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It is shown that detailed and accurate information about the mass spectrum of the massive Schwinger model
can be obtained using the technique of strong-coupling series expansions. Extended strong-coupling series for
the energy eigenvalues are calculated and extrapolated to the continuum limit by means of integrated differ-
ential approximants, which are matched onto a weak-coupling expansion. The numerical estimates are com-
pared with exact results and finite-lattice results calculated for an equivalent lattice spin model with long-range
interactions. Both the heavy fermion and the light fermion limits of the model are explored in some detail.
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I. INTRODUCTION

The Schwinger model@1,2#, or quantum electrodynamics
in two space-time dimensions, has been a source of continu-
ing interest over the years. It is a fascinating model in its
own right, and also exhibits many of the same phenomena as
QCD, such as confinement, chiral symmetry breaking with a
U~1! axial anomaly, and a topologicalu vacuum@3–5#. It is
also perhaps the simplest nontrivial gauge theory, and this
makes it a standard testbed for the trial of new techniques for
the study of QCD.

Our main purpose in this paper is to explore the useful-
ness of the strong-coupling series approach to this model. It
is well known that Euclidean Monte Carlo techniques have
proved difficult and expensive to apply to models with dy-
namical fermions because of the infamous ‘‘minus sign’’
problem, and thus, it seems worthwhile to ask whether other
techniques such as strong-coupling expansions can give use-
ful information in such cases. Modern linked-cluster tech-
niques@6# allow one to carry these expansions to very high
order. We are particularly interested to see if the series ap-
proach can describe the nonrelativistic or heavy fermion
limit of these models.

As a first test, we apply the approach to the Schwinger
model, using a Hamiltonian lattice framework@7#. We con-
centrate on a calculation of the spectrum of bound states,
more specifically the lowest two bound states, for the case of
the massive Schwinger model. It will be shown that the se-
ries approach can give quite detailed and accurate informa-
tion on the spectrum. It will be interesting to see if a similar
approach is useful for models in higher dimensions.

Hamiltonian strong-coupling series were first calculated
for the Schwinger model long ago by Banks, Kogut, and
Susskind@7#, and were extended by Carrollet al. @8#. Since
then, however, the method has fallen into abeyance, being
eclipsed by the power and accuracy of the Monte Carlo
method.

Many other approaches have been made to the bound-

state spectrum. In the massless case, of course, the model is
exactly solvable, as shown by Schwinger@1,2#. It is equiva-
lent to a theory of free, massive bosons. For a small fermion
mass, one may perturb about the zero-mass limit, and obtain
a low-mass expansion for the spectrum@8#. This expansion
has recently been carried to second order by Varyet al. @9#
and Adam@10#. In the large mass or nonrelativistic limit the
‘‘positronium’’ bound states can be solved in terms of a
Schrödinger equation with a linear Coulomb potential@11#.
For fixed, finite fermion mass, one has to resort to numerical
techniques. A quite accurate variational calculation in the
infinite momentum frame was performed by Bergknoff@12#.
Finite-lattice Hamiltonian calculations were performed by
Crewther and Hamer@13# and Irving and Thomas@14#: we
include some further finite-lattice calculations in this paper,
mainly as a check on the series results. Later on Eller, Pauli,
and Brodsky@15# applied a ‘‘discrete light-cone quantiza-
tion’’ ~DLCQ! approach to the problem, and showed that it
gave quite good results, not only for the lowest state, but for
a whole range of higher excited states. Mo and Perry@16#
have used a different light-front field theory approach, to-
gether with a Tamm-Dancoff approximation, which appears
to give excellent results. Tomachi and Fujita@17# have used
a ‘‘Bogoliubov transformation method,’’ which works quite
well for small fermion masses.

In Sec. II of this paper the Hamiltonian lattice formulation
of the model is reviewed, and the known analytic results on
the bound-state spectrum are recalled. It is shown that for
free boundary conditions the gauge degrees of freedom can
be eliminated entirely from the lattice model, leading to an
equivalent spin lattice model with long-range interactions.
This is the formulation which we use to carry out the finite-
lattice calculations.

Section III presents the numerical results. Their extrapo-
lation to the continuum limit is discussed, and expansions
near both the low-mass limit and the nonrelativistic limit are
analyzed. The numerical results are compared with previous
approaches. Finally our conclusions are summarized in Sec.
IV.

II. FORMALISM

A. Continuum formulation

The continuum Lagrangian density takes the standard
form
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L52
1

4
FmnF

mn1 c̄ ~ i ]”2gA”2m!c, ~1!

where

Fmn5]mAn2]nAm ~2!

and the Lorentz indicesm,n50 or 1. The couplingg in 111
dimensions has the dimensions of mass. Choosing the time-
like axial gauge

A050 ~3!

the Hamiltonian is found to be

H5E dxS 2 i c̄g1~]11 igA1!c1mc̄c1
1

2
E2D , ~4!

where the electric fieldE has only one component in one
spatial dimension:

E5F1052Ȧ1. ~5!

The remaining gauge component is not an independent
degree of freedom, but can be eliminated if desired, using the
constraint provided by the equation of motion~Gauss’ law!:

]1E52]1Ȧ
15gc̄g0c. ~6!

In the massless case, the theory has been solved by
Schwinger@1,2#, and becomes equivalent to a theory of free,
massive bosons, with mass

M1

g
5

1

Ap
.0.564. ~7!

For small electron massm/g, one can obtain analytic es-
timates by perturbing about the massless limit. Caroll,
Kogut, Sinclair, and Susskind@8# found that the lowest-mass
~‘‘vector’’ ! state has mass

M1

g
5

1

Ap
1egSmg D1•••.0.56411.78Smg D1•••, ~8!

while the ratio of the next-lowest~‘‘scalar’’ ! mass to the
vector mass was

M2

M1
5222p3e2gSmg D 21•••.22197Smg D 21•••, ~9!

whereg.0.5772••• is Euler’s constant.
These results have been extended to second order by

Vary, Fields, and Pirner@9# and by Adam@10#:

M1

g
50.564211.781Smg D10.1907Smg D 21•••. ~10!

Adam @10# also found

M2

M1
522

p3e2g

64 Smg D 21•••.221.5368Smg D 21•••

~11!

differing from the result of Carrollet al. @8# by a factor of
275128.

In the large-mass or nonrelativistic limit, the ‘‘positroni-
um’’ bound states are described by a Schro¨dinger equation
with a linear potential@11#,

S p2m 1
1

2
g2uxu DC~x!5EC~x!, ~12!

where the nonrelativistic energy is

E5M22m. ~13!

Equation~12! may be solved in terms of Airy functions, to
give the energies of the lowest vector and scalar states as
@11#

E1

g
;0.642S gmD 1/3 as m/g→`,

~14!

E2

g
;1.473S gmD 1/3 as m/g→`.

B. Lattice formulation

The model can now be formulated on a ‘‘staggered’’ spa-
tial lattice @7#. Let the lattice spacing bea, and label the sites
with an integern. Define a single-component fermion field
f(n) at each siten, obeying anticommutation relations:

$f†~n!,f~m!%5dmn , $f~n!,f~m!%50. ~15!

The gauge field is defined on the links (n,n11) connecting
each pair of sites by

U~n,n11!5eiu~n!5e2 iagA1~n!. ~16!

Then the lattice Hamiltonian equivalent to Eq.~4! is

H52
i

2a(n51

N

@f†~n!eiu~n!f~n11!2H.c.#

1m(
n51

N

~21!nf†~n!f~n!1
g2a

2 (
n51

N

L2~n!, ~17!

where the number of lattice sitesN is even, and the corre-
spondence between lattice and continuum fields is

f~n!/Aa→H cupper~x!, n even,

c lower~x!, n odd
~18!

~‘‘upper’’ and ‘‘lower’’ being the two components of the
continuum spinor!, and

1

ag
u~n!→2A1~x!,

~19!

gL~n!→E~x!.

Theg matrices are represented by
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g05S 1 0

0 21D , g15S 0 1

21 0D . ~20!

As usual, we have chosen a ‘‘compact’’ formulation where
the gauge field becomes an angular variable on the lattice,
andL(n) is the conjugate ‘‘spin’’ variable

@u~n!,L~m!#5 idnm , ~21!

so thatL(n) has integer eigenvaluesL(n)50,61,62, . . . .
As noted by Bankset al. @7#, this quantization of electric
field ~or flux! in one dimension also occurs in the continuum
Schwinger model, due to Gauss’ law. If one takes the naive
continuum limita→0, the lattice Hamiltonian~17! reduces
to the continuum Hamiltonian~4!, as it should.

Now define the dimensionless operator

W5
2

ag2
H5W01xV, ~22!

where

W05(
n

L2~n!1m(
n

~21!nf†~n!f~n!, ~23!

V52 i(
n

@f†~n!eiu~n!f~n11!2H.c.#, ~24!

m5
2m

g2a
, x5

1

g2a2
. ~25!

For x!1 one can employ strong-coupling perturbation
theory on this model, treatingW0 as the unperturbed Hamil-
tonian andV as the perturbation, as discussed by Bankset al.
@7#. In the strong-coupling limit, the unperturbed ground
stateu0& is the eigenstate with

L~n!50, f†~n!f~n!5
1

2
@12~21!n# all n ~26!

whose energy will be normalized to zero, corresponding to a
‘‘filled Dirac sea.’’ Bankset al. @7# have discussed how to
use Rayleigh-Schro¨dinger perturbation theory to generate
perturbation series inx for the ground state and excited state
eigenvalues of this system, and the discussion will not be
repeated here. We have used more sophisticated linked-
cluster techniques@6# to generate high-order perturbation se-
ries for these eigenvalues, as presented below.

The lattice version of Gauss’ law is then taken as

L~n!2L~n21!5f†~n!f~n!2
1

2
@12~21!n#, ~27!

which means excitations on odd and even sites create71
units of flux, corresponding to ‘‘electron’’ and ‘‘positron’’
excitations, respectively.

C. Equivalent spin formulation

The one-component fermion operators can be replaced by
Pauli spin operators at each site if we employ a Jordan-
Wigner transformation@7#,

f~n!5)
l,n

@ is3~ l !#s
2~n!, ~28!

f†~n!5)
l,n

@2 is3~ l !#s
1~n!, ~29!

giving

W05(
n

L2~n!1
m

2(n ~21!ns3~n!1Nm/2, ~30!

V5(
n

@s1~n!eiu~n!s2~n11!1H.c.#. ~31!

The strong-coupling ground state then corresponds to

L~n!50, s3~n!52~21!n all n. ~32!

Next, the gauge field can be eliminated using Gauss’ law,

L~n!2L~n21!5
1

2
@s3~n!1~21!n#, ~33!

and a residual gauge transformation

s2~n!→)
l,n

$e2 iu~ l !%s2~n! ~34!

provided that we assume free boundaries

L~0!5L~N!50 where N5No. lattice sites. ~35!

~If periodic boundary conditions are assumed, then there is
one extra independent gauge degree of freedom left over,
corresponding to the ‘‘background’’ electric field@4#.! The
resulting Hamiltonian is then

W5W01xV, ~36!

where

W05
m

2(
n51

N

~21!ns3~n!1
Nm

2

1 (
n51

N21 F12(
m51

n

@s3~m!1~21!m#G2, ~37!

V5 (
n51

N21

@s1~n!s2~n11!1H.c.#. ~38!

All trace of the gauge field has now disappeared, but instead
there is a nonlocal, long-range interaction between the spins
in the last term of Eq.~37!, which of course corresponds to
the long-range Coulomb interaction between charges in the
original theory. In the continuum limita→0, x→`, the in-
teractionV dominates the Hamiltonian so that in leading
order the system becomes equivalent to a simpleXY model
with ground-state energy per site

v0

N
→2

x

p
as x→`. ~39!
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The energy gap to the lowest excited state in the sector of
‘‘vector’’ states will correspond to the vector mass, so we
expect

v12v05
2

ag2
M15

2

g
M1Ax ~40!

and similarly in the scalar or ground-state sector, the mini-
mum energy gap

v22v05
2

ag2
M25

2

g
M2Ax. ~41!

Our aim in this paper is to find estimates of these masses
M1 andM2.

The equivalent spin model has a total of only 2N possible
configurations, and lends itself readily to finite-lattice tech-
niques of analysis. As a check on the series results, we have
used the Lanczos algorithm to obtain exact results for the
low-lying eigenvalues of this system at finitex on lattices of
up toN522 sites. The ground state energyv0 is easily ob-
tained as the lowest eigenvalue in the sector containing the
unperturbed ground stateu0&; and the first excited state en-
ergy v1 is likewise the lowest eigenvalue in the ‘‘vector’’
state sector, corresponding in the strong-coupling limit to the
state@7#

u1&5
1

AN(
n21

N21

@s1~n!s2~n11!2H.c.#u0&. ~42!

The second excited-state energyv2 is the lowest of a
‘‘band’’ of excited states in the vacuum sector, correspond-
ing in the strong-coupling limit to the state

u2&5
1

AN(
n51

N21

@s1~n!s2~n11!1H.c.#u0&. ~43!

III. RESULTS AND ANALYSIS

A. Finite-lattice results

Exact eigenvalues have been calculated for the equivalent
spin Hamiltonian~36! using the Lanczos technique for vari-
ous values ofm/g and couplingx, on even lattices from
N54 up toN522 sites. No symmetrization of states was
employed: since free boundary conditions were chosen, the
system does not exhibit translational invariance in any case.
The calculations are carried out in the sector( is3( i )50
which hasN!/ @(N/2)!#2 states, and the ground-state energy
v0 and the ‘‘vector’’ excited-state energyv1 are the lowest
and the second lowest eigenvalues in this sector, respec-
tively. The ‘‘scalar’’ excited-state energyv2 is slightly more
tricky to obtain because there are several other states, corre-
sponding to the momentum excitations of the ‘‘vector’’ ex-
cited state, in this sector giving lower energy than the ‘‘sca-
lar’’ excited state. We got over this problem by moving in
stages from the strong-coupling limitx50 to the desired
coupling value, and ‘‘tagging’’ the desired state as that
which has maximum overlap with its predecessor at each
stage, starting from the stateu2& in Eq. ~43!.

To make comparison with series data, it is first necessary
to extrapolate the finite-lattice data to the bulk limitN→`.
The convergence of the finite-lattice sequences was slow.
Tests showed that the convergence was polynomial in 1/N:
thus for the ground-state energy

v0~N!→Ne0~`!1b01
b1
N2 1O~N23! as N→`,

~44!

wheree0(`) is the bulk energy per site andb0 is the surface
energy term; while for the energy gaps

v i~N!2v0~N!→b081
b18

N2 1O~N23! as N→`.

~45!

This is opposed to the exponential convergence
;exp(2cN) one normally expects for periodic boundary
conditions. There is a simple explanation for this behavior:1

on the lattice with free boundaries, the excitations have finite
momentumO(p/N), and thus their energies include a ki-
netic energy correction termO„(p/N)2…. As one approaches
x→`, which is a critical point of the lattice model, the
finite-lattice corrections become relatively much larger, and
extrapolation to the bulk limit becomes progressively more
difficult. An example is shown in Fig. 1 forx54,m/g50.

Various sequence extrapolation algorithms@18–20# were
tried for estimating the bulk limit, such as the alternating
VBS algorithm, and the Lubkin and Bulirsch-Stoer algo-
rithms, but the most reliable and accurate method in this case

1We are indebted to Dr. O. Sushkov for this remark.

FIG. 1. Finite-size scaling behavior of the vector energy gap
(M122m)/g as a function of 1/N2 for m/g50, x54, whereN is
the lattice size. Solid boxes mark the finite-lattice data points; the
dashed line shows a polynomial fit of the form~45!.
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seemed to be a simple least squares polynomial fit in 1/N,
with fictitious errors assigned to the data points. Consistency
between the estimates at different orders allows a crude es-
timate of the likely error in the final result. This was the
technique used to obtain the estimates used in the rest of this
paper.

B. Series expansions

Strong-coupling perturbation series have been calculated
for the ground-state energyv0, and the energy gaps
(v12v0) and (v22v0), as functions of the couplingx and
mass parameterm. The full series up to orderx10 are pre-
sented in the Appendix.

These series can be analyzed in three different regimes, as
follows.

1. Massless limit, m/g˜0

For smallm/g, the eigenvalues can be expanded as series
in the mass parameterm, e.g., for the vector gap

~v12v0!@x,m#22m5 f 0~x!1m f 1~x!1m2f 2~x!1•••.
~46!

The series have been calculated forf i(x) ( i50,1, . . . ,6) up
to orderx28 for the vector excited state and orderx26 for the
scalar excited state. Coefficients for the seriesf i(x)
( i50,1,2,3) are listed in Table I. The expected behavior in
the continuum limit for these series is

f l~x!→alx
~12 l !/2 as x→` ~47!

which would lead to a continuum energy gap

M22m

g
5a0/21a1~m/g!12a2~m/g!21•••. ~48!

These series must now be extrapolated from the strong-
coupling limit x50 to the continuum limitx→`. We have
employed the standard techniques of integrated differential
approximants and naive Pade´ approximants@20# for this pur-
pose, combined with a ‘‘matching’’ technique. Some ex-
amples are shown in Figs. 2, 3, and 4.

The integrated differential approximants are a natural
generalization of the Pade´ approximant, and can approximate

TABLE I. Series coefficients inx for the seriesf 0, f 1, f 2, and f 3 for the vector and scalar excited states. Nonzero coefficients ofxn are
listed.

n f0 f 1 f 2 f 3

Vector excited state
0 1.000000000000 0.000000000000 0.000000000000 0.000000000000
2 2.000000000000 24.000000000000 8.000000000000 21.6000000000003101

4 21.0000000000003101 5.6000000000003101 22.1600000000003102 7.0400000000003102

6 7.8666666666673101 27.4844444444443102 4.3442962962963103 21.9797530864203104

8 27.3622222222223102 9.9429629629633103 27.7420296296303104 4.5479730041153105

10 7.5729291005293103 21.3261036831443105 1.2969028356173106 29.3372179419933106

12 28.2736690566893104 1.7800344737683106 22.0960879833793107 1.7874370961853108

14 9.4280341960363105 22.4052473293903107 3.3121484865803108 23.2643523408403109

16 21.1083575317643107 3.2699623179073108 25.1547025780313109 5.76469714724331010

18 1.3346364037383108 24.4695457117833109 7.93584376554131010 29.92797567171331011

20 21.6379957813313109 6.13774186781531010 21.21192575993531012 1.67687838209531013

22 2.04159282400131010 28.46246020265431011 1.83926321276931013 22.78869553403631014

24 22.57731496811231011 1.17080495795031013 22.77742714313031014 4.57916074501431015

26 3.28864196999231012 21.62467765916131014 4.17699092060831015 27.43992678660531016

28 24.23467519759631013 2.26033511829031015 26.26031558532131016 1.19797430842231018

Scalar excited state
0 1.000000000000 0.000000000000 0.000000000000 0.000000000000
2 6.000000000000 21.2000000000003101 2.4000000000003101 24.8000000000003101

4 22.6000000000003101 1.5200000000003102 26.0000000000003102 1.9840000000003103

6 1.9066666666673102 21.8844444444443103 1.1208296296303104 25.1957530864203104

8 21.7566666666673103 2.4350666666673104 21.9324725925933105 1.1518502716053106

10 1.8048336507943104 23.2182636831443105 3.1928255516673106 22.3255986457773107

12 21.9790520007563105 4.3144527297913106 25.1365733651133107 4.4209745718153108

14 2.2673675210953106 25.8428380070043107 8.1155777869053108 28.0585408158713109

16 22.6810079574893107 7.9726534771573108 21.26557125141631010 1.42408124450931011

18 3.2465571424763108 21.09427046747631010 1.95413921790231011 22.45736353011831012

20 24.0053437405413109 1.50895210399031011 22.99404309557031012 4.16106771640731013

22 5.01601632694231010 22.08873392617331012 4.55882446710631013 26.93873261012131014

24 26.35943418140531011 2.90047725817331013 26.90593725440431014 1.14245212417231016

26 8.14597124313231012 24.03850844029631014 1.04167334489631016 21.86101469937831017
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more general types of singularities@20#. The $m/ l /k% first-
order inhomogeneous differential approximant@20# to a
function

f ~z!5 (
n>0

anz
n

is a function of polynomialsPl , Qm , andRk of degreel ,
m, andk, respectively, satisfying the differential equation

Pl~z!
d f~z!

dz
1Qm~z! f ~z!1Rk~z!50~zl1m1k12!. ~49!

OncePl , Qm, andRk are determined order by order from
Eq. ~49!, the approximant is the function which satisfies Eq.
~49! with the right-hand side replaced by zero. It may be
found by numerical integration.

Figure 2 shows the ground-state energy per site for
m/g50 as a function ofy51/Ax ~which is the natural vari-
able to use at weak couplings, as shown by Eq.~47! and by
previous weak-coupling analyses@11,21#!. It can be seen that
the approximants converge down to abouty.0.5, and are in
excellent agreement with the finite-lattice estimates. These
can easily be extrapolated to the continuum limitx50,
where

v0

Nx
52

1

p
~50!

according to Eq.~39!.
A more interesting example is seen in Fig. 3, which shows

the series data for the vector energy gap as a function ofy. It
can be seen that the raw series begins to diverge below about
y.1.9. A more useful technique is to analytically continue
the series by means of integrated differential approximants
@20#. In view of the fact that the series involves powers of

FIG. 2. Ground-state energy per sitev0 /(xN) as a function of
y51/Ax for m/g50. The dashed lines are integrated differential
approximants to the series data, while the solid boxes with error
bars represent finite-lattice estimates. The solid line is a fit to the
finite-lattice data in powers ofy. The exact continuum limit is
marked by an open circle.

FIG. 3. Vector mass gapM1 /g as a function ofy51/Ax for
m/g50. The open circle marks the exact continuum limit. Dashed
lines are the$m/ l /k% order integrated differential approximants to
the series (v12v0)

4. Shown also are the naive sum to orderx26

~labeled byA) and x28 ~labeled byB), and the third-order weak-
coupling fit to the series data over the range@0.7,1.5# in y ~the solid
line!.

FIG. 4. As Fig. 3, with finite-lattice data included~solid boxes!.
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x2, and the asymptotic behavior of (v12v0) is given by Eq.
~40!, approximants were actually calculated for the function
(v12v0)

4. They converge much better than the raw series,
down to abouty.0.7, and spray outwards somewhat below
that. The higher-order approximants usually converge deeper
into the weak-coupling region, but the improvement is not
very dramatic as the order is increased. One still has to make
an extrapolation to the continuum limity50.

Now in the weak-coupling region, the function is ex-
pected to have an asymptotic expansion@11,21#

M1

g
5 (

n50

`

cny
n1O~e2b/y!. ~51!

Figure 3 shows that the function is smooth and well behaved
over the region 0.7<y<1.5, and can be well fitted by a
low-order polynomial iny of the form ~51! ~ignoring any
exponentially small correction terms!. Such a polynomial fit
is shown as a solid line in Fig. 3. It extrapolates to a value

M1

g
→0.56~2! as y→0, ~52!

where the error is crudely estimated from the difference be-
tween the second-order and third-order fits. This result com-
pares well with the expected exact value of 0.5642 obtained
from Eqs.~8! and~40!. A reliable estimate of the continuum
limit has thus been obtained by ‘‘matching’’ a weak-
coupling polynomial form with the series approximant data
over a ‘‘window’’ of intermediate couplings (0.7<y<1.5, in
this case!, which is presumed to be in the weak-coupling
region. A similar matching technique was used previously on
finite-lattice data by Crewther and Hamer@13# and Irving
and Thomas@14#, and is also common in lattice Monte Carlo
studies. We have also used it previously in a series study of
the U~1! Yang-Mills theory in~211! dimensions@22#.

Figure 4 is similar to Fig. 3, but with the finite-lattice
estimates added. It can be seen that the weak-coupling fit to
the series data agrees well with the finite-lattice data, con-
firming that this method of extrapolation is reliable. A fit to
the finite-lattice data gives an even more accurate estimate of
the continuum limit:

M 1

g
→0.57~1! as y→0. ~53!

Figure 5 is a similar plot for the energy of the scalar
excited state. Here it can be seen that the series approximants
converge down toy.1, where the function develops a pro-
nounced peak or bump. It is not really possible to tell from
the diverging series approximants whether the function in-
creases, decreases, or remains flat below that point, but the
finite-lattice data show that it decreases gently towards the
exact continuum value 1.128. A fit to the finite-lattice data
over 0.2–0.8 iny gives

M2

g
→1.14~3! as y→0 ~54!

in quite reasonable agreement with the exact value; but the
best one could do with the series data would be to estimate a
qualitative value,

a0
scalar.1.25~15!. ~55!

In a similar fashion, estimates have been obtained for the
coefficientsa0, a1, a2, a3, in Eq. ~48! for the vector and
scalar masses, extracted from both the series data and the
finite-lattice data. These are summarized in Table II, along
with the exact results~where known!. It can be seen that the
numerical estimates are in good agreement with the exact
results for the vector state. The series results are actually
competitive with or better than the finite-lattice results for
the higher coefficients, and thus give a detailed picture of the
behaviour of the vector energy gap at low fermion massm.
The estimate fora3 should also be fairly reliable for this
state, and it would be interesting to check it against analytic

FIG. 5. Scalar mass gapM2 /g as a function ofy51/Ax, for
m/g50, notation as in Fig. 3. Here the solid line represents a
second-order polynomial fit to the finite-lattice data over the range
@0.2,0.8# in y.

TABLE II. Table of estimates ofa0 , a1 , . . . ,a3 for the vector
and scalar masses, obtained from series data, finite-lattice data, and
exact results@9,10#.

a0/2 a112 2a2 4a3

Vector state
Series 0.56~2! 1.80~2! 0.16~4! 20.22~6!

Finite lattice 0.57~1! 1.78~2! 0.3~1!

Exact 0.5642 1.781 0.1908
Scalar state

Series 1.25~15! 3.2~2! 24~2!

Finite lattice 1.14~3! 2.5~10! 0~2!

Exact 1.1284 3.562 20.485
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calculations. For the scalar state, there is more structure at
small y, as seen in Fig. 5, and although the estimates for
a0 anda1 agree quite well with the exact results, those for
a2 anda3 are virtually worthless.

2. Finite m/g

At fixed, finitem/g, the series have been calculated up to
orderx30 for the ground-state energyv0, and orderx53/2 for
the energy gaps (v12v0) and (v22v0)—these series are
available on request. The analysis follows very similar lines
to those described above. The major difference is that for
m/gÞ0, the strong-coupling series expansions are in powers
of x1/2, rather thanx2. The series are therefore longer, but the
convergence is not very different to that atm/g50.

At largem/g the series coefficients begin to grow very
rapidly, like (m/g)n at large ordersn, and it becomes more
difficult to maintain good accuracy down to small values of
y. Figures 6 and 7 illustrate the behavior of the energy gap at
largem/g. It can be seen that any structure has moved to
smaller values ofy, and is somewhat less pronounced than at
m/g50.

Our estimates of the energiesEi /g are shown in Table III
and Fig. 8, along with earlier finite-lattice estimates of
Crewther and Hamer@13#, and the light-cone estimates of
Eller et al. @15# and Mo and Perry@16#. It can be seen that all
the estimates agree with each other, within errors, except that
the results of Elleret al. @15# run a little too high at small
m/g. For the vector state, the data match beautifully to the
asymptotic expansions at both ends. For the scalar state, the
data indicate a peak in the energy at aboutm/g.0.5.

Comparing the different estimates, it is noticeable that our
current finite-lattice estimates are in fact less accurate than
the old estimates of Crewther and Hamer@13# or the even

more accurate results of Irving and Thomas@14#, although
there is good consistency between them. This is because of
the large finite-size corrections associated with the free
boundary conditions. More importantly, the series estimates
are seen to be in good agreement with the current finite-
lattice estimates, and for the vector state they are generally
almost as accurate~approximately 10%!, although for the
scalar state they are worse~approximately 15–20%!. The
results of Mo and Perry@16# seem very reliable and accurate,
but unfortunately there is no assessment of the likely errors
in their results.

3. Nonrelativistic limit, m/g˜`

At largem/g, a natural rearrangement of the series for the
energy gaps was suggested by Hamer@11#. Instead of vari-
ablesm andx, one can rearrange the series in terms of vari-
ables 1/m andu, where

u5
x2

m
5

1

2mg2a3
5

1

2m/g
x3/2. ~56!

Then one finds the series can easily be expanded in powers
of the inverse mass parameter 1/m, e.g., for the vector gap

~v12v0!@u,m#22m5 f̃ 0~u!1
1

m
f̃ 1~u!1

1

m2 f̃ 2~u!1•••.

~57!

The continuum limit can then be approached by first letting
m/g ~or m) →` in such a way thatmg2 ~or u) remains
finite, and then lettinga→0, or u→`. If we assumethat
each separate term on the right-hand side of Eq.~57! gives a

FIG. 6. The vector energy gap (M122m)/g as a function of
y51/Ax for m/g532, notation as in Fig. 4. Here the solid line
represents a second-order polynomial fit to the finite-lattice data
over the range@0–0.5# in y.

FIG. 7. The scalar energy gap (M222m)/g as a function of
y51/Ax for m/g532, notation as in Fig. 4. Here the solid line
represents a polynomial fit to the finite-lattice data over the range
@0–0.7# in y.
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finite contribution to the continuum energy gap in this limit,
then we require an asymptotic behavior for thef̃ l(u) given
by

f̃ l~u!→clu
~ l11!/3 as u→` ~58!

which would lead to a continuum energy gap

E

g
5(

l50

`
cl
2 S g

2mD ~4l11!/3

. ~59!

The leading termO@(g/m)1/3# has the correct behavior as
predicted by Eq.~14!.

The series have been calculated forf̃ l ( l50,1, . . . ,6) up
to orderu14 for the vector excited state and orderu13 for the
scalar excited state. Coefficients for the seriesf̃ l(u)
( l50,1,2,3) are listed in Table IV for the two energy gaps.
The first five coefficients off̃ 0(u) can be obtained from the
results of Carrollet al. @8# and were listed previously by
Hamer@11#. The series forf̃ 0(u) is identical with that ob-
tained from a lattice version of the nonrelativistic Schro¨-
dinger equation~12!, as shown by Kenway and Hamer@21#,
which confirms that we should obtain at least the leading
term in the nonrelativistic limit correctly by this procedure.

The series forf̃ l(u) must now be extrapolated from the
strong-coupling limitu50 to the continuum limitu→`.
The same techniques were employed for this purpose as for
the previous series inx. The only question is what to take as

TABLE III. Estimates of the continuum bound-state energiesE1 /g, E2 /g as functions ofm/g. The series
and finite-lattice estimates obtained in this work are compared with the earlier finite-lattice estimates of
Crewther and Hamer@13#, and the light-cone estimates of Elleret al. @15# and Mo and Perry@16#.

Series Finite lattice CH Elleret al. Mo and Perry
m/g This work This work @13# @15# @16#

Vector state
0 0.56~2! 0.57~1! 0.56~1!

0.125 0.53~3! 0.52~2! 0.54~1! 0.60 0.54
0.25 0.52~4! 0.52~2! 0.52~1! 0.53 0.52
0.5 0.50~2! 0.50~2! 0.50~1! 0.49 0.49
1 0.46~4! 0.46~3! 0.46~1! 0.44 0.44
2 0.41~4! 0.41~3! 0.413~5! 0.39 0.39
4 0.34~2! 0.35~2! 0.358~5! 0.34 0.34
8 0.30~3! 0.31~2! 0.299~5! 0.28 0.29
16 0.24~3! 0.25~2! 0.245~5! 0.23 0.24
32 0.20~4! 0.20~2! 0.197~5! 0.20 0.20

Scalar state
0 1.25~15! 1.14~3! 1.12~5!

0.125 1.35~15! 1.24~4! 1.11~5! 1.41 1.22
0.25 1.30~15! 1.27~5! 1.12~5! 1.31 1.23
0.5 1.25~15! 1.25~5! 1.15~5! 1.23 1.20
1 1.10~15! 1.14~5! 1.19~5! 1.13 1.12
2 1.00~15! 1.01~5! 1.10~5! 0.98 0.99
4 0.90~15! 0.85~4! 0.93~5! 0.84 0.84
8 0.70~15! 0.73~5! 0.77~5! 0.69 0.70
16 0.5~1! 0.59~5! 0.62~5! 0.55 0.56
32 0.4~1! 0.50~5! 0.49~5! 0.46 0.46

FIG. 8. Estimates of the bound-state energiesEi /g vsm/g for
both the vector and scalar states. The open circles are our series
estimates, the solid boxes are our finite-lattice estimates, the dashed
line is the result of Mo and Perry, and the solid lines represent the
asymptotic behavior in the limiting casem/g→0, and the nonrela-
tivistic limit ~log is to base 10!.

56 63SERIES EXPANSIONS FOR THE MASSIVE SCHWINGER . . .



a weak-coupling variable. No detailed weak-coupling analy-
sis has been done in the nonrelativistic limit; but empirical
tests on f̃ 0(u), making comparison with the exact results,
appear to show that the best extrapolations are obtained us-
ing z51/u as weak-coupling variable. The results are shown
in Figs. 9 and 10.

For the vector state, it can be seen that the integrated
differential approximants converge down toz.0.2, and the
function behaves very smoothly inz, so that a very accurate
extrapolation to the continuum limit is possible, giving

c0
vector51.618~2! ~60!

which compares well with the expected exact value of
1.617(524/330.642). Note that the series results are much
better convergent than the finite-lattice results in this particu-
lar case.

The results for the scalar state are shown in Fig. 10, where
it can be seen that the series approximants converge only
down to z.0.7, but the function is again quite smooth in
z, so that a fairly reliable extrapolation may be made to the
continuum limit, as confirmed by the finite lattice data. The
resulting estimate is

c0
scalar53.73~3! ~61!

to be compared with the exact value of
3.71(524/331.473).

As soon as one tries to go beyond the leading order, how-
ever, some major problems arise. An example is shown in
Fig. 11, which showsf̃ 1(u)/u

2/3 for the vector state. It can
be seen that the series approximants and the finite-lattice
estimates agree very well down to very small values ofz,
and indicate a divergent behavior for this quantity. A Dlog
Padéanalysis of the series indicates thatf̃ 1(u) behaves as-
ymptotically more likeu than u2/3. Similar results are ob-
tained for all the$ f̃ l(u),l.0%, for both the vector and scalar
states.

It therefore appears that assumption~58! is incorrect, and
that the terms in Eq.~57! cannot be analyzed separately~be-
yond the leading order, at least!. It is very likely that the
limiting behavior of the energy gaps is nonuniform, and that
by letting firstm/g→`, and thena→0, we have taken the
limits in the wrong order. This gives an incorrect result for
the ground-state energy, for instance. It follows that expan-
sion ~59! is also incorrect; and in fact one would probably

TABLE IV. Series coefficients inu for the seriesf̃ 0, f̃ 1, f̃ 2, and f̃ 3 for the vector and scalar excited states.

n f̃ 0 f̃ 1 f̃ 2 f̃ 3

Vector excited state
0 1.000000000000 0.000000000000 0.000000000000 0.000000000000
1 1.000000000000 25.00000000000031021 2.50000000000031021 21.25000000000031021

2 25.00000000000031021 25.00000000000031021 1.125000000000 21.250000000000
3 2.50000000000031021 5.00000000000031021 6.87500000000031021 23.437500000000
4 26.25000000000031022 24.37500000000031021 26.71875000000031021 21.375000000000
5 24.68750000000031022 2.50000000000031021 6.48437500000031021 1.496093750000
6 7.16145833333331022 23.90625000000031023 25.17903645833331021 21.298828125000
7 23.76519097222231022 21.72960069444431021 2.19184027777831021 9.10888671875031021

8 21.05161313657431022 1.89841941550931021 1.63535789207231021 24.22602900752331021

9 3.59504605517031022 26.32527669270831022 24.16548175576331021 21.15388846691731021

10 22.77208430286331022 29.45420127837331022 3.57141015951531021 5.81387021414031021

11 6.42774971751431024 1.60297353977431021 21.18046627777331022 27.37181283443231021

12 2.08742076893831022 29.16156548524931022 23.59800744462031021 3.89549057830131021

13 22.18637516650531022 24.59685237162731022 4.49684453149831021 3.42086028076931021

14 5.56412189583631023 1.36670479360731021 21.60336645572731021 29.53027276891731021

Scalar excited state
0 1.000000000000 0.000000000000 0.000000000000 0.000000000000
1 3.000000000000 21.500000000000 7.50000000000031021 23.75000000000031021

2 25.00000000000031021 22.500000000000 4.125000000000 24.250000000000
3 22.50000000000031021 1.250000000000 3.562500000000 21.1875000000003101

4 26.25000000000031022 8.12500000000031021 24.046875000000 24.187500000000
5 4.68750000000031022 1.71875000000031021 22.632812500000 1.4371093750003101

6 7.16145833333331022 23.55468750000031021 29.99348958333331022 8.261718750000
7 3.76519097222231022 24.94466145833331021 2.158637152778 22.571695963542
8 21.05161313657431022 22.31960720486131021 2.582842791522 21.1771633572053101

9 23.59504605517031022 1.73807779947931021 8.37530253846031021 21.1768486305523101

10 22.77208430286331022 3.92557403187731021 21.691848582201 29.67856701509531021

11 26.42774971751431024 2.71122893973131021 22.874944640017 1.2819425638143101

12 2.08742076893831022 26.32504312099331022 21.598536929541 1.7304232908073101

13 2.18637516650531022 23.22375820501531021 1.178489577243 6.362423273963
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expect higher-order corrections to involve integer powers of
(g/m), rather than (g/m)4/3. It is an interesting puzzle how
to obtain useful estimates of the higher-order corrections
from the series data in these circumstances. At this stage, we
have no answer to the puzzle.

IV. CONCLUSIONS

It has been shown that strong-coupling series expansions
can deliver quite detailed and accurate information about the
mass spectrum of the Schwinger model. Using integrated
differential approximants or other methods, the series can be
continued or extrapolated well into the weak-coupling re-
gime, and then matched onto a weak-coupling form, which
allows reasonably accurate estimates of the continuum limit.
This has been confirmed by comparison with both finite-
lattice data and exact results. At fixed, finite fermion mass
the estimates for the lowest, vector excited state energy were
accurate to about 5–10 %. For the next lowest, scalar excited
state, the eigenvalue shows more structure at weak coupling,
particularly for smallm/g, and the continuum estimates are
more qualitative, at about the 15–20 % level.

Estimates can also be obtained for the expansion coeffi-
cients of the continuum energy eigenvalues in powers of
(m/g) about the zero-mass limit,m/g→0. These numerical
estimates agree with the exact results of Carrollet al. @8#,
Vary et al. @9#, and Adam@10#, and extend them by one
order. The series results for these coefficients have an accu-
racy equal to or better than that of the finite-lattice results.

A complementary expansion was attempted about the
nonrelativistic limit, m/g→`. Series estimates for the
leading-order term of the nonrelativistic energy were ex-
tremely accurate in this limit, agreeing with the exact results
to within 0.2% for the vector state, which is an order of
magnitude better than could be obtained from fits to the
finite-lattice data. Problems arose, however, for the higher-
order correction terms. There appears to be a nonuniform
limiting behavior in this case, and the natural structure of the
strong-coupling series does not predict the correct limiting
behavior. We have not resolved the puzzle of how to analyze

FIG. 9. Graph of the quantityf̃ 0 /u
1/3 as a function ofz51/u for

the vector excited state, notation as in Fig. 4. The solid line repre-
sents a polynomial fit in 1/u to the series results.

FIG. 10. Graph of the quantityf̃ 0 /u
1/3 as a function ofz51/u

for the scalar excited state, notation as in Fig. 4. The solid line is a
linear fit in z51/u to the series data over the range@0.6–1# in z.

FIG. 11. Graph of the quantityf̃ 1 /u
2/3 as a function ofz51/u

for the vector excited state. The solid lines are integrated differen-
tial approximants to the series data, and the solid boxes are finite-
lattice estimates.
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the series in this situation. It would be very interesting to
compare the series data with more detailed analytic calcula-
tions in the nonrelativistic limit—we hope to address this
problem in the future.

Finite-lattice techniques can also give accurate informa-
tion about this model, as previously demonstrated by
Crewther and Hamer@13# and Irving and Thomas@14#. Exact
finite-lattice eigenvalues have been calculated for the equiva-
lent spin Hamiltonian on lattices of up toN522 sites, and
then extrapolated to the bulk limit by polynomial fits in
1/N. Fitting these estimates to a weak-coupling form, esti-
mates of the continuum limit can be obtained which are ac-
curate to about 5–10 % for both the vector and scalar states.
This is actually worse than the accuracy of the old finite-
lattice data of Crewther and Hamer@13#.

The factor which hindered the finite-lattice calculations
from giving even more accurate estimates was the large size
of the finite-lattice corrections,O(1/N2), which were associ-
ated with the free boundary conditions. In retrospect, it might
be better to choose periodic boundary conditions. This car-
ries the penalty that the gauge field cannot be entirely elimi-
nated, and one is left with one extra gauge degree of freedom
corresponding to Coleman’s background electric field or
flux, which would have to be truncated in some fashion. The
advantage would be that the finite-lattice corrections should
be much smaller, and the finite-lattice sequence should con-

verge more rapidly. With today’s computers, one could prob-
ably expect to obtain virtually exact eigenvalues on lattices
up to some 20 sites, and thus obtain a substantial improve-
ment on previous finite-lattice calculations@13,14#.

Generally speaking, the finite-lattice approach would be
the method of choice for this particular model, and gives the
most accurate results at fixedm/g. For models in higher
dimensions, however, the finite-lattice approach is hardly
feasible because of the huge proliferation of basis states with
increasing lattice size. One would be forced to resort to
Monte Carlo techniques, whose power is still rather limited
for models with dynamical fermions. Our aim in this paper
has been to show that the strong-coupling series approach
can also give fairly accurate information about the spectrum
of the Schwinger model. Having demonstrated the efficiency
of these techniques, one can then go on to apply them with
confidence to models in higher dimensions, where finite-
lattice techniques are not practicable. It is worthy of note that
the series approach actually outstripped the finite-lattice ap-
proach when it came to exploring the expansion of the vector
mass gap about the smallm/g and largem/g limits.
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APPENDIX

The full strong-coupling series up to orderx10 are

v0 /N52
x2

112m
1

3x4

~112m!3
2

2~29120m!x6

~112m!5~312m!
1

~144312000m1700m2!x8

~112m!7~312m!2

2
4~51 0931126 936m1117 230m2147 484m317056m4!x10

~112m!9 ~312m!3 ~512m!
, ~A1!

v12v05112m1
2x2

112m
2
2~512m!x4

~112m!3
1
4~59168m124m214m3!x6

~112m!5 ~312m!

2
2~331316056m13934m211188m31216m4116m5!x8

~112m!7 ~312m!2
12~3 578 209111 359 410m114 982 934m2

110 681 694m314 498 120m411 134 808m51148 448m621888m723712m82384m9!

3x10@~112m!9~312m!3~512m!~712m!#21, ~A2!

v22v05112m1
6x2

112m
2
2~1312m!x4

~112m!3
1
4~1431112m14m224m3!x6

~112m!5~312m!

1
2~27905211 632m24510m2128m31104m4216m5!x8

~112m!7~312m!2
1~17 055 678148 682 964m154 776 904m2

130 230 052m318 173 504m41987 088m51157 952m6174 944m7114 336m81768m9!

3x10@~112m!9~312m!3~512m!~712m!#21. ~A3!
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