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Exact results for soft supersymmetry-breaking parameters in supersymmetric gauge theories
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We obtain exact relationévalid to all orders in the coupling constarfor the running gaugino mass in
supersymmetric gauge theories, treating the soft supersymmetry-breaking effects in the linear approximation. If
a supersymmetry-breaking squdgelectron mass term is introduced, our relation connects the renormaliza-
tion group equation for this term with that for the gaugino mass. Exact relations for the threshold effects in the
gaugino masses are derived. The key ingredients of our analysis are the use of the Wilsonian action and
holomorphy of this action with respect to relevant parame{&8556-282(197)02321-1

PACS numbes): 11.30.Pb, 12.60.Jv

I. INTRODUCTION with matter[with the corresponding function: see Eq41)]
provided there are no super-Yukawtalinear) couplings in

Holomorphy is one of the most powerful tools in explo- the superpotential. If trilinear couplings are introduced, Eq.
rations of supersymmetri(SUSY) gauge theories. Histori- (1) is replaced by a more general relation: see @§) be-
cally, the first exact result, the so-called Novikov-Shifman-low.

Vainshtein-ZakharoNSVZ) B function, was obtaine@1] A particular but very interesting issue belonging to the
by exploiting the holomorphy of the gauge-kinetic term in given range of questions is the impact of the mass thresholds.
the Wilsonian actiortfor a recent review see RdR]). Later We show how the threshold effects can be exactly incorpo-
on new insights were obtained from similar ideas in a widerated in the gluino mass.

range of theories with superpotentidl3]. The role of the Section Il introduces our notation and conventions. We
holomorphic anomaly was revealéd). begin our analysi¢Sec. Ill) with a simple case of supersym-

In this paper we report a new, so far unexplored, applicametric electrodynamic$SQED). In this problem nontrivial
tion of the method based on holomorphy in SUSY gaugelynamics arises only from loops with the matter fields. One
theories with softly broken supersymmetry. The SUSY- can consider the soft supersymmetry breaking due to the
breaking parameters—the gaugino magsand the squark photino mass and due to the selectron mass term. The latter
(selectron mass termmg—are considered in the linear ap- will be chosen in a special form. We then derive an exact RG
proximation(i.e., we disregard effects containing powers ofrelation between these parameters.
mg 5 higher than the firgt but to all orders in the coupling In Sec. IV softly broken non-Abelian gauge theories are
constant. We obtain the renormalization grol®G) equa- considered. A subtle issue is to which particular action the
tions governing the running of these parameters, validll holomorphy-based arguments apply. Two distinct construc-
ordersin the coupling constant. The simplest example of thistions go under the name “effective action”: The first,
type emerges in supersymmetric gluodynamics, i.e., thé'(w), is the generator of one-particle irreducible vertices, and
theory of gluons and gluinos, without matter fields. In thisthe secondS(u), is the Wilsonian effective action, where

model the combination all infrared contributions are excluded, by definition. As was
shown in Ref[5] the holomorphic dependence refers to the
amg Wilsonian action. At the same time, such parameters as the
=RGl, (1) : : .
B(a) gauge coupling constants and the gluino mass are introduced

throughl'. Exact results for the renormalization of the gluino
where RGI stands for RG invariant, agds the Gell-Mann—  mass can be obtained due to the fact that the relation between

Low function, the parameters ifli andS is known. All parameters appear-
ing in the Wilsonian action will be marked by the subscript
B a? 3T(G) W.
Bla)=— o 1-[T(G)al2m]’ 2) We also consider in Se® a toy model of grand unified

theory (GUT) and derive prototype “GUT relations” valid

whereT(G) is (one-halj of the Dynkin indeT(G)=N for  to all orders. In Sec. VI we confront all-order predictions
SU(N) theorieg. In the one-loop approximation the left-hand with explicit two-loop calculations of the gluino mass known
side of Eq.(1) reduces tang/a. The fact that this ratio is in the literature, and find perfect agreement. Finally, Sec. VII
RG invariant in the leading approximation is well known. summarizes our results.
Equation(1) generalizes this result to all orders. Form(la
is general. It holds also in supersymmetric gauge theories .. PRELIMINARIES
In this section we will briefly review our notation and

*Present address: National Laboratory For High Energy Physiceonventions and discuss a mechanism through which the soft
(KEK), 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305, Japan. SUSY-breaking parameters will be introduced.
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Supersymmetric generalization of pure gluodynamics, the Now we must discuss how the soft supersymmetry break-
theory of gluons and gluinos, is described by the componering is introduced. To this end g7 in Egs.(4) or (6) is sub-

Lagrangian 6] stituted by a chiral superfielfl, so that the expectation value
of the lowest component

1 ~
- (4 a + a a
‘C'SYM 493 G,u,vG,u,v 32772 G,uVG,uV <S>: iz
g
+§z[”\a“Da'B)\aﬁ]’ (3 The expectation value of thE component generates the
0 gluino (photing massmg: namely,
where the spinorial notation is used. In the superfield lan- 1—2m~ 62
guage the Lagrangian can be written as S— Tg @)
Loym= J dzg% Tr W2+H.c., (4) By the same toke_n we substitute the _parama’tein Eq. (5
49 by a chiral superfield\1. The expectation value of the low-

est component,

where
(M)y=m,
1 1 v
2 = @2 8t yields the supersymmetric matter mass term. The expectation
0 value of theF component generates the squasklectron

. . mass. If
In what follows the vacuum angl& will play no special

role. It is important, however, that 2 can be treated as a M=m(1-be?), @)
complex parameter. Our conventions regarding the superfield

formalism are summarized, e.g., in a recent rei@h! We  \whereb is a parameter of dimension of mass, the nonsuper-

will limit ourselves to the SUN) gauge groujthe generators  symmetric squarkselectroi mass term takes the form

of the groupT? are in the fundamental representation, so that

Tr(T*T?) = (1/2)6%°]. AL,=—-mbdd+H.c., (9)
The matter fields are assumed, for simplicity, to belong to

the fundamental representation of @U. (Our final results \yhere g and are the lowest components of the superfields
are independent of this assumpjbom this case each flavor Q anda

consists of two subflavor® andQ. These superfields are in In order to use the holomorphic nature of the gauge-
the representatioN andN of the gauge group, respectively. kinetic term and the superpotential we introduce an infrared
The Lagrangian of the matter sector has the form cutoff parametey. and the ultraviolet cutoff parametd. It
is assumed that>m,b,mg, while A is much larger than
1 B Pty = = any of the physical parameters of the dimension of the mass.
Lu=7 j d“6d“6°(Qe"Q+Qe "Q) In principle, the ultraviolet cutoff parametex can be re-
garded as a chiral superfield, too. The theory is regularized in
f dzeﬁQ‘@ tHC ®) the ultraviolet by introducing the Pauli-Villars fieldwithin
2 al T the background field techniquand higher derivatives. We
do not need to know the precise form of the regulator sector.
wherea is the color indexe=1,2,. . . N. The subscript 0 of All we need to know is that such a regulariz_ation exists and
the matter mass term, indicates that it is the bare mass that that it preserves supersymmetry. The ultraviolet parameter
enters the original Lagrangian; this parameter is complex. IS the mass of the Pauli-Villars fields or a dumping factor in
is assumed that the matter mass matrix is diagonal in flavofl® covariant derivative term. I is treated as a chiral su-
Such a diagonalization can always be achieved. perfield, we assume that only its lowest component develops

In SQED the gauge part of the Lagrangian takes the forn@n €xpectation value.
Q gauge p grang In evolving the Lagrangiaf5) from the ultraviolet point

1 A down tou aZ factor appears in front of the kinetic term of
Lsoer= f d298_gzw2+ H.c., (6)  the matter fields:

_ _ _ _ (Qe'Q+Qe™YQ)—Z(Qe'Q+Qe Y Q).
while the matter part is the same as in E§) with the
omission of the color indices. In the theory where the gauge coupling is substitutedSby
the Z factor becomes a superfield, too. We will denote this
superfield byZ; its decomposition takes the form

+

These conventions are essentially those of Bagger and [@kss 1 1
The distinctions are that we use the meftHc———) and the Grass- Z=7l1+Z¢6%+ = ‘r?+ . 10
mannian differentials are normalized 6&1%6=2. 2 4 2 4 ' (10
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Other components than those indicated above are irrelevaidgue of Eq.(13), describing the transition from the Wilso-
for our consideration¢ and ' must be(and actually are  nian gauge coupling to that ifi, now takes the forf

treated in the linear approximation. Then, it is convenient to 5 5
introduce (87 S)w=(87°S)+2In Z_ (17

Z.=2(1+ 6% 1y and

A
and [872S(1)w=(872Sy)w+2In e (18
— 92
Zr=2(1+£76%). (12) Since there is n& component in the logarithm of/u and
Z, is put to unity, by definition, we conclude that

[(47°F9)+{1,=[(47°F 5)]x - (19
We begin our derivations from SQED since the relation

between the gauge couplings I and S are especially Let us discuss the dependence of théactor on the su-
simple in this case. Let us first assume that in the bare LaPerfield S. As a warm-up exercise consider the leading-
grangianb, is put to zero, so that the only source of SUSY logarithmic approximation for th& factor. The correspond-
breaking is the photino mass. We will see that in evolvinging analysis will determine the running ohg up to two
the theory fromA down to x we do generate the selectron loops. In the leading-logarithmic approximatidn,
massh, necessarily.

Ill. SUPERSYMMETRIC ELECTRODYNAMICS

_ Y4
Let us briefly recall how the exag function is obtained 7 a(um) . L:a(ﬂ) 1 2”190‘92 _ (20)
in SQED without SUSY breakind9,5]. The relation be- ag ag 1-2mgo
tween the Wilsonian gauge coupling and thatl'iis
In other words,
82 872
(Ef) =Ef+2 Inz, (13 {=2(mg—mgp). (21
W

Using the definition ofS [see Eq(7)] and Egs(19) and(21)

whereZ stands for thez factor of the matter fields, and the We immediately conclude that
renormalization of the Wilsonian gauge coupling is exactly

m=
one loop, 79(1—% ~RGI. (22
82 8m? A i . ) .
—| =|—| t2Ih—. (14  This relation is nothing but the two-loop truncation of the
9 Jw \ 9 /y K general expressiofl).

Generically,
Thus, the Gell-Mann—Low function for the Wilsonian cou-

plings is one loop. The conventional definition of the cou- _ a0 y(a)
pling constants refers, however, y not to the Wilsonian Z=ex « PBla) da

action. Then combining Eq$13) and(14) we arrive aff9]
Inclusion of theF component of the superfielfl reduces to

the following changes in Eq23):

(23

a,2
Bla)=—[1-¥(a)], (15
ag— agpt 2m§oa002, a—>a+2m§a02, Z—2Z .
where ¥(a) is the anomalous dimension of the electi(ge-

lectron field, Therefore, the all-order result fdris

_one) | @ov(an)
Bla) 0 Blag)

dinz =2

Y= TR T (16) @49

In the leading(one-loop order
2When writing the action in terms of the renormalized fiefgs
a A a dQ
Z=1-—In— and y=——. andQy, e
T p m QAQ)=Z"Q(2lQ),
Q(Q)=ZRQZRNQ),

What is to be changed in this derivation ifg#/is substi- the Konishi anomaly10] generates terms

tuted by a superfiel@? It is clear that the one-loop nature of
the renormalization of the gauge kinetic term in the Wilso- iz f d26(In Z,)W2+H.c.

nian action, Eq(14), remains intact. The only difference is _ 32m o

the fact thaZ— Z, and Z depends now o. An additional ~ as & Jacobian of the measyif]. Thus, Eq.(17) is justified.
term in Z arises, linear inFg. This term is obviously in-  3Here it is necessary to note that in the Z factor means
volved in the renormalization of the photino mass. An ana-1[2#(S+S"] after 142 is substituted bys.
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Using this result in Eq(19) we obtain the all-order predic-
tion for the running of the photino mass presented in the mobod?
general relatiorfl). This relation is valid as long as there are
no trilinear couplings in the superpotential.

Note that even though at the ultraviolet cutoff the mass

parameter was assumed above to be supersymmetric, i.e., A ) Q A
by=0, the evolution fromA down tou does produce a non-
supersymmetric selectron mass. Sige=my/Z,_, it is not
difficult to see that Mo
mg mg
b=¢=2717 __gﬂ+_goﬂ . (25 FIG. 1. The contribution in the gaugino mass arising from
{ (25)
a 1-y(a) ag 1—y(ag) SUSY-violating selectron mass.
Therefore, Eq(19) can be obviously rewritten as It is worth emphasizing that Eq$28) and (29) take into
M= b account the threshold at~m in full and exactly.
2 >—=RGl. (26)
a m IV. SUPERSYMMETRIC GLUODYNAMICS

In this form the prediction is valid even if a nonvanishing  Our task now is to extend the method to non-Abelian
selectron masby#0 is introduced in the original Lagrang- theories. Although technically this case is somewhat more
ian, as long as«>m,b. Also, even if there is a trilinear complicated, conceptually we will encounter no new ele-
coupling in the superpotential, this is valid. This assertionments. Let us first treat the case when there are no matter
follows from the fact that Eq(26) can be proved directly fields.

from Eg. (19), being combined with the relation betwebn The main distinction is that even in the absence of the
andbg: matter fields the Wilsonian couplings are now different from
those inI'. According to Eq.(7), the Wilsonian coupling
1 1-2mg6?
The photino mass, the selectron mass, and the gauge cou- Eg vv_) —gz— W, (30

pling constant run in such a way that the combinati26)

staésﬂfmd(iﬁendent. lizati . d 1o i wheremyg,y is @ Wilsonian gluino mass. Below we will need
o far, the normalization poink was assumed to lie exploit the fact thatng,y is not what is usually called the

above the mass thresholds. In conclusion of this section Wﬁluino mass. Indeed, the mass term is usually defined as a
turn to the question what happens if the evolution of the . .

aude couoling is complete. i.e.. if the normalization paint parameter in front of (H?)A\ in T'. It is not difficult to
gaug Upting | plete, 1.e., | 1zalion PANt o staplish a relation between these two parameters. If in the
becomes lower tham—we run all the way down until the

) . . - Wilsonian Lagrangian the mass perturbation is
point where the gauge coupling becomes frozen. Likewise, grang P

the evolution ofmg freezes afu/m—0. (It is assumed that m=
mg<m.) As was noted in Refl2], some curious relations (—zg) AN, (3D
between the frozen low-energy values of the parameters and 9w

those in the original Lagrangian emerge in this formulation.,

If we dive below the threshold of the matter fields, the exact” passing td’, we get

expression for the gauge coupling constant looks as if it were M= 1
exactly one loop, but with the fake value of the threshold: (_29> 5 AN, (32
9° ) Ww1-[T(G)g (877 |,
(27)) A -1
ae=ap) 1+ —In— . (28)  to be identified with
o mo
Here the subscript “LE” marks the low-energgfrozen m_25
guantities. This result has been known for a long ti@g g
We can get a similar expression for the photino mass. Pass-
ing through the matter threshold modifies E@6). Say, if rom here we conclude that
we descend down to the domain of freezing, g T(G)a? 5
mg ([, T(G)g7| [mg
2|1 ===\ - (33
m’g m’g'o bo g 877 g wW
—=| ==——-— (29
al . a 27

Note that in obtaining Eq32) we used the fadi5] that the

. 2 .
The second term on the right-hand side of E2P) corre- matrix element of the operatei™ is

sponds to a finite correction to the gaugino mass, Fig. 1. 1
There is no explicity factor here; all nontriviality associated >
with y is hidden completely. 1-[T(G)g"1/(8

2
) W

ext
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1-2mgo6?
2

tional mass parameters is established, we can forget for

Once the relation between the Wilsonian and conven%
872

ST(R)-3T(G) A
"

while about the conventional parameter, and focus on whal 0 w

happens with the Wilsonian action under renormalizations. T(R)

As known from Ref[4], in the Wilsonian action, where the —2 —'2In ZLi“WZ, (38
infrared contributions are not included by definition, the ho- T 8w

lomorphy is preserved+terms should depend only on the o i
chiral superfields, not antichiral, and so on. In the WilsonianvhereT(R;) are the Dynkin indices for the matter fields. _'”
action the coupling constant is renormalized only at ondhe fundamental representatidn=1/2 for each subflavor;

loop: T=1 for one flavor. The sum runs over all matter fields.
We must now derive an analogue of E84). A straight-
( 1 ) 1) 3T(G) A forward calculation yields
| =l=| — 5= (34
92 w (gg " 82

. [ ( @) Y

' a |, 3T(G)-ZT(R)(1- )
Now, in this relation it is perfectly legitimate to substitute

each bracket by the same bracket withdmg6?) in the (mao
numerator. Both, the left- and right-hand sides appear as co- e
efficients of theF terms in the Wilsonian action, and we

multiply by the chiral superfield. From E@34), inspecting  Here yi=7vi(a) and yio=yi(ag). From where we immedi-
the coefficient in front of9?, we immediately deduce that ately conclude that

) Yoi
ag |, 3T(G) = ZiT(R)(1~vio)

] . (39

mg) mg (_ T(R) i ):
(gZ)W‘RG" (39 (EZW TG -T(R)A— ) "o 10

Invoking again Eq(33) and using the fact that the NSVZ
function in the case at hand has the form

—RGlI. (36) o 3T(G)-T(R)(1- )

Invoking now Eq.(33) we see that

ma(l_ T(G)g?

g’ 8o A s I T Gazm T “n
Taking into account the explicit form of the NSVZ func-  we reproducgEq. (1).
tion in the case at hanidee Eq.(2)], we conclude that Eq.  An alternative form of the RGI relation is obtained if the
(36) is in full accordance with the general expressian squark mass terms are introduced. As in SQEB;b;o+ ¢,

The same result can be obtained in a slightly differentyhich implies, in turn, that

way. The vacuum expectation value of theerator W is a
physical quantity; it is RG invariant. This vacuum expecta- mg T(G)a T(R;)b;
tion value can be written g4.2,4] ol iy _Ei 2. RGL (42)

(W?)=(numer. consix u® exp(—4m°Sy). (37  to be compared with E¢(26) in SQED.

In both the left- and right-hand sides we have only chiral v exaAcT GUT RELATION OF THE GAUGINO MASSES
superfields, as it should be. 8 develops arF term, we

expand in it. The expectation value of tieterm of the So far, we assumed that the chiral multipl€sandQ do
operatorW? is proportional to the vacuum energy dendity. not have vacuum expectation values, that is, that the sponta-
The F term on the right-hand side is proportional to neous breaking of the gauge symmetry does not occur. It is
(ma/gz)w- In this way we arrive at Eq(35). interesting to discuss the issue of the gaugino mass renormal-

If the matter fields are switched on, the argument becomeigation in the presence of the spontaneous breaking of the
somewhat more subtle in the part referring to the matter fiel@auge symmetry, keeping in mind possible applications in
Z factors. Let us sketch here the basic points. The main idetheories of grand unificatio(GUT).

is to continue using the Wilsonian action. Let us consider an S@3) gauge model as a prototypical
Under the renormalization the Wilsonian action example; we will introduce a chiral multipl&? in the ad-
joint representationg=1,2,. . . ,8). The vacuum expectation
1—2mgo6? ) value of X induces the gauge symmetry breaking
(g—(z)) SU(3)—SU(2)xU(1) (see Ref.[2] for a discussion of the
w

oes into . . i
9 5The anomalous dimensions of the matter figheés secannot be

determined to all orders since the holomorphy arguments do not
apply in this case. At one loopy;=—C(R)a/m where
“This is another reason for the absence of renormalization. C(R)=T(R;) dim(ad)/dim(R;).
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above the highest one. The Wilsonian couplings of th€2sU

The original superpotential of the adjoint chiral multiplet and U1) gauge multiplets are given by

is
1 (Ssu2))w=(So) I A2 | A
P 4_s;2(mozaza+yodabczazb2°), (43) SURIWTRTOW g2 T 87 32
0
whered,,,. are thed symbols of SU3). Here again, we will +g.2In Mo (49)
substitute the mass and the Yukawa coupling by the 0
chiral superfieldsM and ), respectively, and assume non-
vanishing vacuum expectation values of fhecomponents, S =(S)w— In _ 49
in order to introduce soft SUSY breaking: (Suw)w=(Solw 87’ V3Vyl2 “9

(Mo)=mg(1- bo6?), The second and fourth terms in E¢8) are the contributions
from the SU2) gauge multiplet and S@) triplet in X, re-
spectively, and the others come from the massive vector

(Vo) =Yo(1—ao6?). (44)
) ) multiplets. By taking thé= components of Eq$48) and(49)
Here a and b are parameters of dimension of mass. Wegnq ysing Eq(33) we arrive at

assume thag, b, andmg<m. By inspecting the superpo-

tential (43) we observe thak gets the vacuum expectation mg T(SU(2))a M= T(SU(3))a
value _2<1_—2):_90<1_—0)
ap 2 (e 7¢} 2
1 PR
2)=— 1 Vo, 45 — 5-(80=DPg)~ 5—Do,
() >3 5 0 (45 27 2
(50
breaking SW3) down to SU2)xU(1); here®
M, _mgo () TOUao| 3
2Mg 2mq a;  ag 2w 27770 TO%
Vo= [1+O(b/m,a/m)]= [1+ (ap—bg) #2].
3o V3yo

Heremg, [mg, ] anda, [ay] are the SU2) [U(1)] gaugino
mass and gauge coupling constadtiatThen, we can get an
As a result of the vacuum expectation valg four out of  exact relation for the gaugino mass at low energy:

eight gauge multiplets get a mass and form, together with

(46)

two SU(2) doublets fromX absorbed in the super-Higgs Mg, T(SU(2))a,) Mg, 1

mechanism, massive vector multiplets. OneSUriplet and o, I-—— % = 7 @ bo)—5-ho.

one singlet fron, survive. The mass of the $P) triplet is ! (52)
My =M. (47) Equation(52) is usually referred to as tH8UT relation It is

worth emphasizing that the relation we derived is valid to all

Below the masses of the heavy gauge bosthe "el-  qerq in the coupling constants and exactly takes into ac-

ephants’) and the masses of the surviving fields franti.e., count the threshold effects
below the unification thresholiisthe SU2) and U1) gauge In the diagrammatic calculation, the first term on the

couplings evolve separately and so do the correspondingyp hand side in Eq(52) comes from the mass of the fer-
gaugino masses. The gauge couplings diverge. Our task is |gisnic partners of the Goldstone bosons, and the second

express the low-energy values of the gauge couplings angl, comes from a diagram similar to that of Fig. 1, in which
gaugino masseffar below the thresholdsin terms of the the surviving SW2) triplet from S, propagate$13].

high-energyli.e., above-threshojcparameters. Let us consider a particular casg=bo=0; i.e., all

In other words, we choose the normalization painfar g5y _preaking parameters, except the gaugino mass, are
below the lowest threshold and the ultraviolet cutdfffar o4 4¢A 1t is remarkable that in this case the ratio of the
low-energy gaugino masses is completely determined by
only the low-energy gauge couplings, with no dependence on
8In the diagrammatic calculation of the radiative correction to thedetails of the model at the gauge symmetry-breaking scale:
gaugino masses in this model, we have to keep the shift of the
scalar component of from its supersymmetric value due to intro-
duction ofa andb. This is because this shift leads to a nonvanish-

7 . B
ing mass of the fermionic partners of the Nambu-Goldstone bosons It can be proved by using the relation

[13]. However, the result for the gaugino mass is not changed com- Md—a= §M@
pared to ours. This follows from the fact that the shift of the scalar du 27 du
component oY, has a correlation with the value of thecompo-  that above the threshold these equations give the same RG expres-

nent of V. sions.
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maz a, a, -1 d (amg) a3
___( ) | F e\ Bl " TB@R 27

m‘g‘l aq

E T R)|ﬁ(%)m~

ko

a ~
—2—(2 T(Ri)—3T<G>)yi], (56)
VI. CONFRONTING OUR RESULTS WITH EXPLICIT T\

CALCULATIONS AT THE TWO-LOOP LEVEL . .
whereB(y,) is the 8 function for y; ,

Equation(1) is our basic all-order prediction for the run-
ning gaugino mass. It is instructive to check it “empiri- dvyi(a)

cally.” The Gell-Mann—Low function is scheme indepen- du

dent up to two loops. The factors are scheme independent

only in the leading(one-loop order, but, as we have seen, It is easy to prove, by using the explicit forms gfandy; at

B(y)=n

the one-loopy factors will affect the renormalization afiz
at the two-loop level only. Therefore, the runningrof up
to two loops is unambiguously given by E() if there are

the one-loop level, Eq455), that the right-hand side of Eq.
(56) vanishes. Thus, Ed1) is confirmed at two-loop level.
Equations(26) and (42) can be derived directly by using

no trilinear couplings in the superpotential. Here we comparghe RG equation for the SUSY-breaking paramdster

our result with the direct two-loop calculation of the gluino
mass reported in Ref14] where the dimensional reduction

with modified minimal subtraction@§R) scheme is adopted.

db; ~

M@Z—Z%- (57)

The two-loop RG equations of the gauge coupling con-
stant and the gaugmo mass in tBR scheme are g|ven as Here eXp|IC|t forms Of’y and'y are not needed, as is eXpeCted

follows:
d
P {Z T(R)—3T(G) | + (2 T(R)
—3T(G))T<G>%—ZT<RM}, (53)
d (m~) 2 a
MM o ( T(R)) 3T(G)>T(G)E

(54)

-2 T(Rim].

Here y; and?, are defined as

dInz
Yi= M dM ’

1 dyg
Yi E:u“mv

and are given, at the one-loop level, by the following expres-

sions:

_ a
y=-—C(R),

- a
7i=——C(R)m. (55)

[Note that C is defined as C5' (2,72T®), and

from the fact that Eqs(26) and (42) are valid even in the
presence of the trilinear couplings in the superpotential.

VIl. CONCLUSIONS AND DISCUSSION

In this paper, in SUSY gauge theories with the soft SUSY
breaking, we studied the running of the gaugino and/or
squark(selectron masses. Several exace., all-ordej pre-
dictions are obtained by exploiting the relation between the
gaugino masses in the generator of the 1Pl vertices and the
Wilsonian action and by using the holomorphic nature of the
F term in the Wilsonian action. Our main findings can be
summarized as follows.

In the absence of the trilinear couplings in the superpo-
tential we derived a generaactformula relating the run-
ning gluino mass to the running gauge coupling constant,

S —RGI.

amg 59
B(a)
This formula is valid even if the matter sector is chiral; no
mass terms are possibJe.g., SU5) theory with an equal
number of quintets and antidecuplets

If the matter sector is nonchiral—i.e., supersymmetric
mass terms are possible—and the squark SUSY-breaking
masses are introduced through E9), then

mg(  T(Ga T(R)b;
W3 T

=RGL. (59

This formula is valid even if there are trilinear couplings in
the superpotential.

In certain instances the mass threshold effects in the
gaugino mass can be taken into account exactly. In SQED
this assertion is illustrated by Ed29), in non-Abelian
GUT's by Eq.(52.

As was just mentioned, if the Yukawdrilinear) cou-
plings in the superpotential are preséet us call them ge-

C=(N2—1)/2N for the fundamental representation of nericallyh), the exact result that we managed to get refers to

SU(N).] From Egs.(53) and(54) we can get

a linear combination of the gluino an@BUSY-breaking
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squark mass terms, rather than to the gluino n@esse  all orders provided Eq60) is satisfied to all orders. If that is
Technically the reason is evident: Unlike the case of purdhe case, Eq(1l) remains valid even in the presence of the
gauge interactions, now the derivative &fa,h) with re-  Yukawa couplings.

spect toa is unrelated withy(a,h). It is still possible to What remains to be done? So far, we have not considered
obtain the exact expressions of the ty(de, in the closed models with the chiral matter sectoro mass term possible
form, for a specific choice of the points on the,h} plane.  with the Yukawal(trilinear) couplings of the chiral super-
We mean fixed points of the gauge coupling constant and thields in the superpotential. It is possible to show that a RGI
Yukawa coupling constants. If the initial set of parameters igelation for the gaugino massa any orderhas the form

such that the condition
1— T(G)a B> T(Ri){
2w 7 4

Mg
L Mg
7(a,h)=§—'8(aa) (60) @

=RGl. (62

The task is to evaluatg& from supersymmetri@ factors of
is met, the ratio of the gauge coupling constant to thehe chiral multiplets.
Yukawa coupling constant in the superpotential is RG invari- Another problem is quite obvious too. In R¢L6] a per-
ant. In Ref[15] it was shown, by examining explicit formu- turbative renormalizatio®R-related scheme was identified,
las of the RG equations, that E®0O) does have a solution at yielding the NSVZg function up to three loops. The anoma-
least up two loopgthe so-called ‘P=Q/3” rule). More in-  lous dimensions of the matter fields are known in this
terestingly, the authors of Rdfl5] argue that if Eq(60) is  scheme in two loops. If the running of the gluino and squark
satisfied, the gaugino mass and the SUSY-breaking trilineamasses were known in three loops in this scheme, one could
scalar coupling constaiat, associated with the Yukawa cou- have verified our all-order predictions by comparing them
pling, have a fixed point at with the explicit calculations up to three loops.
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