confined side of the crossover. The
dashed vertical lines in those figures simply mark the loca-
tion of the crossoverkT(b). The large errors on the decon-
fined side are due to the smaller sample sizes where running
at lower quark mass is expensive.

As the thermal crossover linekT(b) approaches the criti-
cal linekc(b), the number of iterations needed to invert the
fermion matrix per time step,Niter , peaks at the thermal
crossover. The reason is that as one approacheskT(b) from
the confined side~varyingk with b fixed! the zero modes at
kc(b) become more influential, while there are no zero
modes in the deconfined phase. Figure 8 shows the peaks in
Niter are at the same locations as the crossovers indicated by
the Polyakov loop.

B. Spectrum

For a number of reasons, it is useful to evaluate some zero
temperature quantities at the parameters of our thermody-
namic simulations. The light hadron spectrum is essential in
determining the chiral limit for Wilson-like fermions.

The spectroscopy was an entirely straightforward lattice
computation which used Gaussian-smeared source wave
functions and pointlike sink wave functions. We performed
correlated fits to a single exponential and selected the best
fits based on a combination of smallestx2 per degree of

FIG. 12. The physical phase diagram. Octagons~asterisks! mark
the locations of theNt54 thermal crossover for the improved~un-
improved! action; solid lines connect these points. Squares~dia-
monds! mark points along thermodynamic simulations. Dashed
lines connect points of constantb and the dotted line connects
points of constantk.

FIG. 13. Polyakov loop as a function ofT/MPS for fixed b.
Squares:b IW56.8 improved Wilson fermions. Diamonds:bW54.9
unimproved Wilson fermions. Both have similarMPS/MV at the
crossover.

FIG. 14. Polyakov loop~a! and space-space plaquette~b! as functions ofb for k50.140.
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freedom and largest confidence level. Propagators are sepa-
rated by ten HMC trajectories.

Our calculations of the hadron spectrum for our zero tem-
perature simulations are summarized in Tables I and II. The
phase diagram~Fig. 9! illustrates the location of theT50
runs with respect to the thermal crossover and critical lines,
kT(b) andkc(b), respectively. An anomaly in Table I is the
small data set forb56.4, k50.1475. Naturally we would
prefer to have more configurations with which to compute
hadron correlators. Unfortunately the cost of running at those
parameters is high.

One diagnostic tool for evaluating the quality of spectro-
scopic lattice data is an effective mass plot. One simply
‘‘fits’’ the hadron propagator between two successive time
slicest andt11 to a single exponential.~It is not really a fit
because there are only two points.! When a propagator is
‘‘asymptotic’’ and couples only to the lightest state in that
channel, one expects to see a plateau in the effective mass as
t is varied. For example, we show effective mass plots for
the vector meson at several points along the thermal cross-
over in Fig. 10.

Finite size effects could be a source of error in our calcu-
lations. If we expect our lattice spacing to be 0.25 fm or
greater~this assumesTc<200 MeV!, then the spatial size of
our lattice is at least 2 fm. For an estimate of the finite
volume errors, let us look at quenched studies with valence
Wilson quarks atb55.7, which is the critical coupling for
Nt54. At a quark mass corresponding toMPS/MV50.69,
there is a 3.3% finite size effect in the vector meson mass
@30,31#. While some of our computations are at smaller

quark mass, evenMPS/MV'0.5, we expect a smallerTc ,
say, 150 MeV vs the 260 MeV in quenched simulations—
our box size may be as large as 2.7 fm. While finite size
effects are more severe in unquenched QCD than quenched
QCD for box sizes less than 1.5 fm, they are comparable for
larger boxes@32#. The quenched results lead us to believe
that this is large enough to keep the finite volume errors
under control. Therefore, we believe that finite size effects
are at most a few percent, which is comparable to our statis-
tical errors. Of course a thorough investigation of these ef-
fects is warranted if this action is to be used in a full-scale
spectrum calculation.

While in Fig. 3 we do not see the same first-order jump in
^ReP& that we did with the standard Wilson actions, we
would like to make the comparison more convincing. After
all, we cannot knowa priori the relation between the bare
parameters for the standard action (bW ,kW) and those for
the improved action (b IW ,k IW); it could happen that a small
change inkW corresponds to a much larger change in the
quark mass than does a similar change ink IW , giving us the
illusion that the crossover is broader for the improved action.

In continuum QCD, the quark massmq and the tempera-
ture T are the two parameters of the theory. Dimensionless
quantities are more accessible from lattice simulations, and
so we use the pseudoscalar/vector mass ratioMPS/MV to
represent the quark mass. The temperature can be divided by
any mass scale. Ideally, we would use something which has
little dependence on the quark mass, e.g., the square root of
the string tension. However, the calculations of the heavy
quark potential have not been performed for the standard
Wilson action in this region of parameter space. Therefore,
we content ourselves with using a meson mass. Let us
choose the pseudoscalar for the present discussion.

First let us compare the thermal crossovers at the same
value of MPS/MV . Data from Ref.@33# suggest that we
compare bW54.94 and kW50.18, where MPS/MV
50.836(5), to our b IW56.80 and k IW50.137, where
MPS/MV50.835(4). Thedata we use for comparison with
ours are the unimprovedbW54.9 data provided in Refs.
@1,34#. Spectroscopy was not performed at each thermody-
namic data point, and so some interpolation of masses as
functions of 1/k is necessary. We interpolated the lattice
pseudoscalar meson mass squared using a linear least squares
fit to a quadratic in 1/k around the crossover region for the
unimproved Wilson data. As a result of the smaller data
sample, we interpolated (aMPS)

2 linearly in 1/k for our im-
proved Wilson data. Figure 11 shows these interpolations.
The lattice vector meson masses were obtained similarly,
interpolating aMV rather than (aMV)2. In practice, these
interpolations are not to sensitive to our fitting function, and

FIG. 15. Polyakov loop as a function ofT/MPS for fixed
k IW50.140.

TABLE III. Fits to the heavy quark potential along theNt54 crossover~nf52 improved Wilson fermi-
ons!.

b k No. r min-rmax t aV0 a2s e f r0 /a

6.40 0.1475 30 1.41-4.47 2 1.0~3! 0.41~8! 0.7~2! 5.6~6! 1.52~4!

6.60 0.1430 108 1.41-6.93 2 0.65~9! 0.42~3! 0.34~8! 3.21~24! 1.77~2!

6.80 0.1370 95 1.41-6.93 2 0.70~6! 0.346~15! 0.38~5! 2.45~18! 1.913~13!

7.20 0.1180 117 1.41-5.66 2 0.65~2! 0.253~6! 0.33~2! 1.06~8! 2.287~13!
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we are only aiming for a sound qualitative comparison of the
crossover.

In Fig. 12 we show the physical phase diagramMPS/MV
vs T/MPS @T5(4a)21#. The solid lines show the locations
of the thermal crossover for the two actions. The fact that
they are at different places is a direct consequence of lattice
artifacts: The simulations give different physics at the same
MPS/MV . Plotted in this figure as dashed lines are two runs
at fixedb. For both runsMPS/MV decreases from'0.87 to
'0.78, andT/MPS increases about 15%. The fixedb runs
seem to cross the thermal crossover line at the same angle.
~One must remember there is some uncertainty due to inter-
polation in Fig. 12 which is to be interpreted qualitatively.!
When we compare the Polyakov loop along these two fixed
b runs, which we argue crossTc /MPS similarly, we find the
crossover is indeed smoother for the improved action~see
Fig. 13!.2

One might worry that the fixedb runs crossTc /MPS too
slowly: The runs appear nearly tangential to the crossover.
Perhaps if one crossed the critical line at a less acute angle
the transition would be much steeper. This does not turn out
to be the case. We performed an exploratory run at fixed
k IW50.140, varyingb IW from 6.6 to 6.8. The raw data ap-
pear in Fig. 14. This run is represented by a dotted line in
Fig. 12 and crosses the critical line at a sharper angle. We
only have two zero temperature runs atk50.140, and so our
linear extrapolation of (aMPS)

2 in 1/k is not even a fit, but it
is clear that the transition is smooth~see Fig. 15!. On the
contrary, Fig. 3 in Ref.@1# shows a stiff transition for fixedk
runs fromkW50.12 tokW50.20.

Let us summarize this lengthy discussion. We set out to
answer the question, is the transition in fact smoother for the
improved action than for the unimproved action? In order to
make a sound comparison between results from different ac-
tions, we needed to present our results using physical param-
eters. Since we have performed just a few zero temperature
simulations, some interpolation was necessary in order to
present thermodynamic data along specific curves in the
physical phase space. Although this interpolation introduces
some systematic error, the qualitative features of Figs. 12–15
are preserved barring some unlikely large deviation in Fig.
11. We would like to be able to look at the crossover at

constantMPS/MV or at constantT, but our simulations are
limited to fixedb or k. Therefore, we attempted to show that
the qualitative shape of the Polyakov loop as one crosses the
critical line is not strongly sensitive to the specific path in
phase space. Since the crossover is smooth for all fixedb IW
and the one fixedk IW runs, and since the crossover is steep
for both fixedbW runs and fixedkW runs, we conclude that
the transition is smoother for the improved action. The arti-
ficial first-order behavior is not present with the improved
action.

Finally, we remark that, when one replacesT/MPS by
T/MV , Figs. 11–15 are qualitatively the same and our con-
clusions are unchanged.

C. Heavy quark potential

In addition to computing hadronic masses, we used Wil-
son loop data to measure the heavy~or static! quark potential
V(rW):

V~rW !52 lim
t→`

1

t
lnW~rW,t !. ~8!

A standard ansatz for the form of the potential is

V~r !5V01sr 2
e

r
2 f S GL~r !2

1

r D , ~9!

whereV0 , s, e, andf are fit parameters, andGL is the lattice
Coulomb potential. In practice, this fit is performed for a
fixed t; that is, the potential is estimated through an effective
potential,

Vt~rW !52 lnFW~rW,t11!

W~rW,t ! G , ~10!

such that

W~r ,t !;exp@2Vt~r !t#. ~11!

The parameterr 0 is defined to be the length such that

2Previously, this result was presented as a function of
(aMPS)

25(MPS/4T)2 ~e.g., in Ref.@35#!.

FIG. 16. The heavy quark potential from Wilson loops. Octagons are the effective potentialsVt(rW) and the line is the fit to the ansatz.
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r 0
2F~r 0!51.65, ~12!

with

F~r !5
]V

]r
, ~13!

which corresponds tor 050.49 fm from potential models.
Sommer showed this to be a useful quantity with which to
set the lattice scale@36#. In this work we calculated the force
by taking numerical differences of the potential. Our analysis
proceeds as in Ref.@37#. Errors are estimated by bootstrap-
ping the data, and occasionally increased to account for dif-
ferences in the choice oft. We present our fits to the poten-
tial for the zero temperature simulations along theNt54
crossover with improved Wilson fermions in Table III.
Graphs of three of these fits appear in Fig. 16.

For comparison, we performed the same calculation with
two flavors of Kogut-Susskind fermions for three parameter
sets along theNt54 crossover. Our fits are given in Table
IV. Meson masses were taken from Table 1 of Ref.@38#. In
addition, we measured the potential at one point along the
Nt56 KS crossover. That fit also appears in Table IV. The
generation and spectroscopy of those configurations are dis-
cussed in Ref.@39#.

D. Scaling tests

In Secs. IV A and IV B we showed that thermodynamics
with the improved action does not have the same artificial
first-order behavior that unimproved Wilson thermodynam-
ics does. However, in order to make physical predictions
which can be compared with results from Kogut-Susskind
thermodynamics, we must make use of the spectrum and
potential computations described in the preceding two sec-
tions.

In Fig. 17 we plot the ratioTc /MV as a function of the
pseudoscalar/vector meson mass ratioMPS/MV . Extrapola-
tion to the physicalp/r mass ratio is necessary in order to
make a prediction forTc . The fact thatTc /MV is indepen-
dent ofNt for the Kogut-Susskind action leads one to believe
that this quantity is scaling at lattice spacinga51/(4Tc).
Clearly, this statement is not true for the unimproved Wilson
action. TheNt54 unimproved Wilson points show a large
dependence on the quark mass, and disagree significantly
with the correspondingNt56 points atMPS/MV,0.8. In
addition, sinceTc /MV is consistently lower for the improved
action than the unimproved action at equal lattice spacing,
the discretization errors in the latter must be appreciable. The
improved Wilson point atMPS/MV50.53 appears to have

some slight agreement with the Kogut-Susskind data, but
with a large error. Finally, we remark that one expects
Tc /MV→0 in the infinite quark mass limit since the vector
meson mass diverges there, and so ultimately we want to
simulate at as smallMPS/MV as possible in order to extrapo-
late toMp /M r50.18 reliably.

In order to look atTc scaled by quantities which are
nominally independent of the quark mass, we useAs andr 0
from our potential fits mentioned in Sec. IV C. In Fig. 18 the
rise in Tc /As and r 0Tc as MPS/MV→1 is presumably due
to Tc approaching the pure SU~3! transition temperature as
the quarks decouple. TheNt54 quenchedTc /As from Ref.
@40# appears as an arrow in Fig. 18 and supports this pre-
sumption. The disagreement between the Kogut-Susskind
and improved Wilson actions is more apparent in Fig. 18
than in Fig. 17. The error inAs is large, but bothTc /As and
r 0Tc are lower for our improved action than for the KS ac-
tion. In fact, the small error inr 0 reveals the presence of
quark mass dependences even atMPS/MV50.53.

The quark mass effect can be identified further in the plot
of Tc /As vs aAs ~Fig. 19!. Sincea51/(4Tc) for all of the
Nt54 data, the spread inaAs for the improved action is
caused by the increase in the deconfinement temperature as
the quarks become infinitely heavy. One should contrast to
this the observation that the threeNt54 KS points lie on top
of each other. The higherNt points for both KS and

FIG. 17. Critical temperature divided by vector meson mass vs
pseudoscalar/vector meson mass ratio. Our data forNt54 improved
Wilson actions are the octagons. Diamonds:Nt54 unimproved
Wilson. Square:Nt56 unimproved Wilson. Fancy diamonds and
squares:Nt54,6 Kogut-Susskind~KS!, respectively@2#.

TABLE IV. Fits to the heavy quark potential along theNt54(* 6) crossovers~nf52 Kogut-Susskind
fermions!.

b amq No. r min-rmax t aV0 a2s e f r0 /a

5.2875 0.025 55 1.41-6.93 2 0.80~10! 0.30~3! 0.46~10! 1.46~20! 1.99~4!

5.3200 0.050 67 2.24-6.93 2 0.68~22! 0.29~4! 0.2~3! 5.7~1.1! 2.17~11!

5.3750 0.100 90 1.00-5.66 3 0.62~8! 0.288~23! 0.26~7! 0.56~12! 2.20~4!
*5.415 0.0125 280 2.24-6.71 3 0.76~2! 0.130~5! 0.36~2! 1.0~2! 3.14~5!
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quenched actions show their relative independence on lattice
spacing. The conclusion one should draw from Figs. 18 and
19 is that in the case of the improved Wilson data, any at-
tempt at extrapolation to physical quark mass is premature.

In Fig. 20 we plotr 0As vs a/r 0 . While r 0 andAs are
independent ofa/r 0 andmq within the error bars, the varia-
tion in a/r 0 for the improved action along the crossover is
another manifestation of the quark mass dependence of the
critical temperature. A plot againstaAs looks qualitatively
the same, but with larger errors.

A graph of the vector meson mass timesr 0 ~Fig. 21!
shows nice behavior for the Kogut-Susskind simulations,
disagreement between KS and clover, and the rise inMV
toward infinity at largeMPS/MV . Again, we do not show
MV /As vs MPS/MV since it is qualitatively the same, but
with larger error bars. If we were so bold as to argue that the
improved Wilson data could be extrapolated to physical
Mp /M r using the pointsMPS/MV<0.8, then we would con-
clude MV /As for our action is less than for the Kogut-
Susskind action. This would not be too surprising given

similar trends in scaling violations for quenched QCD spec-
troscopy as presented in Fig. 2 of Ref.@18#, for example. At
finite lattice spacing,M r /As computed with KS valence
quarks lies above thea50 extrapolation, while unimproved
Wilson quark calculations give a value less than the con-
tinuum number. The addition of the clover term significantly
reduces this scaling violation; however, the lattice value of
M r /As still lies below its continuum value. Of course, in
the absence of clear scaling betweenMV andAs ~and r 0!,
such arguments in this work are speculative.

V. CONCLUSIONS

This is the first large scale simulation of unquenched
QCD with improved Wilson fermions of which we are
aware. We find that the Symanzik-improvement program, at
this level, fulfills its promise in that a serious lattice artifact,
the spurious first-order transition at intermediate hopping pa-
rameters, has been removed. The thermal crossover does be-
come progressively steeper as one decreases the quark mass,
but it is smooth in the sense that the Polyakov loop and the

FIG. 18. Critical temperature scaled by~a! the square root of the string tension and~b! the inverse Sommer parameter vs pseudoscalar/
vector meson mass ratio. Octagons:Nt54 improved Wilson. Diamonds:Nt54 KS. Square:Nt56 KS. The arrow in~a! shows theNt54
quenchedTc /As from Ref. @40#.

FIG. 19. Critical temperature scaled by the square root of the
string tension~left! vs the lattice spacing in units of 1/As. Octa-
gons: Nt54 improved Wilson. Diamonds:Nt54 KS. Square:
Nt56 KS. Crosses: quenched SU~3! from Ref. @40#.

FIG. 20. The dimensionless quantityr 0As vs the lattice spacing
in units of r 0 . Octagons:Nt54 improved Wilson. Diamonds:
Nt54 KS.
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plaquette are single valued for all~b,k! at which we com-
puted.

However, improvement at this order is no panacea. It is
still very costly to invert the fermion matrix near and below
MPS/MV'0.5. Since the critical temperature and the vector
meson mass show a significant dependence on the quark
mass, extrapolation toMp /M r is not trustworthy. Further-
more, disagreement is evident inTc /As andMVr 0 between
our improved Wilson action and the unimproved Kogut-
Susskind formulation, even at comparableMPS/MV .

One cannot yet use this disagreement to cast doubt on the
Kogut-Susskind results because the scaling behavior of the
improved Wilson action has not been sufficiently tested.
Simulations with smaller lattice spacing, perhapsNt56,
would give a more concrete picture of the extent of scaling
violations in this action.

Before beginning such an expensive undertaking, how-
ever, let us speculate as to the shortcomings of the present
action in the context of thermodynamics. In the high tem-
perature phase, thermodynamic quantities are dominated by

high momentum contributions. Therefore, one must not only
improve the effects of the finite lattice spacing, but also the
dispersion relation at all momenta. Although the gauge ac-
tion we used has a dispersion relation closer to the con-
tinuum than the plaquette action, the clover term does not
change the fermionic dispersion relation from that of the un-
improved Wilson action. The work with an improved gauge
action but standard Wilson fermions by Ref.@4# shows im-
provement similar to ours, viz., removal of the jump discon-
tinuity in the Polyakov loop. A detailed comparison of the
critical temperature from their action versus ours and the
standard Wilson and KS actions remains to be made.

Therefore, it is plausible that improvement of the gauge
action is responsible for the removal of the artificial first-
order behavior at intermediate values of the Wilson hopping
parameter. However, improvement of the fermion action
probably plays a role in the closer agreement to the KS re-
sults forTc /MV , as was found in studies of quenched spec-
troscopy. Persistent quark mass dependence and apparent
disagreement between our results and KS results forTc
scaled by quark potential parameters indicate that further im-
provement in the fermionic sector is warranted. One might
consider using Wilson-type fermions with an improved dis-
persion relation in the next large scale thermodynamics
study.
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