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Applications of perturbative QCD to deeply virtual Compton scattering and hard exclusive electroproduction
processes require a generalization of usual parton distributions for the case when long-distance information is
accumulated in nonforward matrix elements^p8uO(0,z)up& of quark and gluon light-cone operators. We
describe two types of nonperturbative functions parametrizing such matrix elements: double distributions
F(x,y;t) and nonforward distribution functionsFz(X;t), discuss their spectral properties, evolution equations
which they satisfy, basic uses and general aspects of factorization for hard exclusive processes.
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I. INTRODUCTION

The standard feature of applications of perturbative QCD
to hard processes is the introduction of phenomenological
functions accumulating information about nonperturbative
long-distance dynamics. The well-known examples are the
parton distribution functionsf p/H(x) @1# used in perturbative
QCD approaches to hard inclusive processes and distribution
amplitudeswp(x), wN(x1 ,x2 ,x3), which naturally emerge in
the asymptotic QCD analyses of hard exclusive processes
@2–7#. Recently, it was argued that the same gluon distribu-
tion function f g(x) used for description of hard inclusive
processes also determines the amplitudes of hard exclusive
J/c @8# and r-meson@9# electroproduction. Furthermore, it
was proposed@10# to use another exclusive process of deeply
virtual Compton scatteringg* p→gp8 ~DVCS! for measur-
ing quark distribution functions inaccessible in inclusive
measurements~earlier discussions of nonforward Compton-
like amplitudesg* p→g* p8 with a virtual photon orZ0 in
the final state can be found in@11–13#!. The important fea-
ture ~noticed long ago@11,12#! is that kinematics of hard
elastic electroproduction processes~DVCS can be also
treated as one of them! requires the presence of the longitu-
dinal component in the momentum transferr[p2p8 from
the initial hadron to the final:r i5zp. For DVCS andr elec-
troproduction in the regionQ2@utu, mH

2 , the longitudinal
momentum asymmetry~or ‘‘skewedness’’! parameterz co-
incides with the Bjorken variablexB j5Q2/2(pq) associated
with the virtual photon momentumq @14#. This means that
the nonperturbative matrix element^p8u . . . up& is essentially
asymmetric and, strictly speaking, the distributions which
appear in the hard elastic electroproduction amplitudes differ
from those studied in inclusive processes. In the latter case,
one has a symmetric situation when the same momentump
appears in both brackets of the hadronic matrix element
^pu . . . up&.

For diffractive processes, one deals with a kinematic situ-

ation when both the variablez specifying the longitudinal
momentum asymmetry~skewedness! of the nonperturbative
matrix element^p8u . . . up& and the absolute value of the
momentum transfert[(p82p)2 are small. Studying the
DVCS process, one should be able to consider the whole
region 0<z<1 and t;1 GeV2 @15#. In this situation, one
deals with essentiallynonforward ~or off-forward in termi-
nology of Ref. @10#! kinematics for the matrix element
^p8u•••up&. The basics of the perturbative QCD~PQCD! ap-
proaches incorporating asymmetric or off-forward parton
distributions were formulated in@10,16,17,15#. A detailed
analysis of PQCD factorization for hard meson electropro-
duction processes was given in Ref.@18#. Applications of
asymmetric gluon distributions to elastic diffractiveJ/c
electroproduction were discussed in@19–21#. In a recent pa-
per @22#, the off-forward quark distributions were studied
within the MIT bag model. A numerical study of the evolu-
tion of the asymmetric gluon distribution was attempted in
Ref. @23#. Thus, there is an increasing interest in the studies
of these new types of hadron distributions, their general
properties and applications.

Our goal in the present paper is to give a detailed descrip-
tion of the approach outlined in our earlier papers@16,17#.
The basic idea of@16,17# is that constructing a consistent
PQCD approach for amplitudes of hard exclusive electropro-
duction processes one should treat the initial momentump
and the longitudinal part of the momentum transferr on
equal footing by introducing double distributionsF(x,y),
which specify the fractions ofp and r i carried by the con-
stituents of the nucleon. These distributions have hybrid
properties: they look like distribution functions with respect
to x and like distribution amplitudes with respect toy. Writ-
ing matrix elements of composite operators in terms of
double distributions is the starting point of constructing the
PQCD parton picture. Another important step is taking into
account the logarithmic scaling violation. The evolution ker-
nelsR(x,y;j,h) for double distributions have a remarkable
property: they produce the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi ~DGLAP! evolution kernelsP(x/j) @24–26#
when integrated overy, while integratingR(x,y;j,h) overx
one obtains the Brodsky-Lepage-~BL-! type evolution ker-
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nels V(y,h) @6,7# for the relevant distribution amplitudes.1

One can use these properties of the kernels to construct for-
mal solutions of the one-loop evolution equations for the
double distributions. The longitudinal momentum transferr i

is proportional top: r i5zp and, for this reason, it is conve-
nient to parametrize matrix elements^p2r u . . . up& by asym-
metric distribution functionsFz(X) specifying the total light-
cone fractionsXp, (X2z)p of the initial hadron momentum
p carried by the ‘‘outgoing’’ and ‘‘returning’’ partons.2 It
should be emphasized that double distributionsF(x,y) are
universal functions in the sense that they do not depend on
the skewedness parameterz while the asymmetric distribu-
tion functionsFz(X) form a family ofX-dependent functions
changing their shape whenz is changed. The functions
Fz(X) also have hybrid properties. In the regionX>z the
returning parton carries a positive fraction (X2z)p of the
initial momentump, and henceFz(X) is similar to the usual
parton distributionf (X). On the other hand, in the region
0<X<z the differenceX2z is negative, i.e., the second
parton should be treated as propagating together with the first
one. The partons in this case share the longitudinal momen-
tum transferr i5zp in fractions Y[X/z and 12Y. This
means that in the regionX<z the functionFz(X) looks like
a distribution amplitude. It is possible to formulate equations
governing the evolution of the asymmetric distribution func-
tionsFz

g(X) and establish relations between these functions,
double distributionsF(x,y) and usual distribution functions
f (x) @16,17#.

Constructing a QCD parton picture for hard electropro-
duction processes, it is very important to know spectral prop-
erties of the relevant parton distributionsF(x,y) andFz(X).
Using the approach@28# based on thea-representation analy-
sis @29–32#, it is possible to prove that double distributions
F(x,y) have a natural property that bothx andy satisfy the
‘‘parton’’ constraints 0<x<1, 0<y<1 for any Feynman
diagram contributing toF(x,y). A less obvious restriction
0<x1y<1 guarantees that the argumentX5x1yz of the
asymmetric distributionFz(X) also changes between the
limits 0 and 1. An important observation here is thatX50
can be obtained only if bothx50 and y50. Because of
vanishing phase space for such a configuration, one may ex-
pect that asymmetric distributionsFz(X) vanish for X50.
This property is very essential, because the hard subprocess
amplitudes usually contain 1/X factors. WhenFz(0)Þ0, one
faces a singularityFz(X)/X at the end point of the integra-
tion region 0<X<1. Since such a singularity is not inte-
grable, factorization of short- and long-distance contributions
does not work in that case.

The paper is organized in the following way. In Sec. II,
we consider parton distributions in a toy scalar model. De-
spite its simplicity, it shares many common features with the

realistic QCD case. In particular, the spectral properties of
distribution functions are not affected by the numerators of
quark and gluon propagators, derivatives in triple-gluon ver-
tices, etc. Hence, studying a scalar model we just concentrate
on the denominator structure of the relevant momentum in-
tegrals, which is the same in both theories. We start with the
simplest example of the usual~forward! distribution f (x) and
then consider more and more complicated functions: the
double distributionF(x,y), asymmetric distribution function
Fz(X) and nonforward distributionFz(X;t). Explicit expres-
sions for these functions at one-loop level are obtained with
the help of thea representation. Using the latter one can
easily establish the spectral properties of the distribution
functions. Thea representation also provides a very effective
starting point for a general analysis of factorization and
large-Q2 behavior of elastic amplitudes. In Sec. III, we out-
line the all-order extension of the one-loop analysis. We give
an all-order definition of the double distribution function
F(x,y) and demonstrate that it has the spectral properties
0<$x,y,x1y%<1. We show how one can use thea-
representation analysis for finding integration regions re-
sponsible for the leading large-Q2 contributions. We also
discuss modifications of twist counting rules in QCD due to
cancellations between different gluonic contributions in the
Feynman gauge and other complications which appear in
gauge theories. In Sec. IV, we give definitions of nonforward
distributionsFz(X;t) in QCD. Just like the usual distribution
functions f (x) and distribution amplitudesw(y), the new
distributions depend on the factorization scalem, i.e., it is
more appropriate to use the notationFz(X;t;m) for the non-
forward distributions rather than simplyFz(X;t). Evolution
equations governing them dependence of the nonforward
distributions are discussed in Sec. V and Sec. VI. We show
how one can obtain evolution kernels for nonforward distri-
butions using already known kernelsB(u,v) of the evolution
equation for the light-ray operators@33,34#. Since this equa-
tion has an operator form, substituting it into a specific ma-
trix element one can convertB(u,v) into desired evolution
kernels. In particular, takinĝpu . . . up& one obtains the DG-
LAP kernels, choosinĝ0u . . . up& one gets BL-type kernels
while resorting tô p8u . . . up& and parametrizing the matrix
elements throughF(x,y) or Fz(X) one ends up with the
kernelsR(x,y;j,h) andWz(X,Z) governing the evolution of
double and asymmetric/nonforward distributions, respec-
tively. In Sec. V, we discuss the derivation of the evolution
kernelsWz(X,Z) for the nonforward distributions. We show,
in particular, that in the region 0<$X,Z%<z, the kernels
Wz(X,Z) reduce to the BL-type kernelsV(X,Z) calculated
for rescaled variablesX/z, Z/z. This result is very natural,
sinceFz(X) can be treated as a distribution amplitude when
X<z. In the opposite limitz<$X,Z%<1, the evolution is
similar to that of the DGLAP equation, the basic distinction
being the difference between the outgoingX,Z and returning
X8[X2z, Z8[Z2z momentum fractions. We show that
writing the kernels Wz(X,Z) in terms of the fractions
X,X8,Z,Z8 in the regionz<$X,Z%<1 gives the functions
W(X,X8;Z,Z8) which have the symmetry property with re-
spect to the interchange of initial and final partons:
W(X,X8;Z,Z8)5W(X8,X;Z8,Z). For z50 one hasX5X8,
Z5Z8 and the kernelsWz50(X,Z) acquire the DGLAP
form. In Sec. VI, we discuss the QCD evolution of the non-

1Originally, the evolution equation for the pion distribution am-
plitude in QCD was derived and solved in Ref.@5#, where the
anomalous dimension matrixZnk was used instead ofV(y,h) ~see
also @27#!.

2The asymmetric distribution functions defined in Ref.@17# are
similar to, but not coinciding with, thet→0 limit of the off-forward
parton distributions introduced by Ji@10#, see Sec. IX.
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forward distributions. Qualitatively, the evolution can be de-
scribed in the following way. Due to the DGLAP-type evo-
lution in theX.z region, the momenta of partons decrease,
and distributions shift into the regions of smallerX. How-
ever, when the parton momentum degrades to values smaller
than the momentum transferr 5zp, the further evolution is
like that for a distribution amplitude: it tends to make the
distribution symmetric~or antisymmetric! with respect to the
central pointX5z/2 of the ~0,z! segment. In Sec. VII, we
briefly discuss two basic uses of nonforward distributions:
deeply virtual Compton scattering and hard elastic meson
electroproduction. In particular, we show how to combine
the definition of the gluon distribution through the matrix
element of the gauge-invariant gluonic operator
Gma

a (0)Eab(0,z;A)Gan
a (z) with the usual Feynman rules for-

mulated for the vector potentialAm
a . In Sec. VIII, we discuss

possible sources of PQCD factorization breaking for hard
elastic electroproduction processes, due to singularities at the
end points of the integration region. In particular, we empha-
size the importance of establishing theFz(0)50 property
for the nonforward distributions. In Sec. IX, we compare our
notations, definitions and terminology with those used by
other authors@off-forward parton distributionsH(x,j;t) in-
troduced by Ji@10# and nondiagonal distributionsf (x1 ,x2)
defined by Collins, Frankfurt, and Strikman@18##. Section X
contains concluding remarks.

II. FORWARD AND NONFORWARD DISTRIBUTIONS
IN SCALAR TOY MODEL

A. Introductory remarks

The parton distributionsFz(X;t;m) parametrizing nonfor-
ward matrix elementŝp8uO(0,z)up& of composite two-body
operatorsO(0,z) on the light conez250 depend on four
parameters. In addition to the ‘‘usual’’ parton variableX
specifying the fractionXp of the initial hadron momentump
carried by the active parton@more formally,X may be treated
as the Fourier-conjugate parameter to (pz)#, the functions
Fz(X;t;m) also depend on the invariant momentum transfer
t5(p82p)2, the skewedness parameterz5(rz)/(pz)
~where r[p2p8!, and the evolution-factorization scalem.

The latter characterizes the subtraction procedure for singu-
larities that appear on the light conez250 ~in general,m
may be different from the scalemR introduced by theR
operation for ordinary UV divergences, but the usual con-
vention is to takem5mR!. Furthermore, depending on the
type of the composite operatorO(0,z), one would get quark,
antiquark, flavor-singlet, flavor-nonsinglet, gluonic, spin-
dependent, spin-independent, etc., distributions. In this situ-
ation, we propose to follow a step by step approach. We will
start with simplest examples and then gradually proceed to
more complicated ones. For this reason, we consider first a
toy scalar model. The lowest nontrivial level corresponds to
one-loop Feynman diagrams. The relevant integrals are eas-
ily calculable, and their study provides useful information
about the structure of the nonforward distributions, espe-
cially about their spectral properties, because the latter are
insensitive to numerators of quark and gluon propagators and
other complications brought in by the spin structure of the
realistic QCD case.

B. Forward distribution functions

Our starting point is the scalar analogue of the usual ‘‘for-
ward’’ parton distribution functionsf (x). Consider a one-
loop box diagram for a scalar version of the virtual forward
Compton amplitude@Figs. 1~a! and 1~b!#. Both incoming and
outgoing virtual ‘‘photons’’ have momentumq[q82zp,
whereq8 andp are lightlike momenta (q8)250, p250. The
‘‘photons’’ couple with the constante to a massive scalar
‘‘quark’’ field f. The initial and final hadrons are imitated by
massless scalar particles with the momentump. Their cou-
pling to the quarks is specified by a constantg. In these
notations,q2[2Q2522z(pq8). Since (pq)5(pq8), the
parameter z coincides with the Bjorken variable
z5xB j[Q2/2(pq). Using thea representation for the scalar
propagators

1

m22k22 i e
5 i E

0

`

eia~k22m21 i e!da ~2.1!

and calculating the resulting Gaussian integral over the loop
momentumk we obtain, for Fig. 1~a!,

Ta~p,q!52
e2g2

16p2 E
0

`

expH i F2~pq8!a1

a32z~a21a31a4!

a11a21a31a4
2l~m22 i e!G J da1da2da3da4

l2 . ~2.2!

We use the shorthand notationl[a11a21a31a4 . The large-Q2 asymptotics is determined by integration over the region
where the coefficient accompanying 2(pq8) vanishes. Otherwise, the integrand rapidly oscillates and the result of integration

FIG. 1. Scalar model analogs of~a!,~b! virtual forward Compton amplitude and~c!,~d! deeply virtual Compton scattering.
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is exponentially suppressed. Integration overa1;0 region is evidently the simplest possibility. Other variants are
a11a21a31a4;0 or a32z(a21a31a4);0. It is easy to check that the leading power behavior is generated by the
a1;0 integration, which gives

Ta~p,q!52
ie2g2

16p2 E
0

` 1

2~pq8!~a3 /l̃2z1 i e!

e2 i l̃~m22 i e!

l̃2
da2da3da41O~1/Q4!, ~2.3!

wherel̃[a21a31a4 . Introducing the distribution function

f ~x!5
ig2

16p2 E0

`

dS x2
a3

a21a31a4
D e2 i l̃ ~m22 i e!

l̃2
da2da3da4 , ~2.4!

we can write the leading power contribution in the parton form:

Ta
as~p,q!52E

0

1 e2

2~pq8!~x2z1 i e!
f ~x!dx52E

0

1 e2

~xp1q!21 i e
f ~x!dx[E

0

1

ta~xp,q! f ~x!dx. ~2.5!

At the last step, we introduced the parton subprocess amplitude

ta~xp,q!52
e2

~xp1q!21 i e
. ~2.6!

Hence, the parameterx can be treated as the fraction of the initial momentump carried by the quark interacting with the virtual
photon. Note that the limits 0<x<1 necessary for this interpretation ofx are automatically imposed by thea-representation
of f (x). A similar result holds for theu-channel diagram 1b:

Tb
as~p,q!5E

0

1 e2

2~pq8!~x1z2 i e!
f ~x!dx52E

0

1 e2

~xp2q!21 i e
f ~x!dx[E

0

1

tb~xp,q! f ~x!dx. ~2.7!

The distribution functionf (x) is defined here by the samea-parameter integral~2.4!. The latter can be easily calculated to give

f ~x!5
g2

16p2m2 ~12x!u~0<x<1!. ~2.8!

Note, that f (x) is purely real. Due to singularity atx5z in Eq. ~2.5!, the total amplitudeT[Ta1Tb has both real and
imaginary parts. Sincex>0 andz>0, its imaginary part is given by thes-channel contributionTa(p,q) only:

1

pe2 Im Tas~p,q!5E
0

1

Im ta~xp,q! f ~x!dx5E
0

1 1

2~pq8!
d~x2z! f ~x!dx5

f ~z!

2~pq8!
5

1

2~pq8!

g2

16p2m2 ~12z!. ~2.9!

The real part ofT is given byTb and by the real part ofTa :

Re Ta
as~p,q!5E

0

1

Re ta~xp,q! f ~x!dx52
e2

2~pq8!
PE

0

1 f ~x!

x2z
dx, ~2.10!

whereP stands for the principal value prescription.
To translate these results into the operator product expansion~OPE! language, we write the contribution of Figs. 1~a! and

1~b! in the coordinate representation:

T~p,q!5E ^puf~0!f~z!up&~e2 i ~qz!1ei ~qz!!Dm~z2!d4z. ~2.11!

The large-Q2 asymptotics of T(p,q) is given by the leading light-cone behavior of both the quark propagator
Dm(z2)51/4ip2(z22 i e)1 . . . and the matrix element^puf(0)f(z)up&,

T~p,q!5E e2 i ~qz!1ei ~qz!

4ip2~z22 i e!
^puf~0!f~z!up&uz250d4z1O~1/Q4!. ~2.12!

Defining the parton distribution functionf (x) by
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^puf~0!f~z!up&uz2505E
0

1 1

2
~e2 ix~pz!1eix~pz!! f ~x!dx, ~2.13!

we rederive the parton formulas~2.5! and~2.7!. Basically, the integral~2.13! can be treated as a Fourier representation for the
light-cone matrix element̂puf(0)f(z)up&uz250[ f̃ (pz) which is a function of the only variable (pz). However, to derive the
spectral constraint21<x<1 for the Fourier partner of (pz) and establish the propertyf (x)5 f (2x), one should incorporate
the fact thatf̃ (pz) is given by Feynman integrals with specific analytic properties and that we have the same scalar fieldf at
both points 0 andz. Thea representation which we used above is one of the most effective~though perturbative! ways to take
these properties into account. In Ref.@28# ~see also Sec. III below!, thea representation was used to prove that the constraint
0<x<1 in Eq.~2.13! and similar~but more complicated! constraints for multiparton distributions and distribution amplitudes
hold for any Feynman diagram. Two other approaches to studying spectral properties of parton distributions are described in
@36,37#.

Anticipating comparison with the nonforward distributions discussed below, it is worth emphasizing here that the Bjorken
z parameter is not present in Eq.~2.13! defining the parton distribution functionf (x). It appears only after one calculates the
Compton amplitudeT(p,q).

C. Double distributions

Now, consider a one-loop box diagram for the scalar analogue of the deeply virtual Compton scattering amplitude@Figs.
1~c! and 1~d!#. Using the same basic light-cone momentap,q8 as in the forward case, we write the momentum of the incoming
virtual photon asq[q82zp. The outgoing real photon carries the lightlike momentumq8. The momentum conservation
requires that the final hadron has the momentum (12z)p, i.e., in this kinematics we have a lightlike momentum transfer
r[zp. Since the initial momentaq,p are identical to those of the forward amplitude, the parameterz coincides with the
Bjorken variablexB j[Q2/2(pq). In thea representation, the contribution of Fig. 1~c! is

Tc~p,q,q8!52
e2g2

16p2 E
0

`

expH i F2~pq8!a1

a32z~a31a4!

a11a21a31a4
2l~m22 i e!G J da1da2da3da4

l2 . ~2.14!

The large-Q2 limit is again governed by the small-a1 integration which gives

Tc~p,q,q8!52
ie2g2

16p2 E
0

` 1

2~pq8!@a3 /l̃2z~12a2 /l̃!1 i e#

e2 i l̃ ~m22 i e!

l̃2
da2da3da41O~1/Q4!. ~2.15!

In the forward case, the ratioa3 /l̃ was substituted by the variablex which was interpreted then as the fraction of the initial
hadron momentum carried by the active quark. The result expressed by Eq.~2.15! contains also another ratioa2 /l̃. So, let us
introduce thedouble distribution

F~x,y!5
ig2

16p2 E0

`

dS x2
a3

a21a31a4
D dS y2

a2

a21a31a4
D e2 i l̃ ~m22 i e!

l̃2
da2da3da4 . ~2.16!

It is easy to see that both variablesx,y vary between 0 and 1. Furthermore, their sum is also confined within these limits:
0<x1y<1. Hence,F(x,y)5u(x1y<1)F(x,y). Using Eq.~2.16!, we write the leading power contribution ofTc(p,q,q8) in
terms of the double distribution:

Tc
as~p,q,q8!52E

0

1E
0

1 e2

2~pq8!~x1yz2z1 i e!
F~x,y!dxdy52E

0

1E
0

1 e2

~xp1yr1q!21 i e
F~x,y!dxdy

[E
0

1E
0

1

tc~xp1yr,q,q8!F~x,y!u~x1y<1!dxdy. ~2.17!

The parton subprocess amplitudetc is given by

tc~xp1yr,q,q8!52
e2

~xp1yr1q!21 i e
. ~2.18!

Hence, the momentumxp1yr of the quark interacting with the virtual photon originates both from the initial hadron
momentump ~termxp! and the momentum transfer~termyr!. In a similar way, for theu-channel diagram@Fig. 1~d!#, we get

5528 56A. V. RADYUSHKIN



Td
as~p,q8,z!5E

0

1E
0

1 e2

2~pq8!~x1yz2 i e!
F~x,y!dxdy52E

0

1E
0

1 e2

~xp1yr2q8!21 i e
F~x,y!dxdy

[E
0

1E
0

1

td~xp1yr,q,q8!F~x,y!u~x1y<1!dxdy, ~2.19!

with the same double distributionF(x,y) given by Eq.~2.16!. In the explicit form

F~x,y!5
g2

16p2m2 u~0<x1y<1!. ~2.20!

Again, F(x,y) is purely real. Comparing thea representations forf (x) andF(x,y), we obtain the reduction formula for the
double distributionF(x,y):

E
0

12x

F~x,y!dy5 f ~x!. ~2.21!

Due to the restrictionsx>0, y>0, the imaginary part of the total amplitudeT[Tc1Td is given by thes-channel contri-
bution alone:

1

pe2 Im Tc~z,Q2!5
1

2~pq!
E

0

1E
0

1

d~x1yz2z!F~x,y!u~x1y<1!dxdy5
1

2z~pq!
E

0

z

F~x,12x/z!dx

5
1

2~pq!
E

0

1

F~ ȳz,y!dy[
1

2~pq!
F~z!. ~2.22!

The last form is similar to the expression for ImT in the forward case: one should just use the functionF~z! instead off (z).
Moreover, the integral definingF~z! looks similar to that appearing in the reduction formula~2.21!. Still, the two integrals are
not identical and, in general,F(z)Þ f (z). Using the explicit form ofF(x,y) for our toy model, we obtain

F~z!5
g2

16p2m2 u~0<z<1!. ~2.23!

The factor (12z) present inf (z) @see Eq.~2.8!#, does not appear here. Note, however, that the difference is small for small
z.

In the ~OPE! language, the basic change compared to the forward case is that we should deal now with the asymmetric
matrix element̂ p2r uf(0)f(z)up&. Our definition of the double distributionF(x,y) corresponds to the following parametri-
zation:

^p2r uf~0!f~z!up&uz2505E
0

1E
0

1 1

2
~e2 ix~pz!2 iy~rz!1eix~pz!2 i ȳ ~rz!!F~x,y!u~x1y<1!dxdy. ~2.24!

Taking the limitr 50 in Eq. ~2.24! gives the matrix element
defining the usual parton distribution functionf (x), and we
reobtain the reduction formula~2.21!. Again, this definition
of F(x,y) can be treated as a Fourier representation for a
function of two independent variables (pz) and (rz), with
the spectral constraintsx>0, y>0, x1y<1 dictated by the
analytic structure of the relevant Feynman integrals. An im-
portant feature implied by the representation~2.24! is the
absence of thez dependence in the double distribution
F(x,y). The asymmetric matrix element~2.24!, of course,
has z dependence. But it appears only through the ratio
(rz)/(pz) of variables in the exponential factor. In this treat-
ment, z characterizes the ‘‘skewedness’’ or ‘‘longitudinal
momentum asymmetry’’ of the matrix elements. The fact
that for the deeply virtual Compton amplitudeT the param-
eterz coincides with the Bjorken variablexBj5Q2/2(pq) is
a specific feature of a particular process. The matrix element

itself accumulates a process-independent information and,
hence, has quite a general nature.

Thus, despite the fact that the momentap and r are pro-
portional to each otherr 5zp, there is a clear distinction
between them, sincep andr specify the momentum flow in
two different channels. Forr 50, the momentum flows only
in the s channel and the total momentum entering into the
composite operator vertex is zero. In this case, the matrix
element coincides with the usual distribution function. The
partons entering the composite vertex then carry the fractions
xi ( i 51,2) of the initial proton momentum. In general,
21,xi,1, but whenxi is negative, we should interpret the
parton as going out of the composite vertex and returning to
the final hadron. In other words,xi can be redefined to secure
that the integral always runs over the segment 0<x<1. In
this parton picture, the spectators take the remaining momen-
tum (12x)p. On the other hand, if the total momentum
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flowing through the composite vertex isr , the matrix ele-
ment has the structure of the distribution amplitude in which
the momentum r splits into the fractions yr and
(12y)r[ ȳr carried by the quark fields attached to that ver-
tex. In a combined situation, when bothp andr are nonzero,
the initial quark has momentumxp1yr, while the final one
carries the momentumxp2 ȳr . Both the initial active quark
and the spectator carry positive fractions of the lightlike mo-
mentum p: x1zy for the active quark andx̄2zy5(1
2x2y)1(12z)y for the spectator. However, the total frac-
tion of the initial momentump carried by the quark returning
the fractionxp into the hadron matrix element is given by
x2 ȳz and it may take both positive and negative values.

D. Asymmetric distribution functions

Since (rz)5z(pz), the variabley appears in Eq.~2.24!
only in the x1yz[X combination, whereX can be treated
as thetotal fraction of the initial hadron momentump carried
by the active quark. Sincez<1 andx1y<1, the variableX
satisfies a natural constraint 0<X<1. Integrating the double
distributionF(X2yz,y) over y gives theasymmetric distri-
bution function

Fz~X!5u~X>z!E
0

X̄/ z̄
F~X2yz,y!dy

1u~X<z!E
0

X/z

F~X2yz,y!dy, ~2.25!

where z̄[12z. The basic distinction between the double
distributionF(x,y) and the asymmetric distribution function
Fz(X) is that the former is a universal function in the sense
that it does not depend on the skewedness parameterz while
the latter is explicitly labeled by it. Hence, we deal now with
a family of asymmetric distribution functionsFz(X) whose
shape changes whenz is changed. In our toy model,Fz(X)
has the followinga representation:

Fz~X!5
ig2

16p2 E0

`

dS X2
a31za2

a21a31a4
D

3
e2 i l̃ ~m22 i e!

l̃2
da2da3da4 . ~2.26!

Taking the integrals, we get the explicit form

Fz~X!5
g2

16p2m2 H X

z
u~0<X<z!1

12X

12z
u~z<X<1!J .

~2.27!

One can see that whenz→0, the limiting curve forFz(X)
reproduces the usual distribution function:

Fz50~X!5 f ~X!. ~2.28!

In general, this formula also follows directly from the defi-
nition of Fz(X) and the reduction formula~2.21! for the
double distributionF(x,y).

The fraction (X2z)[X8 of the original hadron momen-
tum p carried by the ‘‘returning’’ parton differs fromX by z:
X2X85z @14#. SinceX changes from 0 to 1 andzÞ0,1, the
fractionX8 can be either positive or negative, i.e., the asym-
metric distribution function has two components correspond-
ing to the regions 1>X>z and 0<X<z. In the regionX.z
@Fig. 2~a!# where the initial parton momentumXp is larger
than the momentum transferr 5zp, the functionFz(X) can
be treated as a generalization of the usual distribution func-
tion f (x) for the asymmetric case when the final hadron mo-
mentump8 differs by zp from the initial momentump. In
this case,Fz(X) describes a parton going out of the hadron
with a positive fractionXp of the original hadron momentum
and then coming back into the hadron with a changed~but
still positive! fraction (X2z)p. The parameterz specifies
the longitudinal momentum asymmetry of the matrix ele-
ment.

In the regionX,z @Fig. 2~b!#, the ‘‘returning’’ parton has
a negative fraction (X2z) of the light-cone momentump.
Hence, it is more appropriate to treat it as a parton going out
of the hadron and propagating along with the original parton.
Writing X as X5Yz, we see that both partons carry now
positive fractionsYzp[Yr and Ȳr[(12Y)r of the mo-
mentum transferr . The asymmetric distribution function in
the region X5Yz,z looks like a distribution amplitude
Cz(Y) for a ff state with the total momentumr 5zp:

Cz~Y!5E
0

Y

F@~Y2y!z,y#dy. ~2.29!

In our model,

Cz~Y!5
g2

16p2m2 Yu~0<Y<1!. ~2.30!

FIG. 2. Longitudinal momentum flow for two components of
the asymmetric distribution functionFz(X): ~a! X.z and~b! X,z.
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Both F(x,y) andFz(X) in our model are purely real. This
result is determined, in fact, by general properties of the
definition of the double distribution, Eq.~2.16!. Indeed, let
us introduce the Feynman parametersb i by a i5l̃b i . After
integrating overl̃, the only possible source of imaginary
contributions is the denominator factor 1/(m22 i e). How-
ever, sincem2.0, this factor is always positive and the in-
tegral is purely real. This would not happen if the initial
‘‘hadron’’ has a sufficiently large massM.2m. In this case,
instead of 1/(m22 i e) we would get 1/(2M2b3(12b3)
1m22 i e) if the final hadron has the same massM . Then,
the denominator is not positive definite ifM.2m, and the
integral has both real and imaginary part. Clearly, the imagi-
nary part appears because the initial hadron can decay into its
constituents. If such a possibility is excluded, the double
distributionsF(x,y) and, hence, the asymmetric distribution
functionsFz(X) are purely real.

The usual parton distributionsf (x) are often related to
imaginary parts, or more precisely,s- andu-channel discon-
tinuities of parton-hadron amplitudes.3 Note, that in our ap-
proach, the parton distributions are defined by form-factor-

type matrix elements which depend only on momentum
invariantsp2, p82, r 2 irrelevant to such discontinuities~so
far we even were treating these invariants as vanishing!. The
variableX in our definition only reflects a more complicated
structure of the operator vertex. To illustrate this point, we
write Fz(X) in the momentum representation@see Fig. 3~a!#

Fz~X!5
i

~2p!4 E d„X2~kq8!/~pq8!… d4k

~k22m21 i e!„~p2k!22m21 i e…„~r 2k!22m21 i e…

. ~2.31!

The d„X2(kq8)/(pq8)… function here corresponds to composite operator@denoted by a blob on Fig. 3~a!#. Using thea
representation, one can take the Gaussiank integral and obtain the representation given by Eq.~2.26!, which finally gives our
purely real result~2.27!.

It is worth emphasizing that the parton representations~2.5!, ~2.17!, and ~2.34! below are valid for the total Compton
amplitude: there is no need to split the latter into its real and imaginary parts in order to define the parton distribution. To make
a parallel with the traditional approach in which the parton distributions are defined through the discontinuities of parton-
hadron amplitudes, let us calculate thek integral above using the Sudakov decomposition

k5jp1hq81k' , 2~pq8![s, ~2.32!

which gives

Fz~X!5
is

2~2p!4 E d2k'E
2`

` dh

@Xhs2k'
2 2m21 i e#@~X21!hs2k'

2 2m21 i e#@~X2z!hs2k'
2 2m21 i e#

. ~2.33!

Looking at the location of singularities for theh integral, we immediately see that a nonzero result is obtained only when
0<X<1. Furthermore, in the regionz<X<1, the integral overh is given by residue ath52(k'

2 1m22 i e)/(12X)s, which
corresponds to substituting the ordinary propagator21/@(p2k)22m21 i e# by thed„(p2k)22m2

… function for the line with
momentum (p2k). In other words, forz<X<1, our one-loop model for the functionFz(X) is totally given by the residue
corresponding to thes-channel cut through the parton-hadron scattering amplitude@see Fig. 3~b!#. On the other hand, in the
region 0<X<z, the integral overh is given by residue ath5(k'

2 1m22 i e)/Xs, which corresponds to cutting the line with
momentumk @see Fig. 3~c!#. Such a cut cannot be related tos- or u-channel discontinuities.4 In both cases, one can say that
Fz(X) originates from a parton-hadron scattering amplitudeT5 iF whose imaginary part is given by one or another type of
discontinuities. In our treatment, the only important fact is that the amplitudeT is purely imaginary so that the distribution
functionFz(X) is purely real. As we have seen above, the functionFz(X) can be written in several different ways, e.g., in the
a representation which can be integrated without taking any residues.

In terms ofFz(X), the virtual Compton amplitudeTc1d(p,q,q8) can be written as

3In a recent paper, Frankfurtet al. @23# also discuss discontinuities in the context of the nondiagonal distribution functions.
4I am grateful to Frankfurt for attracting my attention to this point and correspondence.

FIG. 3. ~a! Structure of momentum integral defining the asym-
metric distribution functionFz(X). ~b! Cut of parton-hadron ampli-
tude corresponding to the residue for the regionX.z. ~c! Cut of
parton-hadron amplitude corresponding to the residue for the region
X,z.
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Tc1d
as ~p,q,q8!52

e2

2~pq!
E

0

1F 1

X2z1 i e
2

1

X2 i eGFz~X!dX. ~2.34!

For a real functionFz(X), the imaginary part ofTc1d
as (p,q,q8) is determined by that of the short-distance amplitude~terms in

square brackets!. SinceFz(X) linearly vanishes asX→0, the singularity 1/(X2 i e) of theu-channel diagram,@Fig. 1~d!# gives
a vanishing imaginary part. As a result, the imaginary part of the whole amplitude is generated by the 1/(X2z1 i e) singularity
coming from thes-channel diagram@Fig. 1~c!#:

1

pe2 Im Tc~z,Q2!5
1

2~pq!
E

0

1

d~X2z!Fz~X!dX5
1

2~pq!
Fz~z!. ~2.35!

Hence, the integralF~z! in Eq. ~2.22! is equal toFz(z), i.e., to the asymmetric distribution functionFz(X) taken at the point
X5z. The parameterz is present inFz(z) twice: first as the parameter specifying the longitudinal momentum asymmetry of
the matrix element and then as the momentum fraction at which the imaginary part appears. As one may expect, it appears for
X5xBj5z, just like in the forward case. Note, however, that the momentum (X2z)p of the ‘‘returning’’ parton vanishes
when X5z. In other words, the imaginary part appears in a highly asymmetric configuration in which the fraction of the
original hadron momentum carried by the second parton vanishes. Hence,Fz(z) in general differs from the functionf (z). The
latter corresponds to a symmetric configuration in which the final parton has momentum equal to that of the initial one. As
discussed earlier, in our toy modelf (z)/Fz(z)5 f (z)/F(z)512z, i.e.,Fz(z) is larger thanf (z), though the difference is
small for small values ofz.

The fact thatFz(X) vanishes forX50 has a rather general nature. Note, that for smallX the functionFz(X) is given by
its X<z component

Fz~X!uX<z5E
0

X/z

F~X2yz,y!dy. ~2.36!

The size of the integration region is proportional toX and, as a result,Fz(X) vanishes like const3X or faster for any double
distributionF(x,y) which is finite for smallx andy.

In the coordinate representation, the asymmetric distribution function can be defined through the matrix element

^p8uf~0!f~z!up&uz2505E
0

1 1

2
~e2 iX~pz!1ei ~X2z!~pz!!Fz~X!dX, ~2.37!

with z512(p8z)/(pz). To reobtain the relation betweenFz(X) and the double distribution functionF(x,y), one should
combine this definition with Eq.~2.24!. The z→0 reduction formula~2.28! trivially follows from Eq. ~2.37!.

Using translation invariance, we can write representation for a more general light-cone operator:

^p8uf~uz!f~vz!up&uz2505E
0

1 1

2
~e2 iXv~pz!1 i ~X2z!u~pz!1e2 iXu~pz!1 i ~X2z!v~pz!!Fz~X!dX. ~2.38!

This formula explicitly shows that if the parton corresponding tof(vz) has momentumXp, then the momentum of the parton
related tof(uz) is (X2z)p andvice versa.

E. Nonforward distributions

Writing the momentum of the virtual photon asq5q82zp is equivalent to using the Sudakov decomposition in the
light-cone ‘‘plus’’ (p) and ‘‘minus’’ (q8) components in a situation when there is no transverse momentum. An essential
advantage of expressing the amplitudes in thea representation is that it explicitly shows the dependence of the diagram on the
relevant momentum invariants. This means that we can derive the parton picture both for zero and nonzero invariant momen-
tum transferst5(p82p)2 without bothering about an optimal choice of the basic vectors for the external momenta. Main-
taining for simplicityp25p8250, we get, for Fig. 1~c!,

Tc~p,q,q8!52
e2g2

16p2 E
0

`

expH i Fa1~2~pq!a32Q2~a31a4!!1ta2a4

a11a21a31a4
2l~m22 i e!G J da1da2da3da4

l2 . ~2.39!

The small-a1 integration then gives

Tc
as~p,q,q8!52

ie2g2

16p2 E
0

` eita2a4 / l̃2 i l̃ ~m22 i e!

2~pq!~a3 /l̃2z~12a2 /l̃!1 i e!

da2da3da4

l̃2
1O~1/Q4!, ~2.40!

wherez5Q2/2(pq)[xBj . Hence, introducing thet-dependent double distribution
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F~x,y;t !5
ig2

16p2 E0

`

d~x2a3 /l̃!d~y2a2 /l̃!eita2a4 / l̃2 i l̃ ~m22 i e!
da2da3da4

l̃2
, ~2.41!

we obtain the same parton formula, but with a modified parton distributionF(x,y;t)

Tc
as~p,q,q8!52E

0

1E
0

1 e2

2~pq!~x1yz2z1 i e!
F~x,y;t !dxdy. ~2.42!

Moreover, the dependence ont appearsonly through thet dependence ofF(x,y;t). Similarly, we can write down thea
representation for theu-channel diagram@Fig. 1~d!#:

Td~p,q,q8!52
e2g2

16p2 E
0

`

expH i Fa1~22~pq8!a32Q2~a21a4!!1ta2a4

a11a21a31a4
2l~m22 i e!G J da1da2da3da4

l2 . ~2.43!

Using 2(pq8)52(pq)1t and integrating over smalla1 gives the parton formula

Td
as~p,q,q8!5E

0

1E
0

1 e2

2~pq!~x1yz1xt/2~pq!2 i e!
F~x,y;t !dxdy ~2.44!

with the samet-dependent functionF(x,y;t). In our model,

F~x,y;t !5
g2

16p2

u~0<x1y<1!

m22ty~12x2y!
. ~2.45!

The parton subprocess amplitude in this case has the
O„t/2(pq)…5O(zt/Q2) correction term which can be ne-
glected in the large-Q2, fixed-t limit. Then the parton ampli-
tude again depends only on the combinationx1yz, and it
makes sense to introduce thenonforward distribution

Fz~X;t !5E
0

min$X/z,X̄/ z̄ %
F~X2yz,y;t !dy, ~2.46!

which can be treated as the finite-t generalization of the
asymmetric distribution functionFz(X) @or more precisely,
Fz(X) is the t50 idealization ofFz(X;t)#. In our simple
model, it can be calculated analytically:

Fz~X;t !5
g2

16p2 H 4tu~X>z!

2tX̄A11t2
ln~t1A11t2!

1u~X<z!E
0

X/z dy

m22ty~X̄2yz̄ !
J , ~2.47!

wheret5A(2t/4m2)(12X)/(12z). The functionFz(X;t)
falls off with increasingutu like a form factor.

The t-dependent distributionsF(x,y;t) and Fz(X;t) in
our model are purely real. Indeed, introducing again the
Feynman parametersb i by a i5l̃b i and integrating overl̃
gives the denominator factor 1/(2tb2b41m22 i e). How-
ever, sincet<0, this factor is always positive and the inte-
gral is purely real. An imaginary part forF(x,y;t) and
Fz(X;t) would appear only if the initial hadron mass satis-
fies M2.4m2.

For real distributions, the imaginary part of the total
Compton amplitude can be calculated by taking the imagi-
nary part of the short-distance amplitude which picks out the
functionFz(z;t),

Fz~z;t !5
g2

16p2m2TA11T2
ln~T1A11T2!, ~2.48!

whereT5A(2t/4m2)(12z).
In the OPE approach, the nonforward distribution is given

by the matrix element

^p8uf~0!f~z!up&uz2505E
0

1 1

2
~e2 iX~pz!

1ei ~X2z!~pz!!Fz~X;t !dX.

~2.49!

Taking the local limitz50, we obtain the following sum rule
for Fz(X;t)

E
0

1

Fz~X;t !dX5^p8uf~0!f~0!up&5F~ t !, ~2.50!

where F(t) is the toy model analogue of a hadronic form
factor.

F. Timelike photon in the final state

To give an example in which the skewedness parameterz
does not coincide with the Bjorken parameterxBj , let us
discuss a situation considered in@11–13#, when the initial
photon is spacelikeq15q82z1p while the final photon is
timelike q25q81z2p. Here q8 is a basic lightlike vector
defining the Sudakov decomposition rather than the momen-
tum of the final photon. Now, the Bjorken ratio given by
xBj52q1

2/2(pq1) coincides withz1 . However, by momen-
tum conservation, the longitudinal part of the final hadron
momentum differs from that of the initial one by (z11z2)p,
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i.e., thez parameter is given in this case byz5z11z2 , with
z25q2

2/2(pq1). As a result, the scalar analogue of the time-
like photon electroproduction amplitude can be written as

T~p,q1 ,q2!52
e2

2~pq8!
E

0

1F 1

X2z11 i e

2
1

X2z22 i e GFz11z2
~X!dX ~2.51!

~for simplicity, we took heret50!. Its imaginary part is
proportional to the sumFz11z2

(z1)1Fz11z2
(z2). Hence,

having information about the imaginary part of such an am-
plitude for different values ofz1 and z2 , one can directly
‘‘measure’’ the asymmetric distribution functionFz(X) in
the regionX<z, whereFz(X) is similar to a distribution
amplitude.

III. ALL-ORDER ANALYSIS

A. Handbag diagram to all orders

Using thea representation, one can write down the con-
tribution of any diagram in terms of functions of thea pa-
rameters specified by the structure of the diagram. Since the
object of our interest is the matrix element of a two-body
operator, we can extract it from the simplest handbag dia-
grams, i.e., those in which theq vertex is connected to theq8
vertex by a single propagator. The contribution of any dia-
gram of this type can be written as~see, e.g.,@29,32#!

T~ i !~p,q,q8!

5 i l
P~c.c.!

~4p i !zd/2 E
0

`

)
s51

dasD2d/2~a!expH iq2
a1AL~a!

D~a!

1 is
a1As~a!

D~a!
1 iu

a1Au~a!

D~a!
1 i t

At~a!

D~a!

2 i(
s

as~ms
22 i e!J , ~3.1!

where s5(p1q)2, u5(p2q8)2 and t5(p2p8)2 are the
Mandelstam variables,d is the space-time dimension,
P(c.c.) is the relevant product of the coupling constants,z is
the number of loops of the diagram andl is the number of its
internal lines. Finally,D,As ,Au ,At ,AL are functions of the
a parameters uniquely determined for each diagram.

To describe them, we need definitions of a tree and a
two-tree of a graph. A tree~two-tree! of a graphG is a
subgraph ofG which consists of one~two! connected com-
ponents each of which has no loops. Any treeG1

k ~two-tree
G2

l ! of G is determined by the set of liness which should be
removed from the initial graphG to produceG1

k (G2
l ). The

product of theas parameters associated with these lines will
be referred to as ana-tree ~a-two-tree!. The functionD(a)
is called the determinant of the graph. It is given by the sum
of all a-two-trees of the graphG. By B( i 1 ,...,i mu j 1 ,...,j n)
we denote the sum of alla-two-trees possessing the property
that the verticesi 1 ,...,i m belong to one component,j 1 ,...,j n
to the other, while the vertices not indicated explicitly may
belong to either component. In these notations,

a1AL~a!5B~qup,q8,p8!,

a1As~a!5B~q,puq8,p8!,

a1Au~a!5B~q,p8up,q8!,

At~a!5B~q,q8up,p8!. ~3.2!

The mnemonics is straightforward: the square of the total
momentum entering into one of the components~due to mo-
mentum conservation, it does not matter which one! just
gives the relevant momentum invariant~see Fig. 4!. To get
all the two-trees corresponding to this invariant, one should
make all possible cuts resulting in such a separation of ex-
ternal momenta. Note, thata1 must be present in all terms of
B(qup,q8,p8), B(q,puq8,p8), and B(q,p8up,q8) because
the verticesq, q8 in these cases belong to different compo-
nents. On the other hand, forB(q,q8up,p8) these vertices are
in the same component. As a result, there are terms inAt(a)
which do not contain a1 as a factor, i.e., At(a)
5a1At

(1)(a)1At
(0)(a) with At

0(a)Þ0 and At
(1)(a)Þ0 for

a150. Similarly, the functionD(a) can be written as
D(a)5a1D1(a)1D0(a), whereD1(a) is the determinant
for the graphG1 obtained fromG by deleting the lines1 ,
while D0(a) is that for the graphG0 resulting fromG by
contracting the lines1 into a point~and gluing the vertices
q, q8 into a single point!. One can see that the function
D0(a) can also be written in terms of the samea-two-trees:

FIG. 4. Handbag diagram for deeply virtual Compton scattering.

FIG. 5. Four-point amplitude corresponding to the deeply virtual
Compton scattering.
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D0~a!5$B~qup,q8,p8!1B~q,puq8,p8!1B~q,p8up,q8!1B~q,p,p8uq8!%/a15AL~a!1As~a!1Au~a!1AR~a!,
~3.3!

whereAR(a) is the function corresponding to the cut separating out the momentum invariantq82. To get the leading large-Q2

asymptotics, we integrate over the regiona1;0. This gives

Tas~p,q,q8!5 (
diagr.

i l 11
P~c.c.!

~4p i !zd/2 E
0

`

)
s52

dasD0
2d/2~a!Fq2

AL~a!

D0~a!
1s

As~a!

D0~a!
1u

Au~a!

D0~a!
1t

At
~1!~a!

D0~a!
2m21 i eG21

3expH i t
At

~0!~a!

D0~a!
2 i (

s52
as~ms

22 i e!J . ~3.4!

Using s52Q212(pq), u522(pq)1t and neglectingt andm2 compared toO(Q2) terms in the denominator factor, we
transform it into

2Q2
AL~a!1As~a!

D0~a!
12~pq!

As~a!2Au~a!

D0~a!
1 i e.

This expression has the structure similar to that of the one-loop contributions~2.40! and ~2.43!. In particular, it can be
converted into the form of thes-channel term~2.40! if we denote@As(a)2Au(a)#/D0(a) by x and@AL(a)1As(a)#/D0(a)
by 12y. Analogously, to make it look like theu-channel term~2.43!, we should take@As(a)2Au(a)#/D0(a)52x and
@AL(a)1As(a)#/D0(a)5y. If we want to havepositive x, we should perform the first identification in the region where
As(a).Au(a) and use the second one in the region whereAs(a),Au(a). In other words, we define thet-dependent double
distribution by

F~x,y;t !5 (
diagr.

i l 21
P~c.c.!

~4p i !zd/2 E
0

`

)
s52

dasD0
2d/2~a!expH i t

At
~0!~a!

D0~a!
2 i (

s52
as~ms

22 i e!J
3FdS 12y2

AL~a!1As~a!

D0~a! D dS x2
As~a!2Au~a!

D0~a! D u„As~a!.Au~a!…

1dS y2
AL~a!1As~a!

D0~a! D dS x2
Au~a!2As~a!

D0~a! D u„As~a!,Au~a!…G . ~3.5!

An intuitive interpretation is that whenAs(a).Au(a), the quarktakesthe momentumxp from the initial hadron. Its total
momentum isxp1yr. Alternatively, whenAs(a),Au(a), the quarkreturnsthe momentumxp to the final state, and its total
returning momentum isxp2(12y)r . Due to Eq. ~3.3!, we automatically have 0<x<1, 0<y<1. Furthermore, since
x1y5@AL(a)1Au(a)#/D0(a)<1 in the first region andx1y5@AR(a)1As(a)#/D0(a)<1 in the second one, we always
have the restrictionx1y<1.

Again, introducing the Feynman parametersb i5a i /l and the common scalel given by the sum of alla i parameters, we
can integrate overl to see that the resulting denominator factor 1/„2tAt

(0)(a)/D0(a)1m2
…, is positive for t<0, and the

double distribution is purely real.
The same definition of the parametersx,y based on thea representation can be used in the realistic case of spin-1

2 quarks.
However, one should take into account that the quark lines in that case are oriented. Depending on their direction, we should
interpret the parton with momentumxp1yr either as a quark or as an antiquark.

The nonforward distributionsFz(X;t) can be obtained from the double distributions using Eq.~2.46!. The restrictions
x,y>0, x1y<1 guarantee that the total fractionX satisfies the basic parton constraint 0<X<1. Furthermore, if the double
distributionF(x,y;t) is finite for all relevantx,y, the nonforward distributionFz(X;t) vanishes~at least linearly! asX→0.

B. Alpha representation and factorization

Using thea representation, we can write each perturbative diagram contributing to the virtual Compton scattering amplitude
T(p,q,q8) in any field theory model, including QCD~see Fig. 5!

T~ i !~p,q,q8!5 i l
P~c.c.!

~4p i !zd/2 E
0

`

)
s

dasD2d/2~a!G~a,p,q,q8;ms!expH 2 iQ2
BL~a!1Bs~a!

D~a!
12i ~pq!

Bs~a!2Bu~a!

D~a! J
3expH i t

Bt~a!1Bu~a!

D~a!
1 iM 2

B1~a!1B2~a!

D~a!
2 i(

s
as~ms

22 i e!J . ~3.6!
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The only difference is the presence of the preexponential
factorG(a,p,q,q8;ms) due to the numerator structure of the
QCD propagators and vertices. It has a polynomial depen-
dence on the momentum invariants. The functionsB(a) are
defined by the relevant two-trees, e.g.,BL(a)
5B(qup,q8,p8), etc.

In the region whereQ2 and 2(pq)5zQ2 are large, all the
contributions having a powerlike behavior onQ2 can only
come from the integration region inside which all the ratios
AL /D, As /D, Au /D vanish: if any of them is larger than
some constantr, the integrand rapidly oscillates and the re-
sulting contribution from such an integration region is expo-
nentially suppressed.

SinceAL , As , Au , andD are given by sums of products
of non-negativea parameters, there are two basic possibili-
ties to arrangeAi /D50. In the first case, called the ‘‘short-
distance regime,’’Ai vanishes faster thanD when some of
the a parameters tend to zero~small a correspond to large
virtualities k2, i.e., to ‘‘short’’ distances!. The second possi-
bility, called the ‘‘infrared regime,’’ occurs ifD goes to
infinity faster thanAi when some of thea parameters tend to
infinity ~largea correspond to small momentak, i.e., to the
infrared limit!. One can also imagine a combined regime,
whenAi /D50 because somea parameters vanish and some
are infinite.

There exists a simple rule using which one can easily find
the liness whosea parameters must be set to zero and those
whose a parameters must be taken infinite to assure that
Ai /D50. First, one should realize thatAi /D50 means that
the corresponding diagram of a scalar theory~in which
G51! has no dependence on the relevant momentum invari-
ant ~Q2, s or u in our case!. As the second step, one should
incorporate the well-known analogy between the Feynman
diagrams and electric circuits@38#: the as parameters may
be interpreted as the resistances of the corresponding liness.
In other words,as50 corresponds to short circuiting the
line s while as5` corresponds to its removal from the
diagram. Hence, the problem is to find the sets of lines
$s%SD, $s% IR whose contraction into point@for $s%SD# or
removal from the diagram@for $s% IR# produces the diagram
which in a scalar theory does not depend onpi

2 . Thus, the
rule determining possible types of the powerlike contribu-
tions is the following: after the part of the diagram corre-
sponding to a short-distance subprocess is contracted into a
point and the part corresponding to soft exchange is removed
from the diagram, the resulting diagram~‘‘reduced dia-
gram,’’ cf. @39,18#! should have no dependence on large mo-
mentum invariants.

Some examples are shown in Fig. 6. The simplest possi-
bility is to contract into point some subraphH containing the
photon verticesq,q8 @Fig. 6~a!#. The reduced diagram de-
pends only on small invariantst, M2 and massesm. The
long-distance part corresponds to a nonforward distribution.
This is the standard OPE configuration. However, sinceq82

is not a large momentum invariant:q8250, there is a less
trivial possibility shown in Fig. 6~b!. In this case, there are
two long-distance parts: one is given by a nonforward distri-
bution again and the other can be interpreted as the distribu-
tion amplitude~hadronic component! of a real photon. Ex-
change of soft quanta between the two long-distance parts of

Fig. 6~b! corresponds to a combined SD-IR regime@Fig.
6~c!#: the a parameters of lines insideH vanish while those
belonging to the soft subgraphS tend to infinity.

One can easily invent other, more complicated configura-
tions. Fortunately, not all of them are equally important: dif-
ferent configurations have differentQ2 behavior. The power
counting is based on the observation that in the essential
region of integrationas;1/Q2 for lines in the short-distance
subgraphH andas;Q2/p4 for lines in the soft subgraphS
~p2 is some generic small scale, say,M2 or m2!. In the mo-
mentum representation, this corresponds tok;Q for the H
lines andk;p2/Q for the S lines. As a result, in a theory
with dimensionless coupling constants, we can use the di-
mensional analysis to derive that the contribution due toH
behaves likeQ42dH, wheredH is the sum of dimensions~in
mass units! of the fields associated with the external lines of
H. We should also take into account extra numerator factors
brought by these external lines. For instance, each external
quark line adds a Dirac spinoru(p), two of them give
u(p)ū(p); p̂, and p̂ can combine withq̂ from H to give
(pq);Q2. This means that each external quark line can
bring an extraQ1/2 factor. Note, that 1/2 is the spin of the
quark. Similarly, an external gluon line can add apm factor.
Combined withqm from H it gives (pq);Q2, i.e., the gluon
line can bring an extraQ5Q1 factor for the whole ampli-
tude. Again, ‘‘1’’ is the spin of the gluon. Hence, each ex-
ternal quark or gluon line can give the factorQsi2di5Q2t i

where t i5di2si is its twist. Note also that calculating the
virtual Compton amplitude we do not convolute the vector
indices m,n of the initial and final photon lines with
momentum-dependent vectors. Hence, each external photon
line gives only the factorQ21 due to its dimension. Thus, the
counting rule for the contribution of the hard subgraphH is

tH~Q!&Q42N2S i t i, ~3.7!

whereN is the number of external photon lines of the hard
subgraph and summation is over quark and gluon external
lines ofH. For the simplest hard subgraph with two external
quark lines this givestH(Q)&Q0, a scaling behavior as ex-
pected. For Fig. 6~b!, the estimate istH(Q)&Q21. Hence,
the contribution of Fig. 6~b! is power-suppressed compared
to that of Fig. 6~a!. Note that since the gluons have zero
twist, the hard subgraph can have an arbitrary number of
extra gluon lines without changing its power behavior. A
similar power counting estimate@42# based onk;p2/Q can
be obtained for the soft subgraphS:

tS~Q!&Q2S j t j , ~3.8!

where the summation is over the external lines ofS. Hence,
exchanging a soft quark@Fig. 6~d!# produces the 1/Q2 sup-
pression~S has then two external quark lines each having
t51!, while the exchange of any number of soft gluons is
not necessarily accompanied by a suppression factor, at least
on diagram by diagram level~for more details, see discus-
sion in the next subsection!. For the combined SD-IR con-
figuration, the power counting estimate is

tHS~Q!&Q42N2SHtiQ2SSt j . ~3.9!
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It is convenient to describe the power-law behavior of
T(Q2) in terms of the Mellin transformation

T~Q2!5
1

2p i E2 i`

i` S Q2

M2D J

F~J!dJ. ~3.10!

Then the statement thatT(Q2);(1/Q2)n is equivalent to
saying that the Mellin transformF(J) has a pole atJ52n.
Take as an example the Mellin transform of the scalar dia-
gram shown in Fig. 7~a! ~it is essentially identical to Fig.
1~c!:

Fc~J!52
e2g2

16p2 G~2J!E
0

`F ia1

~a31a4!2a3 /z

a11a21a31a4
GJ

exp$ i ta2a4 /l2 il~m22 i e!%
da1da2da3da4

~a11a21a31a4!d/2 . ~3.11!

Small-a1 integration corresponds to the simplest SD-regime,
Fig. 6~a!, and generates the pole 1/(J11) corresponding to
the 1/Q2 asymptotic behavior. The relevant reduced graph is
shown in Fig. 7~b!.

Another possibility to kill the dependence on large vari-
ables is to takea35a450 which corresponds to the reduced
graph shown in Fig. 7~c!. To describe a simultaneous van-
ishing of two a parameters, we use the common scale
r5a31a4 and the Feynman parametersg i5a i /r. The re-
sultingr integralrJrdr gives the pole 1/(J12) correspond-
ing to a nonleading behavior 1/Q4.

Furthermore, contracting the whole diagram into point
~i.e., taking a i50 for all a parameters! we also obtain a
reduced graph which does not depend on large variables. In
this case, we introduce the common scale
l5a11a21a31a4 and the relative parametersb i5a i /l.
In d54 dimensions, the integrand behaves likelJl3dl/l2

which produces the pole 1/(J12) generating a nonleading
behavior 1/Q4. However, if we take a scalar model ind56
space-time dimensions, then the integrand behaves like
lJl3dl/l3 and small-l integration generates the leading
pole 1/(J11). Note that in this case after thel integration
we still have the factorb1

J capable of producing another
1/(J11) pole due to small-b1 integration. Hence, the total
singularity of this diagram in six dimensions is 1/(J11)2,
which gives T(Q2);(ln Q2)/Q2. This corresponds, of
course, to the scaling violation, i.e., to evolution of the non-
forward distribution. One can even extract the relevant evo-

lution kernel from the remaining integral over
b2 ,b3 ,b4512b22b3 @the result, in fact, can be read off
Eq. ~2.27!#. Another observation is that if we simply inte-
grate over the small-a1 region, the remaining integral
da2da3da4 /l̃3 logarithmically diverges in the region of
small l̃[a21a31a4 . This is the standard UV divergence
of a matrix element of a light-cone operator in a theory with
dimensionless coupling constants.

Takinga2→`, we incorporate the IR regime correspond-
ing to the reduced Fig. 7~d!. If the quark corresponding to the
s2 line is massless, thea2 integral in this limit is
a2

2Jda2 /a2
2. It produces the 1/(J11) pole corresponding to

the leading 1/Q2 behavior. In the previous section, we did
not see this contribution because the quark masses were as-
sumed to be nonzero for all the lines. For nonzero mass, the
factor exp@2ia2m

2# suppresses the large-a2 integration and
no poles in theJ plane are produced. In other words, the IR
regime should be taken into account only for massless~or
nearly massless! fields. Note, that in QCD the IR regime for
the virtual Compton amplitude also gives 1/Q2 behavior for
massless quarks@see Eq.~3.8!#. However, in QCD this is a
nonleading contribution compared to the scaling behavior
produced by the purely SD regime Fig. 7~b!.

C. QCD and gauge invariance

After the SD dominance is established, the next step is to
write the contribution of the SD configuration in the coordi-
nate representation@Fig. 8~a!#

T~p,q,q8!5E e2 i ~qz!d4zE ^p8uf~z2!C~z,z1 ,z2!f~z1!up&d4z1d4z2 ~3.12!

~where f is a generic notation for the quark fieldsc,c̄ and the gluon fieldA! and expand the bilocal matrix element
^p8uf(z2)•••f(z1)up& in powers of (z22z1)2. Since we already know from thea-representation analysis that the virtualities
inside the SD subgraph areO(Q2), extra powers of (z22z1)2 for simply dimensional reasons result in extra powers of 1/Q2,
and the leading large-Q2 behavior will be given by the lowest term of this expansion corresponding to the lowest-twist
composite operator. Parametrizing the nonforward matrix elements of the light-cone operators by formulas analogous to Eq.
~2.38! gives the parton formulas similar to Eq.~2.34!. Of course, this is just a general idea how to obtain the QCD parton
picture for the SD-dominated amplitudes. Its practical implementation depends on specific properties of a particular process
under consideration.

The most important complication in QCD is due to the gauge nature of the gluonic field. In the Feynman gauge, the gluon
vector potentialAm has zero twist, and we should perform an infinite summation over the external gluonic lines both for the
SD-subgraphsH and infrared subgraphsS. Consider the sum of gluon insertions into the quark propagator. It is well known
~see, e.g.,@40–43#! that after summation

56 5537NONFORWARD PARTON DISTRIBUTIONS



Sc~j2h!1E Sc~j2z!gmgAm~z!Sc~z2h!d4z1 . . . 5E~j,h;A!Sc~j2h!@11O~G!# ~3.13!

all the A fields can be accumulated in the path-ordered exponential

E~j,h;A![P expS igE
h

j

Am~z!dzmD ~3.14!

while theO(G) term depends on the gluonic fields only through the tensorGmn and its covariant derivatives. SinceGmn is
asymmetric with respect to the interchange of the indicesm, n, it should be treated as a twist-1 field. For the simplest SD
configuration possessing a single long-distance part, combining theE factors of all internal lines of the SD subgraph, one gets
gauge-invariant operators, e.g.,q̄(z1)gnE(z1 ,z2 ;A)q(z2).

If the lowest-order SD-configuration contains two long-distance parts@like in Fig. 6~b!#, the gluonic corrections include
insertions into the external lines of the SD subgraph, Fig. 8~b!. The resulting path-ordered exponentialsEn(`,j,;A) then go
to infinity along the relevant light-cone directions, e.g.,q8 or p in case of hard electroproduction processes. However, for
color-singlet channels there are at least two such exponentials and their long-distance tails cancel each other so that only the
factorsE(j,h;A) related to SD-subgraph verticesj,h remain. The basic effect of the exponential factorE(j,h;A) is that
expanding operatorsO(j,h) into the Taylor series, e.g.,

q̄~j!gnE~j,h;A!q~h!5 (
n50

`
1

n!
Dn1Dn2 . . . Dnnq̄~j!gnDn1

Dn2
•••Dnn

q~j!, D5h2j ~3.15!

one gets local operatorsq̄gnDn1
Dn2

•••Dnn
q containing covariant derivativesDn5]n2 igAn rather than ordinary ones.

The cancellation ofEn(j,`;A) factors is very important for the success of the standard factorization program. Only after
such a cancellation, the long-distance information is accumulated in universal matrix elements of gauge-invariant light-cone
operators. To illustrate the difference between color-singlet and color-nonsinglet channels, consider matrix element
J(p,q8)5^0uEq8(`,0;A)c(0)up& of the quark fieldc~0! coming out of a state with momentump and taken together with the
accompanying gluonic fieldA which is then absorbed by aq8 channel quark collecting the gluonicA fields into the
Eq8(`,0;A) factor @see Fig. 8~c!#. Note that the latter can be written as

Eq8~`,0!5P expS E
0

`

A~ t !dtD 511E
0

`

A~ t !dt1E
0

`

A~ t !dtE
0

t

A~ t1!dt11 . . . 511E
0

`

A~ t !Eq8~ t,0!dt ~3.16!

whereA(t)5 igqm8 Am(tq8). Substituting this result into the
matrix element

J~p,q8!5^0uc~0!up&1E
0

`

^0uA~ t !Eq8~ t,0!c~0!up&dt,

~3.17!

shifting the arguments of all fields in the second term bytq8
and performing the Taylor expansion

Eq8~0,2t !c~2tq8!5(
0

`
~2t !n

n!
~q8D !nc~0!,

~3.18!

we can take the integral overt to get

J~p,q8!5^0ucup&2 (
n50

`
i n11

~pq8!n11 ^0uA~q8D !ncup&,

~3.19!

where all the fields are taken at the origin. In fact, since

^0uAnDn1
•••Dnn

cup&5pnpn1
. . . pnn

an~m2!, ~3.20!

the right-hand side of Eq.~3.19! does not depend on (pq8)
~cf. @44#!. Note, that the new representation forJ(p,q8),
unlike the original one, is not explicitly gauge invariant.
However, thec term can be represented as

^0ucup&5 K 0U i ~q8]!

~pq8!
cUpL ~3.21!

FIG. 6. Some regimes responsible for powerlike contributions to the DVCS amplitude.
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and we can combine it with the first term from the sum to get
a term containing a covariant derivativeD5]2 igA:

J~p,q8!5 K 0U i ~q8D !

~pq8!
cUpL

2 (
n51

`
i n11

~pq8!n11 ^0uA~q8D !ncup&. ~3.22!

Repeating this trick, i.e., representing the term outside the
sum as

K 0U i ~q8D !

~pq8!
cUqL 5 K 0U i 2

~q8]!

~pq8!

~q8D !

~pq8!
cUpL ~3.23!

and combining this term with then51 term from the sum
one obtains

J~p,q8!5 K 0U i 2
~q8D !2

~pq8!2 cUpL
2 (

n52

`
i n11

~pq8!n11 ^0uA~q8D !ncup&. ~3.24!

It is clear now that we can writeJ(p,q8) in a manifestly
gauge-invariant form~cf. @45#!:

J~p,q8!5 lim
n→`

i n

~pq8!n ^0u~q8D !ncup&

[ K 0US i ~q8D !

~pq8! D `

cUpL . ~3.25!

In perturbation theory, matrix elements^0u(q8D)ncup& for
finite n have ultraviolet divergences which can be regulated
in a standard way, e.g., by the dimensional regularization.
After renormalization, we get one-loop terms like
g2gn ln m2. However, the anomalous dimensiongn contains
the usual (( j

n1/j ) term @24# which behaves like lnn for large
n. Hence, taking the formal limitn→` one encounters a
logarithmic singularity, which requires an additional regular-
ization on top of dimensional regularization~cf. @46#!. The
parameter characterizing the extra regularization can be
taken proportional to m, i.e., the matrix element
^0uEq8(`,0;A)c(0)up& is the simplest example of a long-
distance object with a double-logarithmic dependence on the
UV cutoff @47#. Such objects~‘‘collinear’’ or ‘‘jet’’ factors
@48,44,49#! play an important role in PQCD studies of Suda-
kov effects. However, within the standard factorization ap-
proach, the presence of noncancelling double logarithms of

Q2 ~reflected by double logarithms ln2 m2 in long-distance
matrix elements! is treated as a failure of the factorization
program, since the amplitudes in that case cannot be written
through a convolution with parton distributions defined
through matrix elements of light-cone operators~which have
a single-logarithmic dependence onm!.

Another signature of Sudakov effects is the presence of
the IR contributions@see Fig. 6~c!#. Again, since all the had-
rons participating in a hard exclusive scattering process are
color singlets, summing over all soft gluon insertions one
would get a path-ordered exponential over a closed contour,
and by the Stokes theorem

K 0UP expH ig R Am~z!dzmJ U0L 511^0uO~G!u0&,

~3.26!

where O(G) depends on the gluon field only through the
field strength tensorGmn which has nonzero twist generating
a power suppression of the net IR regime contribution.

IV. NONFORWARD DISTRIBUTIONS IN QCD

A. Quark distributions

Let us discuss now the nonforward parton distributions in
the realistic QCD case. For quarks, we should take into ac-
count that the fieldca(z) contains both thea-quark annihi-
lation operator and theā-antiquark creation operator, i.e., the
matrix element of the same light-cone operator
c̄a(0) . . .ca(z) determines distribution functions both
for the quark and antiquark. Another complication is related
to spin. There are two leading-twist operators
c̄a(0)gmE(0,z;A)ca(z) and c̄a(0)gmg5E(0,z;A)ca(z),
where, as discussed above,E(0,z;A) is the path-ordered ex-
ponential~3.14! which makes the operators gauge invariant.
In the forward case, the first one gives the spin-averaged
distribution functionsf (x) while the second one is related to
the spin-dependent structure functionsg1(x). In this paper,
we will concentrate on thec̄agmE(0,z;A)ca operators and
gluonic operators with which it mixes under evolution. The
relevant nonforward matrix element can be written as5

5Two other definitions of the nonforward parton distributions in
terms of matrix elements of composite operators proposed by Ji
@10# and Collins, Frankfurt, and Strikman@18# are discussed in Sec.
IX.

FIG. 7. ~a! Scalar one-loop analog of the DVCS amplitude. Reduced graphs corresponding to SD regimes~b! a1;0, ~c! a31a4;0, and
~d! IR regimea2;`.
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^p8,s8uc̄a~0!ẑE~0,z;A!ca~z!up,s&uz250

5ū~p8,s8!ẑu~p,s!E
0

1

@e2 iX~pz!Fz
a~X;t !

2ei ~X2z!~pz!Fz
ā~X;t !#dX

1ū~p8,s8!
ẑr̂ 2 r̂ ẑ

2M
u~p,s!E

0

1

@e2 iX~pz!Kz
a~X;t !

2ei ~X2z!~pz!Kz
ā~X;t !#dX, ~4.1!

whereM is the nucleon mass ands,s8 specify the nucleon
polarization. Throughout the paper, we use the ‘‘hat’’~rather
than ‘‘slash’’! conventionẑ[zmgm . In Eq. ~4.1!, the quark
and antiquark contributions are explicitly separated~cf.
@50#!. The exponentiale2 iX(pz) associated with the functions
Fz

a(X;t) andKz
a(X;t) indicates that the fieldca(z) corre-

sponds to thea quark taking the momentumXp from the
nucleon. When the momentumXp is taken from the nucleon
by ana antiquark, the corresponding annihilation operator is
in c̄a(0), and thefunctionsF ā(X;t) andK ā(X;t) are ac-
companied by the exponentialei (X2z)(pz) corresponding to
the momentum at theca(z) vertex. The antiquark terms
come with the minus sign because the creation and annihila-
tion operators for them appear in the reversed order.

As emphasized by Ji@10#, the parametrization of this non-
forward matrix element must include both the nonflip term
described by the functionsFz(X;t) and the spin-flip term6

characterized by the functions which we denote byKz(X;t).
Taking theO(z) term of the Taylor expansion gives the sum
rules ~see@10#!

E
0

1

@Fz
a~X;t !2Fz

ā~X;t !#dX5F1
a~ t !, ~4.2!

E
0

1

@Kz
a~X;t !2Kz

ā~X;t !#dX5F2
a~ t ! ~4.3!

relating the nonforward distributionsFz
a(X;t), Kz

a(X;t) to
thea-flavor components of the Dirac and Pauli form factors:

(
a

eaF1
a~ t !5F1~ t !, (

a
eaF2

a~ t !5F2~ t !, ~4.4!

respectively~see also@52,53#!. The spin-flip terms disappear
only if r 50. In the weakerr 2[t50 limit, they survive, e.g.,
F2

a(0)5ka is the a-flavor contribution to the anomalous
magnetic moment. In the formalt50 limit, the nonforward
distributionsFz

a(X;t), Kz
a(X;t) reduce to the asymmetric

distribution functionsFz
a(X), Kz

a(X). It is worth mentioning
here that for a massive target~nucleons in our case! there is
a kinematic restriction@14#

2t*z2M2/ z̄. ~4.5!

Hence, for fixedz, the formal limit t→0 is not physically
reachable. However, many results~evolution equations being
the most important example! obtained in the formalt50,
M50 limit are still applicable.

In the regionX>z, the initial quark momentumXp is
larger than the momentum transferr 5zp, and we can treat
Fz

a(X) as a generalization of the usual distribution function
f a(x). Whenz→0, the limiting curve forFz(X) reproduces
f a(X):

Fz50
a ~X!5 f a~X!, Fz50

ā ~X!5 f ā~X!. ~4.6!

The spin-flip asymmetric distribution functionsKz(X) do
not necessarily vanish in thez→0 limit. However, the rel-
evant nucleon matrix elementū(p8)( ẑr̂ 2 r̂ ẑ)u(p) is propor-
tional to z and the spin-flip term is invisible in the forward
case.

In the regionX,z, one can defineY5X/z and treat the
function Fz

a(X) as a distribution amplitudeCz
a(Y). In par-

ticular, the nonflip part in this region can be written as

zū~p8!ẑu~p!E
0

1

@e2 iY~rz!Fz
a~zY!2e2 i ~12Y!~rz!Fz

ā~zY!#dY5zū~p8!ẑu~p!E
0

1

e2 iY~rz!Cz
a~Y!dY, ~4.7!

where the distribution amplitudeCz
a(Y) is defined by

Cz
a~Y!5Fz

a~Yz!2Fz
ā~Ȳz!. ~4.8!

The functionCz
a(Y) gives the probability amplitude that the initial nucleon with momentump is composed of the final

nucleon with momentum (12z)p[p2r and aq̄q pair in which the total pair momentumr is shared in fractionsY and
12Y[Ȳ.

6The possibility of a spin flip in nonforward matrix elements was discussed earlier in@51,52#.

FIG. 8. ~a! General structure of the leading SD contribution to
the DVCS amplitude in QCD.~b! SD configuration with two long-
distance parts.~c! Matrix element with double-logarithmic depen-
dence on the UV cutoff parameterm.

5540 56A. V. RADYUSHKIN



B. Gluon distribution

For gluons, the nonforward distribution can be defined through the matrix element

^p8uzmznGma
a ~0!Eab~0,z;A!Gan

b ~z!up&uz2505ū~p8!ẑu~p!~z•p!E
0

1 1

2
@e2 iX~pz!1ei ~X2z!~pz!#Fz

g~X;t !dX1ū~p8!

3
ẑr̂ 2 r̂ ẑ

2M
u~p!~z•p!E

0

1 1

2
@e2 iX~pz!1ei ~X2z!~pz!#Kz

g~X;t !dX. ~4.9!

The exponentialse2 iX(pz) andei (X2z)(pz) are accompanied here by the same functionFz
g(X;t) reflecting the fact that gluon and

‘‘antigluon’’ is the same thing. Again, the contribution from the region 0,X,z can be written as

ū~p8!ẑu~p!~z•r !E
0

1

e2 iY~rz!Cz
g~Y;t !dY1 ‘ ‘ K’ ’ term, ~4.10!

with the generalizedY↔Ȳ symmetric distribution amplitudeCz
g(Y;t) given by

Cz
g~Y;t !5

1

2
@Fz

g~Yz;t !1Fz
g~Ȳz;t !#. ~4.11!

In the formal t50 limit, the nonforward distributionsFz
g(X;t), Kz

g(X;t) convert into the asymmetric distribution functions
Fz

g(X), Kz
g(X). Finally, in thez50 limit, Fz

g(X) reduces to the usual gluon density

Fz50
g ~X!5X fg~X!. ~4.12!

C. Flavor-singlet and valence quark distributions

In our original definition~4.1! of the quark distributions, the exponentials exp@2iX(pz)# and exp@i(X2z)(pz)# are accom-
panied by different functionsFz

a(X;t) andFz
ā(X;t), respectively. In many cases, it is convenient to introduce the flavor-singlet

quark operator

OQ~uz,vz!5(
a
Oa

~1 !~uz,vz!, ~4.13!

where

Oa
~1 !~uz,vz!5

i

2
@c̄a~uz!ẑE~uz,vz;A!ca~vz!2c̄a~vz!ẑE~vz,uz;A!ca~uz!#. ~4.14!

The nonforward distribution functionFz
Q(X;t) for the flavor-singlet quark combination~4.13!

^p8,s8uOQ~uz,vz!up,s&uz2505ū~p8,s8!ẑu~p,s!E
0

1 i

2
@e2 ivX~pz!1 iuX8~pz!2eivX8~pz!2 iuX~pz!#Fz

Q~X;t !dX1 ‘ ‘ K’ ’

~4.15!

~whereX8[X2z! can be expressed as the sum of ‘‘a1ā’’ distributions:

Fz
Q~X;t !5(

a
@Fz

a~X;t !1Fz
ā~X;t !#. ~4.16!

Writing the contribution from the 0,X,z region as

zū~p8!ẑu~p!~z•r !E
0

1

e2 iY~rz!Cz
Q~Y;t !dY1 ‘ ‘ K’ ’ term, ~4.17!

we introduce the flavor-singlet quark distribution amplitudeCz
Q(Y;t) which has the antisymmetry property

Cz
Q(Y;t)52Cz

Q(Ȳ;t) with respect to theY↔Ȳ transformation.
Another combination of quark operators

Oa
~2 !~uz,vz!5

1

2
@c̄a~uz!ẑE~uz,vz;A!ca~vz!1c̄a~vz!ẑE~vz,uz;A!ca~uz!# ~4.18!
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corresponds to the valence combinationsFz
Va(X;t)[Fz

a(X;t)2Fz
ā(X;t):

^p8,s8uOa
~2 !~uz,vz!up,s&uz2505ū~p8,s8!ẑu~p,s!E

0

1 1

2
@e2 ivX~pz!1 iuX8~pz!1eivX8~pz!2 iuX~pz!#Fz

Va~X,t !dX1 ‘ ‘ K’ ’ .

~4.19!

In both cases@see Eqs.~4.15! and~4.19!#, two possible exponential factors are accompanied by the same distribution function,
just like for the gluon distribution. In the region 0,X,z, the functionFz

Va(X;t) can be written in terms of the flavor-

nonsinglet distribution amplitudeCz
Va(Y;t) which is symmetricCz

Va(Y;t)5Cz
Va(Ȳ;t) with respect to theY↔Ȳ interchange.

V. EVOLUTION EQUATIONS FOR NONFORWARD DISTRIBUTIONS

A. General formalism

Near the light conez2;0, the bilocal operatorsf(0)f(z) develop logarithmic singularities lnz2, so that the formal limit
z2→0 is singular. Calculationally, these singularities manifest themselves as ultraviolet divergences for the light-cone opera-
tors. The divergences are removed by a subtraction prescription characterized by some scalem: Fz(X;t)→Fz(X;t;m). In
QCD, the gluonic operator

Og~uz,vz!5zmznGma
a ~uz!Eab~uz,vz;A!Gan

b ~vz! ~5.1!

mixes under renormalization with the flavor-singlet quark operator. At one loop~i.e., in the leading logarithm approximation!,
the easiest way to get the evolution equations for nonforward distributions is to use the evolution equation@33,34# for the
light-ray operators.7 For the flavor-singlet case, it reads8

m
d

dm
Oa~0,z!5E

0

1E
0

1

(
b

Bab~u,v !Ob~uz,v̄z!u~u1v<1!dudv, ~5.2!

where v̄[12v and a,b5g,Q. For valence distributions, there is no mixing, and their evolution is generated by theQQ
kernel alone. Inserting Eq.~5.2! between chosen hadronic states and parametrizing the matrix elements by appropriate
distributions, one can get the well-known evolution kernels such as DGLAP and BL-type kernels and also to calculate the
nonforward kernelsRab(x,y;j,h) andWz

ab(X,Z). The kernelsRab(x,y;j,h) govern the evolution of the double distributions:

m
d

dm
Fa~x,y;t;m!5E

0

1E
0

1

(
b

Rab~x,y;j,h!Fb~j,h;t;m!u~j1h<1!djdh, ~5.3!

wherea andb denoteg or Q. Another set of kernelsWz
ab(X,Z) dictates the evolution of the nonforward distributions and

asymmetric distribution functions:

m
d

dm
Fz

a~X;t;m!5E
0

1

(
b

Wz
ab~X,Z!Fz

b~Z;t;m!dZ. ~5.4!

The evolution of the double distributions will be briefly discussed later in Sec. VI. Here we will discuss the structure of the
Wz

ab(X,Z) kernels. Since the form of the equation is not affected by thet dependence, ‘‘t ’’ will not be explicitly indicated in
what follows.

Before starting the actual calculations, one should take into account that the gluon distributionFz
g(X) is accompanied by the

sum of two exponentials while the flavor-singlet quark distributionFz
Q(X) with which it mixes is accompanied by the

difference. This sign change is, in fact, compensated by the extra (pz) factor in the right-hand side of the gluon distribution
definition. The set of evolution equations forFz

Q(X), Fz
g(X) can be obtained by substituting the definitions of the gluon~4.9!

and quark~4.15! distributions into Eq.~5.2! and performing the Fourier transformation with respect to the (pz) variable. For
this procedure, the (pz) factor is equivalent to differentiationd/dX while 1/(pz) results in an integration overX. Note that
both operations change the relative sign of the exponentials. Hence, it is convenient to introduce first the auxiliary kernels
M z

ab(X,Z) which would appear in the absence of the (pz) mismatch. They are directly related by

7This procedure was also used in a recent paper@35#. I was informed by Blumlein that its authors agree with my results for theWz(X,Y)
kernels given below.

8We prefer to use the kernelsBab(u,v) which have the symmetry propertyBab(u,v)5Bab(v,u) and are related to theKab(u,v) kernels
of @34# by Bab(u,v)52Kab(ū,v).
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M z
ab~X,Z!5E

0

1E
0

1

Bab~u,v !d„X2ūZ1v~Z2z!…u~u1v<1!dudv ~5.5!

to the light-ray evolution kernels@33,34#, which we write here in the form given in Ref.@17#:

BQQ~u,v !5
as

p
CFS 11d~u!@ v̄/v#11d~v !@ ū/u#12

1

2
d~u!d~v ! D ,

BgQ~u,v !5
as

p
CF@21d~u!d~v !#,

BQg~u,v !5
as

p
Nf~114uv2u2v !,

Bgg~u,v !5
as

p
NcS 4~113uv2u2v !1

b0

2Nc
d~u!d~v !1H d~u!F v̄2

v
2d~v !E

0

1 dz

z G1$u↔v%J D . ~5.6!

The W kernels are related to theM kernels by

Wz
gg~X,Z!5M z

gg~X,Z!, Wz
QQ~X,Z!5M z

QQ~X,Z!, ~5.7!

]

]X
Wz

gQ~X,Z!52M z
gQ~X,Z!, Wz

Qg~X,Z!52
]

]X
M z

Qg~X,Z!. ~5.8!

Hence, to getWz
gQ(X,Z) we should integrateM z

gQ(X,Z) with respect toX. The integration constant can be fixed from the
requirement thatWz

gQ(X,Z) vanishes forX.1. Then

Wz
gQ~X,Z!5E

X

1

M z
gQ~X̃,Z!dX̃. ~5.9!

Integrating thed function in Eq.~5.5! produces four different types ofu functions, each of which corresponds to a specific
evolution regime for the nonforward distributions. In two extreme cases, whenz50 or z51, the evolution equation reduces
to known DGLAP and BL-type equations, respectively.

B. BL-type evolution kernels

When z51, the initial momentum coincides with the momentum transfer andFz(X) reduces to a distribution amplitude
whose evolution is governed by the BL-type kernels:

Wz51
ab ~X,Z!5Vab~X,Z!. ~5.10!

Taking z51 in Eq. ~5.5! we obtain

M z51
ab ~X,Z![Uab~X,Z!5E

0

1E
0

1

Bab~u,v !d„X2ūZ2v~12Z!…u~u1v<1!dudv. ~5.11!

Eliminating thed function, one would observe that in the regionsX<Z andX>Z theUab(X,Z) kernels are given by different
analytic expressions. However, from representation~5.11! and the symmetry propertyBab(u,v)5Bab(v,u) it follows that
Uab(X̄,Z̄)5Uab(X,Z). Hence, it is sufficient to know theU kernels in theX<Z region only. The basic function
U0

ab(X,Z)[u(X<Z)Uab(X,Z) can be calculated from

U0
ab~X,Z!5

1

Z E
0

X

Bab~ v̄2~X2v !/Z,v !dv. ~5.12!

The total kernelUab(X,Z) then can be written as

Uab~X,Z!5u~X<Z!U0
ab~X,Z!1u~Z<X!U0

ab~X̄,Z̄!.

One can easily derive a table ofB→U0 conversion formulas for all the structures present in theB kernels:
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d~u!d~v !→d~Z2X!, 1→
X

Z
, d~u!

v̄
v
→0, d~u!S v̄

v D 2

→0,

d~v !
ū

u
→S X

ZD 1

Z2X
, d~v !

ū2

u
→S X

ZD 2 1

Z2X
,

u1v→
X

Z S 12
X

2ZD , uv→
X2

Z S 1

2
2

X

6Z
2

X

3 D . ~5.13!

Using Eqs.~5.6! and this table, we can get the BL-type kernelsVab(X,Z). Before doing this, we note that the BL-type kernels
appear as a part of the nonforward kernelWz

ab(X,Z) even in the generalzÞ1,0 case. As explained earlier, ifX is in the region
X<z, then the functionFz(X) can be treated as a distribution amplitudeCz(Y) with Y5X/z. For this reason, when bothX
andZ are smaller thanz, we would expect that the kernelsWz

ab(X,Z) must simply reduce to the BL-type evolution kernels
Vab(X/z,Z/z). Indeed, relation~5.5! can be written as

M z
ab~X,Z!5

1

z E
0

1E
0

1

Bab~u,v !d„X/z2ūZ/z2v~12Z/z!…u~u1v<1!dudv. ~5.14!

Comparing this expression with the representation for theU0
ab(X,Z) kernels, we conclude that, in the region whereX/z<1

andZ/z<1, the kernelsM z
ab(X,Z) are given by

M z
ab~X,Z!u0<$X,Z%<z5

1

z
Uab~X/z,Z/z!. ~5.15!

From the expressions connecting theW andM kernels, we obtain the following relations between the nonforward evolution
kernelsWz

ab(X,Z) in the region 0<$X,Z%<z @let us denote them byLz
ab(X,Z)[Wz

ab(X,Z)u0<$X,Z%<z# and the BL-type
kernelsVab(X,Z):

Lz
QQ~X,Z!5

1

z
VQQ~X/z,Z/z!, Lz

gQ~X,Z!5VgQ~X/z,Z/z!,

Lz
Qg~X,Z!5

1

z2 VQg~X/z,Z/z!, Lz
gg~X,Z!5

1

z
Vgg~X/z,Z/z!. ~5.16!

Explicit calculations based on Eqs.~5.5!–~5.9!, ~5.10!, and~5.16! give

VQQ~X,Z!5
as

p
CFH FX

Z S 11
1

Z2XD u~X,Z!G
1

1$X→X̄,Z→Z̄%J , ~5.17!

VQg~X,Z!52
as

p
Nf H X

Z F4~12X!1
122X

Z Gu~X,Z!2$X→X̄,Z→Z̄%J , ~5.18!

VgQ~X,Z!5
as

p
CFH S 22

X2

Z D u~X,Z!1
~12X!2

12Z
u~X.Z!J , ~5.19!

Vgg~X,Z!5
as

p
NcH 2

X2

Z S 322X1
12X

Z D1
1

Z2X S X

ZD 2

1d~X2Z!F b0

2Nc
2E

0

1 dz

12zG J u~X,Z!1$X→X̄,Z→Z̄%.

~5.20!

Note that theVgQ(X,Z) kernel can be represented as the sum

VgQ~X,Z!5
as

p
CF1

as

p
CFH S 12

X2

Z D u~X,Z!2$X→X̄,Z→Z̄%J ~5.21!

of a constant term and a kernel which is explicitly antisymmetric with respect to the$X→X̄,Z→Z̄% transformation. In fact, the
constant term does not contribute to evolution since the flavor-singlet distribution amplitudeCQ(Z) with which it is convo-
luted is antisymmetricCQ(Z)52CQ(Z̄). For the same reason, the convolution ofVgQ(X,Z) with CQ(Z) determining the
evolution correction toFz

g(X) behaves likeX2 for small X.
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Furthermore, the BL-type kernels also govern the evolution in the region corresponding to transitions from a fractionZ
which is larger thanz to a fractionX which is smaller thanz. Indeed, using thed function to calculate the integral overu, we
get

M z
ab~X,Z!uX<z<Z5

1

Z E
0

X/z

Bab$@12X/Z2v~12z/Z!#,v%dv, ~5.22!

which has the same analytic form~5.12! as the expression forM z
ab(X,Z) in the regionX<Z<z. ForQQ, gg, andQg kernels,

this automatically means thatWz
ab(X,Z)uX<z<Z is given by the same analytic expression asLz

ab(X,Z) for X,Z. Because of
integration, to getWz

gQ(X,Z) one should also knowM z
gQ(X,Z) in the regionz<X<Z. However, our explicit calculation

confirms thatWz
gQ(X,Z) in the transition regionX<z<Z is given by the same expression asLz

gQ(X,Z) for X,Z.
Note that the evolution jump through the critical fractionz is irreversible: thed function in Eq. ~5.14! requires that

X/z5v1(12u2v)Z/z or X<z if Z<z. To put it in words, when the parton momentum degrades in the evolution process
to values smaller than the momentum transferzp[r , further evolution is like that for a distribution amplitude: the momentum
can decrease or increase up to ther value but cannot exceed this value.

C. RegionZ>z, X>z

Recall that whenX.z, the initial quark momentumXp is larger than the momentum transferr 5zp, and we can treat the
asymmetric distribution functionFz

a(X) as a generalization of the usual distribution functionf a(X) for a somewhat skewed
kinematics. Hence, we can expect that evolution in the regionz,X<1, z,Z<1 is similar to that generated by the DGLAP
equation. In particular, it has the basic property that the evolved fractionX is always smaller than the original fractionZ. The
relevant kernels are given by

M z
ab~X,Z!uz<X<Z<15

1

Z E
0

~12X/Z!/~12z/Z!

Bab$@12X/Z2v~12z/Z!#,v%dv. ~5.23!

Changing the integration variable tow[v(12z/Z)/(12X/Z)5v/(12X8/Z8), we obtain the expression in which the argu-
ments of theB kernels are treated in a more symmetric way

M z
ab~X,Z!uz<X<Z<15

Z2X

ZZ8
E

0

1

Bab„w̄~12X/Z!,w~12X8/Z8!…dw, ~5.24!

whereX8[X2z andZ8[Z2z are the ‘‘returning’’ partners of the original fractionsX,Z. Moreover, sinceZ2X5Z82X8,
the kernelsM z

ab(X,Z) are given by functions symmetric with respect to the interchange ofX,Z with X8,Z8. This observation
can be used to check the results of calculations. However, since we are dealing with the asymmetric situationX.X8, Z.Z8,
other practical applications of this symmetry are not evident at the moment. Again, we can easily obtain a table for transitions
from theBab kernels to theMab kernels for the regionz<X<Z<1:

d~u!d~v !→d~Z2X!, 1→
Z2X

ZZ8
, ~u1v !→

Z2X

2ZZ8 F22
X

Z
2

X8

Z8 G ,
uv→

Z2X

6ZZ8 S 12
X

ZD S 12
X8

Z8 D , S d~u!
v̄
v

1d~v !
ū

uD→ 1

Z2X FX

Z
1

X8

Z8 G ,
S d~u!

v̄2

v
1d~v !

ū2

u D→ 1

Z2X F S X

ZD 2

1S X8

Z8 D
2G . ~5.25!

Introducing the notationPz
ab(X,Z)[Wz

ab(X,Z)uz<X<Z<1 and using the formulas given above, we calculate theP kernels9:

Pz
QQ~X,Z!5

as

p
CFH 1

Z2X F11
XX8

ZZ8 G2d~X2Z!E
0

1 11z2

12z
dzJ→ 1

Z
PQQ~X/Z!, ~5.26!

9Expressions for the nonforward generalization of the DGLAP evolution kernels~in different notations! were given in the review@12# by
Gribov, Levin, and Ryskin. They discuss the generalized DGLAP kernels in the context of the electroproduction amplitude with a timelike
photon ~or Z0! in the final state. However, as the longitudinal momentum asymmetry parameterz for their kernels they took the ratio
z2[q2

2/2(pq1) involving only the invariant massq2
2 of the final photon. As we have seen in Sec. II F, the correct value forz in this case is

z5z11z2 , wherez1 is the usual Bjorken parameterz1[2q1
2/2(pq1).

56 5545NONFORWARD PARTON DISTRIBUTIONS



Pz
Qg~X,Z!5

as

p
Nf

1

ZZ8 H S 12
X

ZD S 12
X8

Z8 D1
XX8

ZZ8 J→ 1

Z2 PQg~X/Z!, ~5.27!

Pz
gQ~X,Z!5

as

p
CFH S 12

X

ZD S 12
X8

Z8 D11J→ X

Z
PgQ~X/Z!, ~5.28!

Pz
gg~X,Z!5

as

p
NcH 2F11

XX8

ZZ8 G Z2X

ZZ8
1

1

Z2X F S X

ZD 2

1S X8

Z8 D
2G1d~X2Z!F b0

2Nc
2E

0

1 du

u
2E

0

1 dv
v G J→ X

Z2 Pgg~X/Z!.

~5.29!

The formally divergent integrals overu andv provide here
the usual ‘‘plus’’-type regularization of the 1/(Z2X) singu-
larities. The prescription following from Eqs.~5.24! and
~5.25! is that combining the 1/(Z2X) and d(Z2X) terms
into @Fz(Z)2Fz(X)#/(Z2X) in the convolution ofPz(X,Z)
with Fz(Z) one should change u→12X/Z and
v→12X8/Z8.

As expected, thePz
ab(X,Z) kernels have a symmetric

form. The arrows indicate how the nonforward kernels
Pz

ab(X,Z) are related to the DGLAP kernels in thez50 limit
when Z5Z8 and X5X8. Deriving these relations, one
should take into account that the asymmetric gluon distribu-
tion function Fz

g(X) reduces in the limitz50 to X fg(X)
rather than tof g(X).

In the region Z.z, the evolution is one-sided: the
evolved fractionX is smaller thanZ. Furthermore, ifZ<z
then alsoX<Z, i.e., distributions in theX.z regions are not
affected by the distributions in theX,z regions. Hence, just
like in the DGLAP case, information about the initial distri-
bution in theZ.z region is sufficient for calculating its evo-
lution in this region. This situation may be contrasted with
the evolution of distributions in theZ,z regions: in that
case one should know the asymmetric distribution functions
in the whole domain 0,Z,1.

Qualitatively, the evolution in theX,Z.z region pro-
ceeds just like in the DGLAP evolution: the distributions
shift to smaller and smaller values ofX. In the DGLAP case,
the distributions approach thed(x) form condensing at a
single pointx50. In the asymmetric case, the whole region
Z,z works like a ‘‘black hole’’ for the partons: after they
end up there, they will never come back to theX.z region.
Inside theZ,z region, the evolution is governed by the BL
equation transforming theCz(Y) distribution amplitudes
into their asymptotic forms likeYȲ,YȲ(Y2Ȳ) for the
quarks and (YȲ)2,(YȲ)2(Y2Ȳ) for the gluons; a particular
form is dictated by the symmetry properties of the relevant
operators.

VI. ASYMPTOTIC SOLUTIONS OF EVOLUTION
EQUATIONS

A. Evolution of asymmetric distribution function

To describe the qualitative features of the QCD evolution
of the nonforward distributions, we will consider the sim-
plest case, i.e., the evolution equation for the flavor-
nonsinglet~valence! functions. ThenQg, gQ, andgg ker-
nels do not contribute, and the evolution is completely

determined by theQQ kernel. The multiplicatively renor-
malizable operators in this case were originally found in Ref.
@5#

On5~z]1!nc̄laẑCn
3/2~zDJ /z]1!c. ~6.1!

Here we use the symbolic notation (zDJ /z]1) of Ref. @5#,
with DJ 5DW 2DQ , ]15DW 1DQ , andCn

3/2(y) being the Gegen-
bauer polynomials. This means that the Gegenbauer mo-
ments

Cz~n,m!5E
0

1

Cn
3/2~2Z/z21!Fz~Z;m!dZ ~6.2!

of the asymmetric distribution functionFz(X;m) have a
simple evolution:

Cz~n,m!5Cz~n,m0!F ln m0 /L

ln m/L Ggn /b0

, ~6.3!

whereb05112 2
3 Nf is the lowest coefficient of the QCDb

function andgn are the nonsinglet anomalous dimensions
@55,56#

gn5CFF1 2
2

~n11!~n12!
14(

j 52

n11
1

j G . ~6.4!

For n50, the Gegenbauer moment coincides with the ordi-
nary one and, sinceg050, the area under the curve remains
constant. Other Gegenbauer moments decrease asm in-
creases. For the ordinary moments of the nonforward distri-
bution

MN~z,m![E
0

1

Fz~X;m!XNdX, ~6.5!

using explicit expression for the Gegenbauer polynomials we
can derive the following expansion over the multiplicatively
renormalizable combinationsCz(n,m):

5546 56A. V. RADYUSHKIN



MN~z,m!5zNN! ~N11!! (
n50

N

~21!n
2~2n13!

~N1n13!! ~N2n!!
Cz~n,m!. ~6.6!

We can also write the expression which gives the evolved momentsMN(z,m) in terms of the original ones:

MN~z,m!5zNN! ~N11!! (
n50

N
~21!n2~2n13!

~N1n13!! ~N2n!! F ln m0 /L

ln m/L Ggn /b0

(
k50

n
~21!k~k1n12!!

2zkk! ~k11!! ~n2k!!
Mk~z,m0!. ~6.7!

With increasingN, the number of contributing Gegenbauer momentsCz(n,m) in Eq. ~6.6! increases. An important obser-
vation is that the nonevolving~andz independent, butt dependent! termC(0) contributes to each moment. As a result, in the
m→` limit, all the moments tend to constant values determined by then50 term in the sum~6.6!:

MN~z,m→`!5zN
6

~N12!~N13!
C~0!5E

0

z C~0!

z
6~X/z!~12X/z!XNdX. ~6.8!

Note that the last integral involves only theX values smaller thanz. This means that in the limitm→`, the function
Fz(X;m→`) completely disappears from the regionX>z, i.e., it reduces to the distribution amplitudeCz(Y) which ulti-
mately tends to the usual asymptotic shape 6Y(12Y) in the Y5X/z variable:

Fz~X;m→`!56C~0!X~12X/z!/z2. ~6.9!

One may also be interested in finding expressions showing how the functionFz(X;m) changes its shape from an arbitrary
original curveFz(X;m0) to the asymptotic one. Note, that the Gegenbauer moments forz,1 involve integration regions in
which the argumentCn

3/2(2Z/z21) of the polynomials extends beyond the segment (21,1) where they form an orthogonal set
of functions. Hence, a formal inversion of the Gegenbauer moments is only possible forz51. In this case, the inversion
produces the standard solution of the evolution equation for a distribution amplitude@5,6#

Fz51~X;m!5 (
n50

`
4~2n13!

~n11!~n12!
X̄Cn

3/2~2X21!F ln m0 /L

ln m/L Ggn /b0E
0

1

Cn
3/2~2Z21!Fz51~Z;m0!dZ. ~6.10!

Thus, if the initial distribution coincides with one of the eigenfunctionsXX̄Cn
3/2(2X21), the evolution is very simple: the

function just decreases in magnitude without changing its form. An attractive feature of such a situation is that approximating
the initial distribution amplitude by a few lowest Gegenbauer polynomials one obtains a simple model of its evolution.
Inspired by this observation, one may be tempted to construct a similar representation for the evolution of the asymmetric
distribution function. Using the expansion of the light-cone operatorc̄(0)laẑc(z) over the multiplicatively renormalizable
operatorsOn ~see@34#!

c̄~0!laẑc~z!5 (
n50

`

~21!n
2~2n13!

n! E
0

1

~uū!n11On~uz!du ~6.11!

and inserting it into the nonforward matrix element, we obtain

Fz~X;m!5 (
n50

`

~21!n
2~2n13!

n! S ln m0 /L

ln m/L D gn /b0

znCz~n,m0!E
0

1

~uū!n11d~n!~X2uz!du. ~6.12!

Integrating (uū)n11d (n)(X2uz) over u, we get the Gegenbauer polynomialsCn
3/2(2X/z21) accompanied by the spectral

conditionX<z. This means that the formal integration does not give a correct result for functions which do not vanish outside
the regionX<z. For such functions, one should first perform the summation overn ~which is, of course, practically impos-
sible! and only then take theu integral.

Another limit in which the integral overu can be taken safely isz50. For smallz, the Gegenbauer polynomials are
dominated by the senior powerZn and in thez→0 limit we obtain

Fz50~X;m!5 (
n50

`
~21!n

n!
d~n!~X!S ln m0 /L

ln m/L D gn /b0E
0

1

Fz50~Z;m0!ZndZ, ~6.13!

i.e., the well-known result that the moments of the usual parton densities have a simple DGLAP evolution. Note, that in this
case, the functions which evolve without changing their shape ared (n)(x). From a pragmatic point of view, this observation
is of little use. Modeling the solutions of the DGLAP equations is known to be a rather complicated exercise usually involving
a numerical integration of the evolution equations.
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Hence, the representation~6.12! should be understood only in the sense of~mathematical! distributions inX rather than
functions. To get meaningful results, one should integrate them overX with some smooth function. In particular, integrating
it with XN, one obtains the formula~6.6! for the evolution of theXN moments of nonforward distributions.

B. Evolution of double distribution

Solving the evolution equation for the valence double distributionF(x,y;m) defined by

^p2r ,s8uO~2 !~0,z!umup,s&uz2505ū~p8,s8!ẑu~p,s!E
0

1 1

2
@e2 ix~pz!2 iy~rz!1eix~pz!2 i ȳ ~rz!#F~x,y;m!u~x1y<1!dxdy,

~6.14!

we can give an alternative derivation of the asymptotic form of the valence nonforward distributionFz(X;m). The m
dependence ofF(x,y;m) is governed by the evolution equation

m
d

dm
F~x,y;m!5E

0

1

djE
0

1

RQQ~x,y;j,h!F~j,h;m!dh. ~6.15!

Since the integration overy convertsF(x,y) into the parton distribution functionf (x), whose evolution is governed by the
DGLAP equation

m
d

dm
f ~x;m!5E

x

1 dj

j
PQQ~x/j! f ~j;m!dj, ~6.16!

the kernelRQQ(x,y;j,h) must have the property

E
0

12x

RQQ~x,y;j,h!dy5
1

j
PQQ~x/j!. ~6.17!

For a similar reason, integratingRQQ(x,y;j,h) over x one should get the BL-type kernel:

E
0

12y

RQQ~x,y;j,h!dx5VQQ~y,h!. ~6.18!

Explicit calculation gives forRQQ(x,y;j,h) the following result:

RQQ~x,y;j,h!5
as

p
CF

1

j H u~0<x/j<min$y/h,ȳ/h̄%!2
1

2
d~12x/j!d~y2h!1

u~0<x/j<1!x/j

~12x/j! F 1

h
d~x/j2y/h!

1
1

h̄
d~x/j2 ȳ/h̄ !G22d~12x/j!d~y2h!E

0

1 z

12z
dzJ . ~6.19!

It can also be obtained from the kernelBQQ(u,v) using the relation

RQQ~x,y;j,h!5
1

j
BQQ~y2hx/j,ȳ2h̄x/j!. ~6.20!

It is easy to verify that the spectral constraintx1y<1 is not violated by the evolution: the kernelRQQ(x,y;j,h) has the
property thatx1y<1 if j1h<1. Using our expression forRQQ(x,y;j,h) and explicit forms of thePQQ(x/j) andVQQ(y,h)
kernels@see Eqs.~5.26! and ~5.17!# one can check thatRQQ(x,y;j,h) satisfies the reduction formulas~6.17! and ~6.18!. To
solve the evolution equation, we combine the standard methods used to find solutions of the underlying DGLAP and BL
evolution equations. To solve the DGLAP equation, one should consider the moments with respect tox. Multiplying Eq.
~6.15! by xn, integrating overx and utilizing the propertyRQQ(x,y;j,h)5RQQ(x/j,y;1,h)/j, we get

m
d

dm
Fn~y;m!5E

0

1

Rn~y,h!Fn~h;m!dh, ~6.21!

whereFn(y;m) is thenth x moment ofF(x,y;m)

Fn~y;m!5E
0

12y

xnF~x,y;m!dx ~6.22!
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and the kernelRn(y,h) is given by

Rn~y,h!5
as

p
CFH F S y

h D n11F 1

n11
1

1

h2yGu~y<h!1$y→ ȳ,h→h̄%G1d~y2h!F1

2
2E

0

1 dz

z G J . ~6.23!

It is straightforward to check thatRn(y,h) has the property

Rn~y,h!wn~h!5Rn~h,y!wn~y!,

wherewn(y)5(yȳ)n11. Hence, the eigenfunctions ofRn(y,h) are orthogonal with the weightwn(y)5(yȳ)n11, i.e., they are
proportional to the Gegenbauer polynomialsCk

n13/2(y2 ȳ) ~cf. @6,54#!. Now, we can write the general solution of the evolution
equation

Fn~y;m!52~yȳ!n11
~2n11!! ~2n12!!

n! ~n11!! (
k50

`
~2k12n13!k!

~2n1k12!!
Ck

n13/2~y2 ȳ!F ln~m0 /L!

ln~m/L! Ggk
~n!/b0

Ank~m0!, ~6.24!

where

Ank~m0!5E
0

1

Fn~y;m0!Ck
n13/2~y2 ȳ!dy ~6.25!

and the anomalous dimensionsgk
(n) are related to the eigenvalues of the kernelRn(y,h). They coincide with the standard

nonsinglet anomalous dimensionsgN ~6.4!: gk
(n)5gn1k . Sinceg0

(0)50, while all other anomalous dimensions are positive, in
the formalm→` limit we haveF0(y,m→`);yȳ andFn(y,m→`)50 for all n>1. This means that

F~x,y;m→`!;d~x!yȳ, ~6.26!

i.e., in each of its variables, the limiting functionF(x,y;m→`) acquires the characteristic asymptotic form dictated by the
nature of the variable:d(x) is specific for the distribution functions@55,56#, while theyȳ-form is the asymptotic shape for the
lowest-twist two-body distribution amplitudes@5,6#. For the asymmetric distribution function this gives
Fz(X,m→`);(X/z2)(12X/z). This result was already obtained in the previous subsection.

VII. BASIC USES OF NONFORWARD DISTRIBUTIONS

A. Deeply virtual Compton scattering

Using the parametrization for the matrix elements of the quark operator, we can easily write a parton-type representation for
the handbag contribution to the DVCS amplitude:

Tmn~p,q,q8!5
1

2 ~pq8! (
a

ea
2F S 2gmn1

1

p•q8
~pmq8n1pnq8m! D H ū~p8!q̂8u~p!TF

a~z!1
1

2M
ū~p8!~ q̂8 r̂ 2 r̂ q̂8!u~p!TK

a ~z!J
1 i emnab

paqb8

~pq8! H ū~p8!q̂8g5u~p!TG
a ~z!1

~q8r !

2M
ū~p8!g5u~p!TP

a ~z!J G , ~7.1!

whereq̂8[gmq8m, andTa(z) are the invariant amplitudes depending on the scaling variablez. In particular,

TF
a~z!52E

0

1F 1

X2z1 i e
1

1

X2 i eG„Fz
a~X;t !1Fz

ā~X;t !…dX. ~7.2!

Since the nucleon is the lowest bound state in the three-quark system, the nonforward distribution function fort,0 is real.
Hence, the imaginary part ofTF

a(z) can be produced only by singularities of the terms in the square brackets. Taking into
account that the nonforward distributions vanish forX50, we conclude that only the term containing 1/(X2z1 i e) generates
the imaginary part:

1

p
Im TF

a~z!5Fz
a~z;t !1Fz

ā~z;t ! ~7.3!

with a similar expressions for ImTK,G,P
a (z). As discussed in Sec. I, the functionFz

a(z;t) does not coincide with the usual parton
distribution f a(z), even in the formalt→0 limit. To get the real part of the 1/(X2z1 i e) terms, one should use the principal
value prescription
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Re TF
a~z!52PE

0

1

„Fz
a~X;t !1Fz

ā~X;t !…
dX

X2z
. ~7.4!

Since the principal value prescription is based on cancellation ofX,z and X.z parts of the integral, it makes sense to
preserveFz

a(X;t) as a single function. Splitting it intoX,z and X.z components, one would simply get two divergent
expressions for the real part of the amplitude.

Let us study how these formulas are modified by the evolution. At one loop, the lnQ2 term can be easily calculated using
the coordinate representation

T1~p,q,q8!5
as

2p E d4ze2 i ~qz!E
0

1E
0

1K p8Uc̄~uz!
ẑ

2ip~z2!2 c~ v̄z!UpL ln z2BQQ~u,v !dudv. ~7.5!

Parametrizing the matrix element by the nonforward distribution~4.1!, we obtain for thes-channel short-distance amplitude

t1
~s!~p,q,q8!5 ln Q2E

0

1E
0

1

~qp!
BQQ~u,v !dudv

„q1~ v̄X2uX8!p…

21 i e
5

1

2
ln Q2E

0

1E
0

1 BQQ~u,v !dudv
~12u!X82vX1 i e

, ~7.6!

whereX85X2z. Using explicit expression for theBQQ(u,v) kernel, we obtain

2
1

X81 i e
→t1

s~X!52
1

X81 i e H 11
as

2p
CFF3

2
1 lnS X81 i e

2z1 i e D G ln Q2J . ~7.7!

A similar expression can be derived for the evolution of theu-channel-type term:

2
1

X2 i e
→t1

u~X!52
1

X2 i e H 11
as

2p
CFF3

2
1 ln~X/z!G ln Q2J . ~7.8!

Clearly, theu-channel term can be obtained from thes-channel one by the changeX8→X, z→2z. In the regionX,z, both
t1
u and t1

s are real. Furthermore, it is easy to establish that the correction terms in both cases vanish when integrated with the
asymptotic distribution 6X(12X/z)/z, explicitly showing that the latter does not evolve withQ2. Note thatt1

u(X) is purely
real in the whole range 0<X<1, while t1

s(X) is purely real only in the regionX,z. For X>z, the latter has an imaginary
part:

t1
s~X!52P

1

X2z
1 ipd~X2z!1

as

2p
CFH 3

2 S 2P
1

X2z
1 ipd~X2z! D1 ipFu~X>z!

~X2z! G
1

2F lnuX/z21u
X2z G

1
J ln Q2.

~7.9!

This information can be used to write down the expression showing the leading logarithm evolution of the functionFz(z;Q2)
determining the imaginary part of the amplitude:

Fz~z;Q2!5Fz~z;Q0
2!1

as

2p
CF ln Q2/Q0

2E
z

1H d~X2z!S 3

2
2E

0

1 dz

12zD 1
1

X2z JFz~X;Q0
2!dX. ~7.10!

Evidently, the expression in the braces is given by the nonforward evolution kernelPz
QQ(z,X) ~5.26!. For the usual distribution

function the analogous equation contains the DGLAP kernelP(z/X):

f ~z;Q2!5 f ~z;Q0
2!1

as

2p
CF ln Q2/Q0

2E
z

1H d~X2z!S 3

2
22E

0

1 dz

12zD 1
11~z/X!2

X2z J f ~X;Q0
2!dX. ~7.11!
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The comparison of the two expressions shows that evolution
of the functionFz(z;Q2) is not identical to that off (z;Q2).
Recall also that in the forward case the lowest-order ampli-
tude is proportional to 1/(X2z1 i e)11/(X1z2 i e).

B. Gluonic contribution to hard exclusive meson
electroproduction

The kinematics of hard exclusive meson electroproduc-
tion processesg* p→Mp8 is very close to that of the virtual
Compton scattering, especially in a situation when one can
neglect the mass of the final meson. Again, one can use the
a-representation rules to determine possible regimes capable
of producing a powerlike contribution for largeQ2. The ba-
sic difference is the absence of the regime analogous to short
circuiting a subgraph containing the photon vertices, since
instead of the final photon described by an elementary field
we have now a bound state. Hence, the leading short-
distance regime corresponds to contraction into point of a
subgraph which contains the virtual photon vertex and lo-
cated in the middle between the two long-distance-sensitive
pp8 andq8 components of the diagram. Thepp8 component
is described by the nonforward distribution function while
the q8 part is parametrized by the meson distribution ampli-
tude.

Depending on the type of lines connecting the short-
distance subgraph with thêp8u•••up& matrix element, one
deals either with quark@Fig. 9~a!# or gluonic ~Fig. 10! con-
tributions to the lowest-order amplitude. The structure of the
quark contribution is similar to that of the hard-gluon-
exchange contribution to a meson electromagnetic form fac-
tor, with the distribution amplitude of the initial state substi-
tuted by the quark nonforward distribution. There is also an
analogue of the soft contribution to the meson form factor
@see Fig. 9~b!#. It corresponds to the infrared regime
as3
→`.

Let us concentrate here on the gluonic contribution which
requires a proper handling of restrictions imposed by gauge
invariance. Using the coordinate representation for the hard
propagators, we can write the contribution of Fig. 10~a! as

Tg
a~p,p8,q8!5E ^q8,M uc̄~0!gaSc~2z1!

3tagmSc~z12z2!tbgnc~z2!u0&

3^p8uAm
a ~z1!An

b~z2!up&d4z1d4z2 ,

~7.12!

whereta,tb are the SU~3! color matrices. The first matrix
element here can be expressed through the meson distribu-
tion amplitudew~t! while the second one is related to the
asymmetric gluon distribution. The other three lowest-order
diagrams can be written in a similar way. Applying formally
the power counting@see Eq.~3.7! and the discussion preced-
ing it#, we may conclude that each gluonic contribution has
an extraQ2 factor compared to the quark term, since the
quarks have twist one while the twist of the gluon vector
potentialAm is zero. Technically, the enhancement appears
when the pmpn factor from the matrix element
^p8uAm

a (z1)An
b(z2)up& combines with theqm8 ,qn8 factors from

hard propagators and polarization vectors, thus producing the
estimatê p8uAAup&;Q2. However, the power counting for-
mulas like Eq.~3.7! only give an upper estimate for the
relevant contribution. The actual behavior is determined by
the twist tO of the composite operatorO constructed from
the elementary fields corresponding to the external lines of
the SD subgraph. It is well known that the simplestgauge-
invariant composite operator containing two gluonic fields is
GmrGn

r , and its twist equals 2 rather than 0, just like for the
lowest-twist c̄•••c operator. Diagrammatically, this means
that, in the Feynman gauge, the leading power terms of four
lowest-order diagrams completely cancel each other and the
total result is suppressed by 1/Q2 compared to leading con-
tributions of separate diagrams. In general, picking out non-
leading power terms~higher twist contributions! is a notori-
ously difficult problem of perturbative QCD. However, in
our case, the cancellation of leading terms is guaranteed by
gauge invariance of the total result. Hence, choosing a gauge
in which the combinationqm8 qn8^p8uAm

a (z1)An
b(z2)up& is pre-

vented from producing the (q8p)2 factor, we would elimi-
nate the artificially enhanced terms on diagram by diagram
basis. This goal is achieved if one uses the gauge
q8mAm(z;q8)50. ThenAm can be expressed in terms of the
field-strength tensorGmr ~see, e.g.,@57#!

Am~z;q8!5q8rE
0

`

Gmr~z1sq8!e2esds. ~7.13!

This representation also makes it easy to parametrize the
matrix element̂ p8uAm

a (z1)An
b(z2)up& in terms of the gauge-

invariant gluon distribution:

^p8uAm
a ~z1 ;q8!An

b~z2 ;q8!up&u~z12z2!2505
dab

Nc
221

ū~p8!q̂8u~p!

2~q8•p!
S 2gmn1

pmqn81pnqm8

~p•q8!
D E

0

1 1

2
@e2 iX~pz1!1 iX8~pz2!

1eiX8~pz1!2 iX~pz2!#
Fz

g~X!

~X2 i e!~X81 i e!
dX1 ‘ ‘ K’ ’ . ~7.14!

In Ref. @9#, the amplitude of hard diffractive electroproduction was calculated for the longitudinal polarization of both the
virtual photon (eg*

m
5(q8m1zpm)/Q) and produced vector meson (eV

m5q8m/mV). In this case, the contribution of Fig. 10~a!
in the (q8A)50 gauge can be written as
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TLL
a ~p,q8,r !;ū~p8!q̂8u~p!E

0

1

dtwV~t!E
0

1

SpH êVêg*
z p̂2tq̂8

~zp2tq8!2 gm

~X2z! p̂1tq̂8

~~X2z!p1tq8!2 gnJ
3S 2gmn1

pmqn81pnqm8

~p•q8!
D Fz

g~X!

~X2 i e!~X2z1 i e!
dX, ~7.15!

wherewV(t) is the distribution amplitude of the longitudinal vector meson. This gives

TLL
a ~p,q,r !;

ū~p8!q̂8u~p!

QmV
E

0

1

wV~t!
dt

t E
0

1 Fz
g~X!

X~X2z1 i e!
dX. ~7.16!

Other diagrams give similar contributions, differing only in thet-dependent factor. For Fig. 10~b!, one should substitute 1/t
by 1/t̄, while Figs. 10~c! and 10~d! both have the 1/tt̄ factor. Since 1/t11/t̄51/tt̄, the total contribution also has the 1/tt̄
structure

TLL~p,q,r !;
A12z

QmV
E

0

1

wV~t!
dt

tt̄ E
0

1 Fz
g~X!

X~X2z1 i e!
dX, ~7.17!

whereA12z comes fromū(p8)5A12zū(p). The ampli-
tude TLL(p,q,r ) has imaginary part due to the factor
1/(X2z1 i e):

1

p
Im TLL~z!;

A12z

zQmV
Fz

g~z!E
0

1 wV~t!

tt̄
dt. ~7.18!

In Ref. @9#, the gluonic matrix element was approximated by
the gluon distribution functionf g(z). To get our result from
that of Ref. @9#, one should substitute theref g(z) by
A12zFz

g(z)/z.
Though the asymmetric distribution functionFz

g(X) coin-
cides with X fg(X) in the limit z50, in general these two
functions differ whenzÞ0. As discussed earlier, the imagi-
nary part appears forX5z, i.e., in an asymmetric configu-
ration in which the second gluon carries a vanishing fraction
of the original hadron momentum, whilez f g(z) corresponds
to a symmetric configuration in which the final gluon has the
momentum equal to that of the initial one.

VIII. FACTORIZATION AND END-POINT EFFECTS

A. General remarks

The standard question about PQCD applications for hard
processes is whether factorization of short- and long-distance
contributions is maintained in higher orders. Since the Feyn-
man integrals can be written in different representations, one
can approach the factorization problem in various ways. In
particular, the classic studies of deep-inelastic scattering in
QCD @58,55,56# relied on the operator product expansion in
which the coordinate representation plays a crucial role. The
claims that factorization also holds for a more complicated
Drell-Yan process @59,60# were supported by studies
@61,39,62# based on the analysis in the momentum represen-
tation ~see, however,@47#!. The early studies of exclusive
processes in QCD which started with the analysis of the
large-Q2 behavior of the pion EM form factor also incorpo-
rated both the OPE-like coordinate representation methods
@2,4# and momentum-representation oriented approaches

@3,6#. Factorization was intensively studied in the following
years~see@49,64# and references therein!. Referring an in-
terested reader to Ref.@18# for a recent momentum-
representation analysis of factorization for hard exclusive
electroproduction processes, here we briefly discuss possible
sources of factorization breaking analyzing them within our
approach@5# based on the combined use of thea represen-
tation and the OPE-type methods.

B. Structure of the lowest-order term

Exclusive processes are rather vulnerable to factorization
breaking. In contrast to inclusive cross sections, factorization
for exclusive amplitudes may fail even at the tree level.
Hence it is a good idea just to write down the lowest-order
contribution and carefully look at it. Take the DVCS ampli-
tude ~7.2!. It has terms 1/(X2 i e) and 1/(X2z1 i e) which
are singular forX50 andX5z, respectively. An immediate
question is whether these singularities appear within the re-
gion of integration and if yes, whether they are inside that
region or at its end points. To be prepared to address this
question, we performed a detailed study of spectral proper-
ties of nonforward distributions. Oura-representation analy-
sis shows that 0<X<1. Since the singularity 1/(X2z1 i e)
is inside the integration region, we can write it as
P$1/(X2z)%2 ipd(X2z): it generates both real and imagi-
nary parts of the amplitude. On the other hand, the 1/(X2 i e)
singularity is at the end point, and the relevant real part is
given by a divergent integral unless the nonforward distribu-
tion Fz(X) vanishes atX50. Hence, to claim factorization
for the real part, it is absolutely necessary to give the argu-
ments thatFz(0)50. In our analysis, we derivedFz(X)
from the double distributionF(x,y). The basic expression
for Fz(X) shows thatFz(X);X for any F(x,y) which is
finite as x,y→0. One can getFz(0)Þ0 only if F(x,y) is
singular forx50, e.g., if it behaves liked(x) and does not
vanish wheny50. If F(x,y) has such a behavior, there
should be a very special reason for it.

Similarly, for the meson electroproduction, the integral
over t contains the factor 1/t(12t) singular at the end
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points t50, t51. Again, the factorization formula makes
sense only if the distribution amplitudew~t! vanishes for
t50,1. Sincew~t! is analogous to thez51 limit of a non-
forward distribution, we may expect that it also vanishes at
t50 because of small phase space for thet→0 configura-
tion. Furthermore, since for massless quarks
w(12t)56w(t), if w~t! vanishes att50, it also vanishes
for t51.

Of course, even if the vanishing at end points holds for
any diagram of perturbation theory, this still does not mean
that the nonperturbative functions have the same property.
So, a cautious statement might be that if in perturbation
theory some function does not vanish at a particular end
point, it is unlikely that it will vanish nonperturbatively. If it
vanishes perturbatively, there is some hope that this property
is preserved for the nonperturbative function.

The standard procedure to get an educated guess concern-
ing the end point behavior of hadron distribution amplitude
w~t,m! is to study the asymptoticm→` limit of their evolu-
tion. This idea is equivalent to saying thatw~t,m! has the
same behavior at the end-points as the relevant BL evolution
kernel V(t,t8). In particular, in @63# it was shown that
was(t);t(12t) both for the longitudinally and transversely
polarizedr mesons.

Similar estimates of the end-point behavior of the distri-
bution amplitudes follow from QCD sum rule consider-
ations. In particular, if perturbative termPpert(t,M2) of the
QCD sum rule~M2 is the SVZ-Borel parameter!

f rw~t!e2mr
2/M2

1higher states5Ppert~t,M2!1condensates
~8.1!

vanishes fort50 andt51, one can argue that because of
quark-hadron duality,w~t! should also vanish at the end
points. For the correlators corresponding to the leading-twist
r-meson distribution amplitudes, we have indeed
Ppert(t,M2);t,(12t) at the end points.

Note, furthermore, that both quark and gluon propagators
of the simplest hard subraph have denominators proportional
to t. However, for a longitudinally polarized virtual photon,
only theO(t) term in the numerator of the quark propagator
survives which converts the 1/t2 singularity of the hard am-
plitude into 1/t. This will not happen if ther meson is trans-
versely polarized. Hence, for transverse polarization one
would face the integral withwT(t)/t2 which logarithmically
diverges if wT(t);t for small t. This result excludes the
transverse case from straightforward PQCD applications.
This fact was repeatedly emphasized in@9,14,18,21#.

C. Double-flow regime

One of the lessons from the discussion above is that tak-
ing into account only the denominators of the ‘‘hard’’ quark
and gluon propagators one is guaranteed to get a 1/t2 factor
capable of destroying factorization from the very start. It is
the cancellation of one power oft by a numerator factor in
case of a longitudinally polarized virtual photon which
makes the factorization possible. In the absence of this can-
cellation, e.g., for transversely polarizedr meson, even if we
takewT(t);t(12t), the integral would logarithmically di-

verge. One may object that in such a situation factorization
still works if wT(t) vanishes faster thant as t→0. Note,
however, that evolution generates terms proportional tot :

wT~t,m2!5wT~t,Q2!1 ln Q2/m2E
0

1

V~t,t8!wT~t8,m2!dt8,

since V(t,t8);t for small t. In the presence of nonzero
massesm or other infrared cutoffs, one should change 1/t by
1/(t1m2/Q2). As a result, the logarithmic divergence con-
verts thet integral into an extra lnQ2/m2. Together with the
evolution logarithm lnQ2/m2, they would amount to a double
logarithm in a one-loop diagram of Fig. 11 type. It should be
emphasized that this is not a Sudakov double logarithm. In
particular, in two loops one would only get ln3 Q2 ~ln2 Q2

from evolution and lnQ2 from the t integral! rather than
ln4 Q2. The possibility to get an extra logarithm in the form-
factor-type amplitudes was discovered a long time ago in a
scalar model~see, e.g., Ref.@65#!. In a scalar model, there
are no numerator factors to moderate the 1/t2 singularity,
hence such a possibility is always realized. In Ref.@5#, the
diagram of Fig. 11 type for a scalar analogue of the pion
form factor was studied with the help of thea representation
and the Mellin transformation. It was shown that, in the su-
perrenormalizable f (4)

3 model, this diagram has the
ln@Q2/m2#/Q4 behavior despite the fact that there is no loga-
rithmic evolution in this model. The logarithm appears be-
cause the leading SD-pole 1/(J12) for the Mellin transform
of this diagram can be obtained in two ways: from the small-
rL integration (rL5a11a2) and from the small-rR integra-
tion (rR5a41a5). There are no other possibilities. In par-
ticular, small-l integration (l5a11a21a31a41a5)
gives a nonleading pole 1/(J13). Hence, the leading term
comes from a configuration in which the large momentumQ
flows simultaneously through two subgraphsVL5$s1 ,s2%
andVR5$s4 ,s5% while the momentum through the interme-
diate lines3 is small. Such a configuration was called in Ref.
@5# the double-flow regime.

In a renormalizablef (6)
3 model the diagram shown in Fig.

11 has the ln2@Q2/m2#/Q4 behavior because the leading SD
pole 1/(J12) can be obtained in three ways: from small-l
integration, from small-rL integration, and from small-rR in-
tegration. The factorization for a scalar analog of the pion
form factor in thef (6)

3 model was studied in more detail in
Ref. @66#. It was shown there, in particular, that the ln2 Q2/m2

behavior of the one-loop diagram results from the overlap of
the evolution and the double-flow regime. In Ref.@5#, it was
emphasized that the presence of the double-flow regime is a
natural feature of exclusive amplitudes. Hence, to establish
factorization, one should first check whether it is present or
not. For the pion form factor in QCD~and other renormaliz-
able models with spin-1

2 quarks! its absence to all orders was
demonstrated in Ref.@5#.

A rather peculiar double-flow contribution appears in a
two-loop PQCD diagram for the nucleon form factors@67#.
Its specifics is that it works for a term in which one takes
only quark masses in the numerators of the propagators of
the intermediate lines. Proceeding by a routine calculation, it
is rather difficult to detect such a contribution among a wide
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variety of two-loop terms. However, it is rather easy to find
it if one has a guiding principle, such as the requirement that
both the left and right components of a double-flow configu-

ration should simultaneously give the leading power behav-
ior.

IX. COMPARISON WITH OTHER APPROACHES
AND NOTATIONS

In our definitions of various distribution functions, we
took the relevant matrix element and expressed it through an
integral representation over the momentum fractions, incor-
porating the spectral condition 0<X<1. Another approach
is to introduce distribution functions by making a Fourier
transform of the matrix element with respect to (pz) ~cf.
@68,36,37#!. One can easily derive the result of such a pro-
cedure by rewriting our representations in a form with a uni-
versal exponential on the RHS. Consider, e.g., the matrix
element for the quark operator:

^p8,s8uc̄a~0!ẑE~0,z;A!ca~z!up,s&uz2505ū~p8,s8!ẑu~p,s!E
211z

1

e2 i X̃~pz!@Fz
a~X̃;t !u~0<X̃<1!

2Fz
ā~z2X̃;t !u~211z<X<z!#dX̃1 ‘ ‘ K’ ’ . ~9.1!

The Fourier transformation would project out the function

F̃z
a~X̃;t !5Fz

a~X̃;t !u~0<X̃<1!2Fz
ā~z2X̃;t !u~211z<X̃<z! ~9.2!

which ~a! coincides with the quark distribution forz<X̃<1, ~b! reduces to the~minus! antiquark distribution for
211z<X̃<0, and ~c! is given by their difference for 0<X̃<z. The X̃ variable changes within the segment (211z,1)
centered atX̃5z/2, with the total range length equal to 22z. To avoid the nonsymmetric andz-dependent limits, one can
introduce the variable~cf. @10#!

x̃[
X̃2z/2

12z/2
~9.3!

which changes from21 to 1. The ratio

j[
z

12z/2
~9.4!

is an alternative parameter characterizing the longitudinal momentum asymmetry of the nonforward matrix element. Fort50
and a massless hadron, it varies between 0 and 2. The reversed relations are

z5
j

11j/2
, X̃5

x̃1j/2

11j/2
, X̃2z5

x̃2j/2

11j/2
. ~9.5!

Using translation invariance@cf. Eq.~4.15!#, one can easily derive that the operator with the quark fields taken at symmetric
points2z/2,z/2 has a rather compact representation in terms of thex̃ variable:

^p8,s8uc̄a~2z/2!ẑE~2z/2,z/2;A!ca~z/2!up,s&uz2505ū~p8,s8!ẑu~p,s!E
21

1

e2 i x̃ ~Pz!Ha~ x̃,j;t !dx̃1 ‘ ‘ Ea ’ ’ , ~9.6!

FIG. 9. Hard exclusive meson electoproduction process:~a!
leading SD contribution with quark nonforward distribution;~b!
soft contribution.

FIG. 10. Gluon contribution to hard exclusive meson electoproduction amplitude.
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where P5(p1p8)/2 is the average momentum of the initial and final hadron@note, that (Pz)5(12z/
2)(pz)5(pz)/(11j/2)#. This representation is equivalent to the definition of theoff-forward parton distributions Ha( x̃,j;t),
Ea( x̃,j;t) introduced by Ji@10# ~see also@13#!. Basically, the latter are related to our nonforward distributions by

F̃z
a~X̃;t !5~11j/2!Ha~ x̃,j;t !, ~9.7!

and similarly for other functions. The off-forward distributionsHa( x̃,j;t), etc., are defined both for positive and negativex̃.
Depending on the value ofx̃, one can distinguish three different components: quark (j/2< x̃<1), antiquark (21< x̃<2j/2),
and mixed ‘‘quark minus antiquark’’ (2j/2< x̃<j/2) components ofH. The mixed component corresponds evidently to the
region 0<X̃<z of the X̃ variable in which the nonforward distributions can be treated as distribution amplitudes. Since
X̃(pz)5( x̃1j/2)(Pz) and (X̃2z)(pz)5( x̃2j/2)(Pz), the partons in this picture carry momenta (x̃1j/2)P and (x̃2j/2)P.
Using Eqs.~9.5! and~9.7!, one can relate our evolution kernels with those given in Ref.@15#. The gluonic matrix element can
be also represented in the form of Eq.~9.6!:

^p8uzmznGma
a ~2z/2!Eab~2z/2,z/2;A!Gan

b ~z/2!up&uz250 ~9.8!

5
1

2
ū~p8!ẑu~p!~Pz!E

21

1

e2 i x̃ ~Pz!Hg~ x̃,j;t !dx̃1 ‘ ‘ Eg ’ ’ . ~9.9!

Due to the symmetry propertyHg( x̃,j;t)5Hg(2 x̃,j;t), in-
tegration overx̃ in this case can be restricted to the 0< x̃<1
region. Note, that in the forward limitj50, t50, the func-
tion Hg( x̃,j;t) reduces tox̃ f g( x̃) @cf. Eq. ~4.12!#. To get an
off-forward distribution reducing tof g( x̃), Ji @15# uses the
definition equivalent to adding a factor ofx̃ in the integrand
on the right-hand side of Eq.~9.9!: Hg( x̃,j;t)→ x̃Hg

Ji( x̃,j;t).
However,x̃50 corresponds toX5z/2 or to the middle-point
Y51/2 of the distribution amplitudeCz

g(Y) @see Eq.~9.5!#,
i.e., to a situation when the gluons carry equal fractionszp/2
of the original momentump. Since Hg( x̃,j;t) is an even
function of x̃, there are no evident reasons that it vanishes for
x̃50. Hence, dividingHg( x̃,j;t) by x̃ produces an artificial
singularity ofHg

Ji( x̃,j;t) for x̃50.
Another parametrization for the nonforward matrix ele-

ment of the gluon operator was proposed by Collins, Frank-
furt, and Strikman@18#. Their definition of thenondiagonal
gluon distributionf g(x1 ,x2 ;t) is also based on the Fourier
transformation. For positive values, their variablesx1 ,x2 cor-
respond to our fractionsX and X2z[X8, respectively. In
our notations, the functionf g(x15X,x25X2z;t) can be
written as

f g~X,X2z;t !5
1

X~X2z!
F̃z

g~X;t !. ~9.10!

The factor 1/X(X2z) was motivated by the necessity to can-
cel the inverse factor which may emerge from the derivatives

present in the field-strength tensorGmn . Actually, this ex-
pectation is not supported by perturbative calculations. Take,
e.g., the evolution kernelPz

gQ(X,Z). It can be treated as a
perturbative, leading logarithm approximation for the gluon
distribution inside a quark~cf. @19#!. According to Eq.
~5.28!, Pz

gQ(X,Z) does not vanish forX5z. If Fz
g(X) does

not vanish forX5z, the functionF̃z
g(X;t) does not vanish

both for X50 andX5z and f g(x1 ,x2) is singular both for
x150 andx250.

In fact, the combinationFz
g(X)/(X2 i e)(X2z1 i e) ap-

pears in our parametrization~7.14! for the matrix element of
the operator constructed from two vector potentialsAm ,An

taken in the light-cone gauge. In this sense,f g(x1 ,x2) or,
what is the same,Fz

g(X)/X(X2z) can be treated as a basic
gluon distribution given by the matrix element of the product
of fundamental gluonic fieldsAmAn rather than by that of the
secondary fieldsGmrGn

r . Note, however, that iff g(x1 ,x2),
i.e., Fz

g(X)/X(X2z), has no singularities, then the meson
electroproduction amplitude has no imaginary part at leading
twist. Since this is impossible,f g(x1 ,x2) musthave singu-
larities, and one may wish to explicitly display them speci-
fying their nature, e.g., 1/(x22 i e), 1/(x11 i e). This goal is
achieved automatically ifFz

g(X) is used as the basic distri-
bution.

In our approach, the starting point is the double distribu-
tion Fg(x,y;t) defined through the nonforward matrix ele-
ment of the gauge-invariant gluonic operator

^p8uzmznGma
a ~0!Eab~0,z;A!Gan

b ~z!up&uz2505ū~p8!ẑu~p!~pz!E
0

1

dxE
0

1 1

2
~e2 ix~pz!2 iy~rz!1eix~pz!2 i ȳ ~rz!!

3Fg~x,y;t !u~x1y<1!dy. ~9.11!
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As explained earlier, in perturbation theory the spectral prop-
erties 0<$x,y,x1y%<1 can be proved to any order with the
help of the a representation. Furthermore, the function
Fg(x,y;t) does not depend on thez parameter. The family of
z-dependent nonforward gluon distributionsFz

g(X;t) is ob-
tained fromFg(x,y;t) by integration overy @see~2.46!#:

Fz
g~X;t !5E

0

min$X/z,X̄ / z̄ %
Fg~X2yz,y;t !dy. ~9.12!

Recall that the double distributionFg(x,y;t) can be treated
as a distribution function with respect tox and as a distribu-
tion amplitude with respect toy. This physical interpretation
suggests thatFg(x,y;t) is a regular function for all values of
y and for at least nonzero values ofx. We made this reser-
vation because the evolution asymptotically makes
Fg(x,y;t;m) ~we added the dependence on the factorization
scalem! proportional tod(x) as m→`. In this situation,
Fg(x,y;t;m) is singular atx50. However, thed(x) term still
produces a regular nonforward distributionFz

g(X;t), though
confined to the restricted region 0<X<z.

Assuming that the double distributionFg(x,y;t;m) is fi-
nite everywhere, we conclude that the nonforward distribu-
tionFz

g(X;t;m) in this case is also finite for all 0<X<1 and,
moreover, that it vanishes forX50. As discussed earlier, the
latter property is vital for factorization. If it is not fulfilled,
the X integral in the lowest-order expression diverges at the
end-pointX50, where the 1/(X2 i e) prescription is of no
help. One may think that this problem can be avoided if one
uses the functionF̃z

g(X̃;t) defined through the Fourier trans-
formation with the variableX̃ changing from211z to 1.
Since the pointX̃50 is inside the integration region, the
1/(X̃2 i e) prescription apparently may help. Note, however,
that if our functionFz

g(X;t) does not vanish forX50, the
Fourier transformF̃z

g(X̃;t) is not continuous both forX̃50
and X̃5z. As a result, the singularities ofF̃z

g(X̃;t)/(X̃
2 i e)(X̃2z1 i e) are not integrable.

X. CONCLUSIONS

In this paper, we discussed basic properties of nonforward
parton distributions, a new type of function accumulating
nonperturbative information about hadron dynamics. We
demonstrated that there are two basic ways to describe asym-
metric matrix elementŝp8uO(0,z)up& of quark and gluon
light-cone operatorsO(0,z). One possibility is to introduce
double distributionsF(x,y;t) which are independent of the
longitudinal momentum asymmetry~or skewedness! param-

eterz512(p8z)/(pz) of the matrix element and refer to the
light-cone fractionsxp,yr of the original hadron momentum
p and momentum transferr 5p82p carried by the active
parton. Another approach is to use nonforward distribution
functionsFz(X;t) which specify the light-cone projection of
the total momentumXp5xp1yr carried by the parton.
These functionsFz(X;t) explicitly depend onz. Both types
of distributions have hybrid properties, in some aspects re-
sembling usual parton distribution functions and in other
ones the distribution amplitudes. Theirt dependence is
analogous to that of hadronic form factors. The use of
Fz(X;t) is more convenient for ultimate applications to hard
PQCD processes, resulting in a formalism that is very similar
to the standard PQCD parton picture. On the other hand, the
double distributionsF(x,y;t) have more transparent spectral
properties which has serious advantages at the foundation
stages of the PQCD analysis. In this paper, we concentrated
on general aspects of the theory of nonforward distributions
and their uses. There are many interesting applications to
deeply virtual Compton scattering and hard exclusive elec-
troproduction processes which require further, more specific
studies of the nonforward distribution functions including
modeling their nonperturbative low-energy shape, logarith-
mic PQCD evolution, calculation of nonlogarithmic higher-
order corrections, etc. Work in this direction has already
been started@10–23#.
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