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Applications of perturbative QCD to deeply virtual Compton scattering and hard exclusive electroproduction
processes require a generalization of usual parton distributions for the case when long-distance information is
accumulated in nonforward matrix elemers’|0(0,z)|p) of quark and gluon light-cone operators. We
describe two types of nonperturbative functions parametrizing such matrix elements: double distributions
F(x,y:;t) and nonforward distribution functions,(X;t), discuss their spectral properties, evolution equations
which they satisfy, basic uses and general aspects of factorization for hard exclusive processes.
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[. INTRODUCTION ation when both the variablé specifying the longitudinal
momentum asymmetrigskewednegsof the nonperturbative
The standard feature of applications of perturbative QCDmatrix element(p’| ...|p) and the absolute value of the

to hard processes is the introduction of phenomenologicahomentum transfet=(p’'—p)? are small. Studying the
functions accumulating information about nonperturbativeDVCS process, one should be able to consider the whole
long-distance dynamics. The well-known examples are theegion 0<¢<1 andt~1 Ge\? [15]. In this situation, one
parton distribution function$,(x) [1] used in perturbative deals with essentialljonforward (or off-forward in termi-
QCD approaches to hard inclusive processes and distributiomology of Ref. [10]) kinematics for the matrix element
amplitudese ,(X), en(X1,X2,X3), Which naturally emerge in  (p’|---|p). The basics of the perturbative QGBQCD) ap-
the asymptotic QCD analyses of hard exclusive processqwoaches incorporating asymmetric or off-forward parton
[2-7]. Recently, it was argued that the same gluon distribudistributions were formulated ih10,16,17,1% A detailed
tion function fy(x) used for description of hard inclusive analysis of PQCD factorization for hard meson electropro-
processes also determines the amplitudes of hard exclusikiction processes was given in RgL8]. Applications of
J/ ¢ [8] and p-meson[9] electroproduction. Furthermore, it asymmetric gluon distributions to elastic diffractivl ¢
was propose{l10] to use another exclusive process of deeplyelectroproduction were discussed[k®-21]. In a recent pa-
virtual Compton scattering* p— yp’ (DVCS) for measur- per [22], the off-forward quark distributions were studied
ing quark distribution functions inaccessible in inclusive within the MIT bag model. A numerical study of the evolu-
measurementéearlier discussions of nonforward Compton- tion of the asymmetric gluon distribution was attempted in
like amplitudesy* p— y*p’ with a virtual photon 0iZ° in  Ref.[23]. Thus, there is an increasing interest in the studies
the final state can be found jA1-13). The important fea- of these new types of hadron distributions, their general
ture (noticed long agd11,17)) is that kinematics of hard properties and applications.
elastic electroproduction processéBVCS can be also Our goal in the present paper is to give a detailed descrip-
treated as one of themequires the presence of the longitu- tion of the approach outlined in our earlier papgt$,17.
dinal component in the momentum transfeep—p’ from  The basic idea 0f16,17] is that constructing a consistent
the initial hadron to the finak = {p. For DVCS ancp elec-  PQCD approach for amplitudes of hard exclusive electropro-
troproduction in the regiorQ?>|t|, m3, the longitudinal duction processes one should treat the initial momerpum
momentum asymmetryor “skewedness) parameterf co- and the longitudinal part of the momentum transfeon
incides with the Bjorken variabIeBJ-:QZ/Z(pq) associated equal footing by introducing double distributiod(x,y),
with the virtual photon momenturg [14]. This means that which specify the fractions op andr, carried by the con-
the nonperturbative matrix elemeit’| . . . |p) is essentially ~ stituents of the nucleon. These distributions have hybrid
asymmetric and, strictly speaking, the distributions whichproperties: they look like distribution functions with respect
appear in the hard elastic electroproduction amplitudes diffeto x and like distribution amplitudes with respectyto Writ-
from those studied in inclusive processes. In the latter caséng matrix elements of composite operators in terms of
one has a symmetric situation when the same momemtum double distributions is the starting point of constructing the
appears in both brackets of the hadronic matrix elemenPQCD parton picture. Another important step is taking into
(pl|...|p). account the logarithmic scaling violation. The evolution ker-
For diffractive processes, one deals with a kinematic situnels R(x,y; &, n) for double distributions have a remarkable
property: they produce the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution kernelsP(x/&) [24-26
*Also at Laboratory of Theoretical Physics, JINR, Dubna, Rus-when integrated ovey, while integratingR(x,y; &, ) overx
sian Federation. one obtains the Brodsky-LepagéBL-) type evolution ker-
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56 NONFORWARD PARTON DISTRIBUTIONS 5525

nelsV/(y, ) [6,7] for the relevant distribution amplitudés. realistic QCD case. In particular, the spectral properties of
One can use these properties of the kernels to construct fodistribution functions are not affected by the numerators of
mal solutions of the one-loop evolution equations for thequark and gluon propagators, derivatives in triple-gluon ver-

double distributions. The longitudinal momentum transfer tices, etc. Hence, studying a scalar model we just concentrate
is proportional top: r,=¢p and, for this reason, it is conve- ©n the denominator structure of the relevant momentum in-
nient to parametrize matrix elemer—r| . . .|p) by asym- tegrals, which is the same in both theories. We start with the
metric distribution functions¥,(X) specifying the total light- simplest example of the usudbrward distributionf(x) and
cone fractions<p, (X— ¢)p of the initial hadron momentum then consider more and more complicated functions: the
p carried by the “outgoing” and “returning” partond.It double distributior(x,y), asymmetric distribution function
should be emphasized that double distributiéis,y) are F(X) and nonforward distributiorF,(X;t). Explicit expres-

universal functions in the sense that thev do not depend 0sions for these functions at one-loop level are obtained with
; y ot depf e help of thea representation. Using the latter one can
the skewedness parametewhile the asymmetric distribu-

. ) ) . easily establish the spectral properties of the distribution
tion fu_nctlons?-'g(X) form a fam.||y ofX-dependent funct|.ons functions. Thex representation also provides a very effective
changing their shape wheti is changed. The functions

i ) : starting point for a general analysis of factorization and
F¢(X) also have hybrid properties. In the regidf=¢ the  |3rge.Q2 behavior of elastic amplitudes. In Sec. Ill, we out-
returning parton carries a positive fractioX{ {)p of the |ine the all-order extension of the one-loop analysis. We give
initial momentump, and henceF,(X) is similar to the usual  an all-order definition of the double distribution function
parton distributionf(X). On the other hand, in the region F(x,y) and demonstrate that it has the spectral properties
0=<X=/{ the differenceX—¢ is negative, i.e., the second 0=<{x,y,x+y}=<1. We show how one can use the
parton should be treated as propagating together with the firgepresentation analysis for finding integration regions re-
one. The partons in this case share the longitudinal momensponsible for the leading larg@? contributions. We also
tum transferr;={p in fractions Y=X/{ and 1-Y. This  discuss modifications of twist counting rules in QCD due to
means that in the regioXi<{ the functionZ,(X) looks like  cancellations between different gluonic contributions in the
a distribution amplitude. It is possible to formulate equationq:eynman gauge and other complications which appear in
governing the evolution of the asymmetric distribution func-gauge theories. In Sec. IV, we give definitions of nonforward
tions FY(X) and establish relations between these functionsgistributions,(X;t) in QCD. Just like the usual distribution
double distributions=(x,y) and usual distribution functions functions f(x) and distribution amplitudes(y), the new
f(x) [16,17. distributions depend on the factorization scalgi.e., it is
Constructing a QCD parton picture for hard electropro-more appropriate to use the notati&p(X;t;«) for the non-
duction processes, it is very important to know spectral propforward distributions rather than simpl#(X;t). Evolution
erties of the relevant parton distributioRgx,y) and F;(X). equations governing thg dependence of the nonforward
Using the approacf28] based on the-representation analy- distributions are discussed in Sec. V and Sec. VI. We show
sis[29-32, it is possible to prove that double distributions how one can obtain evolution kernels for nonforward distri-
F(x,y) have a natural property that bathandy satisfy the  putions using already known kern@$u,v) of the evolution
“parton” constraints Gsx<1, O<y=<1 for any Feynman equation for the light-ray operatof83,34. Since this equa-
diagram contributing td=(x,y). A less obvious restriction tion has an operator form, substituting it into a specific ma-
0=x+y=1 guarantees that the argumefi=x+y¢ of the trix element one can conveB(u,v) into desired evolution

asymmetric distribution7,(X) also changes between the kernels. In particular, takingp| . . . |p) one obtains the DG-
limits 0 and 1. An important observation here is that 0 LAP kernels, choosingO| . . .|p) one gets BL-type kernels
can be obtained only if botx=0 andy=0. Because of while resorting to(p’| .. .|p) and parametrizing the matrix

vanishing phase space for such a configuration, one may exiements through=(x,y) or F,(X) one ends up with the
pect that asymmetric distribution,(X) vanish forX=0.  kernelsR(x,y;&,7) andW,(X,Z) governing the evolution of
This property is very essential, because the hard subprocedsuble and asymmetric/nonforward distributions, respec-
amplitudes usually containX/factors. WhenF,(0)#0, one tively. In Sec. V, we discuss the derivation of the evolution
faces a singularityr;(X)/X at the end point of the integra- kernelsW,(X,Z) for the nonforward distributions. We show,
tion region O<sX=<1. Since such a singularity is not inte- in particular, that in the region €{X,Z}<¢, the kernels
grable, factorization of short- and long-distance contributionswg(x,z) reduce to the BL-type kernel(X,Z) calculated
does not work in that case. for rescaled variableX/Z, Z/{. This result is very natural,
The paper is organized in the following way. In Sec. II, since F(X) can be treated as a distribution amplitude when
we consider parton distributions in a toy scalar model. Dex<¢. In the opposite limitt<{X,Z}<1, the evolution is
spite its simplicity, it shares many common features with thesimilar to that of the DGLAP equation, the basic distinction
being the difference between the outgoXg and returning
X'=X—-¢, Z'=Z—-¢ momentum fractions. We show that

10riginally, the evolution equation for the pion distribution am- Writing the kernelsW,(X,Z) in terms of the fractions
plitude in QCD was derived and solved in R¢§], where the X,X',Z,Z" in the region{<{X,Z}<1 gives the functions
anomalous dimension matrik,, was used instead af(y,7) (see ~ W(X,X’;Z,Z") which have the symmetry property with re-
also[27)). spect to the interchange of initial and final partons:

’The asymmetric distribution functions defined in REf7] are  W(X,X';Z,Z')=W(X',X;Z',Z). For {=0 one hax=X’,
similar to, but not coinciding with, the—0 limit of the off-forward ~ Z=Z" and the kernelsW,_(X,Z) acquire the DGLAP
parton distributions introduced by [110], see Sec. IX. form. In Sec. VI, we discuss the QCD evolution of the non-
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FIG. 1. Scalar model analogs @),(b) virtual forward Compton amplitude an@),(d) deeply virtual Compton scattering.

forward distributions. Qualitatively, the evolution can be de-The latter characterizes the subtraction procedure for singu-
scribed in the following way. Due to the DGLAP-type evo- larities that appear on the light co2=0 (in general,u
lution in the X>¢ region, the momenta of partons decreasemay be different from the scalgg introduced by theR

and distributions shift into the regions of smallér How-  operation for ordinary UV divergences, but the usual con-
ever, when the parton momentum degrades to values smallgention is to takeu= wg). Furthermore, depending on the
than the momentum transfer= {p, the further evolution is type of the composite operatéi0,z), one would get quark,

like that for a distribution amplitude: it tends to make the antiquark, flavor-singlet, flavor-nonsinglet, gluonic, spin-
distribution symmetri¢or antisymmetrig with respect to the dependent, spin-independent, etc., distributions. In this situ-
central pointX={/2 of the (0,{) segment. In Sec. VI, we ation, we propose to follow a step by step approach. We will
briefly discuss two basic uses of nonforward distributions:start with simplest examples and then gradually proceed to
deeply virtual Compton scattering and hard elastic mesomore complicated ones. For this reason, we consider first a
electroproduction. In particular, we show how to combinetoy scalar model. The lowest nontrivial level corresponds to
the definition of the gluon distribution through the matrix one-loop Feynman diagrams. The relevant integrals are eas-
element of the gauge-invariant gluonic operatorily calculable, and their study provides useful information
Gia(O)Eab(O,z;A)Giy(z) with the usual Feynman rules for- about the structure of the nonforward distributions, espe-
mulated for the vector potentia, . In Sec. VIII, we discuss ~ cially about their spectral properties, because the latter are
possible sources of PQCD factorization breaking for hardnsensitive to numerators of quark and gluon propagators and
elastic electroproduction processes, due to singularities at tfgher complications brought in by the spin structure of the
end points of the integration region. In particular, we emphartealistic QCD case.

size the importance of establishing tt#(0)=0 property

for the nonforward distributions. In Sec. IX, we compare our B. Forward distribution functions

notations, definitions and terminology with those used by
other authorgoff-forward parton distribution$i(x,¢;t) in-
troduced by J{10] and nondiagonal distributionyx; ,X5)
defined by Collins, Frankfurt, and Strikm&b8]]. Section X
contains concluding remarks.

Our starting point is the scalar analogue of the usual “for-
ward” parton distribution functiond(x). Consider a one-
loop box diagram for a scalar version of the virtual forward
Compton amplitudéFigs. Xa) and 1b)]. Both incoming and
outgoing virtual “photons” have momentum=q’ —{p,
whereq’ andp are lightlike momentad’)2=0, p?=0. The

Il. FORWARD AND NONFORWARD DISTRIBUTIONS “photons” couple with the constan¢ to a massive scalar
IN SCALAR TOY MODEL “quark” field ¢. The initial and final hadrons are imitated by
A. Introductory remarks massless scalar particles with the momenfuniTheir cou-

o o pling to the quarks is specified by a constantin these
The parton distributiong(X;t; ) parametrizing nonfor-  potations,g2= — Q%= —2¢(pq’). Since Pg)=(pq’), the
ward matrix elementgp’|O(0z)|p) of composite two-body parameter ¢ coincides with the Bjorken variable

operatorsO(02) on the light conez’=0 depend on four {=xg;j=Q?%2(pq). Using thea representation for the scalar
parameters. In addition to the “usual” parton variabte  propagators

specifying the fractiorX p of the initial hadron momentum

carried by the active partdmore formally,X may be treated 1 . ia(k2—m2+ie)
as the Fourier-conjugate parameter fmz)], the functions mz—kz—ie_' o € da 2.9)

F(X;t;u) also depend on the invariant momentum transfer
t=(p’—p)% the skewedness parametef=(rz)/(p2) and calculating the resulting Gaussian integral over the loop
(wherer=p—p’), and the evolution-factorization scaje momentumk we obtain, for Fig. (a),

e?9? (=
Ta(F’ﬂF‘@fo exp[i

We use the shorthand notatiars a; + a,+ a3+ a,. The largeQ? asymptotics is determined by integration over the region
where the coefficient accompanying®(’) vanishes. Otherwise, the integrand rapidly oscillates and the result of integration

az—{(artaztay)

2(pq’)a; A(m?—ie) (2.2

)\2

daldazda3da4
a;tar,taztay
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is exponentially suppressed. Integration ower~0 region is evidently the simplest possibility. Other variants are
a1t astazta,~0 or az—{(ar,+ az+ a,)~0. It is easy to check that the leading power behavior is generated by the
a1~ 0 integration, which gives

ie2g? (= 1 e—ﬁ(mz—ie)
162 Jo 2(pq')(as/N—C+i€) N2

Ta(p,q)=— daydazda,+O(1/Q%), 2.3

wherex= as+ az+ a,. Introducing the distribution function

igz w ( as e—i‘X(mZ—ie)
f(x)= ol Xx— = da,daszday, 2.4
) 1672 artaztay A2 ZimeE @4
we can write the leading power contribution in the parton form:
. J‘l e? 1 e? 1
T:(p,q)=— - - fxdx=—f —.fxdxzftx, f(x)dx. 2.
as(pq) Oz(pq)(x_§+|€)() o(Xp+Q)2+|6() Oa( pq)() ( 5)
At the last step, we introduced the parton subprocess amplitude
eZ

Hence, the parametgrcan be treated as the fraction of the initial momenfuparried by the quark interacting with the virtual
photon. Note that the limits@x<1 necessary for this interpretation fare automatically imposed by therepresentation
of f(x). A similar result holds for thei-channel diagramtt:

. 1 e? 1 e? e
Tbs(p,q)=fo 2(pq,)(xﬂ_ie)f(X)dX=—fO mf(xmx:fotb(xp,q)f(X)dx. 27

The distribution functiorf (x) is defined here by the sameparameter integrdR.4). The latter can be easily calculated to give

2
f(x)= 16—92—2(1 X) 9(0<x<1). (2.8

Note, thatf(x) is purely real. Due to singularity at=¢ in Eq. (2.5), the total amplitudeT=T,+ T, has both real and
imaginary parts. Sincg=0 and{=0, its imaginary part is given by th&channel contributiorT 5(p,q) only:

“zm = [ m oo [ 5o ot O _ 1 9 14 @9
m Q)= m t,(xp, X)dx= X— X)dx= —= p - ). .
e Pa)= ), Imtalxp. 20pq) "¢ 2(pq) _ 2(pq) T6x2m2\ "¢
The real part ofT is given byT, and by the real part of ,:
ReT3(p,q) flR ta( )f(x)d ¢ Pfl f(X)d (2.10
e Q)= eta(xp, X)dx= — - X, .
alPA= ], aXP.d 2(pq’)  Jo x—¢

whereP stands for the principal value prescription.
To translate these results into the operator product expaf®@Bh) language, we write the contribution of Figgaland
1(b) in the coordinate representation:

T(p.q)= j (pl$(0)p(2)|p)(e%?+€'9?)D (2% d*z. (2.1

The largeQ? asymptotics of T(p,q) is given by the leading light-cone behavior of both the quark propagator
Dm(zZ)=1/4im?(z*—i€)+ ... and the matrix elemerp|$(0)H(2)|p),

e i(02 1 gi(a2)
0= | Frzgz—ig (PIHOS@IP)a-odz+OLIQY. (212

Defining the parton distribution functiof(x) by
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11 .
(pl(0)(2)|p)|2—0= fo 5 (e7 (P24 eXPH)f(x)dx, (2.13

we rederive the parton formuld2.5 and(2.7). Basically, the integral2.13 can be treated as a Fourier representation for the
light-cone matrix elemenp|$(0)$(z)|p)| 2= o= f(p2) which is a function of the only variablepg). However, to derive the
spectral constraint-1<x=<1 for the Fourier partner of(z) and establish the properfyx) = f(—x), one should incorporate
the fact thatf (p2) is given by Feynman integrals with specific analytic properties and that we have the same scadaafield
both points 0 and. The a representation which we used above is one of the most effe¢hivagh perturbativeways to take
these properties into account. In REZ8] (see also Sec. Il beloythe « representation was used to prove that the constraint
0=<x=1 in Eq.(2.13 and similar(but more complicatedconstraints for multiparton distributions and distribution amplitudes
hold for any Feynman diagram. Two other approaches to studying spectral properties of parton distributions are described in
[36,37.

Anticipating comparison with the nonforward distributions discussed below, it is worth emphasizing here that the Bjorken
{ parameter is not present in E®.13 defining the parton distribution functidi{x). It appears only after one calculates the
Compton amplitudd (p,q).

C. Double distributions

Now, consider a one-loop box diagram for the scalar analogue of the deeply virtual Compton scattering afifptude
1(c) and Xd)]. Using the same basic light-cone momeptg’ as in the forward case, we write the momentum of the incoming
virtual photon asg=q’'—¢{p. The outgoing real photon carries the lightlike momentgin The momentum conservation
requires that the final hadron has the momentum {Jp, i.e., in this kinematics we have a lightlike momentum transfer
r={p. Since the initial momentg,p are identical to those of the forward amplitude, the paramétesincides with the
Bjorken variablexBjEQZ/Z(pq). In the a representation, the contribution of Figclis

I — g( 3+ 4) 2 . daldazda3da4
T(paa) =1 16,2 f exp[ 2(pq’ )al +a2+a3+a4 Nm—ie) | —— 7 (2.14
The largeQ? limit is again governed by the small; integration which gives
iezgz © 1 e—iX(mz—ie)
T(p,a.9")=— da,dazda,+0O(1/Q%). (2.15

1672 Jo 2(pq')[as/h—L(1—ay/N) +i€] N2

In the forward case, the rati@; /\ was substituted by the variabkewhich was interpreted then as the fraction of the initial

hadron momentum carried by the active quark. The result expressed 6. Eg.contains also another ratio, IX. So, let us
introduce thedouble distribution

e—iX(mZ—ie)

Xz dazdagda4. (216)

Fuy= -2 fm‘s x- || y- ——
’ 1672 Jo artaztay artaztay

It is easy to see that both variableg/ vary between 0 and 1. Furthermore, their sum is also confined within these limits:
0=x+y=<1. HenceF(Xx,y)=0(x+y=<1)F(x,y). Using Eq.(2.16, we write the leading power contribution ®{(p,q,q’) in
terms of the double distribution:

. , 11 e? 1(1 e?
TP, ):_Jo fo 2(pq’)(><+y£—§+ie)F(X’y)dXdy:_fo fo (xpryrrqisie (xydxdy

11
= Jo Jo te(Xp+yr,q,q9")F(x,y)0(x+y=<1)dxdy. (2.17

The parton subprocess amplitutjeis given by

e2

(Xp+yr+q)°+ie’

to(xp+yr,q,q')=— (2.18

Hence, the momentump+yr of the quark interacting with the virtual photon originates both from the initial hadron
momentump (termxp) and the momentum transf@ermyr). In a similar way, for thai-channel diagrariFig. 1(d)], we get
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. 11 e? 11 e?
Tds(p’q"g)zjo fo 2(pq’)(><+y§—ie)F(X'y)dXdy:_fo fo xpryr—qZrie Y
11
EJO fo tg(xp+yr,q,q9’)F(x,y) 0(x+y=<1)dxdy, (2.19
with the same double distributiof(x,y) given by Eq.(2.16). In the explicit form
9
F(x,y)= W@(Osx+ysl). (2.20

Again, F(x,y) is purely real. Comparing the representations fof(x) andF(x,y), we obtain the reduction formula for the
double distributionF(x,y):

1-x
fo F(x,y)dy="f(x). (2.2

Due to the restrictiong=0, y=0, the imaginary part of the total amplitude=T.+ T is given by thes-channel contri-
bution alone:

1 ) 1 101 1 4
P Im T.(£,Q )=m fo fo S(X+yl—0)F(X,y)0(x+y<1)dxdy= 22(p0) fo F(x,1—x/¢)dx
1 1 1
=2 fo F(yé“,Y)dyEm‘D(é)- (2.22

The last form is similar to the expression for frin the forward case: one should just use the functigy) instead off (£).
Moreover, the integral definin@({) looks similar to that appearing in the reduction form(#a21). Still, the two integrals are
not identical and, in genera® ({) # f({). Using the explicit form ofF(x,y) for our toy model, we obtain
g2
@(§)=W0(0$§Sl). (2.23
The factor (1-¢) present inf({) [see Eq(2.8)], does not appear here. Note, however, that the difference is small for small

In the (OPE language, the basic change compared to the forward case is that we should deal now with the asymmetric
matrix elementp—r|4(0)#(z)|p). Our definition of the double distributiofi(x,y) corresponds to the following parametri-
zation:

111 -
(p—r[#(0)$(2)|P)|2=0= fo fo 5 (&7 P22 4 @AV E(x,y) B(x+y<1)dxdy. (2.24)

Taking the limitr =0 in Eq.(2.24) gives the matrix element itself accumulates a process-independent information and,
defining the usual parton distribution functié(x), and we hence, has quite a general nature.

reobtain the reduction formulg.21). Again, this definition Thus, despite the fact that the momeptandr are pro-

of F(x,y) can be treated as a Fourier representation for gortional to each other=¢{p, there is a clear distinction
function of two independent variablep®) and (z), with  between them, sincge andr specify the momentum flow in
the spectral constraints=0, y=0, x+y=<1 dictated by the two different channels. Far=0, the momentum flows only
analytic structure of the relevant Feynman integrals. An im4n the s channel and the total momentum entering into the
portant feature implied by the representati¢h24) is the  composite operator vertex is zero. In this case, the matrix
absence of thef dependence in the double distribution element coincides with the usual distribution function. The
F(x,y). The asymmetric matrix elemeii2.24), of course, partons entering the composite vertex then carry the fractions
has { dependence. But it appears only through the ratiok; (i=1,2) of the initial proton momentum. In general,
(rz)/(p2) of variables in the exponential factor. In this treat- —1<x;<<1, but whenx; is negative, we should interpret the
ment, { characterizes the “skewedness” or “longitudinal parton as going out of the composite vertex and returning to
momentum asymmetry” of the matrix elements. The factthe final hadron. In other words, can be redefined to secure
that for the deeply virtual Compton amplitudethe param- that the integral always runs over the segmestx@<1. In
eter { coincides with the Bjorken variabbijzQZIZ(pq) is  this parton picture, the spectators take the remaining momen-
a specific feature of a particular process. The matrix elemertum (1—x)p. On the other hand, if the total momentum
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flowing through the composite vertex is the matrix ele-
ment has the structure of the distribution amplitude in which *# / \ (X-Lrp
the momentum r splits into the fractionsyr and
(1—y)r=yr carried by the quark fields attached to that ver- .~ >
tex. In a combined situation, when bgthandr are nonzero, P p-r
the initial quark has momentump+yr, while the final one

carries the momentump—yr. Both the initial active quark a) b)

and the spectator carry positive fractions of the lightlike mo- FIG. 2. Longitudinal momentum flow for two components of

mentum p: x+¢y for the active quark and—{y=(1 the asymmetric distribution functiafi,(X): (a) X> ¢ and(b) X<{.
—Xx—Yy)+(1— )y for the spectator. However, the total frac-

tion of the initial momentunp carried by the quark returning
the fractionxp into the hadron matrix element is given by
x—y{ and it may take both positive and negative values.

One can see that whefi-0, the limiting curve forF,(X)
reproduces the usual distribution function:

D. Asymmetric distribution functions

Since (z)={(p2), the variabley appears in Eq(2.24) Fr=o(X)=1(X). (2.28
only in thex+y{=X combination, wher&X can be treated
as thetotal fraction of the initial hadron momentumcarried In generaL this formula also follows direcﬂy from the defi-
by the active quark. Sincg<1 andx+y<1, the variableX nition of F,(X) and the reduction formul&2.21) for the
satisfies a natural constrainsX<1. Integrating the double double distributiorF (X, ).
distributionF(X—y{,y) overy gives theasymmetric distri- The fraction K—¢)=X' of the original hadron momen-
bution function tum p carried by the “returning” parton differs frorx by ¢:
X—X’"={[14]. SinceX changes from 0 to 1 ang 0,1, the
- fraction X’ can be either positive or negative, i.e., the asym-
Fo(X)=0(X={) fxﬁ:(x—yé,y)dy metric distribt_;tion function has two components porrespond-
0 ing to the regions £X=¢ and 0<X</. In the regionX>¢
[Fig. 2@] where the initial parton momentup is larger
Xi¢ than the momentum transfer= {p, the functionF,(X) can
+ 9(X$§)f F(X—yZ,y)dy, (2.25 be treated as a generalization of the usual distribution func-
0 tion f(x) for the asymmetric case when the final hadron mo-
mentump’ differs by {p from the initial momentunp. In
this case,F;(X) describes a parton going out of the hadron
with a positive fractionX p of the original hadron momentum
Where§ 1—-¢{. The basic distinction between the double and then coming back into the hadron with a chan¢mad
distributionF(x,y) and the asymmetric distribution function still positive) fraction (X—¢)p. The parameter specifies
F¢(X) is that the former is a universal function in the sensethe longitudinal momentum asymmetry of the matrix ele-
that it does not depend on the skewedness parariigthile  ment.
the latter is explicitly labeled by it. Hence, we deal now with  In the regionX< ¢ [Fig. 2(b)], the “returning” parton has
a family of asymmetric distribution function,(X) whose a negative fractionX—¢) of the light-cone momenturp.
shape changes whehis changed. In our toy modef,(X)  Hence, it is more appropriate to treat it as a parton going out
has the followinga representation: of the hadron and propagating along with the original parton.
Writing X as X=Y{, we see that both partons carry now
positive fractionsY{p=Yr and Yr=(1-Y)r of the mo-
mentum transfer. The asymmetric distribution function in
the regionX=Y¢<{ looks like a distribution amplitude

ig? (= +
Fixy=9 5(X_aa_é“az

2
16m aptasta, V¥ ,(Y) for a ¢¢ state with the total momentum= ¢p:
e—i?{(mz—is)
XT dazdaada4. (226) v
v 0= [Fo-yevay. @29
Taking the integrals, we get the explicit form
In our model,
2 —
g X 1-X
F(X)= 1672m2 0(0 XSO+7-7 9(§<X<1)] g°
(2.27 YAY)= 16,2 m2Y¢9(O<Y<1) (2.30
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Both F(x,y) andF,(X) in our model are purely real. This
result is determined, in fact, by general properties of the
definition of the double distribution, Eq2.16. Indeed, let
us introduce the Feynman parametgrsby «;=\p; . After
integrating over\, the only possible source of imaginary
contributions is the denominator factor i —ie). How-
ever, sincem?>0, this factor is always positive and the in-
tegral is purely real. This would not happen if the initial
“hadron” has a sufficiently large masd >2m. In this case, FIG. 3. (a) Structure of momentum integral defining the asym-
instead of 1/th®>—ie) we would get 1/ M2B83(1— B3) metric distribution functiorF,(X). (b) Cut of parton-hadron ampli-
+m?—ie) if the final hadron has the same mads Then, tude corresponding to the residue for the regitr¢. (c) Cut of
the denominator is not positive definiteNM>2m, and the parton-hadron amplitude corresponding to the residue for the region
integral has both real and imaginary part. Clearly, the imagiX<{¢.
nary part appears because the initial hadron can decay into its
constituents. If such a possibility is excluded, the doubleype matrix elements which depend only on momentum
dlstrlbutlonsF(x,y) and, hence, the asymmetric distribution invariantsp?, p'?, r2 irrelevant to such discontinuitie®o
functions 7,(X) are purely real.

The usual parton distribution§(x) are often related to

a) b) e)

far we even were treating these invariants as vanighiFige

. : ) du-ch | di variableX in our definition only reflects a more complicated
imaginary parts, or more precisely, andu-channel discon- structure of the operator vertex. To illustrate this point, we

tinuities of parton-hadron amplitudés\ote, that in our ap- . . . .
proach, the parton distributions are defined by form-factor-" fite 7(X) in the momentum representatigsee Fig. &)]

o 5(X—(ka')/(pq)) dk
P a7t | @07 e T

(2.31)

The §(X—(kq')/(pq’)) function here corresponds to composite operattemoted by a blob on Fig.(8]. Using thea
representation, one can take the Gauskiartegral and obtain the representation given by R6), which finally gives our
purely real resul{2.27).

It is worth emphasizing that the parton representati@hs), (2.17), and (2.34 below are valid for the total Compton
amplitude: there is no need to split the latter into its real and imaginary parts in order to define the parton distribution. To make
a parallel with the traditional approach in which the parton distributions are defined through the discontinuities of parton-
hadron amplitudes, let us calculate théntegral above using the Sudakov decomposition

k=¢ép+nq'+k,, 2(pq’)=s, (2.32

which gives

FX)= s fdzk fm 2
(! 202wt L) e [Xys—k2—mP+i€e][(X—1) ps—ki —m?+ie][(X— &) ps— k> —m?+ie]’

(2.33

Looking at the location of singularities for the integral, we immediately see that a nonzero result is obtained only when
0=<X=1. Furthermore, in the regiafi< X< 1, the integral over; is given by residue ay= — (k? + m?>—i¢)/(1—X)s, which
corresponds to substituting the ordinary propagatdf (p—k)2—m?+i €] by the 5((p—k)?—m?) function for the line with
momentum p—K). In other words, forf<X<1, our one-loop model for the functiaf,(X) is totally given by the residue
corresponding to the-channel cut through the parton-hadron scattering amplifsde Fig. 8)]. On the other hand, in the
region 0= X</, the integral ovem is given by residue at;=(kf+m2—ie)/Xs, which corresponds to cutting the line with
momentumk [see Fig. &)]. Such a cut cannot be relatedgoor u-channel discontinuitie$In both cases, one can say that
F,(X) originates from a parton-hadron scattering amplit@ée 7 whose imaginary part is given by one or another type of
discontinuities. In our treatment, the only important fact is that the amplifiidepurely imaginary so that the distribution
function 7,(X) is purely real. As we have seen above, the func#p(X) can be written in several different ways, e.g., in the
a representation which can be integrated without taking any residues.

In terms of 7,(X), the virtual Compton amplitud&., 4(p.q,q") can be written as

3In a recent paper, Frankfuet al. [23] also discuss discontinuities in the context of the nondiagonal distribution functions.
4l am grateful to Frankfurt for attracting my attention to this point and correspondence.
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as N 1 1

For a real functionF,(X), the imaginary part oT¢; 4(p,q.,q’) is determined by that of the short-distance amplit(tdems in

square bracketsSinceF,(X) linearly vanishes aX— 0, the singularity 1/)X—i€) of theu-channel diagraniFig. 1(d)] gives
a vanishing imaginary part. As a result, the imaginary part of the whole amplitude is generated byXthé tf(e) singularity
coming from thes-channel diagranpFig. 1(c)]:

i|mT( QZ)—ijlﬁ(x— )f(X)dx—Lf( ) (2.39
me? M Tl& Q0= 5 (pg) Jo XX OFLPIDE 5pq) 70 |

Hence, the integrab(¢) in Eq. (2.22) is equal taF({), i.e., to the asymmetric distribution functiof(X) taken at the point
X={. The paramete( is present inF,({) twice: first as the parameter specifying the longitudinal momentum asymmetry of
the matrix element and then as the momentum fraction at which the imaginary part appears. As one may expect, it appears for
X=xXgj=¢, just like in the forward case. Note, however, that the moment¥m {)p of the “returning” parton vanishes
when X={. In other words, the imaginary part appears in a highly asymmetric configuration in which the fraction of the
original hadron momentum carried by the second parton vanishes. HE{¢g,in general differs from the functiof({). The
latter corresponds to a symmetric configuration in which the final parton has momentum equal to that of the initial one. As
discussed earlier, in our toy modi&({)/ F (£)=f({)/ (L) =1-{, i.e., F,({) is larger thanf({), though the difference is
small for small values of.

The fact thatF,(X) vanishes foiX=0 has a rather general nature. Note, that for siathe functionF,(X) is given by
its X<{ component

XI¢

F(X)|x=¢= JO F(X—yZ,y)dy. (2.36

The size of the integration region is proportionalXand, as a resultf,(X) vanishes like constX or faster for any double
distribution F(x,y) which is finite for smallx andy.
In the coordinate representation, the asymmetric distribution function can be defined through the matrix element

11 . .
(p'|6(0) ¢(2)|p)l2-0= fo 5 (e7PR+ 0P F(X)dX, (.37

with {=1—(p'2)/(p2). To reobtain the relation betweeR,(X) and the double distribution functioR(x,y), one should
combine this definition with Eq2.24). The {—0 reduction formulg2.29 trivially follows from Eq. (2.37).
Using translation invariance, we can write representation for a more general light-cone operator:

11 ) . ) )
(p'|p(u2) p(v2)|P)|2=0= fo E(e*'><v<pZ>+l(><f£)u<pz)+eflxu(p2)+l<><fé)v(rJZ));rg(x)d)(_ (2.38

This formula explicitly shows that if the parton correspondingb{@ z) has momentunXp, then the momentum of the parton
related to¢(uz) is (X—¢)p andvice versa

E. Nonforward distributions

Writing the momentum of the virtual photon @s=q’' —{p is equivalent to using the Sudakov decomposition in the
light-cone “plus” (p) and “minus” (q') components in a situation when there is no transverse momentum. An essential
advantage of expressing the amplitudes indhepresentation is that it explicitly shows the dependence of the diagram on the
relevant momentum invariants. This means that we can derive the parton picture both for zero and nonzero invariant momen-
tum transferg=(p’ — p)? without bothering about an optimal choice of the basic vectors for the external momenta. Main-
taining for simplicity p?=p’2=0, we get, for Fig. lc),

e’g® (= a1(2(pq)az—Q*(az+t ay)) +tazay, dajdaydazdae,
'y — _ H _ 2_ - - -
Tc(paqu ) 16772 fo exr{l a1+a2+a3+a4 )\(m |€) ] )\2 . (239)
The smalle; integration then gives
i9292 s eita2a4/’)‘\'—i’)t(m2—ie) dazdagda4
THp.a.9")=— = +0(1/Q%), (2.40

162 Jo 2(pg)(az/N—(1—ay/N)+ie€) N2

where§=Q2/2(pq)ExBj. Hence, introducing the-dependent double distribution
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da,dasd
F(x,y;t)= IN) 8(y— ap I \)giteza/ X =IX(m % (2.41
we obtain the same parton formula, but with a modified parton distribdiony;t)
2
Tetpaan-- | [ - F(xy;tdxdy (2.42
2(pa)(x+yl—{+ie)

Moreover, the dependence orappearsonly through thet dependence oF(X,y;t). Similarly, we can write down ther
representation for tha-channel diagraniFig. 1(d)]:

T4(p.0.9") f Pl

Using 2(pg')=2(pQq) +t and integrating over smait, gives the parton formula

a;1(—2(pg)az— Q¥ ay+ay)) +tazay A (2
a1+a2+a3+a’4

—ie)

] dalda)z\da3da4. (243

eZ

171
T3 ,,’zfj —F(x,y;t)dxd 2.4
§PaaD= | | 2tpairyzrxizpa e VDY (249
|
with the sameé-dependent functiofr (x,y;t). In our model, For real distributions, the imaginary part of the total
Compton amplitude can be calculated by taking the imagi-
92 6(0=x+y<1) nary part of the short-distance amplitude which picks out the

F(x,y;t)= (2.45 function F({;t1),

1672 m*—ty(1—x—y)"
2

g
The parton subprocess amplitude in this case has the 7g(§;t):16ﬂ2m2Tm|n(T+ V1+T%), (248
O(t/2(pg))=0O({t/Q?) correction term which can be ne-

glected in the larg&?, fixed4 limit. Then the parton ampli- whereT= (= t/4m?)(1-7).

tude again depends only on the combinationy¢, and it In the OPE approach, the nonforward distribution is given
makes sense to introduce thenforward distribution by the matrix element

min{X/¢, X/(}

11
F(X;t)= f F(X—y¢y;t)dy, (2.46 <|0’|¢>(0)<z5(2)||0>|zzzo=f0 (e

+el X202y 7 (X;t)d X.
which can be treated as the finitegeneralization of the

asymmetric distribution functiotF,(X) [or more precisely, (2.49
F(X) is thet=0 idealization of 7,(X;t)]. In our simple  T5xing the local limiz=0, we obtain the following sum rule
model, it can be calculated analytically: for F,(X;t)
2 [ 470(X= A X = (0 _
Faxi=-2 0= 1T ) FdXdX=(p'[$(0)¢(0)|p)=F (1), (250
1672 | —tXy1+ 72
xi¢ dy where F(t) is the toy model analogue of a hadronic form
+‘9(X<§)f ——— (2.47) factor.
m*—ty(X-y{)
F. Timelike photon in the final state
wherer=/(—t/4m®)(1—-X)/(1-¢). The functionF,(X;t) To give an example in which the skewedness paramnigter
falls off with increasing|t| like a form factor. does not coincide with the Bjorken parametey, let us

The t-dependent distribution& (x,y;t) and F,(X;t) in  discuss a situation considered [ih1—13, when the initial
our model are purely real. Indeed, introducing again thephoton is spacelikey;=q’ —¢;p while the final photon is
Feynman parameter8; by «;=\g8; and integrating oveh  timelike q,=q'+{,p. Hereq' is a basic lightlike vector
gives the denominator factor H{B,8,+m?—ie). How-  defining the Sudakov decomposition rather than the momen-
ever, since<0, this factor is always positive and the inte- tum of the final photon. Now, the Bjorken ratio given by
gral is purely real. An imaginary part foF(x,y;t) and  Xg= —q3/2(pg,) coincides withZ;. However, by momen-
F(X; t) would appear only if the initial hadron mass satis-tum conservation, the longitudinal part of the final hadron
fiesM2>4m?. momentum differs from that of the initial one by (+ ¢,)p,
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a) b) c) d)

"""""" B(a, q'/p,P") FIG. 5. Four-point amplitude corresponding to the deeply virtual

\ Compton scattering.

p i p ’

where s=(p+q)?, u=(p—q’)? andt=(p—p’)? are the
Mandelstam variablesd is the space-time dimension,
Bla.ola .o’ ) P(c.c.) is the relevant product of the coupling constanis,
_ ) ~the number of loops of the diagram ahib the number of its
FIG. 4. Handbag diagram for deeply virtual Compton scattering.internal lines. FinallyD,Aq,A, ,A;,A, are functions of the
a parameters uniquely determined for each diagram.
To describe them, we need definitions of a tree and a
i.e., thel parameter is given in this case by ¢+ ¢,, with  two-tree of a graph. A treétwo-treg of a graphG is a
{>=05/2(pay). As a result, the scalar analogue of the time-subgraph ofG which consists of onétwo) connected com-
like photon electroproduction amplitude can be written as ponents each of which has no loops. Any t@fe (two-tree
G}) of G is determined by the set of lineswhich should be
) removed from the initial grapi to produceGX (Gb). The
e 1 1 . . . .
T(p,q1,0p) = — : f [ _ product of thew, parameters associated with thgse lines will
2(pq’) Jo|X—{1tie be referred to as an-tree (a-two-tred. The functionD («)
is called the determinant of the graph. It is given by the sum
of all a-two-trees of the grapks. By B(iq,....im|j1:--sin)
]—'§1+§2(X)dx 253 we denote the sum of adl-two-trees possessing the property
that the vertice$, ,...,i, belong to one componeri,...,j,
to the other, while the vertices not indicated explicitly may

(for simplicity, we took heret=0). Its imaginary part is belong to either component. In these notations,
proportional to the sum7-"§l+§2(§1)+]-"§l+{2(§2). Hence,

_X_gz_if

having information about the imaginary part of such an am- a,AL(a)=B(q|p,q’,p’),

plitude for different values of; and {,, one can directly

“measure” the asymmetric distribution functiof,(X) in aiAq(a)=B(q,p[q’,p"),

the regionX</{, where F,(X) is similar to a distribution

amplitude. a1AL(a)=B(a.p'[p.q"),
Al@)=B(9,q'[p,p"). 3.2

Ill. ALL-ORDER ANALYSIS

A. Handbag diagram to all orders The mnemonics is straightforward: the square of the total
momentum entering into one of the componglise to mo-

Using thea representation, one can write down the con- : . : )
Lo . . : mentum conservation, it does not matter which )opest
tribution of any diagram in terms of functions of thepa- . . : :
ves the relevant momentum invariaisee Fig. 4. To get

. . ; i
rameters speqﬂed by Fhe structure of the diagram. Since th%II the two-trees corresponding to this invariant, one should
object of our interest is the matrix element of a two-body : 2 ,
: . 2 make all possible cuts resulting in such a separation of ex-
operator, we can extract it from the simplest handbag dia; .
ternal momenta. Note, that; must be present in all terms of

grams, i.e., those in which thipvertex is connected to theg B(qlp,q’.p’), B(q,pla’,p’), and B(q,p’|p.q’) because

vertex by a single propagator. The contribution of any dia- : L .
gram of this type can be written dsee, e.g.[29.37) the vertices, q’ in these cases belong to different compo-

nents. On the other hand, fB(qg,q’|p,p’) these vertices are

TO(p,q,9") in the same component. As a result, there are terndg(ia)
() A(a) Which(l)do not(o)contain aloas a factor(,l)i.e.,At(a)
., P(cc. * —d2 - A (@ =a A (@) + A (@) with A7 (a)#0 andA;”(a)#0 for
- (4i)2%2 |, (,1;[1 der,D (a)exp[lq D(a) a;=0. Similarly, the functionD(«) can be written as
D(«@)=a1D{(a)+Dg(@), whereD,(«) is the determinant
a1Ad(a) i a A (a) +itAt(a) for the graphG; obtained fromG by deleting the lineo,
D(a) u D(a) D(a) while Dy(«) is that for the graplG, resulting fromG by

contracting the liner; into a point(and gluing the vertices
A . ) ;

_iz a(,(m(z,—ie) ' (3.1) g, q' into a single pplrbt -One can see that the function
- Do(a) can also be written in terms of the saméwo-trees:
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Do(a)={B(q|p,q’,p’)+B(q,p|0|’,|0’)+B(q,p’llo.q’)+B(q,p,lo’Iq’)}/cv1=AL(cv)+As(a)+Au(cv)+AR(a),(3 3

whereAg(«) is the function corresponding to the cut separating out the momentum invgffaro get the leading larg®?
asymptotics, we integrate over the regien~0. This gives

.. P(cc) LAl Ade) | Afa) | Al(a) ]t
a Ny — |+1 d/2 —m2
TP.ag)= 2 i g UH da,Do ™ (a )[ T Do(@) Do(@)  UDo(a) " Dola) M '€
A (@
><exp‘ 5 (( ) —IZZ (r(m(zy-_ie)]- (3.9

Using s=— Q%+2(pg), u=—2(pq)+t and neglecting and m? compared taO(Q?) terms in the denominator factor, we
transform it into

AL(a)+A(a@) As(a)—Ay(a)
_~20L S S u
Q —Do(a) +2(pq)—Do(a) +ie.

This expression has the structure similar to that of the one-loop contribuf®#8 and (2.43. In particular, it can be
converted into the form of the-channel tern{2.40 if we denote] A;(a) — A (@) 1/Do(a) by x and[ A (a) +As(a)]/Do(a)

by 1-y. Analogously, to make it look like the-channel term(2.43, we should takd Aj(a) —A,(a)]/Do(a)=—x and
[AL(a) +Aq(@)]/Do(a)=Yy. If we want to havepositive x we should perform the first identification in the region where
As(a)>A (@) and use the second one in the region whiggex) <A,(«). In other words, we define thedependent double
distribution by

P(c.c) (= A9 _
F(x,y;t)= ;gr —dm( 7(TI)Z) . (L[Z dangdlz(a)ex%lt—so(:) —|UZZ ag(mi—le)J
AL(a)+Ag A @) —A,
) 1—y— %) 5<X— %) 0(As(a)>Au(a))
AL(a)+Ag Ay(a)— A
+6|y— %) ( —%) O(A(a)<A,(@))|. (3.5

An intuitive interpretation is that wheAg(«)>A (@), the quarktakesthe momentunxp from the initial hadron. Its total
momentum ixp+yr. Alternatively, whemA4(a) <A,(a), the quarkreturnsthe momentunxp to the final state, and its total
returning momentum ixp—(1—y)r. Due to Eq.(3.3), we automatically have €x<1, 0<y<J1. Furthermore, since
X+y=[A (a)+A,(a)]/Do(a)=<1 in the first region and+y=[Agr(a)+As(a)]/Do(a)=<1 in the second one, we always
have the restrictiox+y=<1.

Again, introducing the Feynman parametgs- «; /A and the common scale given by the sum of ally; parameters, we
can integrate ovek to see that the resulting denominator facto(r—]I/A§°)(a)/D0(a)+m2), is positive fort<0, and the
double distribution is purely real.

The same definition of the parametery based on ther representation can be used in the realistic case of spinarks.
However, one should take into account that the quark lines in that case are oriented. Depending on their direction, we should
interpret the parton with momenturp+yr either as a quark or as an antiquark.

The nonforward distributions=/(X;t) can be obtained from the double distributions using €6. The restrictions
x,y=0, x+y=<1 guarantee that the total fractiohsatisfies the basic parton constrairt B<1. Furthermore, if the double
distribution F(x,y;t) is finite for all relevantx,y, the nonforward distributiotF(X;t) vanishegat least linearly as X— 0.

B. Alpha representation and factorization

Using thea representation, we can write each perturbative diagram contributing to the virtual Compton scattering amplitude
T(p,q,q’) in any field theory model, including QCee Fig.

P(c.c. i B +Bs ; By —By i
T(|)(p a,q )_I (4(—022”2 JO 1;[ da,UD—d/2(a)G(a,,p'q,q/;mg)eXp|—iQZ%—I—ZI(pq) (a[))(a) (a’)

. Bi(a)+By(a) . Bi(a)+By(a) .
Xexp[lt D(a) +iM? D(a) —|2 —Ie)]. (3.6
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The only difference is the presence of the preexponentiaFig. 6(b) corresponds to a combined SD-IR regirfeg.
factorG(«,p,q,q’;m,) due to the numerator structure of the 6(c)]: the a« parameters of lines insidé vanish while those
QCD propagators and vertices. It has a polynomial depenbelonging to the soft subgraghtend to infinity.

dence on the momentum invariants. The functiBs) are One can easily invent other, more complicated configura-
defined by the relevant two-trees, e.g.B. () tions. Fortunately, not all of them are equally important: dif-
=B(q|p,q’,p’), etc. ferent configurations have differe@? behavior. The power

In the region wher&? and 2 q) = ¢Q? are large, all the counting is based on the observation that in the essential

contributions having a powerlike behavior @7 can only region of integratiomgfzv 1‘/1Q2 fo_r Iine_s in the short-distance
come from the integration region inside which all the ratiosSUP9rapit anda,~Q"/p™ for lines in the soft subgrap§

2 : 2 2
A /D, As/D, A,/D vanish: if any of them is larger than ":’ some gener:ctgma![lh§cale, &, Oé;n )- I? tht?] ml?"
some constanp, the integrand rapidly oscillates and the re- mentum representation, this correspondk toQ for the

sulting contribution from such an integration region is expo—“r?es qndk p /Q for thes lines. As a result, in a theory .
: with dimensionless coupling constants, we can use the di-
nentially suppressed.

SinceA  A. A andD are given by sums of products mensiona! analysis to derive that the contribution duéito
Lo lisy Phuo 9 y 'p -~ behaves likeQ* %, wheredy, is the sum of dimensiongn
qf hon-negativen parameters, there are two basic I?‘Oss'b'"'mass unitsof the fields associated with the external lines of
ties to arrangeh; /D =0. In the first case, called the "short- ; "\ye should also take into account extra numerator factors
distance regime,”A; vanishes faster thaD when some of

brought by these external lines. For instance, each external
the @ parameters tend to zefsmall « correspond to large quark line adds a Dirac spinau(p), two of them give

virtualities k?, i.e., to “short” distances The second possi- u(p)u(p)~p, andp can combine withg from H to give
bility, called the “infrared regime,” occurs ifD goes to  (pg)~Q?2. This means that each external quark line can
infinity faster thanA; when some of thex parameters tend to  pring an extraQ? factor. Note, that 1/2 is the spin of the
infinity (large o correspond to small momenka i.e., to the  quark. Similarly, an external gluon line can adg factor.
infrared limit). One can also imagine a combined regime,Combined withg,, from H it gives (Pa)~Q?, i.e., the gluon
whenA; /D=0 because some parameters vanish and some jine can bring an extr®=Q? factor for the whole ampli-
are infinite. tude. Again, “1” is the spin of the gluon. Hence, each ex-
There exists a simple rule using which one can easily findernal quark or gluon line can give the faciQfi ~%=Qti
the lineso whosea parameters must be set to zero and thos&vheret;=d;—s; is its twist. Note also that calculating the
whose o parameters must be taken infinite to assure thayirtual Compton amplitude we do not convolute the vector
A;/D=0. First, one should realize thA{/D=0 means that indices u,» of the initial and final photon lines with
the corresponding diagram of a scalar thedily which  momentum-dependent vectors. Hence, each external photon
G=1) has no dependence on the relevant momentum invariine gives only the facto® ~* due to its dimension. Thus, the

ant(Q?, s or u in our casg As the second step, one should counting rule for the contribution of the hard subgrahis
incorporate the well-known analogy between the Feynman

diagrams and electric circui{88]: the a, parameters may ty(Q)=Q* N-Iiti 3.7)
be interpreted as the resistances of the correspondingdines
In other words,a,=0 corresponds to short circuiting the
line o while «,= corresponds to its removal from the
diagram. Hence, the problem is to find the sets of line
{o}sp, {0} r Whose contraction into poirfor {o}gp] or
removal from the diagrarffor {o}r] produces the diagram
which in a scalar theory does not dependpfn Thus, the
rule determining possible types of the powerlike contribu-
tions is the following: after the part of the diagram corre-
sponding to a short-distance subprocess is contracted into
point and the part corresponding to soft exchange is removegd .- power counting estimafd2] based ork~p2/Q can

from the diagram, the resulting diagraffireduced dia- :
gram,” cf. [39,18) should have no dependence on large mo—be obtained for the soft subgragsh

mentum invariants.

Some examples are shown in Fig. 6. The simplest possi- ts(Q)=Q i, (3.8
bility is to contract into point some subraphcontaining the
photon verticesy,q’ [Fig. 6@]. The reduced diagram de- Where the summation is over the external linesSoHence,
pends only on small invariants M2 and massesn. The  €xchanging a soft quarfFig. 6(d)] produces the G sup-
long-distance part corresponds to a nonforward distributionpression(S has then two external quark lines each having
This is the standard OPE configuration. However, sigce  t=1), while the exchange of any number of soft gluons is
is not a large momentum invariang? 2=0, there is a less Not necessarily accompanied by a suppression factor, at least
trivial possibility shown in Fig. ). In this case, there are On diagram by diagram levéfor more details, see discus-
two long-distance parts: one is given by a nonforward distri-Sion in the next subsectipnFor the combined SD-IR con-
bution again and the other can be interpreted as the distribdiguration, the power counting estimate is
tion amplitude(hadronic componejptof a real photon. Ex-
change of soft quanta between the two long-distance parts of tHS(Q)sQ“*N*EHtiQ*EstJ. (3.9

whereN is the number of external photon lines of the hard
subgraph and summation is over quark and gluon external
Sines ofH. For the simplest hard subgraph with two external
quark lines this gives$,(Q)=<Q°, a scaling behavior as ex-
pected. For Fig. ®), the estimate is,(Q)<Q . Hence,

the contribution of Fig. @) is power-suppressed compared
to that of Fig. &a). Note that since the gluons have zero
twist, the hard subgraph can have an arbitrary number of
tra gluon lines without changing its power behavior. A
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It is convenient to describe the power-law behavior of Then the statement that(Q?)~(1/Q%)" is equivalent to

T(Q?) in terms of the Mellin transformation saying that the Mellin transforr® (J) has a pole ai= —n.
) Take as an example the Mellin transform of the scalar dia-
T(0%)= . (Q ) ®(3)dJ, (3.10 g(rg)m shown in Fig. @) (it is essentially identical to Fig.

(a3+a4) a3/§ ) . A daldazda3da4
explitaya,/IN—iN(m2—ie)} (it oyt agtan™®

(3.11

Ce(J)=- 16 ZF( J)f a1+a2+a3+a4

Small-«4 integration corresponds to the simplest SD-regimejution  kernel from the remaining integral over
Fig. 6(a), and generates the pole 14 1) corresponding to  B..83.84=1— B>— B3 [the result, in fact, can be read off
the 1Q? asymptotic behavior. The relevant reduced graph i€£d. (2.27]. Another observation is that if we simply inte-
shown in Fig. Th). grate over the smalk; region, the remaining integral

Another possibility to kill the dependence on large vari- dazd%da4/)\ logarithmically diverges in the region of
ables is to takers= a,=0 which corresponds to the reduced small A\=a,+ a3+ a,. This is the standard UV divergence
graph shown in Fig. (€). To describe a simultaneous van- of a matrix element of a light-cone operator in a theory with
ishing of two « parameters, we use the common scaledimensionless coupling constants.

p=az+a, and the Feynman parameteys=a;/p. The re-  Takinga,—, we incorporate the IR regime correspond-
sulting p integralp’pdp gives the pole 14+ 2) correspond- ing to the reduced Fig.(@). If the quark corresponding to the
ing to a nonleading behavior Q. o, line is massless, thex, integral in this limit is

Furthermore, contracting the whole diagram into pointa; “da,/a3. It produces the 14+ 1) pole corresponding to
(i.e., taking ;=0 for all @ parameterswe also obtain a the leading 1D? behavior. In the previous section, we did
reduced graph which does not depend on large variables. Imot see this contribution because the quark masses were as-
this case, we introduce the common scalesumed to be nonzero for all the lines. For nonzero mass, the
A=a;i+ a,+ az+ a, and the relative parametes= a; /\. factor exp—ia,n?] suppresses the larges integration and
In d=4 dimensions, the integrand behaves & 3d\/\? no poles in thel plane are produced. In other words, the IR
which produces the pole 1¥¢-2) generating a nonleading regime should be taken into account only for massless
behavior 10*. However, if we take a scalar model i+ 6 nearly masslesgdields. Note, that in QCD the IR regime for
space-time dimensions, then the integrand behaves likéhe virtual Compton amplitude also givesQt/ behavior for

MA3dA/N® and smallx integration generates the leading massless quarksee Eq.(3.8)]. However, in QCD this is a
pole 1/J+1). Note that in this case after theintegration nonleading contribution compared to the scaling behavior
we still have the factor3] capable of producing another Produced by the purely SD regime Figby.
1/(3J+1) pole due to smalB, integration. Hence, the total
singularity of this diagram in six dimensions is 14 1),
which gives T(Q?)~(In Q%/Q% This corresponds, of  After the SD dominance is establishéde next step is to
course, to the scaling violation, i.e., to evolution of the non-write the contribution of the SD configuration in the coordi-
forward distribution. One can even extract the relevant evonate representatidirig. 8a)]

C. QCD and gauge invariance

T(p,q.Q')ZJ e_i(qz)d4ZJ (p'|$(2)C(2,21,2) p(21)|p)d*z,d%2, (3.12

(where ¢ is a generic notation for the quark fieldg ¢ and the gluon fieldA) and expand the bilocal matrix element
(p'|d(z2): - H(z1)|p) in powers of ¢,—z,)?. Since we already know from the-representation analysis that the virtualities

inside the SD subgraph a@(Q?), extra powers of%,—z;)? for simply dimensional reasons result in extra powers Qf?1/

and the leading larg®? behavior will be given by the lowest term of this expansion corresponding to the lowest-twist
composite operator. Parametrizing the nonforward matrix elements of the light-cone operators by formulas analogous to Eq.
(2.38 gives the parton formulas similar to E(.34). Of course, this is just a general idea how to obtain the QCD parton
picture for the SD-dominated amplitudes. Its practical implementation depends on specific properties of a particular process
under consideration.

The most important complication in QCD is due to the gauge nature of the gluonic field. In the Feynman gauge, the gluon
vector potentialA,, has zero twist, and we should perform an infinite summation over the external gluonic lines both for the
SD-subgraph$! and infrared subgrapts. Consider the sum of gluon insertions into the quark propagator. It is well known
(see, e.qg.[40-43) that after summation
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S(é- 77)+J S(é-2)y*gAL(2)S(z— )d*z+ ... =E(& 1 A)S(E- n)[1+0(G)] (3.13

all the A fields can be accumulated in the path-ordered exponential

E(§, 7 A)=P exp( igngM(Z)dZ") (3.19
7

while the O(G) term depends on the gluonic fields only through the telgy and its covariant derivatives. Sin€®, ,, is
asymmetric with respect to the interchange of the indjges, it should be treated as a twist-1 field. For the simplest SD
configuration possessing a single long-distance part, combining fhetors of all internal lines of the SD subgraph, one gets
gauge-invariant operators, e.9(z;) v,E(z1,2,;A)q(z,).

If the lowest-order SD-configuration contains two long-distance gékes in Fig. 6(b)], the gluonic corrections include
insertions into the external lines of the SD subgraph, Fig).8he resulting path-ordered exponentiglg,&,;A) then go
to infinity along the relevant light-cone directions, eg’, or p in case of hard electroproduction processes. However, for
color-singlet channels there are at least two such exponentials and their long-distance tails cancel each other so that only the
factorsE(¢&, 7;A) related to SD-subgraph vertic&sy remain. The basic effect of the exponential fadifi, ;A) is that
expanding operator®(&, n) into the Taylor series, e.g.,

o

_ 1 _
A7 E(EmAAN =2, TTANAY . AG(8)7,0,,D,, Dy A(8), A=n—§ (.19

one gets local operatoEyVDVlDVZ- --Dan containing covariant derivativdd”=¢"—igA” rather than ordinary ones.

The cancellation of,(&,o0;A) factors is very important for the success of the standard factorization program. Only after
such a cancellation, the long-distance information is accumulated in universal matrix elements of gauge-invariant light-cone
operators. To illustrate the difference between color-singlet and color-nonsinglet channels, consider matrix element
J(p,q")=(0|Eq (,0;A) ¢(0)|p) of the quark field/{0) coming out of a state with momentumand taken together with the
accompanying gluonic fieldh which is then absorbed by @' channel quark collecting the gluonis fields into the
Eq (,0;A) factor[see Fig. &)]. Note that the latter can be written as

Eq(,00=P exp( f:A(t)dt =1+f:A(t)dt+ f:A(t)dtﬁA(tl)dtl—k ...=1+f0mA(t)Eq/(t,O)dt (3.16

where A(t)=igq,A*(tq’). Substituting this result into the * jn+i1
matrix element J(D,Q')=<0|l//|p>—n§=:o WWM(Q'D)”!M P,

- (3.19
Ip.a)= (0O p)+ | (OLAME (10O P,

(3.17

where all the fields are taken at the origin. In fact, since

O|A,D, ---D = Py an(p?), (3.2
shifting the arguments of all fields in the second terntdpy (O1AD Dy H1P)=PuPuy - - Py a1, (3:20

and performing the Taylor expansion . .
the right-hand side of Eq:3.19 does not depend omg’)

(cf. [44]). Note, that the new representation fdfp,q’),

[’

__$\n
Eq,(o,—t)z/f(—tq’)=2 ( t) (q'D)"(0), unlike the original one, is not explicitly gauge invariant.
0 However, they term can be represented as
(3.18
: (q )
we can take the integral oveérto get (O]¢|p)=(0 (pq ) — P (3.21
q g

FIG. 6. Some regimes responsible for powerlike contributions to the DVCS amplitude.
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FIG. 7. (a) Scalar one-loop analog of the DVCS amplitude. Reduced graphs corresponding to SD (®yimes0, (c) a3+ a,~0, and
(d) IR regimea,~ .

and we can combine it with the first term from the sum to getQ? (reflected by double logarithms3p? in long-distance

a term containing a covariant derivatiZe=d—igA: matrix elementsis treated as a failure of the factorization
(q'D) program, since the amplitudes in that case cannot be written
J(p,g')= < 0 iq—,lp‘ p> through a convolution with parton distributions defined
(pq’) through matrix elements of light-cone operatoshich have
w in+1 a single-logarithmic dependence pi.
_ 1My)N Another signature of Sudakov effects is the presence of
nz'l (pQ')"+l<O|A(q D)"lp). (3.22 the IR contributiongsee Fig. €c)]. Again, since all the had-

rons participating in a hard exclusive scattering process are
Repeating this trick, i.e., representing the term outside theolor singlets, summing over all soft gluon insertions one
sum as would get a path-ordered exponential over a closed contour,
and by the Stokes theorem

(a'D) ‘ > < ,(9'9) (4'D) >
oli —~ ={0|i?—~ —~ 3.2
< o) V|9 (pa) (pa) P (323
and combining this term with the=1 term from the sum <0 P exp[ig 3g AM(z)dzﬂ] O> =1+(0[0(G)|0),
one obtains (3.26
| ].,(@'D)?
J(p,g")={ 0ji pq)2 ¥1p where O(G) depends on the gluon field only through the
field strength tensoG,,, which has nonzero twist generating
- intl a power suppression of the net IR regime contribution.
=2 (0l A(Q'D)"Y|p). (3.24
=2 (Pd’)
It is clear now that we can writd(p,q’) in a manifestly IV. NONFORWARD DISTRIBUTIONS IN QCD
gauge-invariant forngcf. [45]): A. Quark distributions
in Let us discuss now the nonforward parton distributions in
J(p,q")=lim (—,)n<0|(q’D)”(,//| p) the realistic QCD case. For quarks, we should take into ac-
n— (P9 count that the field,(z) contains both the@-quark annihi-
i(q'D)\* lation operator and tha-antiquark creation operator, i.e., the
E<O (—, Y p> (3.25 matrix element of the same light-cone operator
(P ¥a(0) ... p4(2) determines distribution functions both

In perturbation theory, matrix element8|(q’D)"y|p) for for the quark and antiquark. Another complication is related

finite n have ultraviolet divergences which can be regulatec}2 spin. There are two  leading-twist —operators
in a standard way, e.g., by the dimensional regularization¥a(0)7.E(0.Z:A)#2(2) ~and 5(0)y,vsE(0.Z:A) ¥a(2),
After renormalization, we get one-loop terms like Where, as discussed abo¥g0,z;A) is the path-ordered ex-
92y, In 42 However, the anomalous dimensigp contains ~ Ponential(3.14 which makes the operators gauge invariant.
the usual E'1/j) term[24] which behaves like Im for large In the forward case, the first one gives the spin-averaged
n. Hence, taking the formal limih—o one encounters a d|str|bl_,|t|on functiond (x) while the s_,econd one is related to
logarithmic singularity, which requires an additional regular-the Spin-dependent structure functiagx). In this paper,
ization on top of dimensional regularizatigof. [46]). The ~ We Will concentrate on the/,y,E(0.z,A)§, operators and
parameter characterizing the extra regularization can bgluonic operators with which it mixes under evolution. The
taken proportional to u, i.e., the matrix element relevant nonforward matrix element can be writteR as
(0|Eq/(,0;A) #(0)|p) is the simplest example of a long-

distance object with a double-logarithmic dependence on the

UV cutoff [47]. Such objectg"collinear” or “jet” factors 5Two other definitions of the nonforward parton distributions in
[48,44,49) play an important role in PQCD studies of Suda- terms of matrix elements of composite operators proposed by Ji
kov effects. However, within the standard factorization ap-{10] and Collins, Frankfurt, and Strikmdf8] are discussed in Sec.
proach, the presence of noncancelling double logarithms aix.
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FIG. 8. (a) General structure of the leading SD contribution to
the DVCS amplitude in QCD(b) SD configuration with two long-
distance parts(c) Matrix element with double-logarithmic depen-
dence on the UV cutoff parametgr

(p',8'[¥a(0)ZE(0.Z:A) #1a(2)| P, $) 220
=u(p’,s")zu(p,s) fol[e_ix(pz)]:?(x;t)
_ei<><—g><pz>f§x;t)]dx

2 -2
2M

+u(p’,s’) u(p,s) f:[e*ix(pz)lc?(x;t)

—elX=0MICR(X;t) Jd X, (4.2)
whereM is the nucleon mass argjs’ specify the nucleon
polarization. Throughout the paper, we use the “ha&ther
than “slash”) conventionz=z*y, . In Eq. (4.1), the quark
and antiquark contributions are explicitly separatéed.
[50]). The exponentiat™ (P2 associated with the functions
F;(X;t) and KZ(X;t) indicates that the fields,(z) corre-
sponds to thea quark taking the momenturXp from the
nucleon. When the momentuXp is taken from the nucleon
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1 _

fo [FXO-FEXGDIAX=Fi), (42
1 _

fo[IC?(X;t)—IC?(X;t)]dX=Fg(t) 4.3

relating the nonforward distributiong7(X;t), K3(X;t) to
the a-flavor components of the Dirac and Pauli form factors:

g eaFa(t)=Fy(t), g e Fa()=F,(t), (4.4

respectively(see alsd52,53). The spin-flip terms disappear
only if r=0. In the weaker?=t=0 limit, they survive, e.g.,
F5(0)=«? is the a-flavor contribution to the anomalous
magnetic moment. In the formak 0 limit, the nonforward
distributions F3(X;t), K2(X;t) reduce to the asymmetric
distribution functions73(X), K%(X). It is worth mentioning
here that for a massive targg@tucleons in our cagehere is
a kinematic restrictiori14]
—t=?MY¢. (4.5
Hence, for fixed, the formal limitt—0 is not physically
reachable. However, many resulévolution equations being
the most important exampleobtained in the format=0,
M =0 limit are still applicable.

In the regionX=¢, the initial quark momentunXp is
larger than the momentum transfes {p, and we can treat
f-?(X) as a generalization of the usual distribution function
fa(x). When/—0, the limiting curve forF,(X) reproduces

by ana antiquark, the corresponding annihilation operator isf ,(X):

in ,(0), and thefunctions 72(X;t) and £?(X;t) are ac-
companied by the exponential *~ 9?2 corresponding to
the momentum at the,(z) vertex. The antiquark terms

Fe=oX)=fa(X),  Fi_o(X)=T5tX). (4.6)

come with the minus sign because the creation and annihila- The spin-flip asymmetric distribution functiors,(X) do

tion operators for them appear in the reversed order.
As emphasized by JiL0], the parametrization of this non-

not necessarily vanish in the—0 limit. However, the rel-
evant nucleon matrix elemen{p’)(zf —rz)u(p) is propor-

forward matrix element must include both the nonflip termtional to £ and the spin-flip term is invisible in the forward

described by the functiong,(X;t) and the spin-flip terfh
characterized by the functions which we denotekyX;t).
Taking theO(z) term of the Taylor expansion gives the sum
rules (see[10])

gu(p")zu(p) f Lo YD (pY) e VI ER ¢Y)dY = Gulp ) 2u(p) f o VDY) Y,
0 0

where the distribution amplitud@'?(Y) is defined by

WY =FAYO) - FA(YD).

case.
In the regionX<Z, one can defin&=X/{ and treat the

function F3(X) as a distribution amplitud&@?(Y). In par-

ticular, the nonflip part in this region can be written as

(4.7)

4.9

The functionW2(Y) gives the probability amplitude that the initial nucleon with momentpinis composed of the final
nucleon with momentum (% {)p=p—r and aqq pair in which the total pair momentum is shared in fractiony and

1-Y=Y.

5The possibility of a spin flip in nonforward matrix elements was discussed earlj&iLi52].
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B. Gluon distribution

For gluons, the nonforward distribution can be defined through the matrix element

_ 11 . _

<p’|ZMZVGZQ(O)Eab(O,Z:A)GZD(Z)|p)lzz:o=U(p’)2U(p)(Z-p)f SLe P4 CTOPI FY (X ) dX+u(p')
0

2 72

X
2M

11 . )
u(p)(2~p)f Sl (PA4OPRILYX; DX, 4.9
0

The exponentiale~*(P2 ande'*~ (P2 are accompanied here by the same funci#i@tX;t) reflecting the fact that gluon and
“antigluon” is the same thing. Again, the contribution from the regiod X<<{ can be written as

[
u_(p’)iu(p)(z-r)f e YIRwIY;tydY+ £ term, (4.10
0
with the generalized(<—>Y_symmetric distribution amplituddf%(Y;t) given by
1 -
VAV =S[FAYEO+ FAY D). (411

In the formalt=0 limit, the nonforward distributi0n§?(x;t), IC?(X;t) convert into the asymmetric distribution functions
FUX), KI(X). Finally, in the{=0 limit, F}(X) reduces to the usual gluon density

FI_o(X)=XFy(X). (4.12

C. Flavor-singlet and valence quark distributions

In our original definition(4.1) of the quark distributions, the exponentials expX(p2)] and expi(X—{)(p2)] are accom-
panied by different function§‘2(x;t) and]:?(x;t), respectively. In many cases, it is convenient to introduce the flavor-singlet
quark operator

OQ(uz,uz)zg O (uzwz), (4.13
where
O (uzvz)= iE[Z(uz)iE(uz,vz;A)zpa(vz)—E(UZ)EE(vz,uz;A)z,ba(uz)]. (4.14
The nonforward distribution functioﬂF?(X;t) for the flavor-singlet quark combinatig@.13

— ~ 1 I H H ’ H ’ f
(p’,s’|OQ(uz,vz)|p,s}|22:O=u(p’,s’)zu(p,s)J' E[eﬂvx(pz)ﬂux (pz)_ewX (pz)fluX(pz)]f?(x;t)dx_’_u K
0

(4.15
(whereX'=X—{¢) can be expressed as the sum @f+a” distributions:
FAXD =2 [FHOG)+ FEGD]. (4.1
Writing the contribution from the & X< region as
§U_(p')iu(p)(2'f)folefiY(rz)‘I’?(Y;t)dYnL“ K" term, (4.17

we introduce the flavor-singlet quark distribution amplitudE?(Y;t) which has the antisymmetry property
WR(Y;t)=—W2(Y;t) with respect to theér—Y transformation.
Another combination of quark operators

O (uzvz)= %[@(uz)%E(uz,vz;A) Ya(v2)+ (V) ZE(vZ,UZA) 3(u2)] (4.18
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corresponds to the valence combinatio‘ii’s"(x;t)zf?(x;t)—J—"ZT(X;t):

_ R 11 ) o oy .
(p',8'105 (uzv2)|p.S)l2-o=U(P’.S")2u(p,S) f S Lo 1oX(P2HUX!(p2) 4 gloX!(p2)—0X(PAT] Fa( X, 1) X K.
0
(4.19

In both casegsee Eqs(4.15 and(4.19], two possible exponential factors are accompanied by the same distribution function,
just like for the gluon distribution. In the region<OX<<{, the functlon}' a(X t) can be written in terms of the flavor-
nonsinglet distribution amphtudl{»’ a(Y t) which is symmetrlolf a(Y t)= \If a(Y t) with respect to ther Y | interchange.

V. EVOLUTION EQUATIONS FOR NONFORWARD DISTRIBUTIONS
A. General formalism

Near the light cone?~0, the bilocal operatorg(0)¢(z) develop logarithmic singularities irf, so that the formal limit
z°—0 is singular. Calculationally, these singularities manifest themselves as ultraviolet divergences for the light-cone opera-
tors. The divergences are removed by a subtraction prescription characterized by some s€&bé;t) — F,(X;t;u). In
QCD, the gluonic operator

O4(uz,v2)=2,2,G3 (U2 E*(uzvZ,A)GD (v2) (5.2)

mixes under renormalization with the flavor-singlet quark operator. At one(iampin the leading logarithm approximation
the easiest way to get the evolution equations for nonforward distributions is to use the evolution e@&8dnfor the
light-ray operatord.For the flavor-singlet case, it re&ds

—oa(o,z)zfolf:% Bap(U,0)Op(Uz,02) 8(u+v<1)dudv, (5.2

wherev=1—v anda,b=g,Q. For valence distributions, there is no mixing, and their evolution is generated b® ¢he

kernel alone. Inserting Eq5.2) between chosen hadronic states and parametrizing the matrix elements by appropriate
distributions, one can get the well-known evolution kernels such as DGLAP and BL-type kernels and also to calculate the
nonforward kernel®3®(x,y; £, 7) andW3’(X,Z). The kernelsR?®(x,y; £, 1) govern the evolution of the double distributions:

d
Md_F Axyitiu)= f f > R®(x,y; & m)FP(&, 7t w) 0(£+ p=<1)déd, (5.3

wherea andb denoteg or Q. Another set of kerneIW?b(X,Z) dictates the evolution of the nonforward distributions and
asymmetric distribution functions:

d 1
M@ﬁ(x;t;ﬂhﬁ)% W2P(X,2) FAZ;t; w)dZ, (5.4

The evolution of the double distributions will be briefly discussed later in Sec. VI. Here we will discuss the structure of the
W?b(X,Z) kernels. Since the form of the equation is not affected byt tiependence, t” will not be explicitly indicated in
what follows.

Before starting the actual calculations, one should take into account that the gluon distrj@jﬁ@n’s accompanied by the
sum of two exponentials while the flavor-singlet quark distribu%ﬁ(X) with which it mixes is accompanied by the
difference. This sign change is, in fact, compensated by the ep#aféctor in the right-hand side of the gluon distribution
definition. The set of evolution equations tﬁff(x), f‘g(x) can be obtained by substituting the definitions of the gl(#h8)
and quark(4.15 distributions into Eq(5.2) and performing the Fourier transformation with respect to th® {ariable. For
this procedure, thepz) factor is equivalent to differentiatiod/d X while 1/(pz) results in an integration ovet. Note that
both operations change the relative sign of the exponentials. Hence, it is convenient to introduce first the auxiliary kernels
M?b(X,Z) which would appear in the absence of thpz) mismatch. They are directly related by

"This procedure was also used in a recent pap8l. | was informed by Blumlein that its authors agree with my results foMhex, Y)
kernels given below.

8We prefer to use the kernels,,(u,v) which have the symmetry properBg,(u,v)=B,y(v,u) and are related to th&€2°(u,v) kernels
of [34] by B,y(u,v)=—K3(u,v).



56 NONFORWARD PARTON DISTRIBUTIONS 5543

111
M@b(x,Z):f f B.p(U,0) 8(X—UZ+0v(Z—{))6(u+v=<1)dudy (5.5
0Jo
to the light-ray evolution kernelg33,34], which we write here in the form given in Rgfl7]:

1+ 8(u)[vlv]s + 8(v)[ulul,.— %5(u)5(v) ,

ds
BQQ(U,U): ?CF
A
Bq(U,v) = = Cel 2+ 8(u) ()],

o
Bog(U,v)= fo(1+4uU—u—v),

ag Bo v?
Byg(U,v)= 77- ol 4(1+3uv—u— v)+ 5(u)5(v)+{ o(u) ?—5 v) +{u<—>v}]) (5.6)
The W kernels are related to tHd kernels by
WI9(X,Z)=M%9(X,Z), WPUX,Z)=MZ%X,2), (5.7
d d
a_xW?Q(X'Z): -M99(X,Z), WPIX,Z)=- &—XM?Q(X,Z). (5.8

Hence, to gets/\/g (X Z) we should integraté/ gQ(X Z) with respect toX. The integration constant can be fixed from the
requirement than (X,Z) vanishes forX>1. Then

WIQ(X,2) = fxlmg‘i’&,zmi. (5.9

Integrating thes function in Eq.(5.5) produces four different types @ffunctions, each of which corresponds to a specific
evolution regime for the nonforward distributions. In two extreme cases, Whkeh or (=1, the evolution equation reduces
to known DGLAP and BL-type equations, respectively.

B. BL-type evolution kernels

When (=1, the initial momentum coincides with the momentum transfer ApK) reduces to a distribution amplitude
whose evolution is governed by the BL-type kernels:

W22, (X,2)=V3(X,Z). (5.10

Taking =1 in Eq. (5.5 we obtain
11
M?El(X,Z)EUab(X,Z)=fO fo Bap(U,v)8(X—uZ—v(1-2))0(u+v<1)dudy. (5.11

Eliminating thes function, one would observe that in the regiofis Z andX=Z the U2(X,Z) kernels are given by different
analytic expressions. However, from representati®il) and the symmetry propert,,(u,v)=B,(v,u) it follows that
U38(X,Z)=U2"(X,Z). Hence, it is sufficient to know thé) kernels in theX<Z region only. The basic function
Ugb(X,Z)Ea(XsZ)Uab(X,Z) can be calculated from

1 (X
ugb(x,2)=zj0 Ban(v—(X—0)/Z,v)dv. (5.12

The total kernelU2®(X,Z) then can be written as
UP(X,Z)=0(X<Z)U3P(X,Z)+ 6(Z<X)U3"(X,Z).

One can easily derive a table Bf—~ U, conversion formulas for all the structures present inBhleernels:
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7wy sl ]
S(Wo(v)=d(Z=X), 1=z, &u) =0, su)| | =0,

5 u (X\ 1 5 uz (X\? 1
Wirlzlz=x Wyrlz) z=x

x1 X X2(1 X X 51
utv=zl1=5z) w7137 6z 3/ .13

Using Eqgs.(5.6) and this table, we can get the BL-type kernéf®(X,Z). Before doing this, we note that the BL-type kernels
appear as a part of the nonforward kem@b(X,Z) even in the generdl+ 1,0 case. As explained earlier Xfis in the region
X<{, then the functionF,(X) can be treated as a distribution amplitidle(Y) with Y=X/{. For this reason, when botk
andZ are smaller thard, we would expect that the kernem?b(X,Z) must simply reduce to the BL-type evolution kernels
VaP(X/¢,Z1¢). Indeed, relatior(5.5) can be written as

1 _
M2°(X,Z) = ; folfolBab(u,v)é(Xlg—uZ/§—v(1—Z/§))6(u+vsl)dudv. (5.14

Comparing this expression with the representation forUI@%(X,Z) kernels, we conclude that, in the region whetig<1
andZz/{=<1, the kernelsv ?b(X,Z) are given by

1
Mz‘%x,Z)loS{x,Z}gfzuah(X/g,Z/o. (5.15

From the expressions connecting heand M kernels, we obtain the following relations between the nonforward evolution
kerneIsW%b(X,Z) in the region 8<{X,Z}=<¢ [let us denote them by2°(X,Z)=W3"(X,Z)|o=(x z1=,] and the BL-type
kernelsv@°(X,Z2):

L?Q(X,Z)=%VQQ(X/§,Z/§), LIO(X,2)=VIX/{,Z1{),

LRYX,2)= éVQg(Xlg,Z/g“), L99(X,2)= %vgg(X/g,Z/g). (5.16

Explicit calculations based on Eg&.5—(5.9), (5.10, and(5.16) give

veox.z)= el |51 X<Z XX, 227} 5.1
(1)_?Fz+ﬂ6(<)++{_>'—>}! (5.1
as [ X 1-2X — —
ng(x,Z):—?Nf Z[41=-X)+ — O(X<Z)—{X—X,Z—Z}}, (5.18
viexz)= el (2 Ll oxez s A7 pixsz 5.1
vosx.z)=2on 2 (3o axs 12X 4 2 Csx_z)| 2 jl 92 | ox<2)+ XX 27
(X2)= TN 27| 3=2XF 7|+ 7o 7) FOXTD o, T, 1| HX AN L2,
(5.20
Note that thev99(X,Z) kernel can be represented as the sum
Qg ag X2 — =
VgQ(X,Z)Z;CF-F ;CF 1-— O(X<Z)—{X—X,Z—Z} (5.21)

of a constant term and a kernel which is explicitly antisymmetric with respect todheX,Z— Z} transformation. In fact, the
constant term does not contribute to evolution since the flavor-singlet distribution amplité@#) with which it is convo-

luted is antisymmetric? Q(Z)=—W¥(Z). For the same reason, the convolutionV82(X,Z) with ¥'9(Z) determining the
evolution correction t07-'§(X) behaves likex? for small X.
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Furthermore, the BL-type kernels also govern the evolution in the region corresponding to transitions from a Zraction

which is larger thar to a fractionX which is smaller thard. Indeed, using thé function to calculate the integral ovar we

get

XI¢

1
NP D)ooz || Banll1-XIZ—0(1-£12) Lo}, (5.22

which has the same analytic for(s.12 as the expression fdv ?b(X,Z) in the regionX<=Z<¢. ForQQ, gg, andQg kernels,

this automatically means thw?b(X,Z)|xgggZ is given by the same analytic expressionL@g(X,Z) for X<Z. Because of
integration, to gel\NgQ(X,Z) one should also knowv ?Q(X,Z) in the region{<X=<Z. However, our explicit calculation
confirms that\/\/‘gQ(X,Z) in the transition regiorX<<{<Z is given by the same expression I#Q(X,Z) for X<Z.

Note that the evolution jump through the critical fractignis irreversible: thes function in Eq. (5.14) requires that
XI{=v+(1l-u—v)Z/{ or X<? if Z<{. To put it in words, when the parton momentum degrades in the evolution process
to values smaller than the momentum trangfes=r, further evolution is like that for a distribution amplitude: the momentum
can decrease or increase up to thealue but cannot exceed this value.

C. RegionZ=¢, X=¢

Recall that wherX> ¢, the initial quark momenturXp is larger than the momentum transfer {p, and we can treat the
asymmetric distribution functiorf?(X) as a generalization of the usual distribution functfg(X) for a somewhat skewed
kinematics. Hence, we can expect that evolution in the regioX<1, {<Z=<1 is similar to that generated by the DGLAP
equation. In particular, it has the basic property that the evolved fragtisnalways smaller than the original fractian The
relevant kernels are given by

1 J‘(l—X/Z)/(l—{/Z)

M?b(xyz)|ng<Z<1:z

Bap{[1—XIZ—v(1—¢/Z)],v}dv. (5.23
Changing the integration variable vo=v(1—{/Z)/(1—-X/Z)=v/(1—-X'/Z"), we obtain the expression in which the argu-
ments of theB kernels are treated in a more symmetric way

Z—X (1 _
ME(X,2)|ax=z=1= 557 fo Bap(W(1—X/Z),w(1-X"/Z"))dw, (5.24)

whereX’'=X—{¢ andZ'=2Z-{ are the “returning” partners of the original fractiod§Z. Moreover, sinc&Z —X=2'—-X",

the kernelavi ?b(X,Z) are given by functions symmetric with respect to the interchangé ofwith X’,Z’. This observation

can be used to check the results of calculations. However, since we are dealing with the asymmetric XituAtipd> 7',

other practical applications of this symmetry are not evident at the moment. Again, we can easily obtain a table for transitions
from the B, kernels to thevi2® kernels for the regiog<X<Z<1:

Z—X Z—X X X’
o(u)é(v)— 6(Z—X), 1= —=r, (u+u)_>ﬁ 2-5 -5,
Z—X X X' v u) 1 [X X
“”*@(1‘2)(1‘?)' (““)WWFﬂ{z*f}
-z 2 1 X 2 X' 2
(5(u)7+5(u)7 _)_Z—XHZ) +<7) } (5.25

Introducing the notatiorP?b(X,Z)EW?WX,Z)QSXSZSI and using the formulas given above, we calculateRHeernels:

!

11472 1
—8(X—-2) fo dz] — S Poo(X/2), (5.26)

a X
QQ __S _
Pz (X,2) - CF[ 1+ 77 11— Z

Z—X

9Expressions for the nonforward generalization of the DGLAP evolution kefiretfifferent notationswere given in the reviewl12] by
Gribov, Levin, and Ryskin. They discuss the generalized DGLAP kernels in the context of the electroproduction amplitude with a timelike
photon (or Z°) in the final state. However, as the longitudinal momentum asymmetry parathégertheir kernels they took the ratio
gzsq§/2(pql) involving only the invariant maseé of the final photon. As we have seen in Sec. Il F, the correct valué iiothis case is
{=1{1+ {5, where!, is the usual Bjorken paramete[s—q§/2(pql).
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POY(X,Z)= 2°N PRAL | PYRAE A B T 5.2
ca=TNzz ||z )t 2z | z2Ped X2, (529
40 ag X ! X
PIAX,Z)= 2Cet | 1- 5| 1= 57|+ 11 = 5 Pyo(X/2), (5.29
posx. )= 2o 2 10 X ZX 0 5 (X0 s sixe ] Bo [ A fldv * P (XIZ
¢ X2)= TN 211 oor 2otz Z) Hlz] [T DIoN Ty w T o v || 2Pl X D)

(5.29

The formally divergent integrals over andv provide here determined by theQQ kernel. The multiplicatively renor-
the usual “plus”-type regularization of the Z( X) singu- malizable operators in this case were originally found in Ref.
larities. The prescription following from Eqg5.24 and [5]
(5.25 is that combining the 1Z—X) and §(Z—X) terms
into [ F(Z) — F(X) 1/(Z—X) in the convolution ofP/(X,Z) — o =
with  F/(Z) one should changeu—1-X/Z and On=(29)"YN?2C(2DIzd . ) . (6.9
v—1-X'1Z".

As expected, theP2°(X,Z) kernels have a symmetric

forgn. The arrows indicate how the nonforward kernelsHere ‘we use_the symbolic notatiomli/z(h) of Ref. [5],
PZ7(X,Z) are related to the DGLAP kemels in tge-0 limit  \jth 5=D—D, 9, =D+D, andC¥¥y) being the Gegen-
when Z=Z' and X=X'. Deriving these relations, oné phayer polynomials. This means that the Gegenbauer mo-
should take into account that the asymmetric gluon distribuments
tion function ]-'?(X) reduces in the limitf=0 to Xfy(X)
rather than tdf 4(X).

In the region Z>{¢, the evolution is one-sided: the
evolved fractionX is smaller tharZ. Furthermore, ifiZ<{¢ 1 an )
then alsaX<Z, i.e., distributions in th&X> { regions are not Cenp)= JO Ch2Zli-1D)F(Zwdz (6.2
affected by the distributions in theé<{ regions. Hence, just
like in the DGLAP case, information about the initial distri-
bution in thez> ¢ region is sufficient for calculating its evo-
lution in this region. This situation may be contrasted with
the evolution of distributions in th&<{ regions: in that
case one should know the asymmetric distribution functions

of the asymmetric distribution functiodF,(X;u) have a
simple evolution:

in the whole domain &Z<1. In pg/A]7n!Bo
Qualitatively, the evolution in theX,Z>{ region pro- Ce(n, ;) =Cy(N, po) A , (6.3
ceeds just like in the DGLAP evolution: the distributions nwu

shift to smaller and smaller values Xf In the DGLAP case,
the distributions approach th&(x) form condensing at a
single pointx=0. In the asymmetric case, the whole region
Z<{ works like a “black hole” for the partons: after they
end up there, they will never come back to ke ¢ region.
Inside theZ<<{ region, the evolution is governed by the BL 5
equation transforming thel (Y) distribution_amplitudes 1———————— 44> __} (6.49)
into their asymptotic forms_likeYY,YY(Y—Y) for the (n+1)(n+2) 1= |

2 2(v . :
quark_s af_‘dYY) (YV)H(Y—Y) for the gluqns, a particular For n=0, the Gegenbauer moment coincides with the ordi-
form is dictated by the symmetry properties of the relevantnary one and, since,=0, the area under the curve remains

where 8,=11— 5N is the lowest coefficient of the QCPB

function andy, are the nonsinglet anomalous dimensions
[55,56

n+1

Yn=Cr

operators. constant. Other Gegenbauer moments decreasg as
creases. For the ordinary moments of the nonforward distri-
VI. ASYMPTOTIC SOLUTIONS OF EVOLUTION bution

EQUATIONS
A. Evolution of asymmetric distribution function

1
To describe the qualitative features of the QCD evolution Mn(d,p)= Jo FoO% w)XNdX, (6.9
of the nonforward distributions, we will consider the sim-
plest case, i.e., the evolution equation for the flavor-using explicit expression for the Gegenbauer polynomials we
nonsinglet(valence functions. ThenQg, gQ, andgg ker-  can derive the following expansion over the multiplicatively
nels do not contribute, and the evolution is completelyrenormalizable combinatior&(n,u):
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=/NNI(N+1 .% )" 2(2n+3) C 6.6
We can also write the expression which gives the evolved momef{6, ) in terms of the original ones:
N n
(—=1)"2(2n+3) [In wo/A]™'Po (—1)X(k+n+2)!
— #N
ML) =ENUNHD! 2 R g Nt T wih | 2 205 (ks iy MGkl 6

With increasingN, the number of contributing Gegenbauer momeh{®,«) in Eq. (6.6) increases. An important obser-
vation is that the nonevolvingand ¢ independent, but dependenttermC(0) contributes to each moment. As a result, in the
u—oo limit, all the moments tend to constant values determined byth® term in the sun{6.6):

NI S L)) XN
My(8 pe) = N iy C0)= | =7~ 60O (1=XI ) XdX. (6.9

Note that the last integral involves only thé values smaller thard. This means that in the limiit—co, the function
F(X;u—) completely disappears from the regi¥{, i.e., it reduces to the distribution amplitude,(Y) which ulti-
mately tends to the usual asymptotic shap B—Y) in the Y= X/{ variable:

FAX; u—0)=6C(0)X(1—XI/{)/ % (6.9

One may also be interested in finding expressions showing how the fuf€t{dh«) changes its shape from an arbitrary
original curveF,(X; uq) to the asymptotic one. Note, that the Gegenbauer momenig<fdr involve integration regions in
which the argumerﬂ:ﬁ’z(ZZ/g— 1) of the polynomials extends beyond the segment (1) where they form an orthogonal set
of functions. Hence, a formal inversion of the Gegenbauer moments is only possikje=forin this case, the inversion
produces the standard solution of the evolution equation for a distribution amplfi&je

In wol/A
In w/A

. 4(2n+3
~7:§=1(X;M):E (2n+3)

nlBo 1
-~ 3/2, _ .
2 DY focn (22— 1) Fy1(Z; o) dZ. (6.10

XC¥(2X~—1)

Thus, if the initial distribution coincides with one of the eigenfunctimcﬁ’z(zx—l), the evolution is very simple: the
function just decreases in magnitude without changing its form. An attractive feature of such a situation is that approximating
the initial distribution amplitude by a few lowest Gegenbauer polynomials one obtains a simple model of its evolution.
Inspired by this observation, one may be tempted to construct a similar representation for the evolution of the asymmetric
distribution function. Using the expansion of the light-cone opergid@)\2zy(z) over the multiplicatively renormalizable
operators?,, (see[34])

©

—— 2(2n+3) (1 __
w(O)Aazw(Z)=r§0(—l)”(+) fo(uu)““On(UZ)du (6.13)

and inserting it into the nonforward matrix element, we obtain

2(2n+3)
n!

In wol/A *n!Bo
In w/A

. .
FXim=3, (-1)" £°C,(n, o) fo (W™ SV (X—ug)du. (6.12

Integrating (1u)""18(MW(X—uZ) overu, we get the Gegenbauer polynomizﬂﬁ/z(ZX/g’—l) accompanied by the spectral
conditionX={¢. This means that the formal integration does not give a correct result for functions which do not vanish outside
the regionX=<¢. For such functions, one should first perform the summation ovevhich is, of course, practically impos-
sible) and only then take tha integral.

Another limit in which the integral oveu can be taken safely i§=0. For small, the Gegenbauer polynomials are
dominated by the senior powé" and in the—0 limit we obtain

-~ .
Froim=S 2 s fofg:o(z;mzndz, (6.13

n=0 n!

In wo/A\ *n'Po
In w/A

i.e., the well-known result that the moments of the usual parton densities have a simple DGLAP evolution. Note, that in this
case, the functions which evolve without changing their shapef@tex). From a pragmatic point of view, this observation

is of little use. Modeling the solutions of the DGLAP equations is known to be a rather complicated exercise usually involving
a numerical integration of the evolution equations.
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Hence, the representati@f.12) should be understood only in the sense(mfithematical distributions inX rather than
functions. To get meaningful results, one should integrate themXweith some smooth function. In particular, integrating
it with XN, one obtains the formulés.6) for the evolution of theXN moments of nonforward distributions.

B. Evolution of double distribution

Solving the evolution equation for the valence double distribuE¢r,y; ) defined by

— ,\ 11 . : , —
(p—l’,S'|O(_)(Oyz)|ﬂ|p,S>|22:0:U(p',S/)ZU(p,S)f E[e—lx(pz)—l)’(rz)+e|x(DZ)—|y(rz)]|:(X,y;M) 6(X+ys 1)dxdy’
0
(6.19

we can give an alternative derivation of the asymptotic form of the valence nonforward distrigt{dhw). The u
dependence df(x,y;u) is governed by the evolution equation

iF ; —fld flR ; F cu)d 6.1
* i (X,y;p)= . 13 . ea(X,Y; & mMF (&, miu)dn. (6.19

Since the integration over convertsk(x,y) into the parton distribution functiof(x), whose evolution is governed by the
DGLAP equation

d 1dé
g (06 f S PoaXIBT(E I, 6.16

the kernelRqq(X,Y; &, 7) must have the property

1-x 1
fo Roo(X,y; €, n)dy= EPQQ(X/f)- (6.17

For a similar reason, integratifi@,o(X,y; €, 7) overx one should get the BL-type kernel:

1-y
fo Roq(X,Y; € m)dX=Vqoq(y, 7). (6.18

Explicit calculation gives folRg(X,Y; &, 7) the following result:

Q0=x/éE<1)Xx/E| 1
(0=x/¢ )Xg,;a(x/g—y/n)

s~ 1 _ 1
Roo(X,Y:€,m)= %CFE{ 0(0=x/é<minfy/ ,y/ n}) — 55(1—x/§) Sy—mn)+

(1—x/¢)
1 - 1z
+ =5(x/§—y/77)}—26(1—x/§)5(y— n)f —dz]. (6.19
n 0 1-z
It can also be obtained from the kerrigho(u,v) using the relation
1 -
Roo(X,y; €, 1) = EBQQ(y_ Xl €y —nxl§). (6.20

It is easy to verify that the spectral constrait y<1 is not violated by the evolution: the kernegho(x,y;&,7) has the
property tha+y=<1 if £+ 7=<1. Using our expression f®qq(X,y; §, 7) and explicit forms of thé?5o(x/&) andVqe(y, 7)
kernels[see Eqs(5.26) and(5.17] one can check thaRq(x,y; €, 7) satisfies the reduction formul#6.17) and(6.18. To
solve the evolution equation, we combine the standard methods used to find solutions of the underlying DGLAP and BL
evolution equations. To solve the DGLAP equation, one should consider the moments with respedMuiiplying Eq.

(6.19 by x", integrating ovex and utilizing the propertyRoq(X,y; &, 7) =Rqo(X/£€,y;1,7)/ €, we get

1

d
M@Fn(y;u)=fo Rn(Y, 7)Fn(7;0)d7, (6.21)

whereF(y; ) is thenth x moment ofF(x,y; u)

1-y
Fa(y;m)= fo X"F(X,y; u)dx (6.22
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and the kerneR,(y, 7) is given by

n+1
Rn(y,n>=$cFH(%)

fldz
0o Z

1 —
1t ﬂ} o(y=m+{y—y,n—n|+8ly=n)| 5~ ] (6.23

It is straightforward to check tha&,(y,n) has the property

Ra(Y, mWr(7)=Rn(7,Y)Wr(Y),

wherew,(y)=(yy)""*. Hence, the eigenfunctions B, (y, 7) are orthogonal with the weighw,(y) = (yy)"*1, i.e., they are
proportional to the Gegenbauer polynomi@&”’z(y—y) (cf. [6,54]). Now, we can write the general solution of the evolution
equation

)'f(n)/ﬁo
An o), (6.29

Fn(y;ﬂ)zz(ywﬂ(znu)u(2n+2)| 5 kEEIK g _j{ln(no//\)

n'(n+1)! &b (2n+k+2)1 Tk In(u/A)

where

l RN
Antizo)= | Folyimo Ly =7y 629

and the anomalous dimensiomﬁ‘) are related to the eigenvalues of the kerRg{y, 7). They coincide with the standard
nonsinglet anomalous dimensiopg (6.4): 7 = Yn+k- Slncey(o)—o while all other anomalous dimensions are positive, in
the formalu— o limit we haveF(y,u—*)~yy andF,(y,u—%)=0 for all n=1. This means that

F(X,y;u—®)~8(X)YY, (6.26)

i.e., in each of its variables, the limiting functidf(x,y; u— =) acquires the characteristic asymptotic form dictated by the
nature of the variables(x) is specific for the distribution functiori$5,56, while theyy-form is the asymptotic shape for the
lowest-twist two-body distribution amplitudes[5,6]. For the asymmetric distribution function this gives
]-}(X,,LL—>OO)~(X/§2)(1—X/§). This result was already obtained in the previous subsection.

VIl. BASIC USES OF NONFORWARD DISTRIBUTIONS

A. Deeply virtual Compton scattering

Using the parametrization for the matrix elements of the quark operator, we can easily write a parton-type representation for
the handbag contribution to the DVCS amplitude:

- . 1 _ . .
T (0,0.0) = 5507y 2(pq ] 2 el (—g””+ W(p”q’“p”q’“))[u(p’)q’U(p)TE(ﬁHmu(p')(q’r—rq U(P)Tk(£)
Padg (q'r) a
tie ’”“"’( 0q') [U(p )G ysu(p)TE(0) + gM u(p) ysu(p)Tp (é’)H (7.9
whered’zyﬂq’“, andT?3({) are the invariant amplitudes depending on the scaling varialle particular,
as ey ! 1 . A .
TF(g)——fo X—§+ie+ X ie (FEX:t) + FZ(X;1)d X (7.2

Since the nucleon is the lowest bound state in the three-quark system, the nonforward distribution funttoh f®real.
Hence, the imaginary part af2({) can be produced only by singularities of the terms in the square brackets. Taking into
account that the nonforward distributions vanishXat 0, we conclude that only the term containingXd# {+i¢€) generates

the imaginary part:

1 _
—Im TR =FULO+FEY) 7.3

with a similar expressions for Iﬂ‘iKG p({). As discussed in Sec. |, the functid@(g;t) does not coincide with the usual parton
distributionf 4({), even in the format—0 limit. To get the real part of the IX— {+i¢€) terms, one should use the principal
value prescription
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ReT2({)=— j (fa X; t)-l—fa(X t))o— ax (7.9

X=¢

Since the principal value prescription is based on cancellatiok<ot and X> ¢ parts of the integral, it makes sense to
preserve}"z‘(x;t) as a single function. Splitting it int&X<<{ and X>{¢ components, one would simply get two divergent
expressions for the real part of the amplitude.

Let us study how these formulas are modified by the evolution. At one loop, &term can be easily calculated using
the coordinate representation

i _
md/(vZ) p>|n ZBgo(u,v)dudy. (7.5

n_ %s 4 ~i(q2) Lt v
Ti(p.a.q")=5_ | d'ze o \P

Parametrizing the matrix element by the nonforward distributt), we obtain for thes-channel short-distance amplitude

111 Boo(u,v)dudy Boo(u,v)dudy
(s) "y — 2 QQ - QQ
t(p.a.9)=InQ fo fo(qp) g+ (vX—uX’ )p)2+|s j fo (1-uX'—vX+ie’ 7.6
whereX’=X—{. Using explicit expression for thBo(u,v) kernel, we obtain
-t X)=— c 3+In , In Q? (7.7
X' +ie 1 X' +ie F —l+ie ' '
A similar expression can be derived for the evolution of thehannel-type term:
! 0x)=— L1+ 2202 e In @2 7.8
xie X ==5 51 1 5 _Ce| 5 +IN(X/0) |In Q7. (7.8

Clearly, theu-channel term can be obtained from thehannel one by the chang€ — X, {— — . In the regionX<{, both

ty andt] are real. Furthermore, it is easy to establish that the correction terms in both cases vanish when integrated with the
asymptotic distribution B(1—X/£)/¢, explicitly showing that the latter does not evolve w@@i. Note thatt}(X) is purely

real in the whole range €X<1, while tj(X) is purely real only in the regioX<{. For X=¢, the latter has an imaginary

part:

ox=0)]
X=0 |,

In|X/¢—1]

t5(X)=—P o— +i X—¢

In Q2.
(7.9

FimS(X— §)+—CF[;< Pxigﬂwa(x 0

X—={

+

This information can be used to write down the expression showing the leading logarithm evolution of the ij@@t@?)
determining the imaginary part of the amplitude:

1 dz

f{(éQ) -Fg(ng)"' C,: |nQ2/QOf[5(X é’)(——f 13

1
+ XTg]]—'{(X;QS)dX. (7.10

Evidently, the expression in the braces is given by the nonforward evolution I@?R@Z,X) (5.26). For the usual distribution
function the analogous equation contains the DGLAP keR{gl X):

1 dz

1+ (LIX)?
H(GQ)=H(£6:Q9)+ 52Ce In Qz/QOH S(X— g)( 2 [ 22 ) e

X—7 ]f(x;Qg)dx. (7.1
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The comparison of the two expressions shows that evolutiowhere 73, 7° are the SB) color matrices. The first matrix

of the function]—'g(g;QZ) is not identical to that of (£;Q?). element here can be expressed through the meson distribu-
Recall also that in the forward case the lowest-order amplition amplitude(7) while the second one is related to the

tude is proportional to 1IX—{(+ie)+1/(X+{—i€). asymmetric gluon distribution. The other three lowest-order
diagrams can be written in a similar way. Applying formally
B. Gluonic contribution to hard exclusive meson the power countingisee Eq(3.7) and the discussion preced-
electroproduction ing it], we may conclude that each gluonic contribution has

The kinematics of hard exclusive meson electroproduc2n extraQ? factor compared to the quark term, since the
tion processes* p—Mp' is very close to that of the virtual guarks have twist one while the twist of the gluon vector
Compton scattering, especially in a situation when one caRotentialA, is zero. Technically, the enhancement appears
neglect the mass of the final meson. Again, one can use thghen the p,p, factor from the matrix element
a-representation rules to determine possible regimes capab(p’lAi(zl)AS(zz)lm combines with they,, ,q,, factors from
of producing a powerlike contribution for larg@?. The ba-  hard propagators and polarization vectors, thus producing the
sic difference is the absence of the regime analogous to shasstimate(p’|AA|p)~ Q2. However, the power counting for-
circuiting a subgraph containing the photon vertices, sincgnulas like Eq.(3.7) only give an upper estimate for the
instead of the final photon described by an elementary fielgelevant contribution. The actual behavior is determined by
we have now a bound state. Hence, the leading shorihe twistty of the composite operatd® constructed from
distance regime corresponds to contraction into point of ghe elementary fields corresponding to the external lines of
subgraph which contains the virtual photon vertex and loyne gp subgraph. It is well known that the simplgauge-

cat,ed ig tbe middle btetw?i? tg_e two I0qg'diStanCe'senstmvﬁwariantcomposite operator containing two gluonic fields is
pp’ andg: components of the diagram. p@ component G”, and its twist equals 2 rather than 0, just like for the
is described by the nonforward distribution function while ~—# L — , ) ,

theq' part is parametrized by the meson distribution ampli-lOWest-twist¢-- - operator. Diagrammatically, this means

tude. that, in the Feynman gauge, the leading power terms of four
Depending on the type of lines connecting the shortlowest-order diagrams completely cancel each other and the
distance subgraph with thg’|---|p) matrix element, one total result is suppressed byQ@4 compared to leading con-

deals either with quarkFig. 9(a)] or gluonic (Fig. 10 con- tributions of separate diagrams. In general, picking out non-
tributions to the lowest-order amplitude. The structure of thdeading power termshigher twist contributionsis a notori-
quark contribution is similar to that of the hard-gluon- ously difficult problem of perturbative QCD. However, in
exchange contribution to a meson electromagnetic form faceur case, the cancellation of leading terms is guaranteed by
tor, with the distribution amplitude of the initial state substi- gauge invariance of the total result. Hence, choosing a gauge
tuted by the quark nonforward distribution. There is also arin which the combinatiorql;q;(p’|AZ(21)A5(22)|p> is pre-
analogue of the soft contribution to the meson form factoented from producing theqg( p)? factor, we would elimi-
[see Fig. @)]. It corresponds to the infrared regime pate the artificially enhanced terms on diagram by diagram
Ay, — 2. basis. This goal is achieved if one uses the gauge
Let us concentrate here on the gluonic contribution whichy’'#A ,(z;q')=0. ThenA,, can be expressed in terms of the

requires a proper handling of restrictions imposed by gauggeld-strength tensoB ,, (see, e.9.[57))
invariance. Using the coordinate representation for the hard

propagators, we can write the contribution of Fig(dGas

o

TS(p,p’,Q’FJ (A’ ,M[4(0) y*S*(~2y) Au(z8)=0" | [Gy(z+oqe “do. (713

X 72y*S%(21— 2) Ty (2,)|0)
This representation also makes it easy to parametrize the
raa b 4 4
X(p'IALZ)ALZ) | P)d*21d 2, matrix eIemen(p’|A;(zl)AS(zz)|p) in terms of the gauge-
(7.12 invariant gluon distribution:

5% u(p")q'u(p) P.4,+P q’) 11 .
A o e\ A o yr _ _ Pry TP e iX(pz)+iX' (pzp)
<p |AM(21,Q )AV(ZZ!q )|p>|(zl—22)2:0 Ng_l Z(q/p) g;uz (pq/) fO Z[e ! 2
+ X' (P2)=iX(pZ)] 0 gy, (7.14

(X=ie)(X'+ie)

In Ref.[9], the amplitude of hard diffractive electroproduction was calculated for the longitudinal polarization of both the
virtual photon (f’;* =(q'*+¢{p*)/Q) and produced vector mesog{(=q’'#/my). In this case, the contribution of Fig. ()
in the (@' A)=0 gauge can be written as
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a (o T L 1. ¢p—Td (X=0p+q’
TLL(p!q :r)”U(p )q u(p)deTQDV(T)J’O S% EVE‘y*(gp_:qr)Z ’Y,LL((X_g)p_’_:q/)Z Yv

P.a,+ pm) FUAX) «
(p-q’) (X—ie)(X=¢+ie)

where ¢y(7) is the distribution amplitude of the longitudinal vector meson. This gives

X

(7.19

- gy,v+

(7.19

upHd’ 1 dr (1 FUX)
T8, (p,q,r)~ ARG UP) fo qovm—Tf ‘

Qmy 7 Jo X(X={+ie) "
Other diagrams give similar contributions, differing only in thdependent factor. For Fig. (), one should substitute 4/

by 1/r, while Figs. 10c) and 1@d) both have the ¥/r factor. Since 1+ 1/7=1/r7, the total contribution also has thert/
structure

Vig o drorn FAX)
TLL(p’qJ‘)NW fo ev(T) T—T—fo de, (7.1

where \1—¢ comes fromu(p’)=+y1—u(p). The ampli- [3,6]. Factorization was intensively studied in the following
tude T, (p,g,r) has imaginary part due to the factor years(see[49,64 and references therginReferring an in-

U(X—¢+ie): terested reader to Refl18] for a recent momentum-
representation analysis of factorization for hard exclusive
1 v1-¢ 1 oy(7) electroproduction processes, here we briefly discuss possible
P Im Ty (O~ Qmy FUL) fo Td“ (7.18  sources of factorization breaking analyzing them within our

approacH5] based on the combined use of thaepresen-

In Ref.[9], the gluonic matrix element was approximated bytation and the OPE-type methods.

the gluon distribution functioriiy(£). To get our result from

that of Ref.[9], one should substitute theré,({) by B. Structure of the lowest-order term
VI-¢FUOIL. Exclusive processes are rather vulnerable to factorization

Though the asymmetric distribution functicff(X) coin-  breaking. In contrast to inclusive cross sections, factorization
cides with Xfy(X) in the limit /=0, in general these two for exclusive amplitudes may fail even at the tree level.
functions differ when#0. As discussed earlier, the imagi- Hence it is a good idea just to write down the lowest-order
nary part appears faK={¢, i.e., in an asymmetric configu- contribution and carefully look at it. Take the DVCS ampli-
ration in which the second gluon carries a vanishing fractionude (7.2). It has terms 1X—i€) and 1/(X—{+i€) which
of the original hadron momentum, whilg,({) corresponds  gre singular foiX=0 andX= ¢, respectively. An immediate
to a symmetric configuration in which the final gluon has thequestion is whether these singularities appear within the re-

momentum equal to that of the initial one. gion of integration and if yes, whether they are inside that
region or at its end points. To be prepared to address this
VIIl. FACTORIZATION AND END-POINT EFFECTS question, we performed a detailed study of spectral proper-
ties of nonforward distributions. Our-representation analy-
A. General remarks sis shows that & X<1. Since the singularity 1(— ¢ +i€)

The standard question about PQCD applications for harés inside the integration region, we can write it as
processes is whether factorization of short- and long-distancB{1/(X— )} —imd(X~{): it generates both real and imagi-
contributions is maintained in higher orders. Since the Feynnary parts of the amplitude. On the other hand, thX /()
man integrals can be written in different representations, ongingularity is at the end point, and the relevant real part is
can approach the factorization problem in various ways. Irgiven by a divergent integral unless the nonforward distribu-
particular, the classic studies of deep-inelastic scattering ition 7;(X) vanishes aX=0. Hence, to claim factorization
QCD[58,55,5§ relied on the operator product expansion in for the real part, it is absolutely necessary to give the argu-
which the coordinate representation plays a crucial role. Theents that?,(0)=0. In our analysis, we derived;(X)
claims that factorization also holds for a more complicatedrom the double distributiorF(x,y). The basic expression
Drell-Yan process[59,60 were supported by studies for F,(X) shows thatF,(X)~X for any F(x,y) which is
[61,39,63 based on the analysis in the momentum represerfinite asx,y—0. One can getF,(0)#0 only if F(x,y) is
tation (see, however[47]). The early studies of exclusive singular forx=0, e.g., if it behaves like5(x) and does not
processes in QCD which started with the analysis of thevanish wheny=0. If F(X,y) has such a behavior, there
large-Q? behavior of the pion EM form factor also incorpo- should be a very special reason for it.
rated both the OPE-like coordinate representation methods Similarly, for the meson electroproduction, the integral
[2,4] and momentum-representation oriented approachesver = contains the factor ¥(1—7) singular at the end
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points =0, 7=1. Again, the factorization formula makes verge. One may object that in such a situation factorization
sense only if the distribution amplitudg(7) vanishes for still works if ¢1(7) vanishes faster tham as 7— 0. Note,
7=0,1. Sincep(7) is analogous to thé=1 limit of a non-  however, that evolution generates terms proportional :to
forward distribution, we may expect that it also vanishes at
=0 because of small phase space for the0 configura- .
tion.  Furthermore, since for massless quarks 2 _ 2 2, 2 ' P N
o(1—7)=*¢(7), if ¢(7) vanishes at=0, it also vanishes er(mp?) = er(7.Q7)+In QY Jo Vin)er(r,p5)dr’,
for r=1.

Of course, even if the vanishing at end points holds for . ,
any diagram of perturbation theory, this still does not mearsince V(7,7")~7 for small . In the presence of nonzero
that the nonperturbative functions have the same property!'aSS€s orzother infrared cutoffs, one should change iy
So, a cautious statement might be that if in perturbationt/(7+mM7/Q%). As a result, the |°9‘23”thm'c divergence con-
theory some function does not vanish at a particular end®rts ther integral into Zanzextra h@?/n?. Together with the
point, it is unlikely that it will vanish nonperturbatively. If it €volution logarithm InQ%/w~, they would amount to a double
vanishes perturbatively, there is some hope that this propert@darithm in a one-loop diagram of Fig. 11 type. It should be
is preserved for the nonperturbative function. emp_hasaed that this is not a Sudakov doubsle 2Ioga2r|th2m. In

The standard procedure to get an educated guess conceffrticular, in two Ioopszone would only get“l@” (In°Q
ing the end point behavior of hadron distribution amplitudef“zmzeVO"mOn and IrQ” from the 7 integra) rather than
o(7,) is to study the asymptotig—c limit of their evolu- In" Q- The poss[blhty to get an extra logarithm in the forr_n—
tion. This idea is equivalent to saying thatr,u) has the factor-type amplitudes was discovered a long time ago in a
same behavior at the end-points as the relevant BL evolutiofic@lar mode(see, e.g., Refl65]). In a scalar model, there
kernel V(7,7'). In particular, in[63] it was shown that @ré no numerator factors to moderate the?1singularity,

¢*{(7)~ (1~ 7) both for the longitudinally and transversely nence such a possibility is always realized. In RS, the
polarizedp mesons. diagram of Fig. 11 type for a scalar analogue of the pion

Similar estimates of the end-point behavior of the distri-form factor was studied with the help of therepresentation
bution amplitudes follow from QCD sum rule consider- @nd the Mellin transformation. It was shown that, in the su-

5 A . . . 3 . .
ations. In particular, if perturbative teriP®{(7,M?) of the  perrenormalizable ¢, model, this diagram has the

QCD sum rule(M? is the SVZ-Borel parameter In[Q%m?)/Q* behavior despite the fact that there is no loga-
rithmic evolution in this model. The logarithm appears be-

cause the leading SD-pole 3K 2) for the Mellin transform
prD(T)e*m,f/Mer higher states ITP®"{ 7,M?) + condensates  Of this diagram can be obtained in two ways: from the small-
(8.1 pL integration p, = a1+ a5) and from the smalpg integra-
tion (pr= a4+ as). There are no other possibilities. In par-
ticular, smallx integration Q=a;+as+az+ast as)
gives a nonleading pole 1¥¢3). Hence, the leading term
omes from a configuration in which the large momentgm
ows simultaneously through two subgrapis={o,0,}
andVg={04,05} while the momentum through the interme-
iate lineo; is small. Such a configuration was called in Ref.
?] the double-flow regime.

Ina renormalizabl@b% model the diagram shown in Fig.
11 has the IQ%n?]/Q* behavior because the leading SD
pole 1/d+2) can be obtained in three ways: from small-
integration, from smalp, integration, and from smap in-

vanishes forr=0 and7=1, one can argue that because of
guark-hadron dualitye(7) should also vanish at the end
points. For the correlators corresponding to the leading-twis
p-meson distribution amplitudes, we have indeed
1P 7,M?)~ 7,(1— 7) at the end points.

Note, furthermore, that both quark and gluon propagator
of the simplest hard subraph have denominators proportion
to . However, for a longitudinally polarized virtual photon,
only theO(7) term in the numerator of the quark propagator
survives which converts the # singularity of the hard am-
plitude into 14. This will not happen if thep meson is trans- ¢ Pl .
versely polarized. Hence, for transverse polarization ondedration. The factta)nzatlon for a scalar analog of the pion
would face the integral witip(7)/ 72 which logarithmically ~ form factor in thed, model was studied in more detail in
diverges if gr(7)~ 7 for small . This result excludes the Ref.[66]. It was shown there, in particular, that thé @/m?
transverse case from straightforward PQCD applicationsPehavior of the one-loop diagram results from the overlap of

This fact was repeatedly emphasized914,18,21 the evolution and the double-flow regime. In Ri], it was
emphasized that the presence of the double-flow regime is a

natural feature of exclusive amplitudes. Hence, to establish
factorization, one should first check whether it is present or
One of the lessons from the discussion above is that takaot. For the pion form factor in QCand other renormaliz-
ing into account only the denominators of the “hard” quark able models with spig-quarks its absence to all orders was
and gluon propagators one is guaranteed to getafattor  demonstrated in Ref5].
capable of destroying factorization from the very start. It is A rather peculiar double-flow contribution appears in a
the cancellation of one power afby a numerator factor in two-loop PQCD diagram for the nucleon form fact¢&¥].
case of a longitudinally polarized virtual photon which Its specifics is that it works for a term in which one takes
makes the factorization possible. In the absence of this carenly quark masses in the numerators of the propagators of
cellation, e.g., for transversely polarizeaneson, even if we the intermediate lines. Proceeding by a routine calculation, it
take ¢1(7) ~ 7(1— 7), the integral would logarithmically di- is rather difficult to detect such a contribution among a wide

C. Double-flow regime
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a q ration should simultaneously give the leading power behav-
a ior.

IX. COMPARISON WITH OTHER APPROACHES
AND NOTATIONS

In our definitions of various distribution functions, we
) B took the relevant matrix element and expressed it through an
integral representation over the momentum fractions, incor-
porating the spectral condition<OX<1. Another approach

is to introduce distribution functions by making a Fourier
transform of the matrix element with respect tpz (cf.
[68,36,37). One can easily derive the result of such a pro-
variety of two-loop terms. However, it is rather easy to find cedure by rewriting our representations in a form with a uni-
it if one has a guiding principle, such as the requirement thatersal exponential on the RHS. Consider, e.g., the matrix
both the left and right components of a double-flow configu-element for the quark operator:

FIG. 9. Hard exclusive meson electoproduction procéas:
leading SD contribution with quark nonforward distributioftm)
soft contribution.

_ o A 1 = - ~
(p’,s'|h2(0)ZE(0,2;A) h4(2)|p,S) | ,2—o=u(p’,s")Zu(p,s) f_lﬂe"x(pz)[f‘z(x;t) H(0<X=<1)

— FAL-X;1) 0(— 1+ {=X=)]dX+" K7, (9.1)
The Fourier transformation would project out the function
FAXit)=FAX;t) 0(0=X<1)— FE(L{—X;t) 0(— 1+ {<X=<{) 9.2

which (@) coincides with the quark distribution f0§<X<1 (b) reduces to the(minug antiquark distribution for
—1+{<X<0, and(c) is given by their difference for € X<{. The X variable changes within the segment 1+ ¢{,1)

centered alX={/2, with the total range length equal to-Z. To avoid the nonsymmetric anfidependent limits, one can
introduce the variabléct. [10])

X—¢12

X=1= i 9.3
which changes from-1 to 1. The ratio
_ ¢
&= -2 (9.9

is an alternative parameter characterizing the longitudinal momentum asymmetry of the nonforward matrix elenerld. For
and a massless hadron, it varies between 0 and 2. The reversed relations are

& ~ X+E&2 - — &2

Chm T X i

(9.5

Using translation invariandef. Eq.(4.15], one can easily derive that the operator with the quark fields taken at symmetric
points —z/2,z/2 has a rather compact representation in terms oKkthariable:

(p',S'|hal — ZI2)ZE(—212,212;A) t,//a(z/Z)I|0,S>|zz=o=u_(lo’,S’)iuuo,S)J1 e XPIH (X &0dX+E,”, (9.6
-1

a [ o )

FIG. 10. Gluon contribution to hard exclusive meson electoproduction amplitude.
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where P=(p+p’)/2 is the average momentum of the initial and final hadrpmote, that Pz)=(1-¢/
2)(p2)=(p2)/(1+ &/2)]. This representation is equivalent to the definition of dffeforward parton distributions H(X, &;t),
E.(X,&1) introduced by J(10] (see alsd13]). Basically, the latter are related to our nonforward distributions by

Pt =(1+ERHL X &), 9.7)

and similarly for other functions. The off-forward distributioHs(X, £;t), etc., are defined both for positive and negative
Depending on the value &f one can distinguish three different components: quUalRX<1), antiquark - 1<X< — £/2),

and mixed “quark minus antiquark” E12<X=<¢/2) components oH. The mixed component corresponds evidently to the
region O<X</ of the X variable in which the nonforward distributions can be treated as distribution amplitudes. Since
X(p2)=(X+&/2)(P2) and X—¢)(p2)=(X— &/2)(P2), the partons in this picture carry momeniaH&/2)P and X— £/2)P.

Using Egs.(9.5 and(9.7), one can relate our evolution kernels with those given in Ré]. The gluonic matrix element can

be also represented in the form of E§.6):

(p'12,2,G3 (— 22 E**(— 212, 2I2;A) G, (2/12) |p) 22— (9.8

- %U_(p’)iu(p)(Pz) J:lle_i;(Pz)Hg(’)zagit)d;Jr“ ST ©.9

Due to the symmetry properllylg(i,g;t)=Hg(—')Z,g;t), in-  present in the field-strength tens@r,, . Actually, this ex-
tegration ovek in this case can be restricted to the®<1  pectation is not supported by perturbative calculations. Take,
region. Note, that in the forward limg=0, t=0, the func- e.g., the evolution kerndP$<(X,Z). It can be treated as a
tion Hy(X, ;1) reduces toxfy(X) [cf. Eq.(4.12]. To getan  perturbative, leading logarithm approximation for the gluon
off-forward distribution reducing tdy(x), Ji[15] uses the (distribution inside a quarkcf. [19]). According to Eq.
definition equivalent to adding a factor gfin the integrand (5 2g) PY2(X,Z) does not vanish fox=¢. If F(X) does
on the right-hand side of E¢9.9): Hg(i,g;t)Hng'(i,g;t). =
However X=0 corresponds tX= /2 or to the middle-point
Y=1/2 of the distribution amplituddf%(Y) [see Eq(9.9)],
i.e., to a situation when the gluons carry equal fractiop&
of the original momentunp. Since Hg(i,g;t) is an even
function ofX, there are no evident reasons that it vanishes fo ,
X=0. Hence, di_viding—|g(i,§;t) by X produces an artificial the op_erator gonstructed from two v_ector potentid)s,A,
singularity OfH;I()‘(‘,f;t) for X=0. taken. in the light-cone gauge. In this senég(x;,x;) or, .
Another parametrization for the nonforward matrix ele-What is the samef(X)/X(X~{) can be treated as a basic
ment of the g|uon Operator was proposed by Couinsy Frankgluon distribution giVen by the matrix element of the prOdUCt
furt, and Strikmar{18]. Their definition of thenondiagonal  ©of fundamental gluonic fielda ,A, rather than by that of the
gluon distributionf 4(x;,X,;t) is also based on the Fourier secondary field$,,GY . Note, however, that if 4(x;,X2),
transformation. For positive values, their variabtesx, cor-  i.e., f?(X)/X(X—{), has no singularities, then the meson
respond to our fractionX and X—¢=X', respectively. In  electroproduction amplitude has no imaginary part at leading
our notations, the functiorfg(x;=X,x;=X—{;t) can be twist. Since this is impossiblef,y(x;,X,) musthave singu-
written as larities, and one may wish to explicitly display them speci-
fying their nature, e.g., 6—ie€), 1/(x;+i€). This goal is
1 _ achieved automatically iF?(X) is used as the basic distri-
fg(X,X=¢t)= XX=0) FUAX;t). (9.10 bution. | N o
In our approach, the starting point is the double distribu-
The factor 1X(X— ¢) was motivated by the necessity to can- 10N Fg(x,y;t) defined through the nonforward matrix ele-
cel the inverse factor which may emerge from the derivativednent of the gauge-invariant gluonic operator

not vanish forX={¢, the functionf?(x;t) does not vanish
both for X=0 andX= ¢ and f4(x4,X,) is singular both for
X1=O andX2=0.

In fact, the combinationF}(X)/(X—ie)(X—{+ie) ap-
pears in our parametrizatiqi@.14) for the matrix element of

— \a 1 11 . . —
(012,2,63, (O™ (0ZA)G3,(2)| ) 20— ) 2u(p)(p2) | x| 5 (e 0 istm - gtonvien)
0 0

XFg(x,y;t) 0(x+y=<1)dy. 9.1)
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As explained earlier, in perturbation theory the spectral prop- q=p'p :
erties 0<{x,y,x+Yy}=<1 can be proved to any order with the :

help of the a representation. Furthermore, the function 1 5 .
F4(x,y;t) does not depend on thigparameter. The family of (1-x)p ; : ; (1-y)p
{-dependent nonforward gluon distributiog(X;t) is ob- :T :
tained fromFy(x,y;t) by integration ovey [see(2.46)]: 2 : : 4
- 1 3 ]
FUXit)= Jom'”{x“'x“}Fg<X—yg,y;t>dy. 9.12 %o '

o FIG. 11. Double-flow regime for the scalar analog of a meson
Recall that the double distributiofg(x,y;t) can be treated form factor.

as a distribution function with respect xoand as a distribu-

tion amplitude with respect tg. This physical interpretation eter;=1—(p’z)/(pz) of the matrix element and refer to the
suggests thafy(x,y;t) is a regular function for all values of |ight-cone fractionsp,yr of the original hadron momentum
y and for at least nonzero values of We made this reser- p and momentum transfar=p’ —p carried by the active
vation because the evolution asymptotically makesparton. Another approach is to use nonforward distribution
Fo(x,y;t; ) (we added the dependence on the factorizatiofunctions.F,(X;t) which specify the light-cone projection of
scale ) proportional to§(x) as u—. In this situation, the total momentumXp=xp+yr carried by the parton.
Fo(X,y;t; ) is singular ak=0. However, thes(x) term still - These functionsF(X;t) explicitly depend or¢. Both types
produces a regular nonforward distributii(X;t), though  of distributions have hybrid properties, in some aspects re-
confined to the restricted regionsX<{. sembling usual parton distribution functions and in other
Assuming that the double distributidfy(x,y;t; ) is fi-  ones the distribution amplitudes. Their dependence is
nite everywhere, we conclude that the nonforward distribu-analogous to that of hadronic form factors. The use of
tion FJ(X;t; 1) in this case is also finite for all@X<1 and,  F,(X;t) is more convenient for ultimate applications to hard
moreover, that it vanishes fot=0. As discussed earlier, the PQCD processes, resulting in a formalism that is very similar
latter property is vital for factorization. If it is not fulfilled, to the standard PQCD parton picture. On the other hand, the
the X integral in the lowest-order expression diverges at thelouble distribution$=(x,y;t) have more transparent spectral
end-pointX=0, where the 1/—i€) prescription is of no properties which has serious advantages at the foundation
help. One may think that this problem can be avoided if onestages of the PQCD analysis. In this paper, we concentrated
uses the functiof¥¥(X;t) defined through the Fourier trans- on general aspects of the theory of nonforward distributions
formation with the variableX changing from—1+¢ to 1. and thelr uses. There are many interesting appllc_atlons to
Since the pointX=0 is inside the integration region, the deeply V|rt_ual Compton scattering a_nd hard exclusive ele_(_:-
i o troproduction processes which require further, more specific
1/(X—ie€) prescription apparently may help. Note, however

. . _ _ - 'studies of the nonforward distribution functions including
that if our function F3(X;t) does not vanish foX=0, the  1\,qeling their nonperturbative low-energy shape, logarith-

Fourier transform7g(X;t) is not continuous both foK=0  mjc PQCD evolution, calculation of nonlogarithmic higher-
and X=¢. As a result, the singularities of?(X;t)/(X order corrections, etc. Work in this direction has already

—i e)(§—§+ie) are not integrable. been starte10-23.
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