
Exact results for soft supersymmetry-breaking parameters in supersymmetric gauge theories

J. Hisano* and M. Shifman
Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455

~Received 27 May 1997!

We obtain exact relations~valid to all orders in the coupling constant! for the running gaugino mass in
supersymmetric gauge theories, treating the soft supersymmetry-breaking effects in the linear approximation. If
a supersymmetry-breaking squark~selectron! mass term is introduced, our relation connects the renormaliza-
tion group equation for this term with that for the gaugino mass. Exact relations for the threshold effects in the
gaugino masses are derived. The key ingredients of our analysis are the use of the Wilsonian action and
holomorphy of this action with respect to relevant parameters.@S0556-2821~97!02321-7#

PACS number~s!: 11.30.Pb, 12.60.Jv

I. INTRODUCTION

Holomorphy is one of the most powerful tools in explo-
rations of supersymmetric~SUSY! gauge theories. Histori-
cally, the first exact result, the so-called Novikov-Shifman-
Vainshtein-Zakharov~NSVZ! b function, was obtained@1#
by exploiting the holomorphy of the gauge-kinetic term in
the Wilsonian action~for a recent review see Ref.@2#!. Later
on new insights were obtained from similar ideas in a wide
range of theories with superpotentials@3#. The role of the
holomorphic anomaly was revealed@4#.

In this paper we report a new, so far unexplored, applica-
tion of the method based on holomorphy in SUSY gauge
theories with softly broken supersymmetry. The SUSY-
breaking parameters—the gaugino massmg̃ and the squark
~selectron! mass termmq̃—are considered in the linear ap-
proximation~i.e., we disregard effects containing powers of
mg̃ , q̃ higher than the first!, but to all orders in the coupling
constant. We obtain the renormalization group~RG! equa-
tions governing the running of these parameters, validto all
ordersin the coupling constant. The simplest example of this
type emerges in supersymmetric gluodynamics, i.e., the
theory of gluons and gluinos, without matter fields. In this
model the combination

amg̃

b~a!
5RGI, ~1!

where RGI stands for RG invariant, andb is the Gell-Mann–
Low function,

b~a!52
a2

2p

3T~G!

12@T~G!a/2p#
, ~2!

whereT(G) is ~one-half! of the Dynkin index@T(G)5N for
SU~N! theories#. In the one-loop approximation the left-hand
side of Eq.~1! reduces tomg̃ /a. The fact that this ratio is
RG invariant in the leading approximation is well known.
Equation~1! generalizes this result to all orders. Formula~1!
is general. It holds also in supersymmetric gauge theories

with matter@with the correspondingb function: see Eq.~41!#
provided there are no super-Yukawa~trilinear! couplings in
the superpotential. If trilinear couplings are introduced, Eq.
~1! is replaced by a more general relation: see Eq.~42! be-
low.

A particular but very interesting issue belonging to the
given range of questions is the impact of the mass thresholds.
We show how the threshold effects can be exactly incorpo-
rated in the gluino mass.

Section II introduces our notation and conventions. We
begin our analysis~Sec. III! with a simple case of supersym-
metric electrodynamics~SQED!. In this problem nontrivial
dynamics arises only from loops with the matter fields. One
can consider the soft supersymmetry breaking due to the
photino mass and due to the selectron mass term. The latter
will be chosen in a special form. We then derive an exact RG
relation between these parameters.

In Sec. IV softly broken non-Abelian gauge theories are
considered. A subtle issue is to which particular action the
holomorphy-based arguments apply. Two distinct construc-
tions go under the name ‘‘effective action’’: The first,
G~m!, is the generator of one-particle irreducible vertices, and
the second,S(m), is the Wilsonian effective action, where
all infrared contributions are excluded, by definition. As was
shown in Ref.@5# the holomorphic dependence refers to the
Wilsonian action. At the same time, such parameters as the
gauge coupling constants and the gluino mass are introduced
throughG. Exact results for the renormalization of the gluino
mass can be obtained due to the fact that the relation between
the parameters inG andS is known. All parameters appear-
ing in the Wilsonian action will be marked by the subscript
W.

We also consider in Sec. V a toy model of grand unified
theory ~GUT! and derive prototype ‘‘GUT relations’’ valid
to all orders. In Sec. VI we confront all-order predictions
with explicit two-loop calculations of the gluino mass known
in the literature, and find perfect agreement. Finally, Sec. VII
summarizes our results.

II. PRELIMINARIES

In this section we will briefly review our notation and
conventions and discuss a mechanism through which the soft
SUSY-breaking parameters will be introduced.
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Supersymmetric generalization of pure gluodynamics, the
theory of gluons and gluinos, is described by the component
Lagrangian@6#

LSYM52
1

4g0
2 Gmn

a Gmn
a 1

q

32p2 Gmn
a G̃mn

a

1
1

g0
2 @ ilaaDaḃl̄aḃ#, ~3!

where the spinorial notation is used. In the superfield lan-
guage the Lagrangian can be written as

LSYM5E d2u
1

4g2 Tr W21H.c., ~4!

where

1

g2 5
1

g0
2 2

iq

8p2 .

In what follows the vacuum angleq will play no special
role. It is important, however, thatg22 can be treated as a
complex parameter. Our conventions regarding the superfield
formalism are summarized, e.g., in a recent review@7#.1 We
will limit ourselves to the SU~N! gauge group@the generators
of the groupTa are in the fundamental representation, so that
Tr(TaTb)5(1/2)dab#.

The matter fields are assumed, for simplicity, to belong to
the fundamental representation of SU~N!. ~Our final results
are independent of this assumption.! In this case each flavor
consists of two subflavorsQ andQ̃. These superfields are in
the representationN andN̄ of the gauge group, respectively.
The Lagrangian of the matter sector has the form

LM5
1

4 E d2ud2ū2~Q̄eVQ1QD e2VQ̃!

1S E d2u
m0

2
QaQ̃a1H.c.D , ~5!

wherea is the color index,a51,2,. . . ,N. The subscript 0 of
the matter mass termm0 indicates that it is the bare mass that
enters the original Lagrangian; this parameter is complex. It
is assumed that the matter mass matrix is diagonal in flavor.
Such a diagonalization can always be achieved.

In SQED the gauge part of the Lagrangian takes the form

LSQED5E d2u
1

8g2 W21H.c., ~6!

while the matter part is the same as in Eq.~5! with the
omission of the color indices.

Now we must discuss how the soft supersymmetry break-
ing is introduced. To this end 1/g2 in Eqs.~4! or ~6! is sub-
stituted by a chiral superfieldS, so that the expectation value
of the lowest component

^S&5
1

g2 .

The expectation value of theF component generates the
gluino ~photino! massmg̃ : namely,

S→
122mg̃u2

g2 . ~7!

By the same token we substitute the parameterm in Eq. ~5!
by a chiral superfieldM. The expectation value of the low-
est component,

^M&5m,

yields the supersymmetric matter mass term. The expectation
value of theF component generates the squark~selectron!
mass. If

M5m~12bu2!, ~8!

whereb is a parameter of dimension of mass, the nonsuper-
symmetric squark~selectron! mass term takes the form

DLm52mbff̃1H.c., ~9!

wheref andf̃ are the lowest components of the superfields
Q andQ̃.

In order to use the holomorphic nature of the gauge-
kinetic term and the superpotential we introduce an infrared
cutoff parameterm and the ultraviolet cutoff parameterL. It
is assumed thatm@m,b,mg̃ , while L is much larger than
any of the physical parameters of the dimension of the mass.
In principle, the ultraviolet cutoff parameterL can be re-
garded as a chiral superfield, too. The theory is regularized in
the ultraviolet by introducing the Pauli-Villars fields~within
the background field technique! and higher derivatives. We
do not need to know the precise form of the regulator sector.
All we need to know is that such a regularization exists and
that it preserves supersymmetry. The ultraviolet parameterL
is the mass of the Pauli-Villars fields or a dumping factor in
the covariant derivative term. IfL is treated as a chiral su-
perfield, we assume that only its lowest component develops
an expectation value.

In evolving the Lagrangian~5! from the ultraviolet point
L down tom a Z factor appears in front of the kinetic term of
the matter fields:

~Q̄eVQ1QD e2VQ̃ !→Z~Q̄eVQ1QD e2VQ̃!.

In the theory where the gauge coupling is substituted byS
the Z factor becomes a superfield, too. We will denote this
superfield byZ; its decomposition takes the form

Z5ZS 11
1

2
zu21

1

2
z†ū21••• D . ~10!

1These conventions are essentially those of Bagger and Wess@8#.
The distinctions are that we use the metric~1222! and the Grass-
mannian differentials are normalized asu2d2u52.
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Other components than those indicated above are irrelevant
for our consideration;z and z† must be~and actually are!
treated in the linear approximation. Then, it is convenient to
introduce

ZL5Z~11zu2! ~11!

and

ZR5Z~11z†ū2!. ~12!

III. SUPERSYMMETRIC ELECTRODYNAMICS

We begin our derivations from SQED since the relation
between the gauge couplings inG and S are especially
simple in this case. Let us first assume that in the bare La-
grangianb0 is put to zero, so that the only source of SUSY
breaking is the photino mass. We will see that in evolving
the theory fromL down to m we do generate the selectron
massb, necessarily.

Let us briefly recall how the exactb function is obtained
in SQED without SUSY breaking@9,5#. The relation be-
tween the Wilsonian gauge coupling and that inG is

S 8p2

g2 D
W

5
8p2

g2 12 ln Z, ~13!

whereZ stands for theZ factor of the matter fields, and the
renormalization of the Wilsonian gauge coupling is exactly
one loop,

S 8p2

g2 D
W

5S 8p2

g0
2 D

W

12 ln
L

m
. ~14!

Thus, the Gell-Mann–Low function for the Wilsonian cou-
plings is one loop. The conventional definition of the cou-
pling constants refers, however, toG, not to the Wilsonian
action. Then combining Eqs.~13! and ~14! we arrive at@9#

b~a!5
a2

p
@12g~a!#, ~15!

whereg~a! is the anomalous dimension of the electron~se-
lectron! field,

g52m
d ln Z

dm
. ~16!

In the leading~one-loop! order

Z512
a

p
ln

L

m
and g52

a

p
.

What is to be changed in this derivation if 1/g2 is substi-
tuted by a superfieldS? It is clear that the one-loop nature of
the renormalization of the gauge kinetic term in the Wilso-
nian action, Eq.~14!, remains intact. The only difference is
the fact thatZ→Z, andZ depends now onS. An additional
term in Z arises, linear inFS . This term is obviously in-
volved in the renormalization of the photino mass. An ana-

logue of Eq.~13!, describing the transition from the Wilso-
nian gauge coupling to that inG, now takes the form2

~8p2S!W5~8p2S!12 ln ZL ~17!

and

@8p2S~m!#W5~8p2S0!W12 ln
L

m
. ~18!

Since there is noF component in the logarithm ofL/m and
Z0 is put to unity, by definition, we conclude that

@~4p2FS!1z#m5@~4p2FS!#L . ~19!

Let us discuss the dependence of theZ factor on the su-
perfield S. As a warm-up exercise consider the leading-
logarithmic approximation for theZ factor. The correspond-
ing analysis will determine the running ofmg̃ up to two
loops. In the leading-logarithmic approximation,3

Z5
a~m!

a0
→ZL5

a~m!

a0

122mg̃0u2

122mg̃u2 . ~20!

In other words,

z52~mg̃2mg̃0!. ~21!

Using the definition ofS @see Eq.~7!# and Eqs.~19! and~21!
we immediately conclude that

mg̃

a S 12
a

p D5RGI. ~22!

This relation is nothing but the two-loop truncation of the
general expression~1!.

Generically,

Z5expS E
a

a0 g~a!

b~a!
da D . ~23!

Inclusion of theF component of the superfieldS reduces to
the following changes in Eq.~23!:

a0→a012mg̃0a0u2, a→a12mg̃au2, Z→ZL .

Therefore, the all-order result forz is

z52F2
ag~a!

b~a!
mg̃1

a0g~a0!

b~a0!
mg̃0G . ~24!

2When writing the action in terms of the renormalized fieldsQr

andQ̃r ,

Qr~Q̃r!5ZL
1/2Q~ZL

1/2Q̃!,

Q̄~QD r !5ZR
1/2Q̄~ZR

1/2QD !,
the Konishi anomaly@10# generates terms

1

32p2 E d2u~ ln ZL!W21H.c.

as a Jacobian of the measure@11#. Thus, Eq.~17! is justified.
3Here it is necessary to note thata in the Z factor means

1/@2p(S1S†)# after 1/g2 is substituted byS.
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Using this result in Eq.~19! we obtain the all-order predic-
tion for the running of the photino mass presented in the
general relation~1!. This relation is valid as long as there are
no trilinear couplings in the superpotential.

Note that even though at the ultraviolet cutoff the mass
parameter was assumed above to be supersymmetric, i.e.,
b050, the evolution fromL down tom does produce a non-
supersymmetric selectron mass. SinceM5m0 /ZL , it is not
difficult to see that

b5z52pH 2
mg̃

a

g~a!

12g~a!
1

mg̃0

a0

g~a0!

12g~a0! J . ~25!

Therefore, Eq.~19! can be obviously rewritten as

mg̃

a
2

b

2p
5RGI. ~26!

In this form the prediction is valid even if a nonvanishing
selectron massb0Þ0 is introduced in the original Lagrang-
ian, as long asm@m,b. Also, even if there is a trilinear
coupling in the superpotential, this is valid. This assertion
follows from the fact that Eq.~26! can be proved directly
from Eq. ~19!, being combined with the relation betweenb
andb0 :

b5b01z. ~27!

The photino mass, the selectron mass, and the gauge cou-
pling constant run in such a way that the combination~26!
staysm independent.

So far, the normalization pointm was assumed to lie
above the mass thresholds. In conclusion of this section we
turn to the question what happens if the evolution of the
gauge coupling is complete, i.e., if the normalization pointm
becomes lower thanm—we run all the way down until the
point where the gauge coupling becomes frozen. Likewise,
the evolution ofmg̃ freezes atm/m→0. ~It is assumed that
mg̃!m.! As was noted in Ref.@2#, some curious relations
between the frozen low-energy values of the parameters and
those in the original Lagrangian emerge in this formulation.
If we dive below the threshold of the matter fields, the exact
expression for the gauge coupling constant looks as if it were
exactly one loop, but with the fake value of the threshold:

aLE5a0H 11
a0

p
ln

L

m0
J 21

. ~28!

Here the subscript ‘‘LE’’ marks the low-energy~frozen!
quantities. This result has been known for a long time@9#.
We can get a similar expression for the photino mass. Pass-
ing through the matter threshold modifies Eq.~26!. Say, if
we descend down to the domain of freezing,

S mg̃

a D
LE

5
mg̃0

a0
2

b0

2p
. ~29!

The second term on the right-hand side of Eq.~29! corre-
sponds to a finite correction to the gaugino mass, Fig. 1.
There is no explicitg factor here; all nontriviality associated
with g is hidden completely.

It is worth emphasizing that Eqs.~28! and ~29! take into
account the threshold atm;m in full and exactly.

IV. SUPERSYMMETRIC GLUODYNAMICS

Our task now is to extend the method to non-Abelian
theories. Although technically this case is somewhat more
complicated, conceptually we will encounter no new ele-
ments. Let us first treat the case when there are no matter
fields.

The main distinction is that even in the absence of the
matter fields the Wilsonian couplings are now different from
those inG. According to Eq.~7!, the Wilsonian coupling

S 1

g0
2D

W

→S 122mg̃u2

g2 D
W

, ~30!

wheremg̃W is a Wilsonian gluino mass. Below we will need
to exploit the fact thatmg̃W is not what is usually called the
gluino mass. Indeed, the mass term is usually defined as a
parameter in front of (1/g2)ll in G. It is not difficult to
establish a relation between these two parameters. If in the
Wilsonian Lagrangian the mass perturbation is

S mg̃

g2 D
W

ll, ~31!

in passing toG, we get

S mg̃

g2 D
W

1

12@T~G!g2#/~8p2!
llU

ext

, ~32!

to be identified with

mg̃

g2 .

From here we conclude that

mg̃

g2 S 12
T~G!g2

8p2 D5S mg̃

g2 D
W

. ~33!

Note that in obtaining Eq.~32! we used the fact@5# that the
matrix element of the operatorW2 is

1

12@T~G!g2#/~8p2!
W2U

ext

.

FIG. 1. The contribution in the gaugino mass arising from
SUSY-violating selectron mass.
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Once the relation between the Wilsonian and conven-
tional mass parameters is established, we can forget for a
while about the conventional parameter, and focus on what
happens with the Wilsonian action under renormalizations.
As known from Ref.@4#, in the Wilsonian action, where the
infrared contributions are not included by definition, the ho-
lomorphy is preserved—F terms should depend only on the
chiral superfields, not antichiral, and so on. In the Wilsonian
action the coupling constant is renormalized only at one
loop:

S 1

g2D
W

5S 1

g0
2D

W

2
3T~G!

8p2 ln
L

m
. ~34!

Now, in this relation it is perfectly legitimate to substitute
each bracket by the same bracket with (122mg̃u2) in the
numerator. Both, the left- and right-hand sides appear as co-
efficients of theF terms in the Wilsonian action, and we
multiply by the chiral superfield. From Eq.~34!, inspecting
the coefficient in front ofu2, we immediately deduce that

S mg̃

g2 D
W

5RGI. ~35!

Invoking now Eq.~33! we see that

mg̃

g2 S 12
T~G!g2

8p2 D5RGI. ~36!

Taking into account the explicit form of the NSVZb func-
tion in the case at hand@see Eq.~2!#, we conclude that Eq.
~36! is in full accordance with the general expression~1!.

The same result can be obtained in a slightly different
way. The vacuum expectation value of theoperator W2 is a
physical quantity; it is RG invariant. This vacuum expecta-
tion value can be written as@12,4#

^W2&5~numer. const.!3m3 exp~24p2SW!. ~37!

In both the left- and right-hand sides we have only chiral
superfields, as it should be. IfS develops anF term, we
expand in it. The expectation value of theF term of the
operatorW2 is proportional to the vacuum energy density.4

The F term on the right-hand side is proportional to
(mg̃ /g2)W . In this way we arrive at Eq.~35!.

If the matter fields are switched on, the argument becomes
somewhat more subtle in the part referring to the matter field
Z factors. Let us sketch here the basic points. The main idea
is to continue using the Wilsonian action.

Under the renormalization the Wilsonian action

S 122mg̃0u2

g0
2 D

W

W2

goes into

H S 122mg̃0u2

g0
2 D

W

1F( iT~Ri !23T~G!

8p2 ln
L

m

2(
i

T~Ri !

8p2 ln ZLi G J W2, ~38!

whereT(Ri) are the Dynkin indices for the matter fields. In
the fundamental representationT51/2 for each subflavor;
T51 for one flavor. The sum runs over all matter fields.

We must now derive an analogue of Eq.~24!. A straight-
forward calculation yields

z i54pH S mg̃

a D
W

g i

3T~G!2( iT~Ri !~12g i !

2S mg̃0

a0
D

W

g0i

3T~G!2( iT~Ri !~12g i0!J . ~39!

Hereg i5g i(a) andg i05g i(a0). From where we immedi-
ately conclude that

S mg

g2 D
W
S 12

T~Ri !g i

3T~G!2T~Ri !~12g i !
D5RGI. ~40!

Invoking again Eq.~33! and using the fact that the NSVZb
function in the case at hand has the form

b~a!52
a2

2p

3T~G!2T~Ri !~12g i !

12T~G!a~2p!21 , ~41!

we reproduce5 Eq. ~1!.
An alternative form of the RGI relation is obtained if the

squark mass terms are introduced. As in SQED,bi5bi01z i ,
which implies, in turn, that

mg̃

a S 12
T~G!a

2p D2(
i

T~Ri !bi

4p
5RGI, ~42!

to be compared with Eq.~26! in SQED.

V. EXACT GUT RELATION OF THE GAUGINO MASSES

So far, we assumed that the chiral multipletsQ andQ̃ do
not have vacuum expectation values, that is, that the sponta-
neous breaking of the gauge symmetry does not occur. It is
interesting to discuss the issue of the gaugino mass renormal-
ization in the presence of the spontaneous breaking of the
gauge symmetry, keeping in mind possible applications in
theories of grand unification~GUT!.

Let us consider an SU~3! gauge model as a prototypical
example; we will introduce a chiral multipletSa in the ad-
joint representation (a51,2,. . . ,8). The vacuum expectation
value of S induces the gauge symmetry breaking
SU~3!→SU~2!3U~1! ~see Ref.@2# for a discussion of the

4This is another reason for the absence of renormalization.

5The anomalous dimensions of the matter fieldsper secannot be
determined to all orders since the holomorphy arguments do not
apply in this case. At one loopg i52C(Ri)a/p where
C(Ri)5T(Ri) dim~adj!/dim(Ri).
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running gauge coupling in this model!.
The original superpotential of the adjoint chiral multiplet

is

P5
1

4g0
2 ~m0SaSa1y0dabcS

aSbSc!, ~43!

wheredabc are thed symbols of SU~3!. Here again, we will
substitute the massm and the Yukawa couplingy by the
chiral superfieldsM andY, respectively, and assume non-
vanishing vacuum expectation values of theF components,
in order to introduce soft SUSY breaking:

^M0&5m0~12b0u2!,

^Y0&5y0~12a0u2!. ~44!

Here a and b are parameters of dimension of mass. We
assume thata, b, and mg̃!m. By inspecting the superpo-
tential ~43! we observe thatS gets the vacuum expectation
value

^S&5
1

2) S 1

1

22
D V0 , ~45!

breaking SU~3! down to SU~2!3U~1!; here,6

V05
2M0

)Y0

@11O~b/m,a/m!#5
2m0

)y0

@11~a02b0!u2#.

~46!

As a result of the vacuum expectation valueV0 , four out of
eight gauge multiplets get a mass and form, together with
two SU~2! doublets fromS absorbed in the super-Higgs
mechanism, massive vector multiplets. One SU~2! triplet and
one singlet fromS survive. The mass of the SU~2! triplet is

MS5M0 . ~47!

Below the masses of the heavy gauge bosons~the ‘‘el-
ephants’’! and the masses of the surviving fields fromS ~i.e.,
below the unification thresholds!, the SU~2! and U~1! gauge
couplings evolve separately and so do the corresponding
gaugino masses. The gauge couplings diverge. Our task is to
express the low-energy values of the gauge couplings and
gaugino masses~far below the thresholds! in terms of the
high-energy~i.e., above-threshold! parameters.

In other words, we choose the normalization pointm far
below the lowest threshold and the ultraviolet cutoffL far

above the highest one. The Wilsonian couplings of the SU~2!
and U~1! gauge multiplets are given by

~SSU~2!!W5~S0!W2
6

8p2 ln
L

m
2

2

8p2 ln
L

)V0/2

1
2

8p2 ln
L

M0
, ~48!

~SU~1!!W5~S0!W2
6

8p2 ln
L

)V0/2
. ~49!

The second and fourth terms in Eq.~48! are the contributions
from the SU~2! gauge multiplet and SU~2! triplet in S, re-
spectively, and the others come from the massive vector
multiplets. By taking theF components of Eqs.~48! and~49!
and using Eq.~33! we arrive at

mg̃2

a2
S 12

T„SU~2!…a2

2p D5
mg̃0

a0
S 12

T„SU~3!…a0

2p D
2

1

2p
~a02b0!2

1

2p
b0 ,

~50!

mg̃1

a1
5

mg̃0

a0
S 12

T„SU~3!…a0

2p D2
3

2p
~a02b0!. ~51!

Heremg̃2
@mg̃1

# anda2 @a1# are the SU~2! @U~1!# gaugino
mass and gauge coupling constant at7 m. Then, we can get an
exact relation for the gaugino mass at low energy:

mg̃2

a2
S 12

T„SU~2!…a2

2p D2
mg̃1

a1
5

1

p
~a02b0!2

1

2p
b0 .

~52!

Equation~52! is usually referred to as theGUT relation. It is
worth emphasizing that the relation we derived is valid to all
orders in the coupling constants and exactly takes into ac-
count the threshold effects.

In the diagrammatic calculation, the first term on the
right-hand side in Eq.~52! comes from the mass of the fer-
mionic partners of the Goldstone bosons, and the second
term comes from a diagram similar to that of Fig. 1, in which
the surviving SU~2! triplet from S propagates@13#.

Let us consider a particular casea05b050; i.e., all
SUSY-breaking parameters, except the gaugino mass, are
zero atL. It is remarkable that in this case the ratio of the
low-energy gaugino masses is completely determined by
only the low-energy gauge couplings, with no dependence on
details of the model at the gauge symmetry-breaking scale:6In the diagrammatic calculation of the radiative correction to the

gaugino masses in this model, we have to keep the shift of the
scalar component ofV from its supersymmetric value due to intro-
duction ofa andb. This is because this shift leads to a nonvanish-
ing mass of the fermionic partners of the Nambu-Goldstone bosons
@13#. However, the result for the gaugino mass is not changed com-
pared to ours. This follows from the fact that the shift of the scalar
component ofV0 has a correlation with the value of theF compo-
nent ofV0 .

7It can be proved by using the relation

m
da

dm
5

3

2
m

db

dm
that above the threshold these equations give the same RG expres-
sions.
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mg̃2

mg̃1

5
a2

a1
S 12

a2

p D 21

.

VI. CONFRONTING OUR RESULTS WITH EXPLICIT
CALCULATIONS AT THE TWO-LOOP LEVEL

Equation~1! is our basic all-order prediction for the run-
ning gaugino mass. It is instructive to check it ‘‘empiri-
cally.’’ The Gell-Mann–Low function is scheme indepen-
dent up to two loops. Theg factors are scheme independent
only in the leading~one-loop! order, but, as we have seen,
the one-loopg factors will affect the renormalization ofmg̃
at the two-loop level only. Therefore, the running ofmg̃ up
to two loops is unambiguously given by Eq.~1! if there are
no trilinear couplings in the superpotential. Here we compare
our result with the direct two-loop calculation of the gluino
mass reported in Ref.@14# where the dimensional reduction
with modified minimal subtraction (DR) scheme is adopted.

The two-loop RG equations of the gauge coupling con-
stant and the gaugino mass in theDR scheme are given as
follows:

m
d

dm
a5

a2

2p H(
i

T~Ri !23T~G!J 1
a2

2p H S (
i

T~Ri !

23T~G! DT~G!
a

2p
2(

i
T~Ri !g iJ , ~53!

m
d

dm S mg̃

a D5
1

2p H S (
i

T~Ri !23T~G! DT~G!
a

2p

2(
i

T~Ri !g̃ iJ . ~54!

Hereg i and g̃ i are defined as

g i52m
d ln Zi

dm
,

g̃ i52
1

2
m

dz i

dm
,

and are given, at the one-loop level, by the following expres-
sions:

g i52
a

p
C~Ri !,

g̃ i52
a

p
C~Ri !mg̃ . ~55!

@Note that C is defined as Cd j
i 5((aTaTa) i

j , and
C5(N221)/2N for the fundamental representation of
SU~N!.# From Eqs.~53! and ~54! we can get

m
d

dm S amg̃

b~a! D5
a3

@b~a!#2

1

2p (
i

T~Ri !H b~g i !mg̃

2
a

2p S (
i

T~Ri !23T~G! D g̃ iJ , ~56!

whereb(g i) is theb function for g i ,

b~g i !5m
dg i~a!

dm
.

It is easy to prove, by using the explicit forms ofg i andg̃ i at
the one-loop level, Eqs.~55!, that the right-hand side of Eq.
~56! vanishes. Thus, Eq.~1! is confirmed at two-loop level.

Equations~26! and ~42! can be derived directly by using
the RG equation for the SUSY-breaking parameterbi :

m
dbi

dm
522g̃ i . ~57!

Here explicit forms ofg andg̃ are not needed, as is expected
from the fact that Eqs.~26! and ~42! are valid even in the
presence of the trilinear couplings in the superpotential.

VII. CONCLUSIONS AND DISCUSSION

In this paper, in SUSY gauge theories with the soft SUSY
breaking, we studied the running of the gaugino and/or
squark~selectron! masses. Several exact~i.e., all-order! pre-
dictions are obtained by exploiting the relation between the
gaugino masses in the generator of the 1PI vertices and the
Wilsonian action and by using the holomorphic nature of the
F term in the Wilsonian action. Our main findings can be
summarized as follows.

In the absence of the trilinear couplings in the superpo-
tential we derived a generalexact formula relating the run-
ning gluino mass to the running gauge coupling constant,

amg̃

b~a!
5RGI. ~58!

This formula is valid even if the matter sector is chiral; no
mass terms are possible@e.g., SU~5! theory with an equal
number of quintets and antidecuplets#.

If the matter sector is nonchiral—i.e., supersymmetric
mass terms are possible—and the squark SUSY-breaking
masses are introduced through Eq.~9!, then

mg̃

a S 12
T~G!a

2p D2(
i

T~Ri !bi

4p
5RGI. ~59!

This formula is valid even if there are trilinear couplings in
the superpotential.

In certain instances the mass threshold effects in the
gaugino mass can be taken into account exactly. In SQED
this assertion is illustrated by Eq.~29!, in non-Abelian
GUT’s by Eq.~52!.

As was just mentioned, if the Yukawa~trilinear! cou-
plings in the superpotential are present~let us call them ge-
nericallyh!, the exact result that we managed to get refers to
a linear combination of the gluino and~SUSY-breaking!

56 5481EXACT RESULTS FOR SOFT SUPERSYMMETRY- . . .



squark mass terms, rather than to the gluino massper se.
Technically the reason is evident: Unlike the case of pure
gauge interactions, now the derivative ofZ(a,h) with re-
spect toa is unrelated withg(a,h). It is still possible to
obtain the exact expressions of the type~1!, in the closed
form, for a specific choice of the points on the$a,h% plane.
We mean fixed points of the gauge coupling constant and the
Yukawa coupling constants. If the initial set of parameters is
such that the condition

g~a,h!5
1

3

b~a!

a
~60!

is met, the ratio of the gauge coupling constant to the
Yukawa coupling constant in the superpotential is RG invari-
ant. In Ref.@15# it was shown, by examining explicit formu-
las of the RG equations, that Eq.~60! does have a solution at
least up two loops~the so-called ‘‘P5Q/3’’ rule!. More in-
terestingly, the authors of Ref.@15# argue that if Eq.~60! is
satisfied, the gaugino mass and the SUSY-breaking trilinear
scalar coupling constanta, associated with the Yukawa cou-
pling, have a fixed point at

a52mg̃ . ~61!

Now we are able to solve the question of the fixed-point
behavior of the SUSY-breaking parameters beyond two
loops. Equation~61! follows from the holomorphic nature of
theF terms. In fact, it can be proved that Eq.~61! is valid to

all orders provided Eq.~60! is satisfied to all orders. If that is
the case, Eq.~1! remains valid even in the presence of the
Yukawa couplings.

What remains to be done? So far, we have not considered
models with the chiral matter sector~no mass term possible!,
with the Yukawa~trilinear! couplings of the chiral super-
fields in the superpotential. It is possible to show that a RGI
relation for the gaugino massat any orderhas the form

mg̃

a S 12
T~G!a

2p D2(
i

T~Ri !z i

4p
5RGI. ~62!

The task is to evaluatez i from supersymmetricZ factors of
the chiral multiplets.

Another problem is quite obvious too. In Ref.@16# a per-
turbative renormalizationDR-related scheme was identified,
yielding the NSVZb function up to three loops. The anoma-
lous dimensions of the matter fields are known in this
scheme in two loops. If the running of the gluino and squark
masses were known in three loops in this scheme, one could
have verified our all-order predictions by comparing them
with the explicit calculations up to three loops.
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