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We consider the Collins-Soper-Sterman resummation formalism, which describes the vector boson trans-
verse momentum (QT) distribution at hadron colliders, and extend it for the distributions of the decay leptons
by correctly including the effects of the polarization and the width of the vector boson. Numerous aspects of
the formalism are reviewed at theO(aS

2) level, including the matching of theQT distribution and the value of
the total cross section. Detailed comparisons of severalO(aS) fixed order ~NLO! and resummed lepton
distributions are presented. The total rates and the distributions of the lepton charge asymmetry predicted by
the resummed and the NLO calculations are shown to differ when kinematic cuts are applied. We also show
how to test the rich dynamics of the QCD multiple soft gluon radiation, among others by measuring the ratio
RCSS[ s(QT.QT

min)/stotal . @S0556-2821~97!07319-0#

PACS number~s!: 12.38.Cy, 12.38.Qk, 13.85.Qk

I. INTRODUCTION

Quantum chromodynamics~QCD! is a field theory that is
expected to explain all the experimental data involving
strong interactions either perturbatively or nonperturbatively
@1#. Consider the weak boson~W6 and Z0! production at a
hadron collider, such as the Fermilab-Tevatron. In the frame-
work of QCD the production rate of the weak bosons is
calculated by multiplying the constituent cross section~the
short-distance or perturbative physics! by the parton lumi-
nosities ~the long-distance or nonperturbative physics! @2#.
This prescription of theoretical calculation was proven to the
accuracy ofO(1/Q2) and is known as the factorization theo-
rem of QCD@3#. ~Q is the invariant mass of the vector bo-
son.! Since we do not yet know how to solve QCD exactly,
we have to rely on the factorization theorem to separate the
perturbative part from the nonperturbative part of the formal-
ism for any physical observable. The short distance contri-
bution can be calculated perturbatively order by order in the
strong couplingaS . The long distance part has to be param-
etrized and fitted to the existing data so that it can later be
used to predict the results of new experiments. Therefore,
theoretical predictions that are compared to experimental
data always has to invoke someapproximationin the calcu-
lations based upon QCD. We refer to different prescriptions
of calculations to be differentmodelsof theory calculations
which all originate from the one and only QCD theory. For
instance, to improve theory predictions on the event shape,
such as the transverse momentum (QT) distribution of the
weak boson, the commonly used theory model is the event
generator, e.g.,ISAJET @4#, PYTHIA @5#, or HERWIG @6#. The
event generator can also provide information on the particle
multiplicities or the number of jets, etc.

However, as discussed above, different models of calcu-
lation make different approximations. Hence, a model can
give more reliable theory predictions than the others on some
observables, but may do worse for the other observables. A
few more examples are in order. To calculate the total pro-
duction rate of a weak boson at hadron colliders, it is better
to use a fixed order perturbation calculation, and a higher
order calculation is usually found to be more reliable than a
lower order calculation because it is usually less sensitive to
the choice of the scale for calculating the parton distribution
functions ~PDF! or the constituent cross section~including
the strong coupling constantaS!. The former scale is the
factorization scale and the latter is the renormalization scale
of the process. Unfortunately, a fixed order perturbation cal-
culation cannot give reliable prediction of the distribution of
QT when QT is small. On the contrary, an event generator
can give more reliable prediction forQT distribution in the
small QT region, but it usually does not predict an accurate
event rate. The general feature of the above two theory mod-
els is that a fixed order calculation is more reliable for cal-
culating the event rate but not the event shape, and an event
generator is good for predicting the event shape but less re-
liable for the event rate.

In this paper, we discuss another model of theory calcu-
lation that can give reliable predictions on both the event rate
and the shape of the distributions. Specifically, we are inter-
ested in the distributions of the weak bosons and their decay
products. This model of calculation is to resum a series of
large perturbative contributions due to soft gluon emission
predicted by the QCD theory. We present the QCD resum-
mation formalism for calculating the fully differential cross
section of the hadronically produced lepton pairs through
electroweak ~EW! vector boson production and decay:
h1h2→V(→l 1l̄ 2)X. We focus our attention on the Teva-
tron though our calculation is general and applicable for any
hadronic initial stateh1h2 and any colorless vector boson.
For instance, the vector bosonV can be one of the standard
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model~SM! electroweak gauge bosonsW6 or Z0, the virtual
photong* ~for producing the Drell-Yan pair!, or some exotic
vector boson such asZ8 and W8 in the extended unified
gauge theories.

At the Tevatron, about ninety percent of the production
cross section of theW6 andZ0 bosons is in the small trans-
verse momentum region, whereQT&20 GeV ~hence
QT

2!Q2!. In this region the higher order perturbative correc-
tions, dominated by soft and collinear gluon radiation, of the
form QT

22(n51
` (m50

2n21
nvmaS

n lnm(QT
2/Q2), are substantial be-

cause of the logarithmic enhancement@7#. ~ nvm are the co-
efficient functions for a givenn and m.! These corrections
are divergent in theQT→0 limit at any fixed order of the
perturbation theory. After applying the renormalization
group analysis, these singular contributions in the lowQT
region can be resummed to derive a finite prediction for the
QT distribution to compare with experimental data. It was
proven by Collins and Soper in Ref.@8# that not only the
leading logs @9,10# but all the large logs, including the
sublogs in the perturbative, order-by-order calculations can
be resummed for the energy correlation ine1e2 collisions.

For the production of vector bosons in hadron collisions
two different formalisms were presented in the literature to
resum the large contributions due to multiple soft gluon ra-
diation: by Altarelli, Ellis, Greco, and Martinelli~AEGM!
@11#; and by Collins, Soper, and Sterman~CSS! @7#. The
detailed differences between these two formalisms were dis-
cussed in Ref.@12#. It was shown that the AEGM and the
CSS formalisms are equivalent up to the few highest power
of ln(QT

2/Q2) at every order inaS for terms proportional to
QT

22 , providedaS in the AEGM formalism is evaluated at
b0

2/b2 rather than atQ2. A more noticeable difference, ex-
cept the additional contributions of orderQ22 included in
the AEGM formula, is caused by different ways of param-
etrizing the nonperturbative contribution in the lowQT re-
gime. Since the CSS formalism was proven to sum over not
just the leading logs but also all the sublogs, and the piece
including the Sudakov factor was shown to be renormaliza-
tion group invariant@7#, we only discuss the results of CSS
formalism in the rest of this paper.

With the increasing accuracy of the experimental data on
the properties ofW6 andZ0 bosons at the Tevatron, it is no
longer sufficient to only consider the effects of multiple soft
gluon radiation for an on-shell vector boson and ignore the
effects coming from the decay width and the polarization of
the massive vector boson to the distributions of the decay
leptons. Hence, it is desirable to have an equivalent resum-
mation formalism@13# for calculating the distributions of the
decay leptons. This formalism should correctly include the
off-shellness of the vector boson~i.e., the effect of the width!
and the polarization information of the produced vector bo-
son which determines the angular distributions of the decay
leptons.

In the next section, we give our analytical results for such
a formalism that correctly takes into account the effects of
the multiple soft gluon radiation on the distributions of the
decay leptons from the vector boson. In Sec. III, we discuss
the phenomenology predicted by this resummation formal-
ism. To illustrate the effects of multiple soft gluon radiation,
we also give results predicted by a next-to-leading order

@NLO, O(aS)# calculation. As expected, the observables that
are directly related to the transverse momentum of the vector
boson will show large differences between the resummed
and the NLO predictions. These observables are the trans-
verse momentum of the leptons from vector boson decay, the
back-to-back correlations of the leptons fromZ0 decay, etc.
The observables that are not directly related to the transverse
momentum of the vector boson can also show noticeable
differences between the resummed and the NLO calculations
if the kinematic cuts applied to select the signal events are
strongly correlated to the transverse momentum of the vector
boson. Section IV contains our detailed discussion.

Since thisQT resummation formalism only holds in the
Collins-Soper~CS! frame ~a special rest frame of the vector
boson! @14#, we give the detailed form of the transformation
between a four-momentum in the CS frame and that in the
laboratory frame~the center-of-mass frame of the hadronsh1
andh2! in Appendix A. In Appendix B the analytical expres-
sion for the NLO results are given inD5422e dimensions.
Appendix C contains the expansion of the resummation for-
mula up toO(aS). Appendix D lists the values ofA, B, and
C functions~cf. Sec. II! used for our numerical calculations.

We note that the resummation formalism presented in this
paper can be applied to any processes of the type
h1h2→V(→l 1l̄ 2)X, whereV is a color neutral vector bo-
son which couples to quarks and leptons via vector or axial
vector currents, that isV5eg,W6,Z0,W8,Z8, etc. Through-
out this paper, we takeV to be eitherW6 or Z0 bosons,
unless specified otherwise.

II. THE RESUMMATION FORMALISM

To derive the resummation formalism, we use the dimen-
sional regularization scheme to regulate the infrared diver-
gencies, and adopt the canonical-g5 prescription to calculate
the antisymmetric part of the matrix element in
D-dimensional space-time.1 The infrared-anomalous contri-
bution arising from using the canonical-g5 prescription was
carefully handled by applying the procedures outlined in Ref.
@18# for calculating both the virtual and the real diagrams.2

The kinematics of the vector bosonV ~real or virtual! can
be expressed in terms of its invariant massQ, rapidityy, and
transverse momentumQT measured in the laboratory frame
~the center-of-mass frame of hadronsh1 andh2!. The kine-
matics of the leptonl 1 is described byu and f, the polar
and the azimuthal angles, defined in the Collins-Soper frame
@14#, which is a special rest frame of theV-boson@19#. ~A
more detailed discussion of the kinematics can be found in
Appendix A.! The fully differential cross section for the pro-
duction and decay of the vector boson is given by the resum-
mation formula in Ref.@13#:

1In this prescription,g5 anticommutes with otherg’s in the first
four dimensions and commutes in the others@16,17#.

2In Ref. @18#, the authors calculated the antisymmetric structure
function F3 for deep-inelastic scattering.
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S ds„h1h2→V~→l 1l̄ 2!X…

dQ2dydQT
2d cosudf D

res

5
1

48pS

Q2

~Q22MV
2 !21Q4GV

2/MV
2

3H 1

~2p!2E d2beiQW T•bW(
j ,k

W̃j k̄ ~b* ,Q,x1 ,x2 ,u,f,C1 ,C2 ,C3!W̃
j k̄

NP
~b,Q,x1 ,x2!

1Y~QT ,Q,x1 ,x2 ,u,f,C4!J . ~1!

In the above equation the parton momentum fractions are defined asx15eyQ/AS and x25e2yQ/AS, where AS is the
center-of-mass~c.m.! energy of the hadronsh1 andh2 . For V5W6 or Z0, we adopt the CERNe1e2 collider LEP line-shape
prescription of the resonance behavior, withMV andGV being the mass and the width of the vector boson. The renormalization
group invariant quantityW̃j k̄ (b), which sums to all orders inaS all the singular terms that behave asQT

223@1 or ln(QT
2/Q2)#

for QT→0, is

W̃j k̄ ~b,Q,x1 ,x2 ,u,f,C1 ,C2 ,C3!5exp$2S~b,Q,C1 ,C2!%uVjku2$@~Cja ^ f a/h1
!~x1!~Ck̄b^ f b/h2

!~x2!1~Ck̄a^ f a/h1
!~x1!~Cjb

^ f b/h2
!~x2!#~gL

21gR
2 !~ f L

21 f R
2 !~11cos2 u!1@~Cja ^ f a/h1

!~x1!~Ck̄b^ f b/h2
!~x2!2~Ck̄a

^ f a/h1
!~x1!~Cjb ^ f b/h2

!~x2!#~gL
22gR

2 !~ f L
22 f R

2 !~2 cosu!%, ~2!

where^ denotes the convolution

~Cja ^ f a/h1
!~x1!5E

x1

1 dj1

j1
CjaS x1

j1
,b,m5

C3

b
,C1 ,C2D f a/h1S j1 ,m5

C3

b D , ~3!

and theVjk coefficients are given by

Vjk5H Cabibbo-Kobayashi-Maskawa matrix elements forV5W6,

d jk for V5Z0,g* .
~4!

In the above expressionsj represents quark flavors andk̄
stands for antiquark flavors. The indicesa andb are meant to
sum over quarks and antiquarks or gluons. Summation on
these double indices is implied. In Eq.~2! we define the
couplings f L,R and gL,R through thel 1l̄ 2V and theqq̄8V
vertices, which are written, respectively, as

igm@ f L~12g5!1 f R~11g5!#

and

igm@gL~12g5!1gR~11g5!#.

For example, for V5W1, q5u, q̄85d̄, l 15ne , and
l̄ 25e1, the couplingsgL

25 f L
25GFMW

2 /& andgR
25 f R

250,
whereGF is the Fermi constant. The detailed information on
the values of the parameters used in Eqs.~1! and~2! is given
in Table I. The Sudakov exponentS(b,Q,C1 ,C2) in Eq. ~2!
is defined as

S~b,Q,C1 ,C2!5E
C1

2/b2

C2
2Q2 dm̄2

m̄2 FA„aS~m̄ !,C1…lnS C2
2Q2

m̄2 D
1B„aS~m̄ !,C1 ,C2)G . ~5!

The explicit forms of theA, B, and C functions and the
renormalization constantsCi ( i 51,2,3) are summarized in
Appendix D.

In Eq. ~1! the magnitude of the impact parameterb is
integrated from 0 to`. However, in the region where
b*1/LQCD, the Sudakov exponentS(b,Q,C1 ,C2) diverges
as the result of the Landau pole of the QCD couplingaS(m)
at m5LQCD, and the perturbative calculation is no longer
reliable. As discussed in the previous section, in this region
of the impact parameter space~i.e., largeb or low QT!, a
prescription for parametrizing the nonperturbative physics is
necessary. Following the idea of Collins and Soper@8#, the

TABLE I. Vector boson parameters and couplings to fermions.
The f f̄ 8V vertex is defined asigm@gL(12g5)1gR(11g5)# and
sw5sinuw (cw5cosuw) is the sine~cosine! of the weak mixing
angle: sin2(uw(MZ0))MS50.2315. Qf is the electric charge of the
fermions charge~Qu52/3, Qd521/3, Qn50, Qe2521!, andT3

is the eigenvalue of the third component of the SU(2)L generator

(T3
u51/2, T3

d521/2, T3
n51/2, T3

e2

521/2!.

V MV ~GeV! GV ~GeV! gL gR

g 0.00 0.00 gQfsw/2 gQfsw/2
W6 80.36 2.07 g/(2&) 0
Z0 91.19 2.49 g(T32Qfsw

2 )/(2cw) 2gQfsw
2 /(2cw)
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renormalization group invariant quantityW̃j k̄ (b) is written
as

W̃j k̄ ~b!5W̃j k̄ ~b* !W̃
j k̄

NP
~b!.

HereW̃j k̄ (b* ) is the perturbative part ofW̃j k̄ (b) and can be
reliably calculated by perturbative expansions, whileW̃

j k̄

NP
(b)

is the nonperturbative part ofW̃j k̄ (b) that cannot be calcu-
lated by perturbative methods and has to be determined from
experimental data. To test this assumption, one should verify
that there exists a universal functional form for this non-
perturbative functionW̃

j k̄

NP
(b). This is similar to the general

expectation that there exists a universal set of parton distri-
bution functions~PDF’s! that can be used in any perturbative
QCD calculation to compare it with experimental data. In the
perturbative part ofW̃j k̄ (b),

b* 5
b

A11~b/bmax!
2

,

and the nonperturbative function was parametrized by~cf.
Ref. @7#!

W̃
j k̄

NP
~b,Q,Q0 ,x1 ,x2!5expF2F1~b!lnS Q2

Q0
2D 2F j /h1

~x1 ,b!

2F k̄ /h2
~x2 ,b!G , ~6!

whereF1 , F j /h1
andF k̄ /h2

have to be first determined using
some sets of data, and later can be used to predict the other
sets of data to test the dynamics of multiple gluon radiation
predicted by this model of the QCD theory calculation. As
noted in Ref.@7#, F1 does not depend on the momentum
fraction variablesx1 or x2 , while F j /h1

andF k̄ /h2
in general

depend on those kinematic variables.3 The ln(Q2/Q0
2) depen-

dence associated with theF1 function was predicted by the
renormalization group analysis@7#. Furthermore,F1 was
shown to be universal, and its leading behavior (;b2) can

be described by renormalon physics@20#. Various sets of fits
to these nonperturbative functions can be found in Refs.@21#
and @22#.

In our numerical results in the next section, we use the
Ladinsky-Yuan parametrization of the nonperturbative func-
tion ~cf. Ref. @22#!:

W̃
j k̄

NP
~b,Q,Q0 ,x1 ,x2!5expF2g1b22g2b2 lnS Q

2Q0
D

2g1g3b ln~100x1x2!G , ~7!

where g150.1120.03
10.04 GeV2, g250.5820.2

10.1 GeV2, g352
1.520.1

10.1 GeV21, and Q051.6 GeV. ~The value
bmax50.5 GeV21 was used in determining the abovegi ’s
and in our numerical results.! These values were fit for
CTEQ2M PDF@50# with the canonical choice of the renor-
malization constants, i.e.,C15C352e2gE ~gE is the Euler
constant! and C251. In principle, for a calculation using a
more update PDF, these nonperturbative parameters should
be refit using a data set that should also include the recent
high statisticsZ0 data from the Tevatron. This is however
beyond the scope of this paper.

In Eq. ~1!, W̃j k̄ sums over the soft gluon contributions
that grow asQT

223@1 or ln(QT
2/Q2)# to all orders inaS .

Contributions less singular than those included inW̃j k̄
should be calculated order-by-order inaS and included in the
Y term, introduced in Eq.~1!. This would, in principle, ex-
tend the applicability of the CSS resummation formalism to
all values ofQT . However, as to be shown below, since the
A, B, C, andY functions are only calculated to some finite
order inaS , the CSS resummed formula as described above
will cease to be adequate for describing data when the value
of QT is in the vicinity of Q. Hence, in practice, one has to
switch from the resummed prediction to the fixed order per-
turbative calculation asQT*Q. The Y term, which is de-
fined as the difference between the fixed order perturbative
contribution and those obtained by expanding the perturba-
tive part ofW̃j k̄ to the same order, is given by

Y~QT ,Q,x1 ,x2 ,u,f,C4!5E
x1

1 dj1

j1
E

x2

1 dj2

j2
(
n51

` Fas~C4Q!

p Gn

f a/h1
~j1 ,C4Q!Rab

~n!S QT ,Q,
x1

j1
,

x2

j2
,u,f D f b/h2

~j2 ,C4Q!,

~8!

where the functionsRab
(n) contain contributions less singular

than QT
223@1 or ln(QT

2/Q2)# as QT→0. Their explicit ex-
pressions and the choice of the scaleC4 are summarized in
Appendix D.

Within the Collins-Soper-Sterman resummation formal-
ism W̃j k̄ (b) sums all the singular terms which grow as
aS

nQT
22 lnm(QT

2/Q2) for all n and 0<m<2n21 provided that
all theA(n), B(n), andC(n21) coefficients are included in the
perturbative expansion of theA, B, andC functions, respec-

tively. This was illustrated in Eqs.~A12! and ~A13! of Ref.
@12#. In our numerical results we includedA(1), A(2), B(1),
B(2), C(0), andC(1), which means we resummed the follow-
ing singular pieces@12#:

ds

dQT
2 ;

1

QT
2 $aS~L11!1aS

2~L31L2!1aS
3~L51L4!1aS

4~L7

1L6!1•••1aS
2~L11!1aS

3~L31L2!1aS
4~L51L4!

1•••%, ~9!

whereL denotes ln(QT
2/Q2) and the explicit coefficients mul-

tiplying the logs are suppressed. The lowest order singular
terms that were not included areaS

3(L11!1aS
4(L31

3Here, and throughout this work, the flavor dependence of the
nonperturbative functions is ignored, as it is postulated in Ref.@7#.
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L2)1••• . Also, in theY term we includedR(1) andR(2) @cf.
Eq. ~8!#, which are derived from the fixed orderas andas

2

calculations@28,12#.
Before closing this section, we note that the results of the

usual next-to-leading order~NLO!, up toO(aS), calculation
can be obtained by expanding the above CSS resummation
formula to theaS order, which includes both the singular
piece and theY term. Details are given in Appendixes B and
D, respectively.

III. PHENOMENOLOGY

As discussed above, due to the increasing precision of the
experimental data at hadron colliders, it is necessary to im-
prove the theoretical prediction of the QCD theory by includ-
ing the effects of the multiple soft gluon emission to all
orders inaS . To justify the importance of such an improved
QCD calculation, we compare various distributions predicted
by the resummed and the NLO calculations. For this purpose
we categorize measurables into two groups. We call an ob-
servable to bedirectly sensitiveto the soft gluon resumma-
tion effect if it is sensitive to the transverse momentum of the
vector boson. The best example of such an observable is the
transverse momentum distribution of the vector boson
(ds/dQT). Likewise, the transverse momentum distribution
of the decay lepton (ds/dpT

l ) is also directly sensitive to
resummation effects. The other examples are the azimuthal

angle correlation of the two decay leptons (Df l 1l̄ 2), the
balance in the transverse momentum of the two decay lep-

tons (pT
l 12pT

l̄ 2), or the correlation parameter

z52pW T
l 1

•pW T
l̄ 2/@max(pT

l 1 ,pT
l̄ 2)#2. These distributions typi-

cally show large differences between the NLO and the re-
summed calculations. The differences are the most dramatic
near the boundary of the kinematic phase space, such as the

QT distribution in the lowQT region and theDf l 1l̄ 2 distri-
bution nearp. Another group of observables is formed by
those which areindirectly sensitiveto the resummation of the
multiple soft gluon radiation. The predicted distributions for
these observables are usually the same in either the re-
summed or the NLO calculations, provided that theQT is
fully integrated out in both cases. Examples of indirectly
sensitive quantities are the total cross sections, the invariant
massQ, the rapidity y, and xF(52q3/AS) of the vector
boson,4 and the rapidityyl of the decay lepton. However, in
practice, to extract signal events from the experimental data
some kinematic cuts have to be imposed to suppress the
background events. It is important to note that imposing the
necessary kinematic cuts usually truncate the range of theQT
integration, and causes different predictions from the re-
summed and the NLO calculations. We demonstrate such an
effect in the distributions of the lepton charge asymmetry
A(yl ) predicted by the resummed and the NLO calculations.
We show that they are the same as long as there are no
kinematic cuts imposed, and different when some kinematic
cuts are included. They differ the most in the large rapidity

region which is near the boundary of the phase space.
To systematically analyze the differences between the re-

sults of the NLO and the resummed calculations we imple-
mented theO(aS

0) ~LO!, the O(aS) ~NLO!, and the re-
summed calculations in a unified Monte Carlo package:
ResBos~the acronym stands forresummed vectorboson pro-
duction!. The code calculates distributions for the hadronic
production and decay of a vector bosons via
h1h2→V(→l 1l̄ 2)X, whereh1 is a proton andh2 can be a
proton, antiproton, neutron, an arbitrary nucleus or a pion.
Presently,V can be a virtual photong* ~for Drell-Yan pro-
duction!, W6 or Z0. The effects of the initial state soft gluon
radiation are included using the QCD soft gluon resumma-
tion formula, given in Eq.~1!. This code also correctly takes
into account the effects of the polarization and the decay
width of the massive vector boson.

It is important to distinguish ResBos from the parton
shower Monte Carlo programs likeISAJET @4#, PYTHIA @5#,
HERWIG @6#, etc., which use the backward radiation tech-
nique @23# to simulate the physics of the initial state soft
gluon radiation. They are frequently shown to describe rea-
sonably well the shape of the vector boson distribution. On
the other hand, these codes do not have the full resummation
formula implemented and include only the leading logs and
some of the sublogs of the Sudakov factor. The finite part of
the higher order virtual corrections which leads to the Wilson
coefficient (C) functions is missing from these event genera-
tors. ResBos contains not only the physics from the multiple
soft gluon emission, but also the higher order matrix ele-
ments for the production and the decay of the vector boson
with largeQT , so that it can correctly predict both the event
rates and the distributions of the decay leptons.

In a NLO Monte Carlo calculation, it is ambiguous to
treat the singularity of the vector boson transverse momen-
tum distribution nearQT50. There are different ways to deal
with this singularity. Usually one separates the singular re-
gion of the phase space from the rest~which is calculated
numerically! and handles it analytically. We choose to divide
the QT phase space with a separation scaleQT

sep. We treat

4Here q3 is the longitudinal-component of the vector boson mo-
mentumqm @cf. Eq. ~A1!#.

FIG. 1. TotalW1 production cross section as a function of the
parameterQT

sep ~solid curve!. The long dashed curve is the part of
the O(aS) cross section integrated fromQT

sep to the kinematical
boundary, and the short dashed curve is the integral fromQT50 to
QT

sep at O(aS). The total cross section is constant within 1025 %
through more than two order of magnitude ofQT

sep.
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the QT singular parts of the real emission and the virtual
correction diagrams analytically, and integrate the sum of
their contributions up toQT

sep. If QT,QT
sep we assign a

weight to the event based on the above integrated result and
assign it to theQT50 bin. If QT.QT

sep, the event weight is
given by the usual NLO calculation. The above procedure
not only ensures a stable numerical result but also agrees
well with the logic of the resummation calculation. In Fig. 1
we demonstrate that the total cross section, as expected, is
independent of the separation scaleQT

sep in a wide range. As
explained above, in theQT,QT

sepregion we approximate the
QT of the vector boson to be zero. For this reason, we choose
QT

sep as small as possible. We useQT
sep50.1 GeV in our nu-

merical calculations, unless otherwise indicated. This divi-
sion of the transverse momentum phase space gives us prac-
tically the same results as the invariant mass phase space
slicing technique. This was precisely checked by the lepton
charge asymmetry results predicted byDYRAD @24#, and the
NLO @up to O(aS)# calculation within the ResBos Monte
Carlo package.

To facilitate our comparison, we calculate the NLO and
the resummed distributions using the same parton luminosi-
ties and parton distribution functions, EW and QCD param-
eters, and renormalization and factorization scales so that
any difference found in the distributions is clearly due to the
different QCD physics included in the theoretical calcula-
tions. ~Recall that they are different models of calculations
based upon the same QCD theory, and the resummed calcu-
lation contains the dynamics of the multiple soft gluon radia-
tion.! This way we compare the resummed and the NLO
results on completely equal footing. The parton distributions
used in the different order calculations are listed in Table II.
In Table II and the rest of this work, we denote by resummed
~2,1,2! the result of the resummed calculation withA andB
calculated toaS

2 order,C to aS , andR to aS
2 order, that is

with A(1,2), B(1,2), C(0,1), andR(1,2) included@cf. Appendix
D#. Similarly, resummed~1,0,1! includesA(1), B(1), C(0),
and R(1), and resummed~1,0,0! includes A(1), B(1), C(0)

without theY piece. Unless specified otherwise, hereafter we
useA(1,2), B(1,2), C(0,1), andR(1,2) in our resummed calcula-
tion. In the following, we discuss the relevant experimental
observables predicted by these models of calculations using
the ResBos code. Our numerical results are given for the
Tevatron, app̄ collider with AS51.8 TeV, and CTEQ4
PDF’s unless specified otherwise.

A. Vector boson transverse momentum distribution

According to the parton model the primordial transverse
momenta of partons entering into the hard scattering are
zero. This implies that ag* , W6 or Z0 boson produced in
the Born level process has no transverse momentum, so that

the LO QT distribution is a Dirac-delta function peaking at
QT50. In order to have a vector boson produced with a
nonzeroQT , an additional parton has to be emitted from the
initial state partons. This happens in the QCD process. How-
ever the singularity atQT50 prevails up toany fixed order
in aS of the perturbation theory, and the transverse momen-
tum distribution ds/dQT

2 is proportional to
QT

223@1 or ln(QT
2/Q2)# at small enough transverse mo-

menta. The most important feature of the transverse momen-
tum resummation formalism is to correct this unphysical be-
havior and render ds/dQT

2 finite at zero QT by
exponentiating theQT singular logs.

The CSS formalism itself is constructed to do even more
than that. By including the regularY contribution, it interpo-
lates between the low and the highQT regions smoothly,
provided that theA, B, C functions and theY contribution
are evaluated to all orders inaS .5 The Y piece is defined as
the difference of the fixed order perturbative result and its
QT singular ~asymptotic! part which grows as
QT

223@1 or ln(QT
2/Q2)# whenQT→0. In theQT!Q region,

the ln(Q/QT) terms are large and the perturbative distribution
is dominated by these singular logs, that is the perturbative
and the asymptotic parts are about the same. Consequently,
for low QT , the exponentiated asymptotic pieces, i.e., the
CSS piece, dominates over theY piece. In theQT;Q region
the ln(QT /Q) terms are small, and the perturbative part is
dominated by its other terms. The CSS and the asymptotic
terms cancel each other leaving the perturbative piece to
dominate the highQT region. The cancellation between the
perturbative and asymptotic pieces is always exact~by defi-
nition! in the low QT region order by order inaS , and the
formalism is well defined for lowQT , no matter in which
order theA, B, C functions andY are known. On the other
hand, the cancellation between the CSS and the asymptotic
pieces in the highQT region becomes better if the asymptotic
piece is calculated in higher order inaS . This is because the
CSS piece contains logs in all order@cf. Eq. ~9!# while the
asymptotic part only up to a fixed order inaS . The above
will be clearly illustrated later in Fig. 2. Consequently, the
CSS formalism must break down forQT*Q, sinceA, B, C
andY are known only up to a finite order.

Although the matching is built into the formalism, in
practice it is still necessary to specify a matching prescrip-
tion which provides a smooth transition between the re-

5Strictly speaking, this is only true when the energy of the collider
is much larger thanQ, because the resummed and the perturbative
pieces are evaluated at differentx values. The former depends onx1

andx2 defined in Eq.~1!, however the latter depends onj1 andj2

@cf. Eq. ~8!# in which the energy carried away by the emitted gluon
is also included.

TABLE II. List of PDF’s used at the different models of calculations. The values of the strong coupling constants used with the CTEQ4L
and CTEQ4M PDF’s areaS

(1)(MZ0)50.132 andaS
(2)(MZ0)50.116, respectively.

Fixed order Resummed
O(aS

0) O(aS) O(aS
2) ~1,0,0! ~1,0,1! ~2,1,2!

PDF CTEQ4L CTEQ4M CTEQ4M CTEQ4L CTEQ4M CTEQ4M
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summed and the fixed order perturbative results. In Fig. 1 we
show the resummed~1,1,1! ~resummation withA(1), B(1),
C(0,1), and R(1) included! and the fixed orderO(aS) QT
distributions for W1 and Z0 bosons. As shown, the re-
summed~1,1,1! and the fixed order curves are close to each
other for Q/2,QT,Q, and they cross aroundQT;Q/2.
Based on this observation we adopt the following procedure
for calculating the fully differential cross section
ds/dQ2dQTdy. For QT values below the crossing points
QT

match(Q,y) of the resummed and the fixed orderQT distri-
butions, as the function ofQ and y, we use the resummed
cross section, and above it we use the fixed order perturba-
tive cross section. The resultingds/dQ2dQTdy distribution
is continuous, although not differentiable with respect toQT

right at the matching pointsQT
match(Q,y). The differential

cross sectionds/dQT , on the other hand, is completely
smooth since it has no specific matching point. Most impor-
tantly, the above prescription does not alter either the re-
summed or the fixed order perturbative distributions in the
kinematic regions where they are proven to be valid.

To improve the theory prediction for theQT distribution,
we also include the effect of some known higher order@at
O(aS

2)# corrections to the Sudakov factor@21#, the Y piece
@12#, and the fixed order perturbative cross section@28#. As

we described, theY piece plays an essential role in the
matching between the resummed and the fixed orderQT dis-
tributions which are dominated by theY piece whenQT is in
the matching region. To emphasize this in Fig. 3 we show
the ratio of theY piece to the total resummed~2,1,1! cross
section. This ratio can be larger than one because the CSS
piece, which is the difference between the total resummed
cross section and theY piece, can be negative for large
enoughQT(*Q/2). As indicated, theY contribution is small
for QT,30 GeV. At QT530 GeV it only contributes by
about 25% tods/dQT . The total contribution of theY term
to *0

30 GeVdQT(ds/dQT) is less than a percent. Therefore, in
the region ofQT,30 GeV, the CSS piece dominates. We
can also define theKY factor as the ratio of theY pieces
calculated at theO(aS1aS

2) to that at theO(aS). The KY

factor is plotted in Fig. 4 as the function ofQT andy for W6

andZ0 bosons~for Q5MV!. As shown, whenQT is between
30 to 80 GeV, theKY factor is about 10% unless the rapidity
of theW andZ bosons become large~i.e., uyu.2). Similarly,
in Fig. 5, we show theKP factor, which is defined as the
ratio of the fixed order differential cross sections calculated
at theO(aS1aS

2) to that at theO(aS), as a function ofQT ,
andy for Q5MV . As expected, whenuyu is large, i.e., near

FIG. 2. The low and intermediateQT regions of theW1 andZ0 distributions at the Tevatron, calculated in fixed orderO(aS) ~dotted!
andO(aS

2) ~dash-dotted!, and resummed~1,1,1! ~dashed! and~2,1,2! ~solid! @cf. Table III#. The crossover occurs at 54 GeV for theO(aS),
and at 69 GeV for theO(aS

2) W6 distributions. The matching between the resummed and the fixed order distributions becomes much
smoother atO(aS

2) than atO(aS). The situation is very similar for theZ0 boson.
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the boundary of the available phase space, theKP factor can
be large. The variation as a function ofQT for QT.50 GeV
is small, of the order of 10%.

In Fig. 2 we also show the resummed~2,1,2! ~with A(1,2),
B(1,2), C(0,1), andR(1,2) included! and the fixed orderO(aS

2)
QT distributions. Joining these distributions at the triple dif-
ferential cross section level defines the resummedO(aS

2)
distribution in the wholeQT region. As shown, while in
O(aS) the matching takes place at lowerQT values leaving a
noticeable kink in the cross section, inO(aS

2) the matching
occurs at largerQT values and is much smoother. This hap-
pens because, as discussed above, the cancellation between
the CSS and the asymptotic pieces becomes better.

In summary, the CSS resummation formalism is con-
structed in such a manner that if theA, B, C functions and
the R coefficients were calculated to all order then the
matching would be completely natural in the sense that the
resummed cross section would blend into the fixed order one
smoothly and no additional matching prescription would be
necessary. However, in a practical calculation, becauseA, B,
C, and Y are only known to some finite order inaS , the
matching prescription described above is necessary. Using
this procedure, we discuss below a few other interesting re-
sults calculated from the resummation formalism.

We find that in the resummed calculation, after taking out
the resonance weighting factor Q2/„(Q22MV

2)2

1Q4GV
2/MV

2
… in Eq. ~1!, the shape of the transverse momen-

tum distribution of the vector bosonV for variousQ values
in the vicinity of MV is remarkably constant forQT between

0 and 20 GeV. Fixing the rapidityy of the vector bosonV at
some valuey0 and taking the ratio

R~QT ,Q0!5

ds

dQ2dQT
2dyU

Q5Q0 ,y5y0

ds

dQ2dQT
2dyU

Q5MV ,y5y0

,

we obtain almost constant curves~within 3 percent! for
Q5MV610 GeV ~cf. Fig. 6! for V5W1 and Z0. The fact
that the shape of the transverse momentum distribution
shows such a weak dependence on the invariant massQ in
the vicinity of the vector boson mass can be used to make the
Monte Carlo implementation of the resummation calculation
faster. This weak dependence was also used in the D0W
mass analysis when assuming that the mass dependence of
the fully differential W boson production cross section fac-
torizes as a multiplicative term@36#. Similarly, we define the
ratio

FIG. 3. The ratio of theO(aS1aS
2) Y piece~solid curve,R(1)

and R(2) included!, and theO(aS) Y piece ~dashed curve,R(1)

included! to the resummed~2,1,1! distribution for W1 and Z0

bosons.

FIG. 4. TheKY factor: ratio of theO(aS1aS
2) Y piece~R(1) and

R(2) included! to theO(aS) Y piece~R(1) included!. The curves are
plotted for Q5MV and y522.0 ~solid!, 21.0 ~long dash!, 0.0
~short dash!, 1.0 ~dash-dot! andy52.0 ~dash-double-dot!.
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R~QT ,y0!5

ds

dQ2dQT
2dyU

Q5MV ,y5y0

ds

dQ2dQT
2dyU

Q5MV ,y50

,

to study theQT shape variation as a function of the vector
boson rapidity. Our results are shown in Fig. 7. Unlike the
ratio R(QT ,Q0) shown in Fig. 5, the distributions of
R(QT ,y0) for theW6 andZ0 bosons are clearly different for
any value of the rapidityy0 .

To utilize the information on the transverse momentum of
the W1 boson in Monte Carlo simulations to reconstruct the
mass of theW1 boson, it was suggested in Ref.@25# to
predictQT(W1) distribution from the measuredQT(Z0) dis-
tribution and the calculated ratio ofQT(W1) and QT(Z0)
predicted by the resummation calculations@7,12#, in which
the vector boson is assumed to be on its mass-shell. Unfor-
tunately, this idea will not work with a good precision be-
cause, as clearly shown in Fig. 7, the ratio of theW1 andZ0

transverse momentum distributions depends on the rapidities
of the vector bosons. Since the rapidity of theW1 boson
cannot be accurately reconstructed without knowing the lon-

gitudinal momentum~along the beam pipe direction! of the
neutrino, which is in the form of missing energy carried
away by the neutrino, this dependence cannot be incorpo-
rated in data analysis and the above ansatz cannot be realized
in practice for a precision measurement ofMW .6 Only the
Monte Carlo implementation of the exact matrix element cal-
culation ~included in ResBos! can correctly predict the dis-
tributions of the decay leptons, such as the transverse mass
of the W6 boson, and the transverse momentum of the
charged lepton, so that they can be directly compared with
experimental data to extract the value ofMW . We comment
on these results later in this section.

Another way to compare the results of the resummed and
the NLO calculations is given by the distributions of
s(QT.QT

min)/stotal, as shown in Fig. 8. We defined the ratio
as

6If a high precision measurement were not required, then one
could choose from the twofold solutions for the neutrino longitudi-
nal momentum to calculate the longitudinal momentum of theW6

boson.

FIG. 5. The fixed order perturbativeO(aS
2) to O(aS) K factor

as the function ofQT . The curves are plotted forQ5MV and
y522.0 ~solid!, 21.0 ~long dash!, 0.0 ~short dash!, 1.0 ~dash-dot!
andy52.0 ~dash-double-dot!.

FIG. 6. The ratioR(QT ,Q0), with y050, for W1 and Z0

bosons as a function ofQT . For W1, solid lines: Q0578 GeV
~upper! and 82 GeV~lower!; dashed:Q0576 GeV ~upper! and 84
GeV ~lower!; dotted:Q0570 GeV~upper! and 90 GeV~lower!. For
Z0 bosons; solid lines:Q0588 GeV ~upper! and 92 GeV~lower!;
dashed: Q0586 GeV ~upper! and 94 GeV ~lower!; dotted:
Q0580 GeV ~upper! and 100 GeV~lower!.

5566 56C. BALÁZS AND C.-P. YUAN



RCSS[
s~QT.QT

min!

s total
5

1

s total
E

QT
min

QT
max

dQT

ds~h1h2→V!

dQT
,

whereQT
max is the largestQT allowed by the phase space. In

the NLO calculation,s(QT.QT
min) grows without bound

nearQT
min50, as the result of the singular behavior 1/QT

2 in
the matrix element. The NLO curve runs well under the re-
summed one in the 2 GeV,QT

min,30 GeV region, and the
QT distributions from the NLO and the resummed calcula-
tions have different shapes even in the region whereQT is of
the order 15 GeV.

With large number of fully reconstructedZ0 events at the
Tevatron, one should be able to use data to discriminate
these two theory calculations. In view of this result it is not
surprising that the D0 analysis of theaS measurement@26#
based on the exclusive measurement ofs(W11 jet)/
s(W10 jet) does not support the NLO calculation in which
the effects of the multiple gluon radiation are not included.
We expect that if this measurement was performed by de-
manding the transverse momentum of the jet to be larger
than about 60 GeV, at which scale the resummed and the
NLO distributions in Fig. 1 cross, the NLO calculation
would adequately describe the inclusive data.

To show that forQT below 30 GeV, the QCD multiple
soft gluon radiation is important to explain the D0 data@26#,
we also include in Fig. 8 the prediction for theQT distribu-

tion at the order ofaS
2 . As shown in the figure, theaS

2 curve
is closer to the resummed curve which proves that for this
range ofQT the soft gluon effect included in theaS

2 calcula-
tion is important for predicting the vector bosonQT distribu-
tion. In other words, in this range ofQT , a vector boson is
likely to be produced together with multiple soft gluons. On
the contrary, in the highQT region, it is more probable that
one or more hard jets accompany the vector boson.

MeasuringRCSSin the lowQT region~for QT&Q/2! pro-
vides a stringent test of the dynamics of the multiple soft
gluon radiation predicted by the QCD theory. The same mea-
surement ofRCSS can also provide information about some
part of the nonperturbative physics associated with the initial
state hadrons. As shown in Fig. 9 and in Ref.@22#, the effect
of the nonperturbative physics on theQT distributions of the
W6 andZ0 bosons produced at the Tevatron is important for
QT less than about 10 GeV. This is evident by observing that
different parametrizations of the nonperturbative functions
do not change theQT distribution forQT.10 GeV, although
they do dramatically change the shape ofQT for

FIG. 7. The ratioR(QT ,y0), with Q05MV , for W1 and Z0

bosons as a function ofQT .

FIG. 8. The ratioRCSS as a function ofQT
min for W1 and Z0

bosons. The fixed order@O(aS) short dashed,O(aS
2) dashed#

curves are ill-defined in the lowQT region. The resummed~solid!
curves are calculated forg250.38 ~low!, 0.58 ~middle!, and 0.68
~high! GeV2 values.
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QT,10 GeV. Since for W6 and Z0 production, the
ln(Q2/Q0

2) term is large, the nonperturbative function, as de-
fined in Eq.~6!, is dominated by theF1(b) term ~or theg2
parameter! which is supposed to be universal for all Drell-
Yan type processes and related to the physics of the renor-
malon@20#. Hence, the measurement ofRCSScannot only be
used to test the dynamics of the QCD multiple soft gluon
radiation, in the 10 GeV,QT,40 GeV region, but may also
be used to probe this part of nonperturbative physics for
QT,10 GeV. It is therefore important to measureRCSS at
the Tevatron. With a large sample ofZ0 data at Run 2, it is
possible to determine the dominant nonperturbative function
which can then be used to calculate theW6 bosonQT dis-
tribution to improve the accuracy of theMW and the charged
lepton rapidity asymmetry measurements.

B. The total cross section

Before we compare the distributions of the decay leptons,
we examine the question whether or not theQT resummation
formalism changes the prediction for the total cross section.
In Ref. @27# it was shown that in the AEGM formalism,
which differs from the CSS formalism, theO(aS) total cross
section is obtained after integrating their resummation for-
mula over the whole range of the phase space.

In the CSS formalism, without including theC and Y
functions, the fully integrated resummed result recovers the
O(aS

0) cross section, provided thatQT is integrated from
zero toQ. This can be easily verified by expanding the re-
summation formula up toO(aS), dropping theC(1) and the
Y pieces@which are of orderO(aS)#, and integrating over
the lepton variables. It yields

E
0

PT
2

dQT
2 ds

dQ2dydQT
2 5

s0

S
d~Q22MV

2 !H X12
aS~Q!

p F1

2
A~1! ln2S Q2

PT
2 D 1B~1! lnS Q2

PT
2 D GCf j /h1

~x1 ,Q2! f k̄ /h2
~x2 ,Q2!

2
aS~Q!

2p
lnS Q2

PT
2 D @~Pj←a^ f a/h1

!~x1 ,Q2! f k̄ /h2
~x2 ,Q2!

1 f j /h1
~x1 ,Q2!~Pk̄←b^ f b/h2

!~x2 ,Q2!#1 j↔ k̄J , ~10!

wherePT is the upper limit of theQT integral and we fixed
the mass of the vector boson for simplicity. To derive the
above result we have used the canonical set of theCi
( i 51,2,3) coefficients~cf. Appendixes C and D!. When the
upper limit PT is taken to beQ, all the logs in the above
equation vanish and Eq.~10! reproduces the Born level
@O(aS

0)# cross section. Similar conclusion holds for higher
order terms from the expansion of the resummed piece when
C andY are not included. This is evident because the singu-
lar pieces from the expansion are given by

ds

dQT
2 U

singular

5
1

QT
2 (

n51

`

(
m50

2n21

nvmaS
n lnmS QT

2

Q2D .

The integral of these singular terms will be proportional to
ln(Q2/PT

2) raised to some power. Again, forPT5Q all the
logs vanish and the tree level result is obtained.

Including C(1) and theY contribution changes the above
conclusion and leads to a different total cross section, be-
causeC(1) contains the hard part virtual corrections andY
contains the hard gluon radiation. Combining the resummed
~1,1,1! and the fixed orderO(aS) distributions, the above
described matching prescription provides us with anO(aS)
resummed total cross section with an error ofO(as

2), as
shown in Ref.@12#. In practice this translates into less than a
percent deviation between the resummedO(aS) total cross
section and the inclusive NLO@O(aS)# calculation. This can
be understood from the earlier discussion that if the matching
were done atQT equal toQ, then the total cross section
calculated from the CSS resummation formalism should be

the same as that predicted by the NLO calculation, provided
thatC(1) andY(1) are included. However, this matching pre-
scription would not result in a smooth curve for theQT dis-
tribution at QT5Q. The matching procedure described
above causes a small~about a percent! difference between
theO(aS) resummed and the NLO total cross sections. This
difference indicates the typical size of the higher order cor-
rections not included in the NLO total cross section calcula-
tion.

The total cross section predicted from the various theory
calculations are listed in Table III. As shown in Table III, as
far as the total rate is concerned, there is hardly any observ-
able difference between the predicted results from the re-
summed ~2,1,1! matched to the fixed order perturbative
O(aS) and the resummed~2,1,2! matched to the fixed order
perturbativeO(aS

2), although the latter gives a smootherQT

curve, as shown in Fig. 2.
Kinematic cuts affect the total cross section in a subtle

manner. It is obvious from our matching prescription that the
resummedO(aS

2) and the fixed orderO(aS) curves in Fig. 2
will never cross in the highQT region. On the other hand, the
resummedO(aS

2) total cross section is about the same as the
fixed orderO(aS) cross section when integratingQT from 0
to Q. These two facts imply that when kinematic cuts are
made on theQT distribution withQT,Q, we will obtain a
higher total cross section in the fixed orderO(aS) than in the
resummedO(aS

2) calculation. In this paper we follow the
CDF cuts ~for the W1 boson mass analysis! and demand
QT,30 GeV @47#. Consequently, in many of our figures, to
be shown below, the fixed orderO(aS) curves give about
3% higher total cross section than the resummed ones.
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C. Lepton charge asymmetry

The CDF lepton charge asymmetry measurement@29#
played a crucial role in constraining the slope of theu/d ratio
in recent parton distribution functions. It was shown that one
of the largest theoretical uncertainty in theW6 mass mea-
surement comes from the parton distributions@30#, and the
lepton charge asymmetry was shown to be correlated with
the transverse mass distribution@31#. Among others, the lep-
ton charge asymmetry is studied to decrease the errors in the
measurement ofMW coming from the parton distributions.
Here we investigate the effect of the resummation on the
lepton rapidity distribution, although it is not one of those
observables which are most sensitive to theQT resummation,
i.e., to the effect of multiple soft gluon radiation.

The definition of the charge asymmetry is

A~y!5

ds

dy1
2

ds

dy2

ds

dy1
1

ds

dy2

,

wherey1 (y2) is the rapidity of the positively~negatively!

charged particle~either vector boson or decay lepton!. As-
sumingCP invariance,7 the following relation holds:

ds

dy1
~y!5

ds

dy2
~2y!.

Hence, the charge asymmetry is frequently written as

A~y!5

ds

dy
~y.0!2

ds

dy
~y,0!

ds

dy
~y.0!1

ds

dy
~y,0!

.

For the charge asymmetry of the vector boson (W6) or the
charged decay lepton (l 6), the fixed order and the re-

7Here we ignore the smallCP-violating effect due to the CKM
matrix elements in the SM.

FIG. 9. Transverse momentum distributions ofW1 and Z0

bosons calculated with low~long dash,g250.38 GeV2), nominal
~solid, g250.58 GeV2) and high ~short dash,g250.68 GeV2) g2

nonperturbative parameter values. The low and high excursions in
g2 are the present one standard deviations from the nominal value
in the Ladinsky-Yuan parametrization.

FIG. 10. Lepton charge asymmetry distributions.~a! Without
any kinematic cuts, the NLO~long dashed! and the resummed
O(aS) ~solid! curves overlap and the LO~short dashed!
curve differs somewhat from them. ~b! With cuts

(QT,30 GeV,pT
e1,n.25 GeV), the effect of the differentQT dis-

tributions renders the lepton rapidity asymmetry distributions dif-
ferent. The two resummed curves calculated withg250.58 and
0.78 GeV2 cannot be distinguished on this plot.
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summedO(aS) @or O(aS
2)# results are the same, provided

that there are no kinematic cuts imposed. This is because the
shape difference in the vector boson transverse momentum
has been integrated out and the total cross sections are the
same up to higher order corrections inaS . In Fig. 10~a! we
show the lepton charge asymmetry without cuts for
CTEQ4M PDF. The NLO and the resummed curves overlap,
although they differ from theO(aS

0) prediction.
On the other hand, when kinematic cuts are applied to the

decay leptons, the rapidity distributions of the vector bosons
or the leptons in the fixed order and the resummed calcula-
tions are different. Restriction of the phase space implies that
only part of the vector boson transverse momentum distribu-
tion is sampled. The difference in the resummed and the
fixed orderQT distributions will prevail as a difference in the
rapidity distributions of the charged lepton. We can view this
phenomenon in a different~a Monte Carlo! way. In the rest
frame of theW6, the decay kinematics is the same, whether
it is calculated up toO(aS) or within the resummation for-
malism. On the other hand, theW6 rest frame is different for
each individual Monte Carlo event depending on the order of
the calculation. This difference is caused by the fact that the
QT distribution of theW6 is different in theO(aS) and the
resummed calculations, and the kinematic cuts select differ-
ent events in these two cases. Hence, even though theQT
distribution of theW6 is integrated out, when calculating the
lepton rapidity distribution, we obtain slightly different pre-
dictions in the two calculations. The difference is larger for
larger uyl u, being closer to the edge of the phase space,
because the soft gluon radiation gives high corrections there
and this effect up to all order inaS is contained in the re-
summed but only up to order ofaS in the NLO calculation.
Because the rapidity of the lepton and that of the vector
boson are highly correlated, large rapidity leptons mostly
come from large rapidity vector bosons. Also, a vector boson
with large rapidity tends to have low transverse momentum,
because the available phase space is limited to lowQT for a
W6 boson with largeuyu. Hence, the difference in the low
QT distributions of the NLO and the resummed calculations
yields the difference in theyl distribution for leptons with
high rapidities.

Asymmetry distributions of the charged lepton with cuts
using the CTEQ4M PDF are shown in Fig. 10~b!. The ap-

plied kinematic cuts areQT,30 GeV, pT
e1,n.25. These are

the cuts that CDF used when extracted the lepton rapidity
distribution from their data@29#. We have checked that the
ResBos fixed orderO(aS) curve agrees well with the
DYRAD @24# result. As anticipated, theO(aS

0), O(aS) and

resummed results deviate at higher rapidities (uyeu.1.5).8

The deviation between the NLO and the resummed curves
indicates that to extract information on the PDF in the large
rapidity region, the resummed calculation, in principle, has
to be used if the precision of the data is high enough to
distinguish these predictions. Figure 10~b! also shows the
negligible dependence of the resummed curves on the non-
perturbative parameterg2 . We plot the result of the re-
summed calculations with the nominalg250.58 GeV2, and
with g250.78 GeV2 which is two standard deviations higher.
The deviation between these two curves~which is hardly
observable on the figure! is much smaller than the deviation
between the resummed and the NLO ones.

There is yet another reason why the lepton charge asym-
metry can be reliably predicted only by the resummed calcu-
lation. When calculating the lepton distributions in a numeri-
cal O(aS) code, one has to artificially divide the vector
boson phase space into hard and soft regions, depending on,
for example, the energy or theQT of the emitted gluon~e.g.
qq̄→W1 hard or soft gluon!. The observables calculated
with this phase space slicing technique acquire a dependence
on the scale which separates the hard from the soft regions.
For example, when the phase space is divided by theQT
separation, the dependence of the asymmetry on the scale
QT

sep can be comparable to the difference in theO(aS) and
the resummed results. This means that there is no definite
prediction from the NLO calculation for the lepton rapidity
distribution. Only the resummed calculation can give an un-
ambiguous prediction for the lepton charge asymmetry.

Before closing this section, we also note that although in
the lepton asymmetry distribution the NLO and resummed
results are about the same foruye1

u,1, it does not imply that
the rapidity distributions of the leptons predicted by those
two theory models are the same. As shown in Fig. 11, this
difference can in principle be observable with a large statis-
tics data sample and a good knowledge of the luminosity of
the colliding beams.

D. Transverse mass distribution

Since the invariant mass of theW6 boson cannot be re-
constructed without knowing the longitudinal momentum of
the neutrino, one has to find a quantity that allows an indirect

8As indicated before, here and henceforth, unless specified other-
wise, by a resummed calculation we mean our resummedO(aS

2)
result.

TABLE III. Total cross sections ofpp̄→(W1 or Z0)X at the present and upgraded Tevatron, calculated in different prescriptions, in
units of nb. The finite order total cross section results are based on the calculations in Ref.@27#. The Pert.O(aS

2) results were obtained from
Ref. @28#. The ‘‘%’’ signs refer to the matching prescription discussed in the text.

Ec.m. Fixed order Resummed~1,1,1! Resummed~2,1,1! Resummed~2,1,2! Experiment
V ~TeV! O(aS

0) O(aS) % Pert.O(aS) % Pert.O(aS) % Pert.O(aS
2) ~Ref. @46#!

W1 1.8 8.81 11.1 11.3 11.3 11.4 11.560.7
W1 2.0 9.71 12.5 12.6 12.6 12.7
Z0 1.8 5.23 6.69 6.79 6.79 6.82 6.8660.36
Z0 2.0 6.11 7.47 7.52 7.52 7.57
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determination of the mass of theW6 boson. In the discovery
stage of theW6 bosons at the CERN SuperProton Synchro-
ton (Spp̄S) collider, the mass and width were measured us-
ing the transverse mass distribution of the charged lepton-
neutrino pair from theW6 boson decay. Ever since the
early eighties, the transverse mass distribution,
mT5A2pT

epT
n(12cosDfen), has been known as the best

measurable for the extraction of bothMW andGW , for it is
insensitive to the transverse momentum of theW6 boson.
The effect of the nonvanishing vector boson transverse mo-
mentum on themT distribution was analyzed@32,33# well
before theQT distribution of theW6 boson was correctly
calculated by taking into account the multiple soft gluon ra-
diation. Giving an average transverse boost to the vector bo-
son, the authors of Ref.@32# concluded that for the fictive
case ofGW50, the end points of the transverse mass distri-
bution are fixed at zero:ds/dmT

2(mT
250)5ds/dmT

2(mT
2

5MW
2 )50. The sensitivity of themT shape to a nonzeroQT

is in the order of^(QT /MW)2&'1% without affecting the
end points of themT distribution. Including the effect of the
finite width of the W6 boson, the authors in Ref.@33#
showed that the shape and the location of the Jacobian peak
are not sensitive to theQT of the W6 boson either. The
nonvanishing transverse momentum of theW6 boson only
significantly modifies themT distribution aroundmT50.

Our results confirm that the shape of the Jacobian peak is
quite insensitive to the order of the calculation. We show the
NLO and the resummed transverse mass distributions in Fig.
12 for W6 bosons produced at the Tevatron with the kine-

matic cuts:QT,30 GeV, pT
e1,n.25 GeV, anduye1

u,3.0.
Figure 12~a! covers the full~experimentally interesting! mT
range while Fig. 12~b! focuses on themT range which con-
tains most of the information about theW6 mass. There is
little visible difference between theshapesof the NLO and
the resummedmT distributions. On the other hand, the right
shoulder of the curve appears to be ‘‘shifted’’ by about 50
MeV, because, as noted in Sec. III B, the total cross sections
are different after the above cuts imposed in the NLO and the
resummed calculations. At Run 2 of the Tevatron, with large
integrated luminosity (;2 fb21), the goal is to extract the

W6 boson mass with a precision of 30–50 MeV from themT
distribution@30#. SinceMW is sensitive to the position of the
Jacobian peak@33#, the high precision measurement of the
W6 mass has to rely on the resummed calculations.

The extraction ofMW from the transverse mass distribu-
tion has some drawbacks. The reconstruction of the trans-
verse momentumpT

n of the neutrino involves the measure-
ment of the underlying event transverse momentum:
pW T

n52pW T
l 2pW T

recoil2pW T
underlying event. This resolution degrades

by the number of interactions per crossing (NI c
) @30#. With a

high luminosity (;100 fb21) at the 2 TeV Tevatron
~TEV33! @34#, NI c

can be as large as 10, so that the Jacobian
peak is badly smeared. This will lead to a large uncertainty
in the measurement ofMW . For this reason the systematic
precision of themT reconstruction will be less at the high
luminosity Tevatron, and anMW measurement that relies on
the lepton transverse momentum distribution alone could be
more promising. We discuss this further in the next section.

The theoretical limitation on theMW measurement using
the mT distribution comes from the dependence on the non-
perturbative sector, i.e., from the PDF’s and the nonpertur-
bative parameters in the resummed formalism. Assuming the
PDF’s and these nonperturbative parameters to be indepen-
dent variables, the uncertainties introduced are estimated to
be less than 50 MeV and 10 MeV, respectively, at the
TEV33 @36,37#. It is clear that the main theoretical uncer-
tainty comes from the PDF’s. As to the uncertainty due to
the non-perturbative parameters~e.g.,g2! in the CSS resum-
mation formalism, it can be greatly reduced by carefully

FIG. 11. Distributions of positron rapidities from the decays of
W1’s produced at the Tevatron, predicted by the resummed~solid!
and the NLO~dashed! calculations with the same kinematic cuts as
for the asymmetry plot.

FIG. 12. Transverse mass distribution forW1 production and
decay at the 1.8 TeV Tevatron.
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study of the theQT distribution of theZ0 boson which is
expected to be copiously produced at Run 2 and beyond.

The MW measurement at the CERN Large Hadron Col-
lider ~LHC! may also be promising. Both ATLAS and CMS
detectors are well optimized for measuring the leptons and
the missingET @37#. The cross section of theW1 boson
production is about four times larger than that at the Teva-
tron, and in one year of running with 20 fb21 luminosity
yields a few times 107 W→l n events after imposing similar
cuts to those made at the Tevatron. Since the number of
interactions per crossing may be significantly lower~in av-
erageNI c

52! at the same or higher luminosity than that at

the TEV33 @37#, the Jacobian peak in themT distribution
will be less smeared at the LHC than at the TEV33. Further-
more, the nonperturbative effects are relatively smaller at the
LHC because the perturbative Sudakov factor dominates. On
the other hand, the probed region of the PDF’s at the LHC
has a lower value of the averagex(;1023) than that at the
Tevatron (;1022), hence the uncertainty from the PDF’s
might be somewhat larger. A more detailed study of this
subject is desirable.

E. Lepton transverse momentum

Due to the limitations mentioned above, the transverse
mass method may not be the only and the most promising
way for the precision measurement ofMW at some future
hadron colliders. As discussed above, the observablemT was
used because of its insensitivity to the high order QCD cor-
rections. In contrast, the lepton transverse momentum (pT

l )
distribution receives a large,O(^QT /MW&);10%, perturba-
tive QCD correction at the orderaS , as compared to the
Born process. With the resummed results in hand it becomes
possible to calculate thepT

l distribution precisely within the
perturbative framework, and to extract theW6 mass
straightly from the transverse momentum distributions of the
decay leptons.

Just like in themT distribution, the mass of theW6 boson
is mainly determined by the shape of the distribution near the
Jacobian peak. The location of the maximum of the peak is
directly related to theW6 boson mass, while the theoretical
width of the peak varies with its decay widthGW . Since the
Jacobian peak is modified by effects of bothQT andGW , it
is important to take into account both of these effects cor-
rectly. In our calculation~and in ResBos! we have properly
included both effects.

The effect of resummation on the transverse momentum
distribution of the charged lepton fromW1 andZ0 decays is
shown in Fig. 13. The NLO and the resummed distributions
differ a great amount even without imposing any kinematic
cuts. The clear and sharp Jacobian peak of the NLO distri-
bution is strongly smeared by the finite transverse momen-
tum of the vector boson introduced by multiple gluon radia-
tion. This higher order effect cannot be correctly calculated
in any finite order of the perturbation theory and the resum-
mation formalism has to be used.

One of the advantages of using thepT
l distribution to de-

termine MW is that there is no need to reconstruct thepT
n

distribution which potentially limits the precision of themT
method. From the theoretical side, the limitation is in the
knowledge of the nonperturbative sector. Studies at D0@35#

show that thepT
l distribution is most sensitive to the PDF’s

and the value of the nonperturbative parameterg2 . The pT
l

distribution is more sensitive to the PDF choice, than themT
distribution is. The uncertainty in the PDF causes an uncer-
tainty in MW of about 150 MeV, which is about three times
as large as that using themT method@35#. A 0.1 GeV2 un-
certainty in g2 leads to aboutDMW530 MeV uncertainty
from the pT

l fit, which is about five times worse than that
from the mT measurement@35#. Therefore, to improve the
MW measurement, it is necessary to include theZ0 data
sample at the high luminosity Tevatron to refit thegi ’s and
obtain a tighter constrain on them from theQT distribution of
the Z0 boson. The D0 study showed that an accuracy of
Dg250.01 GeV2 can be achieved with Run 2 and TeV33
data, which would contribute an error ofDMW,5 MeV
from the pT

l @35#. In this case the uncertainty coming from
the PDF’s remains to be the major theoretical limitation. At
the LHC, thepT

l distribution can be predicted with an even
smaller theoretical error coming from the nonperturbative
part, because at higher energies the perturbative Sudakov
factor dominates over the non-perturbative function.

It was recently suggested to extractMW from the ratios of
the transverse momenta of leptons produced inW6 and Z0

decay @38#. The theoretical advantage is that the non-

FIG. 13. Transverse momentum distributions ofpT
e1

from W1

and Z0 decays for the NLO~dashed! and the resummedO(aS)
~solid! calculations. Resumming the initial state multiple soft-gluon
emission has the typical effect of smoothening and broadening the

Jacobian peak~at pT
e1

5MV/2). The CDF cuts are imposed on the
W1 distributions, but there are no cuts on theZ0 distributions.
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perturbative uncertainties are decreased in such a ratio. On
the other hand, it is not enough that the ratio of cross sections
is calculated with small theoretical errors. For a precision
extraction of theW6 mass the theoretical calculation must be
capable of reproducing the individually observed transverse
momentum distributions themselves. TheW6 mass measure-
ment requires a detailed event modeling, understanding of
detector resolution, kinematical acceptance and efficiency ef-
fects, which are different for theW6 andZ0 events, as illus-
trated above. Therefore, the ratio of cross sections can only
provide a useful check for theW6 mass measurement.

For Drell-Yan events or lepton pairs fromZ0 decays, ad-
ditional measurable quantities can be constructed from the
lepton transverse momenta. They are the distributions in the

balance of the transverse momenta (DpT5upW T
l 1u2upW T

l̄ 2u) and
the angular correlation of the two lepton momenta

(z52pW T
l 1

•pW T
l̄ 2/@max(pT

l 1 ,pT
l̄ 2)#2). It is expected that these

quantities are also sensitive to the effects of the multiple soft
gluon radiation. These distributions are shown in Fig. 14. As
shown, the resummed distributions significantly differ from
the NLO ones. In these, and the following figures forZ0

decay distributions, it is understood that the following kine-
matic cuts are imposed:QT

Z0
,30 GeV, pT

e1,e2
.25 GeV,

and uye1,e2
u,3.0, unless indicated otherwise.

F. Lepton angular correlations

Another observable that can serve to test the QCD theory
beyond the fixed-order perturbative calculation is the differ-

ence in the azimuthal angles of the leptonsl 1 and l̄ 2 from
the decay of a vector bosonV. In practice, this can be mea-
sured forg* or Z0→l 1l̄ 2 . We show in Fig. 15 the differ-
ence in the azimuthal angles ofe1 ande2 (Dfe1e2

), mea-
sured in the laboratory frame forZ0→e1e2, calculated in
the NLO and the resummed approaches. As indicated, the
NLO result is ill-defined in the vicinity ofDf;p, where the
multiple soft-gluon radiation has to be resummed to obtain
physical predictions.

Another interesting angular variable is the lepton polar
angle distribution cosu* l in the Collins-Soper frame. It can
be calculated for theZ0 decay and used to extract sin2 uw at
the Tevatron@39#. The asymmetry in the polar angle distri-
bution is essentially the same as the forward-backward asym-
metry AFB measured at LEP. SinceAFB depends on the in-
variant massQ and around the energy of theZ0 peakAFB
happens to be very small, the measurement is quite challeng-
ing. At the hadron collider, on the other hand, the invariant
mass of the incoming partons is distributed over a range so
the asymmetry is enhanced@15#. The potentials of the mea-
surement deserve a separated study. In Fig. 16 we show the
distributions of cosu* l predicted from the NLO and the re-
summed results.

G. Vector boson longitudinal distributions

The resummation of the logs involving the transverse mo-
mentum of the vector boson does not directly affect the
shape of the longitudinal distributions of the vector bosons.
A good example of this is the distribution of the longitudinal
momentum of theZ0 boson which can be measured at the
Tevatron with high precision, and can be used to extract
information on the parton distributions. It is customary to
plot the rescaled quantity xF52q3/AS, where
q35sinh(y)AQ21QT

2 is the longitudinal momentum of the
Z0 boson measured in the laboratory frame. In Fig. 17, we
plot the distributions predicted in the resummed and the
NLO calculations. As shown, their total event rates are dif-

FIG. 14. Balance in transverse momentumDpT5upW T
l 1u2upW T

l̄ 2u

and angular correlationz52pW T
l 1

•pW T
l̄ 2/@max(pT

l 1 ,pT
l̄ 2)#2 of the de-

cay leptons fromZ0 bosons produced at the Tevatron.

FIG. 15. The correlation between the lepton azimuthal angles
near the regionDf;p for pp̄→(Z0→e1e2)X. The resummed
~solid! distribution gives the correct angular correlation of the lep-
ton pair. The NLO~dashed lines! distribution nearDf5p is ill-
defined and depends onQT

sep ~the scale for separating soft and hard
gluons in the NLO calculation!. The two NLO distributions were
calculated with QT

sep51.2 GeV ~long dash! and QT
sep52.0 GeV

~short dash!.
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ferent in the presence of kinematic cuts.~Although they are
the same if no kinematic cuts imposed.! This conclusion is
similar to that of theyl distributions, as discussed in Secs.
III B and III C.

Without any kinematic cuts, the vector boson rapidity dis-
tributions are also the same in the resummed and the NLO
calculations. This is so because when calculating they dis-
tribution the transverse momentumQT is integrated out so
that the integral has the same value in the NLO and the
resummed calculations. On the other hand, experimental cuts
on the final state leptons restrict the phase space, so the dif-
ference between the NLO and the resummedQT distribu-
tions affects the vector boson rapidity distributions. This
shape difference is very small at the vector boson level, as
shown in Fig. 18.

IV. DISCUSSION AND CONCLUSIONS

With a 100 pb21 luminosity at the Tevatron, around
23106 W6 and 63105 Z0 bosons are produced, and the
data sample will increase by a factor of 20 in the Run 2 era.

In view of this large event rate, a careful study of the distri-
butions of leptons from the decay of the vector bosons can
provide a stringent test of the rich dynamics of the multiple
soft gluon emission predicted by the QCD theory. Since an
accurate determination of the mass of theW6 boson and the
test of parton distribution functions demand a highly precise
knowledge of the kinematical acceptance and the detection
efficiency of W6 or Z0 bosons, the effects of the multiple
gluon radiation have to be taken into account. In this work,
we have extended the formalism introduced by Collins,
Soper, and Sterman for calculating an on-shell vector boson
to include the effects of the polarization and the decay width
of the vector boson on the distributions of the decay leptons.
Our resummation formalism can be applied to any vector
bosonV whereV5g* ,W6,Z0,W8,Z8, etc., with either vec-
tor or axial-vector couplings to fermions~leptons or quarks!.
To illustrate how the multiple gluon radiation can affect the
distributions of the decay leptons, we studied in detail vari-
ous distributions for the production and the decay of the
vector bosons at the Tevatron.

One of the methods to test the rich dynamics of the mul-
tiple soft gluon radiation predicted by the QCD theory is to
measure the ratioRCSS[ s(QT.QT

min)/stotal for the W6 and
Z0 bosons. We found that, for the vector boson transverse
momentum less than about 30 GeV, the difference between
the resummed and the fixed order predictions~either at the
aS or aS

2 order! can be distinguished by experimental data.
This suggests that in this kinematic region, the effects of the
multiple soft gluon radiation are important, hence, theQT
distribution of the vector boson provides an ideal opportunity
to test this aspect of the QCD dynamics. ForQT less than
about 10 GeV, the distribution ofQT is largely determined
by the nonperturbative sector of QCD. At the Tevatron this
nonperturbative physics, when parametrized by Eq.~7! for
W6 and Z0 production, is dominated by the parameterg2
which was shown to be related to properties of the QCD
vacuum@20#. Therefore, precisely measuring theQT distri-
bution of the vector boson in the lowQT region, e.g., from
the ampleZ0 events, can advance our knowledge of the non-
perturbative QCD physics.

Although the rapidity distributions of the leptons are not
directly related to the transverse momentum of the vector

FIG. 16. Distribution of thee1 polar angle cos(u* ) in the
Collins-Soper frame fromZ0 decays at the Tevatron with cuts in-
dicated in the text.

FIG. 17. LongitudinalxF distributions ofZ0 bosons produced at
the Tevatron. The NLO~dashed! curves overestimate the rate com-
pared to the resummed~solid! ones, because kinematic cuts enhance
the low QT region where the NLO and resummed distributions are
qualitatively different. Without cuts, the NLO and the resummedxF

distributions are the same.

FIG. 18. Rapidity distributions~resummed: solid; NLO: dashed!
of Z0 bosons produced at the Tevatron with the kinematic cuts
given in the text.
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boson, they are predicted to be different in the resummed and
the fixed order calculations. This is because to compare the
theoretical predictions with the experimental data, some ki-
nematic cuts have to be imposed so that the signal events can
be observed over the backgrounds. We showed that the dif-
ference is the largest when the rapidity of the lepton is near
the boundary of the phase space~i.e., in the large rapidity
region!, and the difference diminishes when no kinematic
cuts are imposed. When kinematic cuts are imposed another
important difference between the results of the resummed
and the NLO calculations is the prediction of the event rate.
These two calculations predict different normalizations of
various distributions. For example, the rapidity distributions

of charged leptons (yl 6
) from the decays ofW6 bosons are

different. They even differ in the central rapidity region in
which the lepton charge asymmetry distributions are about
the same~cf. Figs. 10 and 11!. As noted in Ref.@31#, with
kinematic cuts, the measurement ofMW is correlated to that
of the rapidity and its asymmetry through the transverse mo-
mentum of the decay lepton. Since the resummed and the
NLO results are different and the former includes the mul-
tiple soft gluon emission dynamics, the resummed calcula-
tion should be used for a precision measurement ofMW .

In addition to the rapidity distribution, we have also
shown various distributions of the leptons which are either
directly or indirectly related to the transverse momentum of
the vector boson. For those which are directly related to the
transverse momentum of the vector boson, such as the trans-
verse momentum of the lepton and the azimuthal correlation
of the leptons, our resummation formalism predicts signifi-
cant differences from the fixed order perturbation calcula-
tions in some kinematic regions. The details were discussed
in Sec. III.

As noted in the Introduction, a full event generator, such
as ISAJET, can predict a reasonable shape for various distri-
butions because it contains the backward radiation algorithm
@23#, which effectively includes part of the Sudakov factor,
i.e., effects of the multiple gluon radiation. However, the
total event rate predicted by the full event generator is usu-
ally only accurate at the tree level, as the short distance part
of the virtual corrections cannot yet be consistently imple-
mented in this type of Monte Carlo program. To illustrate the
effects of the high order corrections coming from the virtual
corrections, which contribute to the Wilson coefficientsC in
our resummation formalism, we showed in Fig. 19 the pre-
dicted distributions of the transverse momentum of the Drell-
Yan pairs byISAJET and by ResBos~our resummed calcula-
tion!. In this figure we have rescaled theISAJET prediction to
have the same total rate as the ResBos result, so that the
shape of the distributions can be directly compared. We re-
strict the invariant mass of the virtual photonsQ to be be-
tween 30 and 60 GeV without any kinematic cuts on the
leptons. If additional kinematic cuts on the leptons are im-
posed, then the difference is expected to be enhanced, as
discussed in Sec. III C. As clearly shown, with a large data
sample in the future, it will be possible to experimentally
distinguish between these two predictions, and, more inter-
estingly, to start probing the nonperturbative sector of the
QCD physics.

After the completion of this work we noticed a similar

~though not identical! work @40# of which the conclusions
and results, when they overlap, agree with ours.
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APPENDIX A: KINEMATICS

Here we summarize some details of the kinematics for the
lepton pair production processh1h2→V(→l 1l̄ 2)X. The
laboratory~lab! frame is the center-of-mass frame of the col-
liding hadronsh1 and h2 . In the lab frame, the cartesian
coordinates of the hadrons are:
ph1 ,h2

m (lab)5AS/2(1,0,0,61), where AS is the center-of-

mass energy of the collider. Transverse momentum resum-
mation is performed in the Collins-Soper~CS! frame @14#.
This is the special rest frame of the vector boson in which the
z axis bisects the angle between theh1 hadron momentum
ph1

(CS) and the negativeh2 hadron momentum2ph2
(CS)

@19#.
To derive the Lorentz transformationLn

m(lab→CS) that
connects the lab and CS frames~in the active view point!:
pm(CS)5Ln

m(lab→CS)pn(lab), we follow the definition of
the CS frame. Since the invariant amplitude is independent
of the azimuthal angle of the vector boson (fV), without
loosing generality we start from a lab frame in whichfV is
zero. First, we find the boost into a vector boson rest frame.
Then, in the vector boson rest frame we find the rotation
which brings the hadron momentumph1

(CS) and negative

hadron momentum2ph2
(CS) into the desired directions.

A boost bybW 52qW (lab)/q0 brings four vectors from the
lab frame~with fV50! into a vector boson rest frame~rest!.
The matrix of the Lorentz boost from the lab frame to the
rest frame, expressed explicitly in terms ofqm is

FIG. 19. Transverse momentum distribution of virtual photons
in pp̄→g*→e1e2 events predicted by ResBos~solid curve! and
ISAJET ~histogram!, calculated for the invariant mass range
30 GeV,Q,60 GeV at the 1.8 TeV Tevatron.
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Ln
m~ lab→rest!5

1

Q S q0 2QT 0 2q3

2QT Q1
QT

2

q01Q
0

QTq3

q01Q

0 0 Q 0

2q3 QTq3

q01Q
0 Q1

~q3!2

q01Q

D ,

whereQ5A(q0)22QT
22(q3)2 is the vector boson invariant mass, and the transverse mass is defined asMT5AQ21QT

2.
After boosting the lab frame hadron momenta into this rest frame, we obtain

ph1 ,h2

m ~rest!5Ln
m~ lab→rest!ph1 ,h2

n ~ lab!5
AS

2 S q07q3

Q
,2

QT

Q

q01Q7q3

q01Q
,0,

~6Q2q3!~q01Q!6~q3!2

Q~q01Q! D ,

and the polar angles ofph1

m (rest) and2ph2

m (rest) are not

equal unlessQT50. ~In the above expressions the upper
signs refers toh1 and the lower signs toh2 .! In the general
QTÞ0 case we have to apply an additional rotation in the
rest frame so that thez-axis bisects the angle between the
hadron momentumph1

(CS) and the negative hadron mo-

mentum2ph2
(CS). It is easy to verify that to keeppW h1 ,h2

in

the xz plane, this rotation should be a rotation around they
axis by an anglea5arccos@Q(q01MT)/„MT(q01Q)…#.

Thus the Lorentz transformation from the lab frame to the
CS frame is Ln

m(lab→CS)5Ll
m(rest→CS)Ln

l(lab→rest).
Indeed, this transformation results in equal polar angles
uh1 ,2h2

5arctan(QT /Q). The inverse of this transformation
that takes vectors from the CS frame to the lab frame is:

Ln
m~CS→lab!5@Ln

m~ lab→CS!#21

5
1

QMT S q0MT q0QT 0 q3Q

QTMT MT
2 0 0

0 0 QMT 0

q3MT q3QT 0 q0Q

D .

The kinematics of the leptons from the decay of the vector
boson can be described by the polar angleu and the azi-
muthal anglef, defined in the Collins-Soper frame. The
above transformation formulas lead to the four-momentum
of the decay product fermion~and anti-fermion! in the lab
frame as

pm5
Q

2 S qm

Q
1sin u cosfXm1sin u sin fYm1cosuZmD ,

p̄m5qm2pm,

where

qm5~MT coshy,QT cosfV ,QT sin fV ,MT sinh y!,

Xm52
Q

QTMT
S q1nm1q2n̄m2

MT
2

Q2 qmD ,

Zm5
1

MT
~q1nm2q2n̄m!,

Ym5«mnab
qn

Q
ZaXb . ~A1!

Here, q65 (1/&) (q06q3), y5(1/2)ln(q1 /q2),
nn5 (1/&) (1,0,0,1),n̄n5 (1/&) (1,0,0,21) and the totally
antisymmetric tensor is defined as«0123521.

APPENDIX B: O„aS… RESULTS

To correctly extract the distributions of the leptons, we
have to calculate the production and the decay of a polarized
vector boson. TheO(aS) QCD corrections to the production
and decay of a polarized vector boson can be found in the
literature@41#, in which both the symmetric and the antisym-
metric parts of the hadronic tensor were calculated. Such a
calculation was, as usual, carried out in general number (D)
of space-time dimensions, and dimensional regularization
scheme was used to regulate infrared~IR! divergences be-
cause it preserves the gauge and the Lorentz invariances.
Since the antisymmetric part of the hadronic tensor contains
traces with an odd number ofg5’s, one has to choose a
definition~prescription! of g5 in D dimensions. It was shown
in a series of papers@16# that in DÞ4 dimension, the con-
sistentg5 prescription to use is the ’t Hooft–Veltman pre-
scription. Since in Ref.@41# a different prescription@45# was
used, we give below the results of our calculation in the ’t
Hooft–Veltmang5 prescription.

For calculating the virtual corrections, we follow the ar-
gument of Ref.@42# and impose the chiral invariance rela-
tion, which is necessary to eliminate ultraviolet anomalies of
the one loop axial vector current when calculating the struc-
ture function. Applying this relation for the virtual correc-
tions we obtain the same result as that in Refs.@41# and@43#.
The final result of the virtual corrections gives
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MBorn
† Mvirt1Mvirt

† Mborn

5CF

aS

2p S 4pm2

Q2 D e 1

G~12e!

3S 2
2

e2 2
3

e
1p228D uMBornu2, ~B1!

where e5(42D)/2, m is the ’t Hooft mass scale, and
CF54/3 in QCD. The four-dimensional Born level ampli-
tude is

uMbornu25
16Q4

~Q22MV
2 !21Q4GV

2/MV
2 @~gL

21gR
2 !~ f L

21 f R
2 !L0

1~gL
22gR

2 !~ f L
22 f R

2 !A3#, ~B2!

where we have used the LEP prescription for the vector bo-
son resonance with massMV and width GV . The angular
functions areL0511cos2 u and A352 cosu. The initial
state spin average (1/4), and color average (1/9) factors are
not yet included in Eq.~B2!.

When calculating the real emission diagrams, we use the
same~’t Hooft–Veltman! g5 prescription. It is customary to
organize theO(aS

n) corrections by separating the lepton de-
grees of freedom from the hadronic ones, so that

S ds~h1h2→V~→l 1l̄ 2!X!

dQ2dydQT
2d cosudf D

O~aS!

real emission

5
aS~Q!CF

~2p!3S

Q2

~Q22MV
2 !21Q4GV

2/MV
2 (

a,b,i
E

x1

1 dj1

j1
E

x2

1 dj2

j2
GiLab~j1 ,j2 ,Q2!Tab

i ~QT ,Q,z1 ,z2!Ai~u,f!,

with z15x1 /j1 andz25x2 /j2 . The dependence on the lep-
ton kinematics is carried by the angular functions

L0511cos2 u, A05
1

2
~123 cos2 u!,

A15sin 2u cosf, A25
1

2
sin2 u cos 2f,

A352 cosu, A45sin u cosf.

In the above differential cross section,i 521, . . . ,4 with
A21[L0 ; and Gi5(gL

21gR
2)( f L

21 f R
2) for i 521,0,1,2;

Gi5(gL
22gR

2)( f L
22 f R

2) for i 53,4. The parton level helicity
cross sections are summed for the parton indicesa, b in the
following fashion

(
a,b
LabT ab

i 5 (
q5u,d,s,c,b

~Lq q̄T q q̄
i 1L q̄qT q̄q

i 1LqGT qG
i

1L q̄GT q̄G
i 1LGqTGq

i 1LG q̄TG q̄
i !.

The partonic luminosity functionsLab are defined as

Lab~j1 ,j2 ,Q2!5 f a/h1
~j1 ,Q2! f b/h2

~j2 ,Q2!,

where f a/h1
is the parton probability density of partona in

hadronh1 , etc. The squared matrix elements for the annihi-
lation subprocessqq̄→VG in the CS frame, including thee
dependent terms, are as follows:

T q q̄
215

1

ut
„T1~u,t !2~ t1u!2e…,

T q q̄
0 5T q q̄

2 5
1

ut

QT
2

MT
2 „T1~u,t !2~Q21s!2e…,

T q q̄
1 5

1

ut

QTQ

MT
2 T2~u,t !~12e!,

T q q̄
3 5

1

ut

Q

MT
S T1~u,t !2

~Q22u!t21~Q22t !u2

Q2 e D ,

T q q̄
4 5

2

ut

QT

MT
„T2~u,t !1Q2~u2t !e….

For the Compton subprocessqG→Vq, we obtain

T qG
215

21

su
„T1~s,u!2~s1u!2e…,

T qG
0 5T qG

2 5
21

su

QT
2

MT
2 „~Q22u!21~Q21s!22~s1u!2e…,

T qG
1 5

21

su

QTQ

MT
2 „2~Q22u!22~Q22t !21~s1u!2e…,

T qG
3 5

21

su

Q

MT
S T1~s,u!22u~Q22s!

1
~Q22t !~Q2s2su2u2!

Q2 e D ,

T qG
4 5

22

su

QT

MT
„2s~Q22s!1T1~s,u!2~Q22t !ue….

In the above equations, the Mandelstam variables
s5(k1 l )2, t5(k2q)2, andu5( l 2q)2, wherek, l and q
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are the four momenta of the partons from hadronsh1 , h2 and
that of the vector boson, respectively, and
T6(t,u)5(Q22t)26(Q22u)2. All other relevant parton
level cross sections can be obtained from the above, and
summarized by the following rules:

i 521,0,1,2 i 53,4

T q̄q
i 5T q q̄

i T q̄q
i 52T q q̄

i

TGq
i 5T qG

i (u↔t) TGq
i 52T qG

i (u↔t)

T q̄G
i 5T qG

i T q̄G
i 52T qG

i

TG q̄
i 5TGq TG q̄

i 52TGq
i ,

with the only exceptions thatTGq
1 52T qG

1 (u↔t) and
TGq

4 5T qG
4 (u↔t). These results are consistent with the regu-

lar pieces of theY term given in Appendix E and with those
in Ref. @44#.

In the above matrix elements, only the coefficients ofL0

andA3 are not suppressed byQT or QT
2 , so they contribute

to the singular pieces which are resummed in the CSS for-
malism. By definition we call a term singular if it diverges as
QT

223@1 or ln(Q2/QT
2)# as QT→0. Using the ’t Hooft–

Veltman prescription ofg5 we conclude that the singular
pieces of the symmetric (L0) and antisymmetric (A3) parts
are the same, and

lim
QT→0

T q q̄
21d~s1t1u2Q2!5 lim

QT→0
T q q̄

3 d~s1t1u2Q2!

5sq q̄ ,

lim
QT→0

TGq
21d~s1t1u2Q2!5 lim

QT→0
TGq

3 d~s1t1u2Q2!

5sGq ,

where

sq q̄5
1

QT
2 F2d~12z1!d~12z2!S ln

Q2

QT
2 2

3

2D 1d~12z1!

3S 11z2
2

12z2
D

1

1d~12z2!S 11z1
2

12z1
D

1

2„~12z1!

3d~12z2!1~12z2!d~12z1!…eG1OS 1

QT
D ,

sGq5
1

QT
2 @„z1

21~12z1
2!…d~12z2!2d~12z2!e#1OS 1

QT
D .

As QT→0, only theL0 andA3 helicity cross sections sur-
vive as expected, since theO(aS

0) differential cross section
contains only these angular functions@cf. Eq. ~B2!#.

APPENDIX C: EXPANSION OF THE RESUMMATION
FORMULA

In this section we expand the resummation formula, as
given in Eq.~1!, up toO(aS), and calculate theQT singular
piece as well as the integral of theO(aS) corrections from 0
to PT . These are the ingredients, together with the regular
pieces to be given in Appendix E, needed to construct our
NLO calculation.

First we calculate the singular part at theO(aS). By defi-
nition, this consists of terms which are at least as singular as
QT

223@1 or ln(QT
2/Q2)#. We use the perturbative expansion

of theA, B, andC functions in the strong coupling constant
aS as

A„aS~m̄ !,C1…5 (
n51

` S aS~m̄ !

p D n

A~n!~C1!,

B„aS~m̄ !,C1 ,C2…5 (
n51

` S aS~m̄ !

p D n

B~n!~C1 ,C2!, ~C1!

Cja~z,b,m,C1 ,C2!5 (
n50

` S aS~m!

p D n

Cja
~n!S z,b,m,

C1

C2
D .

The explicit expressions of theA(n), B(n), and C(n) coeffi-
cients are given in Appendix D. After integrating over the
lepton variables and the angle betweenbW andQW T , and drop-
ping the regular (Y) piece in Eq.~1!, we obtain

ds

dQ2dydQT
2 U

QT→0

5
s0

S
d~Q22MV

2 !H 1

2pQT
2 E

0

`

dhhJ0~h!e2S~h/QT ,Q,C1 ,C2! f j /h1
S x1 ,

C3
2QT

2

h2 D f k̄ /h2
S x2 ,

C3
2QT

2

h2 D 1 j↔ k̄J 1O~QT
21!,
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where we have substituted the resonance behavior by a fixed
mass for simplicity, and defineds0 as9 @7#

s05
4pa2

9Q2 , for V5g* ,

s05
p2a

3sW
2 (

jk
uVjku2, for V5W6,

s05
p2a

12sW
2 cW

2 (
jk

@~124uQj usW
2 !211#uVjku2, for V5Z0.

Here a is the fine structure constant,sW (cW) is the sine
~cosine! of the weak mixing angleuW , Qj is the electric
charge of the incoming quark in the units of the charge of the
positron~e.g.,Qup52/3, Qdown521/3, etc.!, andVjk is de-
fined by Eq.~4!. To evaluate the integral overh5bQT , we
use the following property of the Bessel functions:

E
0

`

dhhJ0~h!F~h!52E
0

`

dhhJ1~h!
dF~h!

dh
,

which holds for any function F(h) satisfying
@hJ1(h)F(h)#0

`50. Using the expansion of the Sudakov
exponentS(b,Q,C1 ,C2)5S(1)(b,Q,C1 ,C2)1O(aS

2) with

S~1!~b,Q,C1 ,C2!5
aS~Q2!

p F1

2
A~1!~C1!ln2S C2

2Q2

C1
2/b2D

1B~1!~C1 ,C2!lnS C2
2Q2

C1
2/b2D G ,

and the evolution equation of the parton distribution func-
tions

d f j /h~x,m2!

d ln m2 5
aS~m2!

2p
~Pj←a

~1!
^ f a/h!~x,m2!1O~aS

2!,

we can calculate the derivatives of the Sudakov factor and
the parton distributions with respect toh:

d

dh
e2S~h/QT ,Q,C1 ,C2!5

22

h

aS~Q2!

p FA~1!~C1!lnS C2
2Q2h2

C1
2QT

2 D
1B~1!~C1 ,C2!G1O~aS

2! and

d

dh
f j /hS x,

C3
2QT

2

h2 D 5
22

h

aS~Q2!

2p
~Pj←a

~1!
^ f a/h!~x,Q2!

1O~aS
2!.

Note thataS itself is expanded as

aS~m2!

2p
5

aS~Q2!

2p
2b0S aS~Q2!

2p D 2

lnS m2

Q2D1O„aS
3~Q2!…,

with b05(11NC22Nf)/6, whereNC is the number of colors
~3 in QCD! andNf is the number of light quark flavors with
masses less thanQ. In the evolution equation of the parton
distributions,

Pj←k
~1! ~z!5CFS 11z2

12z D
1

and

Pj←G
~1! ~z!5

1

2
@z21~12z!2# ~C2!

are the leading order Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi ~DGLAP! splitting kernels@49#, and ^ denotes the
convolution defined by

~Pj←a
~1!

^ f a/h!~x,m2!5E
x

1 dj

j
Pj←a

~1! S x

j D f a/h~j,m2!,

and the double parton indexa is running over all light quark
flavors and the gluon. In Eq.~C2!, the ‘‘1’’ prescription is
defined as

E
x

1

dz„G~z!…1F~z!5E
0

1

dzG~z!@F~z!Q~z2x!2F~1!#,

where

Q~x!5H 0, if x,0,

1, if x>0

is the unit step function andF(z) is an arbitrary function.
After utilizing the Bessel function property and substitut-

ing the derivatives into the resummation formula above, the
integral overh can be evaluated using

E
0

`

dhJ1~h!lnmS h

b0
D5H 1, if m50,

0, if m51,2 and b052e2gE,
~C3!

where gE is the Euler constant. The singular piece up to
O(aS) is found to be

9For our numerical calculation~within the ResBos Monte Carlo
package!, we have consistently used the on-shell scheme for all the
electroweak parameters in the improved Born level formula for in-
cluding large electroweak radiative corrections. In theV5Z0 case,
they are the same as those used in studying theZ0-pole physics at
LEP @48#.
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ds

dQ2dydQT
2 U

QT→0

5
s0

S
d~Q22MV

2 !
1

2pQT
2

aS~Q2!

p H @ f j /h1
~x1 ,Q2!~Pk̄←b^ f b/h2

!~x2 ,Q2!

1~Pj←a^ f a/h1
!~x1 ,Q2! f k̄ /h2

~x2 ,Q2!#1FA~1!~C1!lnS C1
2

C2
2b0

2

Q2

QT
2D 1B~1!~C1 ,C2!G

3 f j /h1
~x1 ,Q2! f k̄ /h2

~x2 ,Q2!1 j↔ k̄ J 1OS aS
2 ,

1

QT
D , ~C4!

for arbitrary C1 and C2 constants. IfC1 is not equal toC2b0 then, whenQT is of the order ofQ, the arbitrary log terms
ln„C1

2/(C2
2b0

2)… can potentially be larger than ln(QT
2/Q2). Therefore, to properly describe theQT distribution of the vector boson

in the matching region, i.e., forQT;Q, Eq. ~C4! has to be used to define the asymptotic piece atO(aS). This asymptotic
piece is different from the singular contribution derived from a fixed order perturbative calculation atO(aS) which is given by

ds

dQ2dydQT
2 U

QT→0

5
s0

S
d~Q22MV

2 !
1

2pQT
2

aS~Q2!

p H @ f j /h1
~x1 ,Q2!~Pk̄←b^ f b/h2

!~x2 ,Q2!

1~Pj←a^ f a/h1
!~x1 ,Q2! f k̄ /h2

~x2 ,Q2!#1FA~1!lnS Q2

QT
2D 1B~1!G

3 f j /h1
~x1 ,Q2! f k̄ /h2

~x2 ,Q2!1 j↔ k̄J 1OS aS
2 ,

1

QT
D , ~C5!

whereA(1)5CF andB(1)523CF/2. Compared to the general results forA(1)(C1) andB(1)(C1 ,C2), as listed in Appendix D,
the above results correspond to the special case ofC15C2b0 . The choice ofC15C2b05C35b052e2gE is usually referred
to as the canonical choice. Throughout this work, we use the canonical choice in our numerical calculations.

To derive the integral of theO(aS) corrections overQT , we start again from the resummation formula@Eq. ~1!# and the
expansion of theA, B, andC functions@Eq. ~C1!#. This time the evolution of parton distributions is expressed as

f j /h~x,m2!5 f j /h~x,Q2!1 f j /h
~1!~x,m2!1O~aS

2!,

with

f j /h
~1!~x,m2!5

aS~Q2!

2p
lnS m2

Q2D ~Pj←a
~1!

^ f a/h!~x,Q2!,

where summation over the partonic indexa is implied. After substituting these expansions in the resummation formula Eq.~1!
and integrating over both sides with respect toQT

2 , we use the integral formula, valid for an arbitrary functionF(b):

1

~2p!2 E
0

PT
2

dQT
2E d2beiQW T•bWF~b!5

1

2p E
0

`

dbPTJ1~bPT!F~b!,

together with Eq.~C3! to derive

E
0

PT
2

dQT
2 ds

dQ2dydQT
2 5

s0

S
d~Q22MV

2 !H X12
aS~Q2!

p F1

2
A~1! ln2S Q2

PT
2 D 1B~1! lnS Q2

PT
2 D GCf j /h1

~x1 ,Q2! f k̄ /h2
~x2 ,Q2!

2
aS~Q2!

2p
lnS Q2

PT
2 D @~Pj←a^ f a/h1

!~x1 ,Q2! f k̄ /h2
~x2 ,Q2!2 f j /h1

~x1 ,Q2!~Pk̄←b^ f b/h2
!~x2 ,Q2!#

1
aS~Q2!

p
@~Cja

~1!
^ f a/h1

!~x1 ,Q2! f k̄ /h2
~x2 ,Q2!1 f j /h1

~x1 ,Q2!~C
k̄b

~1!
^ f b/h2

!~x2 ,Q2!#1 j↔ k̄

1E
0

PT
2

dQT
2Y~QT ,Q,x1 ,x2!J , ~C6!
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wherex15eyQ/AS and x25e2yQ/AS. Equations~C5! and
~C6! ~together with the regular pieces, discussed in Appendix
E! are used to program theO(aS) results as discussed in the
beginning of Sec. III.

APPENDIX D: A, B, AND C FUNCTIONS

For completeness, we give here the coefficientsA, B, and
C utilized in our numerical calculations. The coefficients in
the Sudakov exponent are@7,21#

A~1!~C1!5CF ,

A~2!~C1!5CFF S 67

36
2

p2

12DNC2
5

18
Nf2b0 lnS b0

C1
D G ,

B~1!~C1 ,C2!5CFF2
3

2
22 lnS C2b0

C1
D G ,

B~2!~C1 ,C2!5CFH CFS p2

4
2

3

16
23z~3! D1NCS 11

36
p2

2
193

48
1

3

2
z~3! D1

NF

2 S 2
1

9
p21

17

12D
2F S 67

18
2

p2

6 DNC2
5

9
Nf G lnS C2b0

C1
D

1b0F ln2S b0

C1
D2 ln2~C2!2

3

2
ln~C2!G J ,

where Nf is the number of light quark flavors (mq,QV ,
e.g., Nf55 for W6 or Z0 production!, CF5tr(tata) is the
second order Casimir of the quark representation@with ta
being the SU(NC) generators in the fundamental representa-
tion#, b05(11NC22Nf)/6 and z(x) is the Riemann zeta
function, andz(3)'1.202. For QCD,NC53 andCF54/3.

The Cjk
(n) coefficients up ton51 are

Cjk
~0!S z,b,m,

C1

C2
D5d jkd~12z!,

CjG
~0!S z,b,m,

C1

C2
D50,

Cjk
~1!S z,b,m,

C1

C2
D5d jkCFH 1

2
~12z!2

1

CF
lnS mb

b0
D Pj←k

~1! ~z!

1d~12z!F2 ln2S C1

b0C2
e23/4D

1
p2

4
2

23

16G J ,

CjG
~1!S z,b,m,

C1

C2
D5

1

2
z~12z!2 lnS mb

b0
D Pj←G

~1! ~z!,

wherePj←a
(1) (z) are the leading order DGLAP splitting ker-

nels @49# given in Appendix C, andj andk represent quark
or antiquark flavors.

The constantsC1 , C2 , and C3[mb were introduced
when solving the renormalization group equation forW̃jk .
C1 enters the lower limitm̄5C1 /b in the integral of the
Sudakov exponent@cf. Eq. ~5!#, and determines the onset of
the nonperturbative physics. The renormalization constant
C2 , in the upper limit m̄5C2Q of the Sudakov integral,
specifies the scale of the hard scattering process. The scale
m5C3 /b is the scale at which theC functions are evaluated.
The canonical choice of these renormalization constants is
C15C352e2gE[b0 and C25C451 @7#. We adopt these
choices of the renormalization constants in the numerical
results of this work, because they eliminate large constant
factors within theA, B, andC functions.

After fixing the renormalization constants to the canonical
values, we obtain much simpler expressions ofA(1), B(1),
A(2), and B(2). The first order coefficients in the Sudakov
exponent become

A~1!~C1!5CF , and B~1!~C15b0 ,C251!523CF/2.

The second order coefficients in the Sudakov exponent sim-
plify to

A~2!~C15b0!5CFF S 67

36
2

p2

12DNC2
5

18
Nf G ,

B~2!~C15b0 ,C251!

5CF
2 S p2

4
2

3

16
23z~3! D1CFNCS 11

36
p22

193

48

1
3

2
z~3! D

1CFNf S 2
1

18
p21

17

24D .

The Wilson coefficientsCja
( i ) for the parity-conserving part

of the resummed result are also greatly simplified under the
canonical definition of the renormalization constants. Their
explicit forms are

Cjk
~1!S z,b,m5

b0

b
,
C1

C2
5b0D

5d jkH 2

3
~12z!1

1

3
d~12z!~p228!J

and

CjG
~1!S z,b,m5

b0

b
,
C1

C2
5b0D5

1

2
z~12z!.

As noted in Appendix C, the same Wilson coefficient func-
tions Cja also apply to the parity violating part which is
multiplied by the angular functionA352 cosu.

APPENDIX E: REGULAR PIECES

TheY piece in Eq.~1!, which is the difference of the fixed
order perturbative result and their singular part, is given by
the expression
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Y~QT ,Q,x1 ,x2 ,u,f,C4!

5E
x1

1 dj1

j1
E

x2

1 dj2

j2
(
n51

` FaS~C4Q!

p Gn

f a/h1
~j1 ,C4Q!

3Rab
~n!~QT ,Q,z1 ,z2 ,u,f! f b/h2

~j2 ,C4Q!, ~E1!

where zi5xi /j i ( i 51,2). The regular functionsRab
(n) only

contain contributions which are less singular than
QT

223@1 or ln(QT
2/Q2)# as QT→0. Their explicit expres-

sions for h1h2→V(→l 1l̄ 2)X are given below. The scale
for evaluating the regular pieces isC4Q. To minimize the
contribution of large logarithmic terms from higher order
corrections, we chooseC451 when calculating theY piece.

We define theqq̄8V and thel 1l̄ 2V vertices, respectively,
as

igm@gL~12g5!1gR~11g5!#

and

igm@ f L~12g5!1 f R~11g5!#.

For example, for V5W1, q5u, q̄85d̄, l 15ne , and
l̄ 25e1, the couplingsgL

25 f L
25GFMW

2 /& andgR
25 f R

250,
whereGF is the Fermi constant. Table I shows all the cou-
plings for the general case. In Eq.~E1!,

Rab
~1!5

16uVabu2

pQ2 @~gL
21gR

2 !~ f L
21 f R

2 !R1
ab1~gL

22gR
2 !

3~ f L
22 f R

2 !R2
ab#,

where the coefficient functionsRi
ab are given as follows:10

R1
j k̄ 5r j k̄L01

T1~ t,u!

s
d~s1t1u2Q2!FA01A2

1
Q

QT

T2~u,t !

T1~ t,u!
A1G Q2

MT
2 ,

R2
j k̄ 5r j k̄A31

T1~ t,u!

s
d~s1t1u2Q2!H Q2

QT
2 S Q

MT
21DA3

2
2Q2

QTMT

T2~ t,u!

T1~ t,u!
A4J ,

R1
G j5r G jL02

Q2QT
2

uMT
2

T1~u,s!

s
d~s1t1u2Q2!

T1~u,2s!

T1~u,s!
@A01A2#

1
Q

QT

~Q22u!21T2~u,t !

T1~u,s!
A1J ,

R2
G j52r G jA32

QT
2

u

T1~u,s!

s
d~s1t1u2Q2!

3H Q2

QT
2 F Q

MT
S 2u~Q22s!

T1~u,s!
21D11GA3

2
2Q2

QTMT
F2s~Q22s!

T1~u,s!
11GA4J ,

with

r j k̄ 5
Q2

QT
2 H T1~ t,u!

s
d~s1t1u2Q2!22d~12z1!d~12z2!

3F lnS Q2

QT
2D 2

3

2G2d~12z1!S 11z2
2

12z2
D

1

2d~12z2!S 11z1
2

12z1
D

1
J ,

and

r G j5
Q2

QT
2 H 2

QT
2

u

T1~u,s!

s
d~s1t1u2Q2!

2@z1
21~12z1!2#d~12z2!J ,

where T6(t,u)5(Q22t)26(Q22u)2. The Mandelstam
variabless,t,u and the angular functionsL0 ,Ai are defined
in Appendix B. TheVjk coefficients are defined by Eq.~4!.
For a5 j and b5G: uVjGu25(kuVjku2 where j and k are
light quark flavors with opposite weak isospin quantum num-
bers. Up to this order, there is no contribution from gluon-
gluon initial state, i.e.,RGG

(1)50. The remaining coefficient
functions with all possible combinations of the quark and

gluon indices~for exampleRk̄ j , RG ̄ , or RjG, etc.! are ob-
tained by the same crossing rules summarized in Appendix
B.

Having both the singular and the regular pieces expanded
up toO(aS), we can construct the NLO Monte Carlo calcu-
lation by first including the contribution from Eq.~C6!, with
PT5QT

sep, for QT,QT
sep. Second, forQT.QT

sep, we include
the O(aS) perturbative results, which is equal to the sum of
the singular@Eq. ~C5!# and the regular@Eq. ~E1!# pieces up
to O(aS). @Needless to say that the relevant angular func-
tions for using Eqs.~C5! and ~C6! areL0511cos2 u and
A352 cosu, cf. Eq. ~B2!.# Hence, the NLO total rate is
given by the sum of the contributions from both the
QT,QT

sep and theQT.QT
sep regions.10Note that in Ref.@13# there were typos inR1

j k̄ andR2
G j .
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@23# T. Sjöstrand, Phys. Lett.157B, 321 ~1985!.
@24# W. Giele, E. Glover, and D. A. Kosover, Nucl. Phys.B403,

633 ~1993!.

@25# M. H. Reno, Phys. Rev. D49, 4326~1994!.
@26# D0 Collaboration, S. Abachiet al., Phys. Rev. Lett.75, 3226

~1995!.
@27# G. Altarelli, R. K. Ellis, and G. Martinelli, Z. Phys. C27, 617

~1985!.
@28# P. B. Arnold and M. H. Reno, Nucl. Phys.B319, 37 ~1989!;

B330, 284~E! ~1990!.
@29# M. Dickson, Ph.D. thesis, Rochester University, 1994; CDF

Collaboration, F. Abeet al., Phys. Rev. Lett.74, 850 ~1995!.
@30# TeV-2000 Study Group, Future ElectroWeak Physics at the

Fermilab Tevatron, edited by D. Amidei and R. Brock, Report
No. FERMILAB-Pub-96/082~unpublished!.

@31# W. J. Stirling and A. D. Martin, Phys. Lett. B237, 551~1990!.
@32# V. Barger, A. D. Martin, and R. J. N. Phillips, Z. Phys. C21,

99 ~1983!.
@33# J. Smith, W. L. van Neerven, and J. A. M. Vermaseren, Phys.

Rev. Lett.50, 1738~1983!.
@34# P. P. Bagleyet al., Report No. FERMILAB-Conf-96/392,

1996 ~unpublished!.
@35# I. Adam, Ph.D. thesis, Columbia University, 1997.
@36# E. Flattum, Ph.D. thesis, Michigan State University, 1996.
@37# U. Baur and M. Demarteau, Report No. FERMILAB-Conf-96/

423, 1996~unpublished!.
@38# W. T. Giele and S. Keller, Report No. FERMILAB-Conf-96/

307-T, 1996~unpublished!.
@39# CDF Collaboration, F. Abeet al., Phys. Rev. Lett.67, 1502

~1991!.
@40# R. K. Ellis, D. A. Ross, and S. Veseli, Report No.

FERMILAB-PUB-97/082-T, 1997~unpublished!.
@41# P. Aurenche and J. Lindfors, Nucl. Phys.B185, 301 ~1981!.
@42# J. G. Körner, G. Schuler, G. Kramer, and B. Lampe, Z. Phys.

C 32, 181 ~1986!.
@43# G. Altarelli, R. K. Ellis, and G. Martinelli, Nucl. Phys.B157,

461 ~1979!.
@44# E. Mirkes, Nucl. Phys.B387, 3 ~1992!.
@45# M. Chanowitz, M. Furman, and I. Hinchliffe, Phys. Lett.78B,

285 ~1978!; Nucl. Phys.B159, 225 ~1979!.
@46# CDF Collaboration, F. Abeet al., Phys. Rev. Lett.76, 3070

~1996!.
@47# CDF Collaboration, F. Abeet al., Phys. Rev. D52, 4784

~1995!.
@48# R. D. Peccei, Report No. UCLA-96-TEP-35, 1996~unpub-

lished!.
@49# Yu. L. Dokshitzer, Sov. Phys. JETP46, 641 ~1977!; V. N.

Gribov and L. N. Lipatov, Sov. J. Nucl. Phys.15, 78 ~1972!;
G. Altarelli and G. Parisi, Nucl. Phys.B126, 298 ~1977!.

@50# H. L. Lai, J. Botts, J. Huston, J. G. Morfin, J. F. Owens, J. W.
Qui, W. K. Tung, and H. Weerts, Phys. Rev. D51, 4763
~1995!.

56 5583SOFT GLUON EFFECTS ON LEPTON PAIRS AT . . .


