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We have investigated QCD with two flavors of degenerate fermions using the Symanzik-improvement
program for both the gauge and fermion actions. Our study focuses on the deconfinement transition on an
N;=4 lattice. Having located the thermal transition, we performed zero temperature simulations nearby in
order to compute hadronic masses and the static quark potential. We find that this action reduces lattice
artifacts present in thermodynamics with the standard Wi{gange and fermigractions. However, compari-
sons between improved Wilson and Kogut-Susskind actions show some disagreement.
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[. INTRODUCTION symmetry breaking gives rise to an additive mass renormal-
ization; thus, the location of the chiral limit is not knoven

An understanding of the high temperature behavior ofpriori.

QCD is desirable in addressing problems such as heavy ion Even more troublesome for dynamical Wilson fermions is
collisions and the evolution of the early universe. It is be-the presence of lattice artifacts which qualitatively affect
lieved that, at a temperature between 140 and 200 Me\hysics at large lattice spacing. In Ref&] and[2] it was
(where pions are produced copiousipadronic matter un- found that the deconfinement transition becomes very steep
dergoes a transition to a plasma of quarks and gluons. Thi®r intermediate values of the hopping parametein fact,
phenomenon is intrinsically nonperturbative, and Monteon anN;=6 lattice the transition appears to be first order for
Carlo lattice simulation provides the best theoretical toola range of intermediate hopping parameters and smooth oth-
with which to study it. erwise.

Most lattice studies have used Kogut-SusskiK®) fer- The lattice community has worked very hard recently to
mions because of their exact(1) chiral symmetry at finite construct actions which have fewer lattice artifacts than the
lattice spacing. The full S(2) chiral symmetry is recovered standard discretizations of the continuum action. One phi-
in the continuum limit. Although in contrast Wilson fermions losophy is to add operators to the action which ca@")
explicitly break chiral symmetry, the continuum limit of the terms in the Taylor expansion of spectral observables. It is
different discretizations is expected to be the same. One aglausible that an action which converges to the continuum
vantage of simulating with two flavors of Wilson quarks ver- action faster in th@— 0 limit would be free of the artificial
sus two flavors of KS fermions is that the updating algorithmfirst order behavior. We adopt this improvement program,
is exact in the former case but has finite time step errors imttributed to Symanzik, in the present work.
the latter. The price to be paid is that the explicit chiral An alternative approach is to search for an action which
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no scaling violations, i.e., are quantum perfect. Such an ac- e & A AP
. ; AT Jrad
tion was approximated by lwasak3] and has been used to i T‘,‘,\/f %< Co e i
study QCD thermodynamics with two flavors of unimproved 0.0 L= : : ‘ | :
Wilson fermiong[4]. Although it is still an open question to 0.08 0.10 0.12 0.14 0.1

what extent this action lies on a renormalized trajectory, the
results of Ref[4] show improvement over standard Wilson
thermodynamics.

In this paper we report on our simulation of finite tem-
perature lattice QCD with two flavors dd(a) Symanzik-
improved fermions an®(a?) Symanzik-improved glue. We
describe the action we used in Sec. Il. In Sec. lll we give th
details of our simulations, and we present our results in Se
IV. Finally, we give our conclusions in Sec. V.

FIG. 3. Polyakov loop vs hopping parameter—gl.

“twisted” loop to the Wilson plaquette actioiSee Fig. 1.
It is well known now that lattice perturbation theory in the

bare couplingg, is not trustworthy. The? in the vertex of
ethe tadpole graph is canceled by the ultraviolet divergence of
éhe gluon loop. Therefore, hidden in the higher order terms

of the expansmn ira are tadpole graphs which give an ef-
fectivea®S c,,g%" contribution. A standard way to deal with
this problem is to define a mean link, and replace
u,—u /uo [8 9] This introduces a “boosted” coupling

When one expands a lattice operator in a Taylor serlesonstantg =g2/ug.
about zero lattice spacing, one recovers its relevaror Here we combine these two ideas, Symanzik improve-
margina) continuum operator plus higher dimensional irrel- ment of the action and “tadpole improvement” of lattice
evant operators proportional to powersaofSymanzik sug- perturbation theory. Our gauge action for this work is as
gested that by selecting a favorable combination of latticederived in Ref[10],
operators in the lattice action, one might have cancellations
of the irrelevant operators up to some order in the lattice
spacing5]. Luscher and Weisz have applied this philosophy S, ,82 —ReTr(l Uplaq)+,812 —ReTr(l U ecd
to SUN) gauge theories. They imposed an on-shell im-
provement condition whereby discretization errors are elimi- 1
nated order by order ira from physical observables and +,322 3 ReTH1—Uyist)s (1)
constructed arO(a?)-improved gauge actiof6]. Further- wist
more, they computed the coefficients of the operators in the
action through one-loop order in lattice perturbation theorjvhere ,3 is a free parameter(in this normalization
[7]. This improvement condition does not provide a unique8= (6/g?ug)5/3 1—0.102@2+0(g*)]), and
action. The choice which is the most efficient in terms of

II. ACTION
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FIG. 4. Polyakov loop vs hopping parameter for the three lowest
FIG. 2. The clover term in the Sheikholeslami-Wohlert action. 8's.
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The shaded octagons mark the zero temperature values.
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FIG. 7. Space-space plaquette vs hopping parameter for the
three lowestg's. The shaded octagons mark the zero temperature
values. The dashed lines indicate our determinatior@f3) and
emphasize the agreement between the spacelike plaguettes mea-
sured on zero temperature and finite temperature lattices at the
Crossover.
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In the Monte Carlo simulations, we tung in the action to
be consistent with the fourth root of the average plaquette.
This procedure is discussed in more depth in Sec. Ill.

The Wilson fermion action has errors @(a). The
Symanzik-improvement program can be extended to improv-
ing this action too. In the—0 limit, the O(a) term in the
action is proportional tayD?y and can be removed by add-
ing a next-nearest-neighbor operator to the acfib?| or,
after an isospectral transformation of the fermion fields, by
adding a magnetic interactionl3]. Thus, the tree-level
Symanzik-improved action is

400 | T T

300

200

CG iter/step

100

FIG. 8. Conjugate gradient matrix inversions vs hopping param-
eter.
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TABLE |. Best fits to the masses of the pseudoscalar and vector mesons Grxd $attice. Points marked by an asterisk lie on the
N,=4 crossover. The No. column lists the number of propagators used to compute spectroscopy.

B K Uo No. aMps trange aMy trange Mps/My
*6.40 0.145 0.826 81 0.989 2-5 1.35118) 4-7 0.68910)
*6.40 0.1475 0.828 30 0.668) 4-8 1.266) 4-7 0.52726)
6.60 0.140 0.834 64 1.1 5-8 1.4819) 4-7 0.7926)
*6.60 0.143 0.841 144 0.92 4-7 1.2808) 3-8 0.7246)
6.60 0.146 0.855 40 0.4685) 3-6 1.0413) 4-7 0.4%6)
6.80 0.1325 0.842 79 1.48) 6-8 1.7007) 6-8 0.879%4)
*6.80 0.137 0.849 120 1183 4-7 1.4216) 4-8 0.83%4)
6.80 0.140 0.857 43 0.88% 3-6 1.18216) 4-7 0.74912)
*7.20 0.118 0.864 143 1.91% 4-8 1.9943) 4-8 0.9602)
*7.30 0.114 0.8695 30 2.008 3-8 2.1065) 2-8 0.9703)

K — fermions[26] is also implemented for the improved Wilson
Si=Sw— 3 > X [(Xia,,F e, (6)  fermion action[27]. Our microcanonical time step was such
0 X m=v that the acceptance rate was between 60% and 80%; typi-
cally At=0.03, but for the stronger gauge couplifighter
quark massrunsAt=0.01. We accumulated over 1000 tra-
jectories at points close to the crossover.
1 Our companion zero temperature runs were performed on
iFW=§(fW— fjw). (7)  an 816 lattice at five(B,x) points along the crossover, as
well as at five other points neighboring the crossover line.
Some of these runs were extended in order to be able to

f ., is the clover-shaped combination of linfsee Fig. 2 As . .
y72% -
with the gauge action, the links here are also tadpole | extract the heavy quark potential from Wilson loop expecta

. . tion values. As with the finite temperature runs, we tried to
B{r?g]/epdérgr%ftet?at one factor of is absorbed into the hop- maintain a Monte Carlo acceptance rate around 60—80%, and

. : sp our time step varied fromt=0.005 to 0.03. Measure-
Both these gauge and fermion actions have been US&fents of hadron correlators and Wilson loops were taken
widely, e.g., in studies of finite temperature @U[14,15 P

and guenched spectroscgd—18. At least one group is in every ten trajectories.

the process of using this action to calculate spectroscopy on The large majority of our simulations were performed on
P ing thi pect PY e IBM SP2 at the Cornell Theory Center, and two finite
unquenched configuratiorjd9]. Therefore, we believe our

. . S . temperature simulations were run on a cluster of IBM RS/
choice of action to be well justified and useful for compari- , ) .
6000's at the Supercomputer Computations Research Insti-
son to other work. . . .
Of course, further progress is being made in refinin thetute of Florida State University.
' prog 9 9 We used the conjugate gradief@G) matrix inversion

Symanzik-improvement program. One can attempt to set the, . Foagr—1 . : .
coefficients of the higher dimension operators nonperturba‘lelgorlthm to computeM 'M) = with a maximum residue of

_6 . . _
tively by demanding that, for example, Ward identities bellc,:i nduw;]g :h?/vHI\\CIvCi: #?deilrt:chFovrvthf SES%:OSC,[O%%?‘LCU
satisfied up to some order in the lattice spadigg]. Also, ations, where we wisn 1o inveit, we fou € stabilize

fermion actions which are constructed to have errors oflconjugate gradienbiCGstab algorithm to be twice as ef-

3y (b . icient as CE28].
O(a")-0(a") are currently being test@1,22, We tunedug so that it agreed with the fourth root of the

spacelike plaquettes that we measured. It might have been

whereS,y is the usual Wilson fermion action, and

Ill. SIMULATION DETAILS

Our finite temperature simulations were on anxal lat- TABLE Il Best fits to the mass of the nucleon.

tice. At fixed 8 (=6.4, 6.6, 6.8, 7.0, 7.2, 7.3, and Y e
varied « in small increments across the crossover. For th

f K UO No. aMN trange MN/MV

updating, we used the standard hybrid molecular dynamice.40 0.145 0.826 81 2.3 4-7 1.583)
(HMD) algorithm[23] followed by a Monte Carlo accept or *6.40 0.1475 0.828 30 1.6B) 4-8 1.2911)
reject stedhybrid Monte CarlgHMC) algorithm] [24]. The 660 0.140 0.834 64 2.38) 5-8 1.5%2)
calculation of the “clover” contribution to the HMD equa- *gg0 0.143 0.841 144 1988) 3-6 1.53015
tions of motion is tedious but straightforwat@he even-odd g0  0.146 0855 40 1.28) 2.5  1.2917)
preconditioning technique developed for standard Wilsorg gy 01325 0842 79 26613 6-8  1.561)
*6.80 0.137 0.849 120 2.16007) 3-6 1.54110

6.80 0.140 0.857 43 1.7 2-8 1.484)

lindependent of our work, calculations of the HMD equations of*7.20  0.118 0.864 143 3.1(%) 4-8 1.5603)
motion for this improved Wilson fermion action have been pub-*7.30 0.114 0.8695 30 3.2ar]) 2-7 1.6146)

lished in[25].
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preferable to do this of =0 configurations; however, the  FiG. 10. Effective vector meson mass plots along the thermal
heavy cost of repeatedly equilibrating a%=16 lattice  crossover foi3=6.4,6.6,6.8.

forced us to perform this tuning procedure on tRe=4

configurations. In the next section we will show that the In pure gauge theory the Polyakov loop is an order pa-
difference in the two ways of tuning, is small. This tuning rameter for the deconfinement transiti¢®) =0 in the con-
procedure would be dangerous if the system underwent fined phase because the free energy for a single color triplet
first order phase transition, but we will also show that thecharge is infinite, while in the deconfined phase the test
plaquette varies smoothly across the transition. Let us remarharge can be screened; so the free energy is finitg Bpd
that this tuning procedure is a prescriptiarp, may be de- 0. For unquenched QCD, the Polyakov loop is not an order
fined in a number of ways since it is astimateof the higher  parameter since it is nonzero even in the hadronic phase, but
order tadpole contributions to perturbation theory calculait does increase dramatically at the transition. In this work,
tions. Therefore, while one might argue that tuning  we identify the thermal crossover as the place where the
strictly on a zero temperature lattice would better estimatejerivative of(ReP) is greatest. Figure 3 showWReP) versus

the tadpole contributions, our method is well defined andhe hopping parametet for the seven values of fixed cou-

self-consistent. pling B. Figure 4 shows only the runs where the crossover is
at the lowest three values Mpg/M,, . Although the cross-
IV. RESULTS over becomes steeper at stronger coupling, there is no evi-
. dence of a first order transition.
A. Thermodynamics In continuum QCD with massless quarks, one expects to

The first task was to locate the thermal crossover linesee a restoration of the spontaneously broken chiral symme-
xt(B). To this end we measured the expectation values offy at high temperatures. The order parameter for this transi-
the Polyakov loop, the plaquette, the quark condensatgon is the chiral condensatgyy). Since Wilson fermions
(), and the number of CG matrix inversion iterations asbreak chiral symmetry explicitly, the meaning @f) at «
we generated the®X 4 configurations. # K¢ IS not so clear. Besides the usual multiplicative renor-

3‘.|,<.,,.,,l,‘

- Bw=6.8

2_‘

N I N I [ R

7.2 7.4 7.6 5.4 5.6 5.6
1/k 1/x

(a) (b)

FIG. 11. Interpolation of the pseudoscalar mass squared as a function dbrl(a) the improved action 8,,=6.8) and(b) the
unimproved action 8y,=4.9). Squares denote computed masses and asterisks mark interpolated masses.
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FIG. 13. Polyakov loop as a function df/Mpg for fixed g.

FIG. 12. The physical phase diagram. Octag@sserisksmark  Squaresp,= 6.8 improved Wilson fermions. Diamond8;y=4.9
the locations of thé\;=4 thermal crossover for the improvédn-  unimproved Wilson fermions. Both have simildfps/My, at the
improved action; solid lines connect these points. Squéidia- crossover.
mondg mark points along thermodynamic simulations. Dashed
lines connect points of constay® and the dotted line connects As the thermal crossover liner(B) approaches the criti-
points of constank. cal line k4(B), the number of iterations needed to invert the

fermion matrix per time stepNy, peaks at the thermal

malization one must make a subtraction to compensate foirossover. The reason is that as one approaghgs) from
the additive renormalization of the quark mass. A properlythe confined sidévarying « with g fixed) the zero modes at
subtracted(W¥) can be defined through an axial vector Xc(8) become more influential, while there are no zero
Ward identity[29]. However, since our study did not include Modes in the deconfined phase. Figure 8 shows the peaks in
calculation of screening propagators, we can only look at th&ier are at the same locations as the crossovers indicated by
unrenormalized(¢¢). In spite of these problems, Fig. 5 the Polyakov loop.
shows a drop i) at the crossover identified KReP).

Since we use the plaquetti|m the space-space plands
self-consistently tuneup, we must ensure that it varies  For a number of reasons, it is useful to evaluate some zero
smoothly across the thermal crossover. Figures 6 and 7 shol@mperature quantities at the parameters of our thermody-
that this is the case. In fact, the plaquette on the zero termamic simulations. The light hadron spectrum is essential in
perature lattices agrees within errors with the plaquette adetermining the chiral limit for Wilson-like fermions.
finite temperatures on the confined side of the crossover. The The spectroscopy was an entirely straightforward lattice
dashed vertical lines in those figures simply mark the locacomputation which used Gaussian-smeared source wave
tion of the crossovekt(B). The large errors on the decon- functions and pointlike sink wave functions. We performed
fined side are due to the smaller sample sizes where runnirgprrelated fits to a single exponential and selected the best
at lower quark mass is expensive. fits based on a combination of smallegt per degree of

B. Spectrum

é ] 0.56
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[ ]
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FIG. 14. Polyakov loofa) and space-space plaquett® as functions of3 for «=0.140.
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0.5

quark mass, eveMps/M\~0.5, we expect a smaller,,

say, 150 MeV vs the 260 MeV in quenched simulations—
our box size may be as large as 2.7 fm. While finite size
effects are more severe in unquenched QCD than quenched
QCD for box sizes less than 1.5 fm, they are comparable for
larger boxeq32]. The quenched results lead us to believe
that this is large enough to keep the finite volume errors
under control. Therefore, we believe that finite size effects
are at most a few percent, which is comparable to our statis-
tical errors. Of course a thorough investigation of these ef-
fects is warranted if this action is to be used in a full-scale
spectrum calculation.

While in Fig. 3 we do not see the same first-order jump in
(ReP) that we did with the standard Wilson actions, we
would like to make the comparison more convincing. After
all, we cannot knowa priori the relation between the bare
parameters for the standard actioyf, «y,) and those for
the improved action®,y , x,w); it could happen that a small
change ink,, corresponds to a much larger change in the
quark mass than does a similar change; i, giving us the
freedom and largest confidence level. Propagators are sepdusion that the crossover is broader for the improved action.
rated by ten HMC trajectories. In continuum QCD, the quark mass, and the tempera-

Our calculations of the hadron spectrum for our zero temi{ure T are the two parameters of the theory. Dimensionless
perature simulations are summarized in Tables | and Il. Theuantities are more accessible from lattice simulations, and
phase diagraniFig. 9 illustrates the location of th&=0  so we use the pseudoscalar/vector mass Hsltig/M,, to
runs with respect to the thermal crossover and critical linestepresent the quark mass. The temperature can be divided by
x1(B) andk.(B), respectively. An anomaly in Table I is the any mass scale. Ideally, we would use something which has
small data set fo3=6.4, xk=0.1475. Naturally we would little dependence on the quark mass, e.g., the square root of
prefer to have more configurations with which to computethe string tension. However, the calculations of the heavy
hadron correlators. Unfortunately the cost of running at thosguark potential have not been performed for the standard
parameters is high. Wilson action in this region of parameter space. Therefore,

One diagnostic tool for evaluating the quality of spectro-we content ourselves with using a meson mass. Let us
scopic lattice data is an effective mass plot. One simplychoose the pseudoscalar for the present discussion.

“fits” the hadron propagator between two successive time First let us compare the thermal crossovers at the same
slicest andt+1 to a single exponentiaflt is not really a fit  value of Mpg/My . Data from Ref.[33] suggest that we
because there are only two point$vhen a propagator is compare Bw=4.94 and «y=0.18, where Mpg/My,
“asymptotic” and couples only to the lightest state in that =0.83§5), to our 8,,y=6.80 and «;,=0.137, where
channel, one expects to see a plateau in the effective mass B,/ M\, =0.8354). Thedata we use for comparison with

t is varied. For example, we show effective mass plots forours are the unimprove@,,=4.9 data provided in Refs.
the vector meson at several points along the thermal cros$1,34]. Spectroscopy was not performed at each thermody-
over in Fig. 10. namic data point, and so some interpolation of masses as

Finite size effects could be a source of error in our calcufunctions of 1k is necessary. We interpolated the lattice
lations. If we expect our lattice spacing to be 0.25 fm orpseudoscalar meson mass squared using a linear least squares
greater(this assume3 <200 MeV), then the spatial size of fit to a quadratic in 1 around the crossover region for the
our lattice is at least 2 fm. For an estimate of the finiteunimproved Wilson data. As a result of the smaller data
volume errors, let us look at quenched studies with valencgample, we interpolatecapg)? linearly in 1/ for our im-
Wilson quarks a{3=5.7, which is the critical coupling for proved Wilson data. Figure 11 shows these interpolations.
N;=4. At a quark mass corresponding kb,s/M,,=0.69, The lattice vector meson masses were obtained similarly,
there is a 3.3% finite size effect in the vector meson masterpolatingaM,, rather than &M,)?. In practice, these
[30,31. While some of our computations are at smallerinterpolations are not to sensitive to our fitting function, and
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FIG. 15. Polyakov loop as a function of/Mpg for fixed
K|W:0140

TABLE lIl. Fits to the heavy quark potential along thg=4 crossoveln;=2 improved Wilson fermi-

ons.

B K NO.  FpinTmax & aV, a’o e f ro/a
6.40 01475 30 141447 2 13  0.418) 0.72)  5.66) 1.524)
6.60 0.1430 108 1.41-6.93 2 0% 0.423) 0.348) 3.21(24) 1.772)
6.80 0.1370 95 1.41-6.93 2 0.(B) 0.34615) 0.395) 2.4518) 1.91313)
7.20 0.1180 117 1.41-5.66 2 0@ 0.2536) 0.332) 1.068) 2.287113




56 QCD THERMODYNAMICS WITH AN IMPROVED LATTICE . .. 55901

4.""I""I""I",','”. S P 4 e
=640, c[=01475 ] [ =660 «=01430 | | g =680 x=0.1370

av(r)

FIG. 16. The heavy quark potential from Wilson loops. Octagons are the effective pot&hidlsand the line is the fit to the ansatz.

we are only aiming for a sound qualitative comparison of theconstantM ps/M\, or at constanfl, but our simulations are
crossover. limited to fixed B8 or «. Therefore, we attempted to show that
In Fig. 12 we show the physical phase diagriéfps/My  the qualitative shape of the Polyakov loop as one crosses the
vs T/Mps [T=(4a) *]. The solid lines show the locations critical line is not strongly sensitive to the specific path in
of the thermal crossover for the two actions. The fact thaphase space. Since the crossover is smooth for all fBgd
they are at different places is a direct consequence of latticgnd the one fixed,, runs, and since the crossover is steep
artifacts:  The simulations give different physics at the saméor both fixed 8,y runs and fixedk, runs, we conclude that
Mps/My . Plotted in this figure as dashed lines are two runshe transition is smoother for the improved action. The arti-
at fixed 8. For both runsMpg/M\, decreases from=0.87 to  ficial first-order behavior is not present with the improved
~0.78, andT/Mpg increases about 15%. The fix@lruns  action.
seem to cross the thermal crossover line at the same angle. Finally, we remark that, when one replac&Mpg by
(One must remember there is some uncertainty due to inteff/M,,, Figs. 11-15 are qualitatively the same and our con-
polation in Fig. 12 which is to be interpreted qualitatively. clusions are unchanged.
When we compare the Polyakov loop along these two fixed

B runs, Whi.chl we argue croSg./Mpsg simlilarly, we find' the C. Heavy quark potential
crossover is indeed smoother for the improved acteee . i i i
Fig. 13.2 In addition to computing hadronic masses, we used Wil-

One might worry that the fixe@ runs crossT,/Mpgtoo ~ SON loop data to measure the hedoystatig quark potential
slowly: The runs appear nearly tangential to the crossoverY (1):
Perhaps if one crossed the critical line at a less acute angle
the transition would be much steeper. This does not turn out 1
to be the case. We performed an exploratory run at fixed V(F)=—lim =InW(F,t). (8)
xyw=0.140, varyingB,y from 6.6 to 6.8. The raw data ap- tooo L
pear in Fig. 14. This run is represented by a dotted line in
Fig. 12 and crosses the critical line at a sharper angle. Wa standard ansatz for the form of the potential is
only have two zero temperature runskat 0.140, and so our
linear extrapolation ofgMpg? in 1/« is not even a fit, but it
is clear that the transition is smoothee Fig. 15 On the e 1
contrary, Fig. 3 in Ref[1] shows a stiff transition for fixeet V(r)=Vot+or— - f( Gu(r)— F) : 9
runs from«,=0.12 to «,,=0.20.

Let us summarize this lengthy discussion. We set out t?/vherevo, o, e, andf are fit parameters, ar@, is the lattice

answer the question, is the transition in fact smoother for thpCoqumb otential. In practice. this fit is performed for a
improved action than for the unimproved action? In order to P ' P ' P

make a sound comparison between results from different al(Ii_xedt; that is, the potential is estimated through an effective
tions, we needed to present our results using physical pararﬁptem'al’
eters. Since we have performed just a few zero temperature
simulations, some interpolation was necessary in order to

— 00

present thermodynamic data along specific curves in the V(F)=—In W(r,t+1) (10)
physical phase space. Although this interpolation introduces w(rt) |’
some systematic error, the qualitative features of Figs. 12—15
are preserved barring some unlikely large deviation in Figsuch that
11. We would like to be able to look at the crossover at
W(r,t)~exd — V;(r)t]. (11

%Previously, this result was presented as a function of
(aMpg?=(Mpd4T)? (e.g., in Ref[35)). The parameter, is defined to be the length such that
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TABLE 1V. Fits to the heavy quark potential along thg=4(*6) crossovergn;=2 Kogut-Susskind

fermions.
B amg  NO.  ropinfmax t aV, a’o e f rola
5.2875 0.025 55 1.41-6.93 2 080) 0.303) 0.46100 1.46200 1.994)
5.3200 0.050 67 2.24-6.93 2 0@2 0.294) 0.23) 5.71.1) 2.1711)
5.3750 0.100 90 1.00-5.66 3 (0] (53 0.28823) 0.267) 0.5612 2.204)
*5.415 0.0125 280 2.24-6.71 3 0(2% 0.1305) 0.362) 1.012) 3.145)
raF(ro)=1.65, (120  some slight agreement with the Kogut-Susskind data, but
with a large error. Finally, we remark that one expects
with T./My—0 in the infinite quark mass limit since the vector
meson mass diverges there, and so ultimately we want to
simulate at as smaM g/M,, as possible in order to extrapo-
Vv late toM /M ,=0.18 reliably.
F(r)=W, (13 In order to look atT. scaled by quantities which are

nominally independent of the quark mass, we \seandr,,
which corresponds to,=0.49 fm from potential models. from our potential fits mentioned in Sec. IV C. In Fig. 18 the
Sommer showed this to be a useful quantity with which torise in T./\Jo andryT. asMps/My—1 is presumably due
set the lattice scalg36]. In this work we calculated the force to T, approaching the pure $B) transition temperature as
by taking numerical differences of the potential. Our analysighe quarks decouple. THé,=4 quenched ./ o from Ref.
proceeds as in Ref37]. Errors are estimated by bootstrap- [40] appears as an arrow in Fig. 18 and supports this pre-
ping the data, and occasionally increased to account for difsumption. The disagreement between the Kogut-Susskind
ferences in the choice af We present our fits to the poten- and improved Wilson actions is more apparent in Fig. 18
tial for the zero temperature simulations along tig=4 than in Fig. 17. The error iNo is large, but botﬁ'cl\/E and
crossover with improved Wilson fermions in Table Ill. r T, are lower for our improved action than for the KS ac-
Graphs of three of these fits appear in Fig. 16. tion. In fact, the small error i, reveals the presence of

For comparison, we performed the same calculation wittquark mass dependences eveMais/M,, = 0.53.

two flavors of Kogut-Susskind fermions for three parameter The quark mass effect can be identified further in the plot
sets along théN;=4 crossover. Our fits are given in Table of T./\Jo vsayo (Fig. 19. Sincea=1/(4T.) for all of the
IV. Meson masses were taken from Table 1 of R88]. In =4 data, the spread ia\o for the improved action is
addition, we measured the potential at one point along thgaysed by the increase in the deconfinement temperature as
N;=6 KS crossover. That fit also appears in Table IV. Thethe quarks become infinitely heavy. One should contrast to
generation and spectroscopy of those configurations are digsjs the observation that the thrisle=4 KS points lie on top
cussed in Ref{39]. of each other. The higheN, points for both KS and

D. Scaling tests 0.3 ||1|

In Secs. IV A and IV B we showed that thermodynamics
with the improved action does not have the same atrtificial | : o |
first-order behavior that unimproved Wilson thermodynam- | : |
ics does. However, in order to make physical predictions 02 : & %@0_
which can be compared with results from Kogut-Susskind L AR O ®@
thermodynamics, we must make use of the spectrum and '
potential computations described in the preceding two sec- :
tions. - : @)
In Fig. 17 we plot the ratidl ./My, as a function of the 0.1— : —
pseudoscalar/vector meson mass raips/M,, . Extrapola- r : 7
tion to the physicakr/p mass ratio is necessary in order to f )
make a prediction fofl .. The fact thafT./My, is indepen- :
dent ofN; for the Kogut-Susskind action leads one to believe S I I B I
that this quantity is scaling at lattice spaciag-1/(4T.). 0.0 0.2 0.4 0.6 0.8 10
Clearly, this statement is not true for the unimproved Wilson Mps/My
action. TheN;=4 unimproved Wilson points show a large
dependence on the quark mass, and disagree significantly

with the correspondindN,=6 points atMps/M,<0.8. In FIG. 17. Critical temperature divided by vector meson mass vs
addition, sincel /My, is consistently lower for the improved pseudoscalar/vector meson mass ratio. Our dathlferd improved
action than the unimproved action at equal lattice spacingwilson actions are the octagons. Diamon#=4 unimproved
the discretization errors in the latter must be appreciable. Thevilson. SquareN,=6 unimproved Wilson. Fancy diamonds and
improved Wilson point aMps/M\=0.53 appears to have squaresN,=4,6 Kogut-SusskindKS), respectively[2].

o J

TC/MV
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FIG. 18. Critical temperature scaled kg) the square root of the string tension aifii the inverse Sommer parameter vs pseudoscalar/
vector meson mass ratio. Octagohg=4 improved Wilson. Diamondd\,=4 KS. SquareN,=6 KS. The arrow in(@ shows theN,=4
quenchedr .. /\/o from Ref.[40].

guenched actions show their relative independence on latticgmilar trends in scaling violations for quenched QCD spec-
spacing. The conclusion one should draw from Figs. 18 antroscopy as presented in Fig. 2 of RE8], for example. At
19 is that in the case of the improved Wilson data, any atfinite lattice spacing,Mp/\/E computed with KS valence
tempt at extrapolation to physical quark mass is prematurequarks lies above tha=0 extrapolation, while unimproved
In Fig. 20 we plotrg\/o vs a/ry. While ro and Jo are  wilson quark calculations give a value less than the con-
independent o&/r, andm, within the error bars, the varia- - tinuum number. The addition of the clover term significantly
tion in a/r, for the improved action along the crossover is reduces this scaling violation; however, the lattice value of
another manifestation of the quark mass dependence of tr}\ﬂ /o still lies below its continuum value. Of course, in
critical temperature. A plot against)/o looks qualitatively thg absence of clear scaling betwedr, and \o (andr),

the same, but with larger errors. : ; .
' . . such arguments in this work are speculative.
A graph of the vector meson mass times (Fig. 21) g P

shows nice behavior for the Kogut-Susskind simulations,
disagreement between KS and clover, and the riséin

toward infinity at largeMps/My, . Again, we do not show  Thijs js the first large scale simulation of unquenched
My /\o vs Mps/My since it is qualitatively the same, but QcD with improved Wilson fermions of which we are
with larger error bars. If we were so bold as to argue that thyware. We find that the Symanzik-improvement program, at
improved Wilson data could be extrapolated to physicakhis |evel, fulfills its promise in that a serious lattice artifact,
M /M, using the point$/ps/My=<0.8, then we would con-  the spurious first-order transition at intermediate hopping pa-
clude My /+/o for our action is less than for the Kogut- rameters, has been removed. The thermal crossover does be-
Susskind action. This would not be too surprising givencome progressively steeper as one decreases the quark mass,
but it is smooth in the sense that the Polyakov loop and the

V. CONCLUSIONS
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FIG. 19. Critical temperature scaled by the square root of the
string tension(left) vs the lattice spacing in units of {&. Octa- FIG. 20. The dimensionless quantity,/o vs the lattice spacing
gons: N;=4 improved Wilson. DiamondsN,=4 KS. Square: in units of ry. Octagons:N,=4 improved Wilson. Diamonds:
N,=6 KS. Crosses: quenched &) from Ref.[40]. N,=4 KS.
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high momentum contributions. Therefore, one must not only
] improve the effects of the finite lattice spacing, but also the
: . dispersion relation at all momenta. Although the gauge ac-
4 : tion we used has a dispersion relation closer to the con-
: tinuum than the plaquette action, the clover term does not
change the fermionic dispersion relation from that of the un-
improved Wilson action. The work with an improved gauge

O e e e L A A s e o s o s o

T T
©
-

= I < 7
70 ? ? ] action but standard Wilson fermions by Rgd] shows im-
‘32 L N provement similar to ours, viz., removal of the jump discon-
H + . tinuity in the Polyakov loop. A detailed comparison of the
L : i critical temperature from their action versus ours and the
1] : | standard Wilson and KS actions remains to be made.

] Therefore, it is plausible that improvement of the gauge
: ] action is responsible for the removal of the artificial first-
e e order behavior at intermediate values of the Wilson hopping
R VAN Y parameter. However, improvement of the fermion action

probably plays a role in the closer agreement to the KS re-
FIG. 21. Vector meson mass timeg vs pseudoscalar/vector Sults fOch/Mv_: as was found in studies of quenched spec-
meson mass ratio. Octagor$;=4 improved Wilson. Diamonds: troscopy. Persistent quark mass dependence and apparent
N;=4 KS. SquareN;=6 KS. disagreement between our results and KS resultsTfor
scaled by quark potential parameters indicate that further im-

plaquette are single valued for &B,x) at which we com- provement in the fermionic sector is warranted. One might
puted. consider using Wilson-type fermions with an improved dis-

However, improvement at this order is no panacea. It igersion relation in the next large scale thermodynamics

still very costly to invert the fermion matrix near and below study.
Mps/My~0.5. Since the critical temperature and the vector
meson mass show a significant dependence on the quark
mass, extrapolation t¥ /M, is not trustworthy. Further- This work was supported by the U.S. Department of En-
more, disagreement is evidentTp/\/o andMyr, between ergy under Contracts Nos. DE-AC02-76CH-0016, DE-
our improved Wilson action and the unimproved Kogut- FG03-95ER-40894, DE-FG03-95ER-40906, DE-FGO05-
Susskind formulation, even at comparaMes/M, . 85ER250000, DE-FG05-96ER40979, DE-2FG02-91ER-
One cannot yet use this disagreement to cast doubt on th#628, and DE-FG02-91ER-40661, and National Science
Kogut-Susskind results because the scaling behavior of thEoundation Grants Nos. NSF-PHY93-09458, NSF-PHY96-
improved Wilson action has not been sufficiently tested01227, and NSF-PHY91-16964. Simulations were carried
Simulations with smaller lattice spacing, perhas=6, out at the Cornell Theory Center, the Supercomputer Com-
would give a more concrete picture of the extent of scalingputations Research Institute at Florida State University, and
violations in this action. at the San Diego Supercomputer Center. One ofMi$V.)
Before beginning such an expensive undertaking, howwould like to extend thanks to A. Hasenfratz for several
ever, let us speculate as to the shortcomings of the presehelpful discussions and to N. Christ, F. Karsch, and A.
action in the context of thermodynamics. In the high tem-Ukawa for thoughtful comments. We also thank Craig Mc-
perature phase, thermodynamic quantities are dominated Byeile and Tom Blum for critical readings of the manuscript.
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