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Series expansions for the massive Schwinger model in Hamiltonian lattice theory
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It is shown that detailed and accurate information about the mass spectrum of the massive Schwinger model
can be obtained using the technique of strong-coupling series expansions. Extended strong-coupling series for
the energy eigenvalues are calculated and extrapolated to the continuum limit by means of integrated differ-
ential approximants, which are matched onto a weak-coupling expansion. The numerical estimates are com-
pared with exact results and finite-lattice results calculated for an equivalent lattice spin model with long-range
interactions. Both the heavy fermion and the light fermion limits of the model are explored in some detail.
[S0556-282(97)04413-5

PACS numbd(s): 11.15.Ha, 12.38.Gc

I. INTRODUCTION state spectrum. In the massless case, of course, the model is
exactly solvable, as shown by Schwind#r2]. It is equiva-

The Schwinger moddl1,2], or quantum electrodynamics lent to a theory of free, massive bosons. For a small fermion
in two space-time dimensions, has been a source of contint?@ss, one may perturb about the zero-mass limit, and obtain
ing interest over the years. It is a fascinating model in its2 |0W-mass expansion for the spectrf@). This expansion
own right, and also exhibits many of the same phenomena 4S recently been carried to second order by \&ryl. [9]
QCD, such as confinement, chiral symmetry breaking with afmd Adam[10]. In the large mass or nonrelativistic limit the

: : N - ‘positronium” bound states can be solved in terms of a
U(1) axial anomaly, and a topologicallvacuum(3-5]. It is Schralinger equation with a linear Coulomb potentialL].

als?( pe{hapts tze annplt%stdr}onttrk:vw;u_ glal;ge th:aorr}]/, 'and t?'?or fixed, finite fermion mass, one has to resort to numerical
makes It a standard testbed for the trial of new techniques 0trechniques. A quite accurate variational calculation in the

the study (.)f QCD. . . . infinite momentum frame was performed by Bergkrdf2].

Our main purpose in this paper is to explore the usefulrinite_|attice Hamiltonian calculations were performed by
ness of the strong—coup_llng series approach to thls model. {rewther and Hamei13] and Irving and Thomagl4]: we
is well known that Euclidean Monte Carlo techniques havenciude some further finite-lattice calculations in this paper,
proved difficult and expensive to apply to models with dy- mainly as a check on the series results. Later on Eller, Pauli,
namical fermions because of the infamous “minus sign”and Brodsky[15] applied a “discrete light-cone quantiza-
problem, and thus, it seems worthwhile to ask whether othetion” (DLCQ) approach to the problem, and showed that it
techniques such as strong-coupling expansions can give usgave quite good results, not only for the lowest state, but for
ful information in such cases. Modern linked-cluster tech-a whole range of higher excited states. Mo and P§t6]
niques[6] allow one to carry these expansions to very highhave used a different light-front field theory approach, to-
order. We are particularly interested to see if the series apgether with a Tamm-Dancoff approximation, which appears
proach can describe the nonrelativistic or heavy fermiorio give excellent results. Tomachi and Fuijite/] have used

limit of these models. a “Bogoliubov transformation method,” which works quite
As a first test, we apply the approach to the Schwingetvell for small fermion masses. _ _
model, using a Hamiltonian lattice framewdfk]. We con- In Sec. Il of this paper the Hamiltonian lattice formulation

centrate on a calculation of the spectrum of bound state®f the model is reviewed, and the known analytic results on
more specifically the lowest two bound states, for the case df'€ bound-state spectrum are recalled. It is shown that for
the massive Schwinger model. It will be shown that the seif€€ boundary conditions the gauge degrees of freedom can

ries approach can give quite detailed and accurate informgZe (.ellmlnated'entwgly from the I_attlce model, Ieadmg to an
tion on the spectrum. It will be interesting to see if a similar €9tValent spin lattice model with long-range interactions.
approach is useful fdr models in higher dimensions This is the formulation which we use to carry out the finite-

O : - : lattice calculations.
Hamiltonian strong-coupling series were first calculated

. Section Ill presents the numerical results. Their extrapo-
for the Schwinger model long ago by Banks, Kogut, andjason 19 the continuum limit is discussed, and expansions

Susskind 7], and were extended by Carrait al.[8]. Since  ear poth the low-mass limit and the nonrelativistic limit are
then, however, the method has fallen into abeyance, beingnalyzed. The numerical results are compared with previous

ec'itaszd by the power and accuracy of the Monte Carloynnroaches. Finally our conclusions are summarized in Sec.
method. I

V.
Many other approaches have been made to the bound-

Il. FORMALISM
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1 _ differing from the result of Carrolet al. [8] by a factor of
L== g Fu P+ gid—gA-—m)y, (1) 27=128.
In the large-mass or nonrelativistic limit, the “positroni-
where um” bound states are described by a Sdinger equation
with a linear potentia[11],

Fu=0,A,—d,A, 2 ,
and the Lorentz indiceg, »=0 or 1. The coupling in 1+1 (H+ 592|X| V(x)=EW¥(X), (12
dimensions has the dimensions of mass. Choosing the time-
like axial gauge where the nonrelativistic energy is
Ao=0 3) E=M—2m. (13)

the Hamiltonian is found to be

Hzfdx

Equation(12) may be solved in terms of Airy functions, to
o 1 give the energies of the lowest vector and scalar states as
—igyiatigA)y+myy+sE?) (4 [11]

1/3
where the electric fieldE has only one component in one E~O.642<—) as m/g—o,
spatial dimension: g (14)
E=F10=—A1. 5 E 1/3
® E2 14742 as m/g—c.
- . . g m
The remaining gauge component is not an independent
degree of freedom, but can be eliminated if desired, using the _ _
constraint provided by the equation of motiBauss’ lawy: B. Lattice formulation
. = The model can now be formulated on a “staggered” spa-
HE=—0A"=gyy ¢ (6) tial lattice[7]. Let the lattice spacing be, and label the sites

with an in m. Defin ingle-component fermion fiel
In the massless case, the theory has been solved b th an intege efine a single-component fermion field

Schwingen{1,2], and becomes equivalent to a theory of free,(X(n) at each site, obeying anticommutation relations:

massive bosons, with mass {¢T(n), p(M)}=6mn,  {B(n),p(M)}=0. (15
My i~0 564 @) The gauge field is defined on the links,a+1) connecting
g Jz o each pair of sites by

For small electron mass/g, one can obtain analytic es- U(n,n+1) =gl (M =g-iagA’n) (16)
timates by perturbing about the massless limit. Caroll,
Kogut, Sinclair, and Susskirl@] found that the lowest-mass Then the lattice Hamiltonian equivalent to Eg) is
(“vector”) state has mass

. N
H=— ZI_E [¢pT(n)e’™gp(n+1)—H.c]
an=1

Ma_ L o)y 0564+17B<m + ®)
—_—— e _ PE——— . . —_— ey
g \/; g N 2. N
> (-1t 9 a}) L2 1
while the ratio of the next-lowest'scalar”) mass to the tm2, (=D mén+=—7-2, L), (17
vector mass was
M m\ 2 m\ 2 where the number of lattice sitdé$ is even, and the corre-
M_2:2_277392y(_ +.. .22_197(_ +..., (99 spondence between lattice and continuum fields is
1 g g
X), n even,
wherey=0.5772 - - is Euler's constant. ¢(n)/\/5_> Puppel X) 18)
These results have been extended to second order by YrowedX), N odd
Vary, Fields, and Pirn€9] and by Adam10]: )
(“upper” and “lower” being the two components of the
M, m m)? continuum spinoy, and
320.5642-% 1.78 7 +0.190 7 +---. (10

o) — Al
Adam[10] also found ag 6(n)— —AX(X), .

2 2

+«~-22—1.536£<g> +o gL —E(x).

M; 64

M, 7T3e27( m
g

(11 The y matrices are represented by
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T L T 20 (=TI [izs0) 1o~ (n) (29
= = = g ag y
Y“lo -1/ Y7l-1 of 20 S
As usual, we have chosen a “compact” formulation where . ) .
the gauge field becomes an angular variable on the lattice, ¢ (n)=|1:[n [—ios(1)]o™(n), (29

andL(n) is the conjugate “spin” variable

[6(n),L(M)]=i8nm, 21) giving

so thatL(n) has integer eigenvaluégn)=0,+1,£2,... .
As noted by Bankst al. [7], this quantization of electric
field (or flux) in one dimension also occurs in the continuum
Schwinger model, due to Gauss’ law. If one takes the naive
continuum limita— 0, the lattice Hamiltoniar{17) reduces
to the continuum Hamiltoniaf), as it should.

Now define the dimensionless operator

Wo=3 L)+ 5 (—1)"o5(n)+Npuf2, (30

V=2 [¢"(n)e ™o (n+1)+H.cl. (31)

The strong-coupling ground state then corresponds to

2 L(n)=0, o3(n)=—(=1)" all n. (32
W= —H=Wy+xV, (22
ag Next, the gauge field can be eliminated using Gauss’ law,
where 1
L(n)—L(n—1)=E[ag(n)+(—1)“], (33
Wo=2 LA (n)+uX (=1)"¢"()g(n), (23
" 3 and a residual gauge transformation
v=—i§n‘, [¢T(Me"Mp(n+1)—Hcl, (24 (-] {e "o (n) (34)
I<n
2m 1 i i
= 7 Y= 77 (25) provided that we assume free boundaries

L(0)=L(N)=0 where N=No. lattice sites. (35
For x<1 one can employ strong-coupling perturbation
theory on this model, treating/, as the unperturbed Hamil- (If periodic boundary conditions are assumed, then there is
tonian andV as the perturbation, as discussed by Bagtlkal.  one extra independent gauge degree of freedom left over,
[7]. In the strong-coupling limit, the unperturbed ground corresponding to the “background” electric field].) The
state|0) is the eigenstate with resulting Hamiltonian is then

1 W=W,+XxV, (36)
L(m=0, &' (Me¢(n)=3[1-(=1)" all n (26
where

whose energy will be normalized to zero, corresponding to a N N
“filled Dirac sea.” Bankset al. [7] have discussed how to Wo=2S (=1)"¢s(n)+ —
use Rayleigh-Schdinger perturbation theory to generate n=1 2
perturbation series ir for the ground state and excited state N-17, n 9
eigenvalues of this system, and the discussion will not be = _1\ym
repeated here. We have used more sophisticated linked- - r1§=:1 2mE=l Los(m+(=D7] 37
cluster techniquelb] to generate high-order perturbation se-
ries for these eigenvalues, as presented below. N-1

The lattice version of Gauss’ law is then taken as V= nzl [c*(N)e™(n+1)+H.cl. (38

1
L(n)—L(n—=1)=¢"(n)p(n)— S[1-(=1", @D

which means excitations on odd and even sites credte
units of flux, corresponding to “electron” and “positron”
excitations, respectively.

C. Equivalent spin formulation

All trace of the gauge field has now disappeared, but instead
there is a nonlocal, long-range interaction between the spins
in the last term of Eq(37), which of course corresponds to
the long-range Coulomb interaction between charges in the
original theory. In the continuum limia— 0, x— o, the in-
teractionV dominates the Hamiltonian so that in leading
order the system becomes equivalent to a simtemodel

with ground-state energy per site

The one-component fermion operators can be replaced by

Pauli spin operators at each site if we employ a Jordan-

Wigner transformatiof7],

(O] X
—_— s — —

as X—oo,
N

(39
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The energy gap to the lowest excited state in the sector of 11 — — —
“vector” states will correspond to the vector mass, so we - o
expect I 7

2 2 i . Q
wl‘“’o:@ZMlzaMl\& (40) T e ]

and similarly in the scalar or ground-state sector, the mini- i .

mum energy gap oo L ]

2 2
a)z_woza_gzMzzaMz\/;. (41)

(M,—2m)/g

Our aim in this paper is to find estimates of these masses o i /
M, andM,. L e

The equivalent spin model has a total of onfy ossible L/
configurations, and lends itself readily to finite-lattice tech- -
nigues of analysis. As a check on the series results, we have 07 s N
used the Lanczos algorithm to obtain exact results for the [ |
low-lying eigenvalues of this system at finiteon lattices of . —

. . . 0 0.01 0.02 0.03

up to N=22 sites. The ground state energy is easily ob- 1/N°
tained as the lowest eigenvalue in the sector containing the
unperturbed ground staté); and the first excited state en- FIG. 1. Finite-size scaling behavior of the vector energy gap
ergy w, is likewise the lowest eigenvalue in the “vector” (M;—2m)/g as a function of M? for m/g=0, x=4, whereN is

state sector, corresponding in the strong-coupling limit to théhe lattice size. Solid boxes mark the finite-lattice data points; the
state[7] dashed line shows a polynomial fit of the foK#b).

1 N7t To make comparison with series data, it is first necessary
|1)=-—=> [¢"(nN)e~(n+1)—H.c]|0). (42 to extrapolate the finite-lattice data to the bulk lifit-.
YNA=1 The convergence of the finite-lattice sequences was slow.

] ] Tests showed that the convergence was polynomial ih 1/
The second excited-state energy, is the lowest of a thys for the ground-state energy

“band” of excited states in the vacuum sector, correspond-

ing in the strong-coupling limit to the state b,

wo(N)—Neg()+by+ N2+O(N’3) as N—oo,

N—-1
1 44
|2)=—=2 [¢"(no (n+1)+H.c]l0). (43 “a
WNi=1 whereey(0) is the bulk energy per site ar is the surface
energy term; while for the energy gaps

IIl. RESULTS AND ANALYSIS

A. Finite-lattice results wi(N)— wg(N)— b+ N—12+O(N*3) as N—oo,

Exact eigenvalues have been calculated for the equivalent (45)
spin Hamiltonian(36) using the Lanczos technique for vari-
ous values ofm/g and couplingx, on even lattices from This is opposed to the exponential convergence
N=4 up to N=22 sites. No symmetrization of states was ~exp(—cN) one normally expects for periodic boundary
employed: since free boundary conditions were chosen, theonditions. There is a simple explanation for this behaVior:
system does not exhibit translational invariance in any casen the lattice with free boundaries, the excitations have finite
The calculations are carried out in the secKi3(i)=0  momentumO(7/N), and thus their energies include a ki-
which hasN!/[(N/2)!]? states, and the ground-state energynetic energy correction ter@((7/N)?). As one approaches
wq and the “vector” excited-state energy, are the lowest x—o, which is a critical point of the lattice model, the
and the second lowest eigenvalues in this sector, respefinite-lattice corrections become relatively much larger, and
tively. The “scalar” excited-state energy, is slightly more  extrapolation to the bulk limit becomes progressively more
tricky to obtain because there are several other states, corrdificult. An example is shown in Fig. 1 fax=4, m/g=0.
sponding to the momentum excitations of the “vector” ex-  Various sequence extrapolation algorithfi8—2Q were
cited state, in this sector giving lower energy than the “sca+ried for estimating the bulk limit, such as the alternating
lar” excited state. We got over this problem by moving in VBS algorithm, and the Lubkin and Bulirsch-Stoer algo-
stages from the strong-coupling limik=0 to the desired rithms, but the most reliable and accurate method in this case
coupling value, and “tagging” the desired state as that
which has maximum overlap with its predecessor at each
stage, starting from the stat2) in Eq. (43). We are indebted to Dr. O. Sushkov for this remark.
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TABLE |. Series coefficients ix for the seried, f4, f,, andf; for the vector and scalar excited states. Nonzero coefficient’ afe
listed.

Vector excited state

0 1.000000000000 0.000000000000 0.000000000000 0.000000000000
2 2.000000000000 —4.000000000000 8.000000000000 —1.600000000008 10*
4 —1.000000000008 10* 5.600000000008 10 —2.160000000008 10 7.040000000008 107
6 7.866666666667 10" —7.484444444444 17 4.344296296298 10° —1.97975308642Q 10*
8 —7.362222222222 1% 9.942962962968 10° —7.742029629630 10" 4.547973004118 10°
10 7.57292910052910° —1.326103683144 10° 1.29690283561% 10° —0.337217941998 1¢°
12 —8.273669056689 10 1.780034473768 1¢0° —2.096087983372 10 1.7874370961858 1¢P
14 9.42803419603610° —2.40524732939Q 10 3.312148486580 10° —3.26435234084R 10°
16 —1.108357531764 10 3.26996231790% 10 —5.15470257803% 10° 5.764697147248 10%°
18 1.3346364037381C° —4.469545711788 10° 7.93584376554% 10 —9.927975671718 10"
20 —1.63799578133% 10° 6.137741867818 10%° —1.211925759938 10'? 1.676878382098 103
22 2.04159282400410'° —8.462460202654 10! 1.839263212769 10" —2.788695534038 10+
24 —2.57731496811% 10 1.17080495795Q 103 —2.77742714313Q 10* 4.579160745014 10'°
26 3.28864196999210'2 —1.62467765916% 101 4.176990920608 10'° —7.439926786608 10°
28 —4.234675197598 10" 2.26033511829Q 10'° —6.260315585324 10'° 1.19797430842% 108
Scalar excited state
0 1.000000000000 0.000000000000 0.000000000000 0.000000000000
2 6.000000000000 —1.200000000008 10" 2.400000000008 10" —4.800000000008 10"
4 —2.600000000008 10" 1.520000000008 1¢? —6.000000000008 10 1.984000000008 10°
6 1.90666666666% 107 —1.884444444444 10° 1.120829629638 10* —5.195753086428 10*
8 —1.75666666666% 10° 2.43506666666% 10° —1.932472592598 10° 1.151850271608 1¢°
10 1.804833650794 10 —3.218263683144 10° 3.19282555166% 10° —2.32559864577% 10’
12 —1.979052000758 1C° 4.31445272979% 10° —5.136573365118 10’ 4.420974571818 10°
14 2.26736752109810° —5.842838007004 10 8.115577786908 10° —8.05854081587% 10°
16 —2.681007957489 10 7.97265347715% 1¢° —1.265571251418 10t° 1.424081244508 10"
18 3.2465571424761C° —1.094270467478 10%° 1.95413921790% 10"t —2.457363530118 10*?
20 —4.00534374054% 10° 1.50895210399Q 10"t —2.99404309557R 102 4.16106771640% 103
22 5.01601632694210 —2.088733926178 102 4558824467108 103 —6.93873261012% 10*
24 —6.359434181408 10** 2.900477258178 10% —6.905937254404 10 1.142452124172 10'°
26 8.14597124313210% —4.038508440298 10+ 1.041673344898 106 —1.861014699378 10’
seemed to be a simple least squares polynomial fit My 1/ The series have been calculated f{x) (i=0,1,...,6) up

with fictitious errors assigned to the data points. Consistencyo orderx?® for the vector excited state and ordef for the
between the estimates at different orders allows a crude esealar excited state. Coefficients for the seri€$x)
timate of the likely error in the final result. This was the (i=0,1,2,3) are listed in Table I. The expected behavior in
technique used to obtain the estimates used in the rest of thike continuum limit for these series is

paper.

1-1)/2

fi(x)—ax as x—o (47)

B. Series expansions

Strong-coupling perturbation series have been calculateghich would lead to a continuum energy gap

for the ground-state energy, and the energy gaps
(w1— wg) and (w,— wg), as functions of the coupling and

mass parameter. The full series up to ordex'® are pre- m=ao/2+ a;(m/g)+2a,(m/g)?+---. (498
sented in the Appendix.
These series can be analyzed in three different regimes, as
follows. These series must now be extrapolated from the strong-
coupling limit x=0 to the continuum limix—o. We have
1. Massless limit, ig—0 employed the standard techniques of integrated differential

For smallm/g, the eigenvalues can be expanded as serie8PProximants and naive Padpproximant$20] for this pur-

in the mass parameter, e.g., for the vector gap pose, combined Wi_th a “matching” technigque. Some ex-
amples are shown in Figs. 2, 3, and 4.

(01— wo)[X, ] — 2= Ffo(X)+ w1 (X)+ u?Fo(X)+ - - -. The integrated differential approximants are a natural
(46) generalization of the Padgproximant, and can approximate
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y

FIG. 2. Ground-state energy per sitg/(xN) as a function of FIG. 4. As Fig. 3, with finite-lattice data includddolid boxes.

y=1/\x for m/g=0. The dashed lines are integrated differential

approximants to the series data, while the solid boxes with erromore general types of singulariti¢20]. The {m/I/k} first-
bars represent finite-lattice estimates. The solid line is a fit to th@rder inhomogeneous differential approximdr0] to a
finite-lattice data in powers of. The exact continuum limit is function

marked by an open circle.

f(z)= E a,z"
n=0

IS A B L '/ is a function of polynomiald,, Q.,, andR, of degreel,
| ———: {4/5/0% l, /] m, andk, respectively, satisfying the differential equation
12 1/4/0} A /] df(2)
--------------- : §2/3/3 z
g st A PU(2) g + Qu(2)(2)+ Ry(2)=0(2 ™K+ (a9)
E— L {R/4/43 V2 1
- A ] OnceP,, Q., andRy are determined order by order from
1= A — Eq. (49), the approximant is the function which satisfies Eq.

i (49 with the right-hand side replaced by zero. It may be
' found by numerical integration.

! Figure 2 shows the ground-state energy per site for
! m/g=0 as a function ofy=1/\/x (which is the natural vari-

.' 7 able to use at weak couplings, as shown by @d) and by
!

|

|

!

f

Ml/g

] previous weak-coupling analysgkl,21)). It can be seen that

. the approximants converge down to abget0.5, and are in
excellent agreement with the finite-lattice estimates. These
can easily be extrapolated to the continuum limit 0,
where

B

|/inl||||||||||||||||||||| wo 1

0 0.5 1 1.5 2 2.5 J
y NXx T (50

FIG. 3. Vector mass gaM, /g as a function ofy=1/yx for  according to Eq(39). . o .
m/g=0. The open circle marks the exact continuum limit. Dashed A More interesting example is seen in Fig. 3, which shows

lines are the{m/I/k} order integrated differential approximants to the series data for the vector energy gap as a functign lbf
the series ;— w,)*. Shown also are the naive sum to orodf  can be seen that the raw series begins to diverge below about
(labeled byA) and x?® (labeled byB), and the third-order weak- Y=1.9. A more useful technique is to analytically continue

coupling fit to the series data over the rafi§e7,1.5 in y (the solid  the series by means of integrated differential approximants
line). [20]. In view of the fact that the series involves powers of
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x2, and the asymptotic behavior ab{— ) is given by Eq. 1T T T
(40), approximants were actually calculated for the function
(w1— wg)*. They converge much better than the raw series,
down to abouty=0.7, and spray outwards somewhat below
that. The higher-order approximants usually converge deeper
into the weak-coupling region, but the improvement is not
very dramatic as the order is increased. One still has to make
an extrapolation to the continuum limjt=0.

Now in the weak-coupling region, the function is ex-
pected to have an asymptotic expandihf,21]

Mz/ g

M o0
j = cy"+0(e ™). (51)

= /
n=0 exact —p S

Figure 3 shows that the function is smooth and well behaved a ;o _
over the region 0.#y=<1.5, and can be well fitted by a r
low-order polynomial iny of the form (51) (ignoring any P
exponentially small correction termsSuch a polynomial fit oy 1
is shown as a solid line in Fig. 3. It extrapolates to a value A B B B

0 0.5 1 1.5 2

y

&%O.SaZ) as y—>0, (52)
9 FIG. 5. Scalar mass gaj,/g as a function ofy=1/\x, for
m/g=0, notation as in Fig. 3. Here the solid line represents a
where the error is crudely estimated from the difference besecond-order polynomial fit to the finite-lattice data over the range
tween the second-order and third-order fits. This result comt0.2,0.8 in y.

pares well with the expected exact value of 0.5642 obtained

from Egs.(8) and(40). A reliable estimate of the continuum in quite reasonable agreement with the exact value; but the
limit has thus been obtained by “matching” a weak- best one could do with the series data would be to estimate a
coupling polynomial form with the series approximant dataqualitative value,

over a “window"” of intermediate couplings (0fy<1.5, in

this casg which is presumed to be in the weak-coupling a3y ™P=1.2515). (55
region. A similar matching technique was used previously on
finite-lattice data by Crewther and Hamik3] and Irving In a similar fashion, estimates have been obtained for the

and Thomag14], and is also common in lattice Monte Carlo coefficientsa,, a;, a,, as, in Eq. (48) for the vector and
studies. We have also used it previously in a series study d¥calar masses, extracted from both the series data and the
the U1) Yang-Mills theory in(2+1) dimensiong22]. finite-lattice data. These are summarized in Table II, along
Figure 4 is similar to Fig. 3, but with the finite-lattice With the exact resultéwhere known. It can be seen that the
estimates added. It can be seen that the weak-coupling fit taumerical estimates are in good agreement with the exact
the series data agrees well with the finite-lattice data, contesults for the vector state. The series results are actually
firming that this method of extrapolation is reliable. A fit to competitive with or better than the finite-lattice results for

the finite-lattice data gives an even more accurate estimate #fe higher coefficients, and thus give a detailed picture of the
the continuum limit: behaviour of the vector energy gap at low fermion mass

The estimate fora; should also be fairly reliable for this

M, state, and it would be interesting to check it against analytic

——0.511) asy—0. (53
g TABLE II. Table of estimates o&,, aj, ... ,a; for the vector

and scalar masses, obtained from series data, finite-lattice data, and

Figure 5 is a similar plot for the energy of the scalarexact result§9,10].

excited state. Here it can be seen that the series approximamts

converge down ty=1, where the function develops a pro- ao/2 a,+2 2a, 4a

nounced peak or bump. It is not really possible to tell from

the diverging series approximants whether the function iny

Vector state

. . [ . 1.802 164 -0.2

creases, decreases, or remains flat below that point, but ttﬁeer.'es , 0-56) 842 0.1a4) 0-228)
- . ] Inite lattice 0.571) 1.782) 0.31)
finite-lattice data show that it decreases gently towards th 1 0.5642 1781 0.1908
exact continuum value 1.128. A fit to the finite-lattice data ¢ ' Scal ‘ '
over 0.2-0.8 iny gives _ calar state

Series 1.2615) 3.2(2) —4(2)

Finite lattice 1.143) 2.5(10) 0(2)

%_,1.143) as y—0 (54) Exact 1.1284 3.562 —0.485
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FIG. 6. The vector energy gapM(;—2m)/g as a function of FIG. 7. The scalar energy gaple—2m)/g as a function of

y=1/Jx for mig=32, notation as in Fig. 4. Here the solid line Y¥=1/\Vx for m/g=32, notation as in Fig. 4. Here the solid line

represents a second-order polynomial fit to the finite-lattice datd€presents a polynomial fit to the finite-lattice data over the range
over the rangg0-0.9 in y. [0-0.7iny.

calculations. For the scalar state, there is more structure atore accurate results of Irving and Thonjad)], although
smally, as seen in Fig. 5, and although the estimates fothere is good consistency between them. This is because of
a, anda, agree quite well with the exact results, those forthe large finite-size corrections associated with the free
a, andaj are virtually worthless. boundary conditions. More importantly, the series estimates
are seen to be in good agreement with the current finite-
lattice estimates, and for the vector state they are generally
At fixed, finite m/g, the series have been calculated up to?/MOSt @s accuratépproximately 10% although for the
orderx3° for the ground-state energy,, and orden>? for scalar state they are wore{approxmatelly 15-20% The

the energy gapse;— wg) and (w,— wo)—these series are results of Mo and PerrM.G] seem very reliable and accurate,
available on request. The analysis follows very similar IinesbUt unfortunately there is no assessment of the likely errors
to those described above. The major difference is that fol their resuits.

m/g# 0, the strong-coupling series expansions are in powers o

of x1/2, rather tharx®. The series are therefore longer, but the 3. Nonrelativistic fimit, m'g—ce

convergence is not very different to thatratg=0. At largem/g, a natural rearrangement of the series for the
At large m/g the series coefficients begin to grow very energy gaps was suggested by Haiidl. Instead of vari-

rapidly, like (m/g)" at large orders, and it becomes more ablesu andx, one can rearrange the series in terms of vari-

difficult to maintain good accuracy down to small values ofables 14 andu, where

y. Figures 6 and 7 illustrate the behavior of the energy gap at

large m/g. It can be seen that any structure has moved to N 1 1

smaller values oy, and is somewhat less pronounced than at U= —=5—53=5——x" (56)

mig=0 ' M 2mgra®  2m/g
Our estimates of the energis/g are shown in Table Il . . . .

and Fig. 8, along with earlier finite-lattice estimates oprtehn one finds the series C?n ea/esny t])ce iﬁpandid N POWers

Crewther and Hamel13], and the light-cone estimates of of the inverse mass parametep.1e.g., for the vector gap

Eller et al.[15] and Mo and Perry16]. It can be seen that all 1 1

the estimates agree with each other, within errors, except th _ o, _F -7 Bl o

the results of Elleret al. [15] run a little too high at smgll a(twl wo)lU p] = 2p=To(U)+ ,ufl(u)+ ,usz(u)+ '

m/g. For the vector state, the data match beautifully to the (57

asymptotic expansions at both ends. For the scalar state, the

data indicate a peak in the energy at abmig=0.5. The continuum limit can then be approached by first letting
Comparing the different estimates, it is noticeable that oum/g (or u) —o in such a way thatng?® (or u) remains

current finite-lattice estimates are in fact less accurate thafinite, and then lettingp—0, or u—oo. If we assumethat

the old estimates of Crewther and HanéB] or the even each separate term on the right-hand side of(Ed). gives a

2. Finite m/g
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TABLE lll. Estimates of the continuum bound-state enerdieég, E, /g as functions ofm/g. The series
and finite-lattice estimates obtained in this work are compared with the earlier finite-lattice estimates of
Crewther and Hamdrl3], and the light-cone estimates of Ellet al.[15] and Mo and Perry16].

Series Finite lattice CH Elleet al. Mo and Perry
m/g This work This work [13] [15] [16]
Vector state

0 0.562) 0.571) 0.561)

0.125 0.583) 0.522) 0.541) 0.60 0.54
0.25 0.524) 0.522) 0.521) 0.53 0.52
0.5 0.5@2) 0.5012) 0.5011) 0.49 0.49
1 0.464) 0.463) 0.461) 0.44 0.44
2 0.414) 0.41(3) 0.4135) 0.39 0.39
4 0.342) 0.352) 0.3585) 0.34 0.34
8 0.303) 0.31(2) 0.2995) 0.28 0.29
16 0.243) 0.252) 0.2455) 0.23 0.24
32 0.2G44) 0.2012) 0.1975) 0.20 0.20

Scalar state

0 1.2515) 1.143) 1.125)

0.125 1.3%15) 1.244) 1.115) 1.41 1.22
0.25 1.3015) 1.275) 1.125) 1.31 1.23
0.5 1.25%15) 1.255) 1.155) 1.23 1.20
1 1.1q15) 1.145) 1.195) 1.13 1.12
2 1.0015 1.01(5) 1.105) 0.98 0.99
4 0.9q15) 0.854) 0.935) 0.84 0.84
8 0.74015) 0.735) 0.775) 0.69 0.70
16 0.51) 0.595) 0.625) 0.55 0.56
32 0.41) 0.5055) 0.495) 0.46 0.46

finite contribution to the continuum energy gap in this limit,
then we require an asymptotic behavior for thgu) given
by

1)/3

Ti(wy—cu'* as u—o (58)

which would lead to a continuum energy gap

E = ol g (41+1)/3
g = 5«_'

(59

The leading termO[(g/m)Y®] has the correct behavior as
predicted by Eq(14).

The series have been calculatedTQr(I =0,1,...,6) up
to orderu®* for the vector excited state and ordef for the

scalar excited state. Coefficients for the seri€égu)

(1=0,1,2,3) are listed in Table IV for the two energy gaps.

The first five coefficients o?o(u) can be obtained from the
results of Carrollet al. [8] and were listed previously by
Hamer[11]. The series forf 4(u) is identical with that ob-
tained from a lattice version of the nonrelativistic Schro
dinger equatior{12), as shown by Kenway and Hamgx1],
which confirms that we should obtain at least the leadin
term in the nonrelativistic limit correctly by this procedure.

The series forf,(u) must now be extrapolated from the
strong-coupling limitu=0 to the continuum limitu—co.

the previous series ir. The only question is what to take as

0||||f1|||1|||||||1
-2 -1 0 1 2

log(m/g)

9 FIG. 8. Estimates of the bound-state enerdigsg vs m/g for

both the vector and scalar states. The open circles are our series
estimates, the solid boxes are our finite-lattice estimates, the dashed
line is the result of Mo and Perry, and the solid lines represent the
The same techniques were employed for this purpose as fasymptotic behavior in the limiting case/g—0, and the nonrela-

tivistic limit (log is to base 10
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TABLE IV. Series coefficients in for the seriesf, T4, T, andT 5 for the vector and scalar excited states.

n fo fi f2 fa

Vector excited state

0 1.000000000000 0.000000000000 0.000000000000 0.000000000000

1 1.000000000000 —5.000000000008 10 * 2.500000000008 10" * —1.250000000008 10 *

2 —5.000000000008 10 * —5.000000000008 10 * 1.125000000000 —1.250000000000

3 2.50000000000010* 5.000000000008 10" * 6.875000000008 10 * —3.437500000000

4 —6.250000000000 102 —4.375000000000 10~ * —6.718750000000 10~ ¢ —1.375000000000

5 —4.687500000008 102 2.500000000008 10 * 6.484375000000 10 * 1.496093750000

6 7.16145833333810 2 —3.9062500000080 103 —5.17903645833810 ¢ —1.298828125000

7 —3.765190972222 10" 2 —1.729600694444 10 * 2.19184027777810° ¢ 9.10888671875010 *

8 —1.051613136574 10 2 1.89841941550810 ¢ 1.635357892072 10 ¢ —4.226029007528 101

9 3.595046055170 10 2 —6.325276692708 10 2 —4.165481755768 10 ¢ —1.15388846691% 10 *

10 —2.772084302868 102 —9.454201278378 10 2 3.57141015951810 ¢ 5.81387021414R10 1

11 6.42774971751410™* 1.602973539774 10 * —1.180466277778 10 2 —7.37181283443210°*

12 2.08742076893810 2 —9.161565485249 10 2 —3.59800744462R 10 * 3.89549057830% 10 *

13 —2.186375166508 102 —4.59685237162% 102 4.496844531498 10 * 3.42086028076210 *

14 5.56412189583610 3 1.36670479360% 10 * —1.60336645572% 10 ¢ —9.53027276891% 101
Scalar excited state

0 1.000000000000 0.000000000000 0.000000000000 0.000000000000

1 3.000000000000 —1.500000000000 7.5000000000000 ¢ —3.750000000000 10" *

2 —5.000000000008 10" * —2.500000000000 4.125000000000 —4.250000000000

3 —2.500000000008 10 * 1.250000000000 3.562500000000 —1.187500000008 10*

4 —6.250000000008 10" 2 8.125000000000 10 * —4.046875000000 —4.187500000000

5 4.68750000000010 2 1.718750000008 10 * —2.632812500000 1.4371093750000"

6 7.16145833333810 2 —3.554687500000 101 —9.993489583333 10 2 8.261718750000

7 3.76519097222210 2 —4.94466145833310° 1 2.158637152778 —2.571695963542

8 —1.051613136574 10 2 —2.31960720486% 101 2.582842791522 —1.177163357208 10

9 —3.59504605517R 102 1.73807779947210 ¢ 8.375302538460 10 * —1.176848630552 10

10 —2.772084302868 10 2 3.92557403187%10 ! —1.691848582201 —9.678567015098 10 *

11 —6.42774971751410 ¢ 2.71122893973% 10! —2.874944640017 1.2819425638440"

12 2.08742076893810 2 —6.325043120998 10 2 —1.598536929541 1.7304232908070"

13 2.18637516650810 2 —3.223758205018 10 * 1.178489577243 6.362423273963

a weak-coupling variable. No detailed weak-coupling analy- Cgca'afz 3.733) (62)

sis has been done in the nonrelativistic limit; but empirical

tests on'FO(u), making comparison with the exact results,to be compared with the exact value of
appear to show that the best extrapolations are obtained us:71(= 2413 1.473).
ing z=1/u as weak-coupling variable. The results are shown As soon as one tries to go beyond the leading order, how-
in Figs. 9 and 10. ever, some major problems arise. An example is shown in
For the vector state, it can be seen that the integrategig_ 11. which showsf~1(u)/u2’3 for the vector state. It can
differential approximants converge downe-0.2, and the  po'seen that the series approximants and the finite-lattice
function behaves very smoothly i So that a very accurate ggtimates agree very well down to very small valueg,of
extrapolation to the continuum limit is possible, giving and indicate a divergent behavior for this quantity. A Dlog

clector— 1 6142) (60) Padeanalysis of the series indiggtes_ tﬁalt(u) behaves as-
ymptotically more likeu than u<”. Similar results are ob-

which compares well with the expected exact value oftained for all the{f,(u),I>0}, for both the vector and scalar

1.617(=2%3%0.642). Note that the series results are muchstates.

better convergent than the finite-lattice results in this particu- It therefore appears that assumpti®®) is incorrect, and

lar case. that the terms in Eq57) cannot be analyzed separatéhe-
The results for the scalar state are shown in Fig. 10, whergond the leading order, at leastt is very likely that the

it can be seen that the series approximants converge onlimiting behavior of the energy gaps is nonuniform, and that

down to z=0.7, but the function is again quite smooth in by letting firstm/g—<, and thena—0, we have taken the

Z, so that a fairly reliable extrapolation may be made to thdimits in the wrong order. This gives an incorrect result for

continuum limit, as confirmed by the finite lattice data. Thethe ground-state energy, for instance. It follows that expan-

resulting estimate is sion (59) is also incorrect; and in fact one would probably
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FIG. 9. Graph of the quantit§,/u® as a function o= 1/u for FIG. 11. Graph of the quantity, /u?? as a function o&z=1/u
the vector excited state, notation as in Fig. 4. The solid line reprefor the vector excited state. The solid lines are integrated differen-
sents a polynomial fit in i/to the series results. tial approximants to the series data, and the solid boxes are finite-

lattice estimates.

expect higher-order corrections to involve integer powers of
(g/m), rather than ¢/m)*2. It is an interesting puzzle how
to obtain useful estimates of the higher-order corrections It has been shown that strong-coupling series expansions
from the series data in these circumstances. At this stage, wean deliver quite detailed and accurate information about the
have no answer to the puzzle. mass spectrum of the Schwinger model. Using integrated
differential approximants or other methods, the series can be
continued or extrapolated well into the weak-coupling re-
gime, and then matched onto a weak-coupling form, which
allows reasonably accurate estimates of the continuum limit.
This has been confirmed by comparison with both finite-
lattice data and exact results. At fixed, finite fermion mass
the estimates for the lowest, vector excited state energy were
accurate to about 5-10 %. For the next lowest, scalar excited
state, the eigenvalue shows more structure at weak coupling,
particularly for smallm/g, and the continuum estimates are
more qualitative, at about the 15—-20 % level.

Estimates can also be obtained for the expansion coeffi-
cients of the continuum energy eigenvalues in powers of
(m/g) about the zero-mass limitn/g— 0. These numerical
estimates agree with the exact results of Carevlal. [8],
Vary et al. [9], and Adam[10], and extend them by one
order. The series results for these coefficients have an accu-
racy equal to or better than that of the finite-lattice results.

A complementary expansion was attempted about the
nonrelativistic limit, m/g—oc. Series estimates for the
leading-order term of the nonrelativistic energy were ex-
tremely accurate in this limit, agreeing with the exact results
T to within 0.2% for the vector state, which is an order of
0 0.5 1 1.5 magnitude better than could be obtained from fits to the

Z finite-lattice data. Problems arose, however, for the higher-
order correction terms. There appears to be a nonuniform

FIG. 10. Graph of the quantity,/u*® as a function ok=1/u limiting behavior in this case, and the natural structure of the
for the scalar excited state, notation as in Fig. 4. The solid line is &trong-coupling series does not predict the correct limiting
linear fit in z=1/u to the series data over the ran@e6-1 in z. behavior. We have not resolved the puzzle of how to analyze

IV. CONCLUSIONS

(scalar)

1/3

fo/u
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the series in this situation. It would be very interesting toverge more rapidly. With today’s computers, one could prob-
compare the series data with more detailed analytic calculaably expect to obtain virtually exact eigenvalues on lattices
tions in the nonrelativistic limit—we hope to address thisup to some 20 sites, and thus obtain a substantial improve-
problem in the future. ment on previous finite-lattice calculatiohs3,14.

Finite-lattice techniques can also give accurate informa- Generally speaking, the finite-lattice approach would be
tion about this model, as previously demonstrated bythe method of choice for this particular model, and gives the
Crewther and Hamdt.3] and Irving and Thomalsl4]. Exact  most accurate results at fixed/g. For models in higher
finite-lattice eigenvalues have been calculated for the equivadimensions, however, the finite-lattice approach is hardly
lent spin Hamiltonian on lattices of up fd=22 sites, and feasible because of the huge proliferation of basis states with
then extrapolated to the bulk limit by polynomial fits in increasing lattice size. One would be forced to resort to
1/N. Fitting these estimates to a weak-coupling form, esti-Monte Carlo techniques, whose power is still rather limited
mates of the continuum limit can be obtained which are acfor models with dynamical fermions. Our aim in this paper
curate to about 5—10 % for both the vector and scalar statehas been to show that the strong-coupling series approach
This is actually worse than the accuracy of the old finite-can also give fairly accurate information about the spectrum
lattice data of Crewther and Hamiek3]. of the Schwinger model. Having demonstrated the efficiency

The factor which hindered the finite-lattice calculationsof these techniques, one can then go on to apply them with
from giving even more accurate estimates was the large sizonfidence to models in higher dimensions, where finite-
of the finite-lattice correction®)(1/N?), which were associ- lattice techniques are not practicable. It is worthy of note that
ated with the free boundary conditions. In retrospect, it mighthe series approach actually outstripped the finite-lattice ap-
be better to choose periodic boundary conditions. This carproach when it came to exploring the expansion of the vector
ries the penalty that the gauge field cannot be entirely elimimass gap about the smatl'g and largem/g limits.
nated, and one is left with one extra gauge degree of freedom
corresponding to Coleman’s background electric field or
flux, which would have to be truncated in some fashion. The
advantage would be that the finite-lattice corrections should This work forms part of a research project supported by a
be much smaller, and the finite-lattice sequence should corgrant from the Australian Research Council.
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APPENDIX

The full strong-coupling series up to ordel’ are

x2 3t 2(29+ 20u)x®  (1443+2000Qu + 700u?)x®
TTr2n (r2p? (t2nPGi2m) | (142m) (31217

4(51 093+ 126 9364+ 117 23Qu?+47 484u®+ 7056u*)x1°
(1+2p)° (3+2u)° (5+2p) ’

ﬁ)o/N:

(A1)

2x2 25+ 2u)xt | A(59+68u+ 2412+ 4u%)x8
1+2u  (1+2w)® ' (1+2w)° (3+2w)

2(3313+ 6056u+3934u?+1188u3+ 216u*+16u°)x8

N 2
520 (3207 +2(3 578 209+ 11 350 41k + 14 982 934

+10 681 694.3+4 498 12Qu*+1 134 805+ 148 448,5—1888u"— 3712u8— 384u°)
XXM (1+2p)%(3+2p)3(5+2u)(T+2p)] 1, (A2)

W1~ Wo= 1+ 2,LL+

6>  2(13+2u)x*  4(143+ 112u+4u’—4u’)x®
Tr2n (+20° | (1+20°(G+2w)
2(— 7905~ 11 632u—451Qu2+ 283+ 104u’— 16158
" (20 (3+ 2

0)2_(,00:1"!‘2/1,"'

+(17 055 678 48 682 964 + 54 776 904>

+30 230 0523+ 8 173 504+ 987 08945+ 157 955+ 74 9447 + 14 336u8+ 768u°)
XX (14+2u)%(3+2u)3(5+2u)(7+2,)] L. (A3)
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