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By correlating the signals from a pair of gravitational-wave detectors, one can undertake sensitive searches
for a stochastic background of gravitational radiation. If the stochastic background is anisotropic, then this
correlated signal varies harmonically with Earth’s rotation. We calculate how the harmonics of this varying
signal are related to the multipole moments which characterize the anisotropy, and give a formula for the
signal-to-noise ratio of a given harmonic. The specific case of the two L{GBer Interferometric Gravita-
tional Observatory detectors, which will begin operation around the year 2000, is analyzed in detail. We
consider two possible examples of anisotropy. If the gravitational-wave stochastic background contains a
dipole intensity anisotropy whose origitike that of the cosmic background radiatjos the motion of our
local system, then that anisotropy will be observable by the advanced LIGO ddteittoP0% confidence in
one year of observatiorif (Qgy>5.3% 10’8h1’0%. We also study the signal produced by stochastic sources
distributed in the same way as the luminous matter in the galactic disk, and in the same way as the galactic
halo. The anisotropy due to sources distributed as the galactic disk or as the galactic halo will be observable by
the advanced LIGO detectdwith 90% confidence in one year of observajidh gy >1.8X 10’1°hl_020 or
Qew>6.7<10"%h;2, respectively[S0556-282197)02812-9

PACS numbg(s): 04.80.Nn, 04.30.Db, 97.80d, 98.80.Es

[. INTRODUCTION isotropic on the sky, or it might be anisotropic. For example,
if the background results from early-universe processes, then
The design and construction of a number of new and moré& might be isotropic to about the same degree as the 2.7 K
sensitive detectors of gravitational radiation is currently un-electromagnetic background radiation. On the other hand, if
derway. These include the Laser Interferometric Gravitathe background is due to white-dwarf binaries in our own
tional Wave Observatoril.IGO) detector being built in the galaxy, then they might be distributed in a pancake or bar
United States by a joint Caltech-MIT Collaboratiph], the  which mimics the shape of the observed luminous matter in
VIRGO detector being built near Pisa by an lItalian-Frenchour galaxy. In this paper, we show how the correlated signal
Collaboration[2], the GEO-600 detector being built in Han- from a pair of gravitational wave detectors is related to mul-
nover by an Anglo-German Collaboratiof8], and the tipole moments which characterize the anisotropy. This
TAMA-300 detector being built near Tokypt]. There are  should permit a signal to be analyzed to search(domlace
also several resonant bar detectors currently in operation, angper limits on the multipole moments which characterize
several more refined bar and interferometric detectors preshe anisotropy. In this paper, we will assume that the reader
ently in the planning and proposal stages. is already familiar with the work previously cite(Refs.
When two or more of these detectors are operating, it wil[5—8]) on stochastic background detection.
become possible to correlate their signals, and in this way, to These paper is organized as follows. In Sec. Il we show
search for a stochastic background of gravitational radiationhow a background of stochastic gravitational radiation may
The technique for such a search was originally described ibhe decomposed in a plane-wave expansion, with the coeffi-
work by Michelson[5], Cristenserj6], and Flanagaf7]. A cients of the expansion treated as stochastic random vari-
review of these techniques may be found&h Such radia- ables. In Sec. lll the properties of these random variables are
tion might be the result of processes that took place duringelated to théfrequency spectrum and spatial distribution of
the very early universe. It might also result from the inco-the radiation, and a set of multipole moments are introduced
herent superposition of many faint unresolvable present-dawhich characterize the anisotropies of the stochastic back-
sources such as coalescing binary systems. ground. These anisotropies may be searched for by studying
The stochastic gravitational-wave background might behe variations of the detector outputs as the Earth rotates
relative to the fixed cosmic frame. In Sec. IV we show how
the correlation between a pair of detectors fixed on the Earth
*Electronic address: ballen@dirac.phys.uwm.edu varies with time as the Earth rotates, and detail how that
Electronic address: ottewill@relativity.ucd.ie correlation is related to the anisotropies of the stochastic
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gravitational background. The variation of the correlation e (O)=m.m.—n.n 26
with Earth’s rotation may be decomposed into harmonics of ap( 1) =MaMy = Nay, 2.8
Earth’s period. In Sec. V we introduce a set of functions N

e;,(Q)=myny+n,m. 2.7

v,m(f) which are generalizations of the well-known overlap

reduction functiony(f) of Refs.[5-8]. These functions To simoli | ith | f |
characterize the effect of th€,m anisotropy multipole on 0 simplify matters latefbut without any loss of generality

the mth harmonic of the detector correlation. The principalWe assume that thevector points along the direction of the

result of this paper is to compute these functions for theEarth’s rotation axis. One can verify by inspection that
LIGO pair of detectors. This is done by introducing two andn are a pair of orthogonal unit-length vectors in the plane

special frames of reference, fixed with respect to the Ear_ﬂberpendicular ). It is simple to show that any rotation of

e e o201, dhe vectorsn and i th plane trat ey ceine il
N 9 b X corresponds to a trivial redefinition of the complex wave

we analyze the Sgnationoise ratios associated wi hETPIdESh. andh

mth harmonic, and give a formula which may be used to To descrllze a stochastic source, we treat the complex am-
determine if a given anisotropy is detectable or not. Follow-Plitude h(f,€2) as a random variable with zero mean value.
ing this, we consider two specific examples of anisotropy. N this paper, we consider stochastic sources whichnate
Sec. X we consider a dipole anisotropy in the stochastidSotropic In principle, such a source has spectral properties
background resulting from our local proper motion. In orderWhich depends upon amplitude and frequency in an arbitrary
to predict the harmonics which result, it is necessary to adopt/@y- For simplicity, in this papewe consider only stochastic
conventions for the normalization of the optimal filters; theseSources whose directional dependence is frequency indepen-
choices are detailed in Sec. XI. In Sec. XII we then considefl€nt The dependence of the stochastic background on fre-
the anisotropies in the stochastic gravitational wave backduency and direction may be stated in terms of the expecta-
ground that would arise from sources distributed in the sam#on Vvalue of the product of two random variables
way as our galaxy, and its halo. This is followed by a shorth(f,€):

conclusion. Throughout this paper,denotes the speed of R R

light andG denotes Newton’s gravitational constant. (hx(f,Q)ha(f7,Q7))

Il. THE STOCHASTIC BACKGROUND = Spn 8(F—1)5%(Q, Q" )H(H)P(Q). (2.9

The gravitational wave background may be described irHere §2((),Q)') is a covariant two-dimensional delta-
terms of a perturbation to the Minkowski metric of space-function on the unit two-sphere. For a general stochastic

time: source, the quantitid (f)P(Q) which appears on the right-
hand sidg RHS) would be an arbitrary function of frequency
and direction. However, our assumption that the directional
In transverse traceless gauge, this can be written in the forrﬁependence is frequency independent '|mplles 'that the RHS
of a plane wave expansion as act_ors as showr(.Note_: that 'ghe expressions Whlch we later
derive for signal-to-noise ratios and expected signal strengths
may be trivially extended to include the most general gase.

ds?= —c2dt?+ dx2+ h(t,x) dxedxP. (2.2

hap(t,X)= > f de Zdﬁ ha(f,Q)
A o S I1l. SPECTRUM OF THE STOCHASTIC BACKGROUND

x gm0 X9el (). (2.2 The functionH(f) determines the spectrum of the gravi-
R tational radiation. The energy density in gravitational waves
Hereh,(f,Q) is an arbitrary complex function satisfying the is given by
relation ha(—f,Q)=hx(f,Q2). The polarization states are 2
labeled byA=+,X, and Q is a unit vector on the two pew=ﬁ(habhab>, (3.1
sphere. The wave vector of the corresponding component of i
the perturbation isk=27fQ/c. The polarization tensors where the overdot denotes a time derivative, and both tensors

e4y, appearing in these relations may be given explicitly. Inare evaluated at the same space-time painj ( Substituting
standard angular coordinates, {) on the two sphere one the plane wave expansid.2) into this formula and using

may write Eq. (2.8 yields
Q) = cospsindx + singsindy + cosdz, 2.3 (hap(t,x)h®2(t,x))
M= SingX— CospY, (2.9 :; f:dffszdﬁ 4w f2H(F)P(Q)ely(0)ed().
N= COSPCOSHX + SiNCOPY — Sindz (2.5 (3.2

and then choose SinceX ,e4,62"=4 one has
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[

o ] / S
<habhab>=16w2f dQP(Q)f_xdf f2H(f) 2 EZ _2 = 2> /; x (3.9

:32772f dQ p(ﬁ)fwdf f2H(f). (3.3  In addition, without loss of generality we adopt the conven-
0 tion that the monopole moment is normalized by the condi-

In describing gravitational wave stochastic backgrounds, it istIon

conventional to compare the energy density to the critical ..

energy density.iica Fequired(today) to close the universe. Poc= \/E:J dQP(Q)=4m, (3.10

This critical energy density is determined by the rate at

which the universe is expanding today. Let us denote thguhere we assume that the spherical harmonic functions are

Hubble expansion rate today by normalized in the conventional way, so that the integrals of
km sec L their squares over the unit sphere gives unity. Hence the
Ho=100h;g0———— =3.2X 10" 8, sec’t spectrum of radiation is determined entirely Bif) since
Mpc for =0 one has
=1.1x10 %ch;oocm L. (3.4 3053
SIGwa)—’ 2f3H(f) (3.1

The value oH is determined by the dimensionless factor of

h19o Which probably lies within the range ¥ ,o<1. The

critical energy density required to just close the universe isThe directionality of the arriving radiation is determined en-
tirely by the functionP(Q). Our fundamental assumption

0 16X10" Sh 2, ergslc. (3.5 here is t_ha_lt the_ pattern of the intensity of the stpchastic back-
ground isfixed in a frame of reference at rest with respect to
the cosmological fluidin other words, formula(3.8) for

P(Q) is expressed in a set of coordinatey,z which are

fixed with respect to the distant stars. In those coordinates,

the multipole moment$,,,, are constants, independent of

time. The problem we address in this paper is this: how do

(3.0 we determine, from the data stream of a pair of interferomet-
ric detectors which are rotating with the Earth, the values of

Heredpgy is the energy density in gravitational waves con- (0r bounds onthe multipole moments ,,?

tained within the frequency intervalf (f +df). Using the

definition Qg one obtains the relationship between the IV. DETECTION STRATEGY

spectrumQ gy andH(f). For f=0 one has

3c 2 2
Pecritical— W

The spectrum of amsotropic stochastic gravitational wave
background is defined by a dimensionless function of fre,
quencyf:

1 dpew

QO fl=————.
o) Periticar dINf

To determine the multipole moments,, the basic idea is
f dpcw to correlate the outputs of two gravitational wave detectors,
Qew(f)= ar and to look for variations of this correlated signal that are

et harmonics of Earth’s rotational frequency. For this purpose,
87G c? 5 we need to consider the relationship between two different
f302H IomG 2T f2H f)f dQP(Q) time (or frequency scales that occur.

The first time scale is that defined by the light travel time

w2 5 " . AT between the two sites. For the remainder of this section,

= 3_H§f H(f)f dQP(Q). (3.7 we will assume that the two sites are the Hanford and Liv-
ingston LIGO detectors, so thatT=10.00 msec. The sec-

. Lo . A ond time scale is the period of Earth’s rotation about its axis
This formula shows the precise interpretationR{2). The relative to the cosmic frame,T,=8.6x 10" sec=1

stochastic background energy denS|ty is made of contrlbu-Idereal day. Because of the enormous disparity between

tions arriving from all directions) on the sky. The actual these two time scales, we can define a third time scale, which

value of Qgy(f) is determined by the average value of we will refer to as the averaging time scate We choose

P(Q) the direction dependence of this function is the samer in the range

as the direction dependence of the arriving radiation inten-

sity. AT<7<T,, 4.1

For this reason, weefine the multipole moments p of

the stochastic background radiation by the expansion ofor example,7=30 sec. It is then possible to examine corre-

P(f)) in terms of spherical harmonic functions: lations between .the two detectors as a fgncﬂon of time, av-
eraged over periods of length Becauser is much shorter

R N thanT,, the correlation between the two detectors will vary

P(Q)E% P/mY /m(), (3.8 as the Earth rotates relative to the fixed cosmological frame,

because of the anisotropy I?I(ﬁ). On the other hand, be-
where the sum is defined by causer is much longer than the light travel time between the
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two detectors, and because the detectors are sensitive to fre- S _ _
quenciesf ~1/AT, there is a significant correlated signal on S(t)ZJ _dfsy(f,)s,(,0)Q(1), (4.9
time scales shorter than

Denote the output of the first detector by - ) _ _ _
whereQ(f) is an optimal filter function, to be determined.

s1(1)=hy (D) +ny(1), (4.2 Let us now determine the expectation valuesf) and show

é‘IOW it incorporates information about the multipole mo-

ments of the stochastic background. To find the expected

value S(t) we begin by assuming that the noise in each de-

tector has zero mean value, and is uncorrelated with noise

Sy(t)=hy(t) +ny(t). 4.3 and gravitational strain in the other detector. Under these
assumptions, we find

whereh; is the strain due to the stochastic background an
n, is the intrinsic noise of the first detector. In similar fash-
ion, the output of the second detector is

Let us use the subscript 1,2 to label the detectors, so, for

example,i =1 denotes the Hanford, WA LIGO detector and © o o N
i=2 denotes the Livingston, LA LIGO detector. The re-<3(t)>:J7wde(f)ZA 2 %df'ﬁxdf"J do
sponseh; of detectori to the gravitational radiation is given A

b ~ . ’ soEn
Yy Xf ere—Zm(f —f)tEZm(f —f)t57(f_fr)57_(f_fﬂ)

hi(8) =df*(Dhadlt, X (1], (4.4

ab cd AOVA (O rer Y o
where the position of detectds corner station is denoted by X dp (1) dz (t)eap(2)eca(Q ) expi2ai[f -y (1)
xi(t). In this expression, the symmetric traceless tensors

1T I */£1 A "o
d?b(t) are giVen by f Q Xz(t)]/c}<hA(f ,Q)hAr(f ,Q )>

d2P(t) = LX) XP(t) — YA (1) YP(1)], (4.5  We now substitute in the expectation value for the product of
the amplitudeg2.8). The integration ovef” is now trivial.
where the directions of detectois arms are defined by the In the resulting expression, because & much smaller than
unit spatial vectorsk?(t) and Y3(t). Note thatboth f®(t)  the “bandwidth” 1/AT of the signals, one of the finite-width
and %(t) are functions of time, because the Earth rotatesd€lt@ functionss. may be replaced by a Diraé function.
The integration ovef’ is then trivial. The other finite-width

with respect to the cosmological rest frame 9 L .
Define quantities which are the Fourier transforms of the® function is then evaluated at zero argument, giving rise to

signals, evaluated over an interval of one averaging time & factor of7. One thus obtains
centered at time:

~ - (S(1)) = rd2(t)de?(1) f " ArRhH(
si(f,t)= ft *

dt'e 27f's(t’) for i=1,2. (4.6 -
—7/2

Aoy O 2T Q- AX(t)/c A AYLA LA
These Fourier transforms are easily evaluated. Substituting x f dOP@Q)e ; Can()€cq( ),
the plane wave expansid@8.2) into the formula for the strain
(4.4) and taking the Fourier transfor(d.6) we obtain (4.10

S(fH=> f dﬁfo df’em (' =Nts (f—f) WhereAf(t)=>21(t)—>22(t_) is the time-dep_endent separation
A —w vector between the two interferometer sites.

Not surprisingly, this previous expression can be easily
simplified for the isotropic cas({))=1. In this instance,
the sum over polarizations and integral over directions can
be performed explicitly, yielding (8/5 times a time-

In this expression, we have made use of the fact that théidependent function of frequency known as the overlap re-
averaging timer is much less than the rotation period of the duction functiony(f). This overlap reduction function is
EarthAT,, so that the vectork®(t), YA(t), andx,(t) may  9Iven by

be treated as constants and taken outside of the time integra-

Xha(7,0)d2(1)ely( )@ 2 0 %(0e

+noise term. (4.7

tion in the Fourier transforn¥.6). We have also defined the y(H)= i dibdgdf do eZWifﬁ-A;/C
“finite time” approximation to the Dirac delta function 8 s
()= " ezt — w “8 X[ef(Q)eq( Q) +es(D)ely(D)]. (4.1
—7/2

Notice that in Eq(4.11) the dependence of the positions and
which reduces to the Dirac delta functidiff) in the limit  orientations of the detectors upon tirn& not shown; this is
T—o0, but has the property tha (0)= 7. The final term on  becausey(f) depends only upon theelative positions and
the right-hand side of Eq4.7) is linearly proportional to the orientations, which is timdgor Earth-positioh independent.
noise in detector. Thus, in the case of an isotropic stochastic background, one

We now define the “signal” finds
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. 87 (» In this expression, the angle of rotation of the earth about its
P(Q)=1=(S(1))= ?Tf dfQ(f)H(f)y(f). (412  axis(measured from some arbitrary fiducial poiistdenoted
o by ae[0,2m) SO a=wet+const (mod Z). The “time-

This is Eq.(30) of Ref.[8]. In the present paper, we are most dependent” quantitiesl?® and Ax may equivalently be ex-

interested in the anisotropic case whé&)) varies with pressed asblfunctlo?]s Q:; H ical |
direction. In this case, the time variation of the tensors |N€ Problem at hand is now a mathematical one—to cal-

ab culate the functiony,,(f) which are generalizations of the
di (t)_ andAx(t) will provide a time-dependent variation of overlap reduction functiory(f). For the monopole moment
the signalS(t). (/=m=0) it is easy to see that the integrand above is in-
dependent of Earth positiom because the overlap reduction
V. ROTATION HARMONICS function (4.11) only depends upon the relative orientations of

Because the rotation of the Earth is periodic with periodtN€ detectors, which i independent, giving
T and angular frequencw.=27/T, the expected signal B 1
(4.10 varies with the same period. It can therefore be repre- Yool ) = (4m) =¥(f). 59

sented by the Fourier series In the next parts of this paper, we will show how to evaluate

, the othery,,.
(S()y= 2 (Syemed, (5.1 Our first task is to evaluate the integrals that appear in Eq.
me (5.4). The productl2®()d5%a) is a quartic polynomial in
Because the signal is real, the amplitudes of the differen$ine and cos. One approach would be to attempt to perform
harmonics satisfyS,,=S* ,,. The amplitudes are quantities the integral ovef), to obtain the resulting function ef, and
which would be determined by Fourier transforming the acthen to evaluate the integral over However, this approach

tual data: is rather cumbersome.
1T A more promising method is to consider the projector
sz?f dt e Medg(t). (5.2 onto the plane perpendicular £», which may be calculated
0

in terms of the vectors defined by Eq2.3) and(2.4):

HereT represents the total observation time, which later en-
ters into Eq(9.4) and which is assumed to be is a multiple of
Earth’s rotation period’,. The harmonic amplitudeS,, are A couple minutes of algebra starting with Eq€.6) and

the (at least in principlgobservable quantities on which an . . . )

data analysis F;nustpbe based; it qis their expected valﬁe(szj) quickly establishes the identity

(Sm) which arise in the formula for the expected signal. Note

that in an actual observation or measurement, instrumental z e b(Q)ecd(Q) QacQbat QadQbc— QapQed- (5.7
noise in the gravitational-wave detectors would prev@pt

from taking on itsexpectedralue. In Sec. IX we analyze the

typical deviations 08, from (S, and in this way determine We then define the set of integrals

how accuratehs,, may in fact be measured.

Qap= 820~ QaQlp=mMy+ NNy . (5.6

Be(_:ause we have essumed thatzh_;a(is _of our(cosm,io _ Cabcd(a):f do Y/m(ﬁ)ezwimAi(a)/cﬁaﬁbﬁcﬁd_
coordinate system points along the direction of Earth’s axis,
the mth rotation harmonic can only result from anisotropies (5.9

whose phase varies with angfeas expim¢). These are the

anisotropies associated with tive,,. Hence The desired integrals can then be expressed in terms of this

quantity. For convenience, we introduce a symbol to handle
the contractions that occur. This is a constant tensor defined

8m [ -
(S, = ?Tf_xde(f)H(f)/Zml D mYsm(D). 63 by

O BBca= 20ac0pq0P 10" — 43,0795, 05+ 95630 5.

The functionsy,,(f) are generalizations of the overlap re- 5.9

duction function y(f), which express the(frequency-

dependentcontribution of the/th multipole moment to the Making use of the fact that each of tldéb is symmetric in

mth harmonic of the signal, with respect to Earth’s rotation.. - .
These are given by its tensor indices, and traceless, we may then write

5 1 - 5 1
7/m(f):g ZJ'O da e"m“dib(a)dgd(a) v,m(f)= 8_2_ da’ e~ 'm“dab(a)
XdCd(a)@)gbtr:S pqrs(a’)- (5.10

XJ do Y/m(ﬁ)ezwif(z.Ai(a)/c
From this definition it is easy to show that

~ ~ — /+m, ok ; ;
<A (et (O). 5.4 Y/ —m=(—1) Y7 m- This follows from the parity trans-
; ab( (1) €eq( ) ®4 formation  property of the spherical harmonics
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Yo (=) =(—=1YY.(Q). In order to now evaluate Thg matrix which reIate; cqmponents.of vectors in the
(= =(—1) Y () cosmic and Earth frames is simply rotation through angle

Cabcq it is convenient to introduce some additional coordi- :
a about thez axis:

nate systems.
a_paya a_ _
VI. COORDINATE FRAMES XT=RaX%, Ry =R(@,0,0=Ry(a), 6.2

The vectors being used in this calculation are threewhere the first index oR labels rows and the second index
dimensional spatial vectors in flat Cartesigh. Up to this  labels columns, so that the operation appearing in the previ-
point, we have been using a coordinate system which is fixe@US gquatlon is ordinary mglt|pllcat|on of a column vector on
with respect to the cosmological fluid, and in which the spathe right by a square matrix on the left. Note that the angle
tial pattern of the perturbations of the stochastic background:= w¢t varies with time.
is assumed to be time independent. This frame of reference is Without loss of generality, assume that the freedom to
the “unprimed” frame; vectors expressed with respect tochoose thex andy axis in the Earth frame has been used to

these cosmic coordinates have unprimed indices. We havghsyre that in this frame the separation vedtaf between

also assumedwithout any loss of generalijythat thez axis the two detector sites has rﬁcomponent. Using the two

of this cosmic frame points along the direction of Earth’'s ) —
rotation axis. LIGO sites as an example, the Earth-frammeaxis would

At this point, for calculational purposes, it is convenient POINt out from the center of the Earth at an angle 38.6881°
to consider two additional coordinate systems. Thus, a givefast of the 0° line of longitudéGreenwich, England In
vector V may be expressed in terms of its components ir;hls frame, the coordinates of the two detector sites and the

three different frames: detector arms directions are
Cosmic frame: V2, 707.41 1\ 2
Earth f -y Hanford, Washingtonx{=| —4329.11f  km,
arth frame: V= 4614.74
Computational frame: V2. —
—0.684779 @
The “Earth frame” is a coordinate system fixed to the Earth, )“qT: 0.476172
in which the third ¢ coordinat¢ points along the axis of
Earth’s rotation, in the direction of the north pole. Compo- 0.55167
nents of vectors in this frame are denoted with “barred” —
indices. The second of these new coordinate systems will be —0.720231 @
referred to as the “calculational” coordinate system. In this QiT: —0.557622
frame, the components of vectors are “primed.” This frame 0.41270

is fixed with respect to the Earth, and has its thizdcpor-
dinate pointing along the line between the two gravitational- _
wave detectors. 3371.80)\ 2

The relationship between components of vectors in these

: : _ _ Livingston, Louisiana:x§_= —4329.11|  km,
three coordinate frames may be written as matrix equations.
Each of the matrices which appears is a special case of a 3240.36
rotation matrix which may be parametrized by Euler angles. —
Throughout this paper, we use the Euler angle conventions —0.65377\ 2
given by Eqs.(4.83)_—(4.86) of Afkin [9] which are also _the )AGT: —0.708366
conventions used in Eq#§4.5) and(4.43 of Rose[10]. It is
convenient to define a pair of rotations about thandy —0.26608
axes, respectively, by _
_ 0.540953)\ 2
cosv  sina 0 va=| -0.191642
R (a)=| —sina cosx O], _0.81893
0 0 1
. It is obvious that, as claimed, the separation vector between
cos 0 —sing the two sitesc? — x2 has vanishing/ component. The matrix
Ry(B)= 0 1 0 . (6.2 which relates the components of the vectors in the computa-
sin8 0 co tional and Earth frames is a rotation about thexis:

The most general possible rotation may be parametrized by xa:Rg,xa’, Rg‘,:R(O,—B,O):Ry(—B), (6.3
Euler angles and is defined by the matrix

R(a,B8,7)=R/7)Ry(B)R,(«). Note that the boldface sym- whereg is a time-independertor a-independentangle, de-
bols here denote 83 square matrices. termined by the relative orientation of the line between the
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two detector sites and Earth’s axis. For the two LIGO detecExplicit formulas for thajgk may be given either in the form
tors, the angle relating the Earth frame and the computationa@f a sum or in “summed” form. The latter expression, given
frame is by Eq.(4.14 of Rose[10] is the most useful one for us. For

B=—62.71383". (6.9

.- . . ;o
Within the computational frame, the separation vector bedmk=

tween the two sites is

(/=K1 +myr|H2
(/+K)!(/—m)!

(cosB/2)% Tk=m(—sing/2)™ K
x (m—K)!

0
x —x3'=2997.98 knp 0 (6.5

m—//,—k—/;m—k+1;—tanz§ . (7.5

and the unit-length vectors defining the arm directions are . : .
g g Notice that because the< /" the first argument of the Gauss

0.176358 2’  0.69696\ 2’ hypergeometric functiopF, is a nonpositive integer the hy-
., ' ., ' pergeometric seriesF; terminates after a finite number of
x§=| 0476171 | Y} =| —0.557623 terms. In fact it is possible to rewrite E¢Z.5) in terms of
0.86148 0.450893 Jacobi polynomial${*#) [11], for m=k
: : (/=m(/+mt]?  g\mrk
_ a _ a o _q\l-m
. 0.53618 . 0.47981 d=(—1) [(/’—k)!(/—kk)! osz
X3 =| —0.708366| , Y5 =| —0.191642
B m—k
0.459042 —0.85618 X —sinE) pimtkm=k(— cogB). (7.6
(6.6
These quantities will become useful later. In the event tham<k the d/,, may be obtained from the

unitarity property, Eq(4.15 of Rose[10],

Vil COMPUTATION OF - Ul B =i~ B)=(~ D™ ¥d(B).  (7.7)

Our goal now is to calculat€,,.q as defined in Eq5.9).
To do this, we will express the spherical harmonic functionsNote also that thedy, are real, so that we can drop the
Y, m(Q)=Y ,n(6,¢) in terms of the “primed” coordinates complex conjugation that would otherwise have appeared.
in the computational frame. Combining the transformations The integral over the two-sphere which appears in Eqg.
(6.2) and(6.3) we obtain the relationship between vectors in(5.8) can also be expressed as an integral over all directions

the cosmic and computational frames: in the computational(primed frame. In other words,
JdQ=[dQ’. So our integral may be expressed as

V& =Ry(B)R,(a)V*=R(a,B,0V2. (7.) )
This transformation through Euler anglesB,0 induces a Cabco(a):kz/ d/ (B) x emaNK
simple change in the spherical harmonics. For a given value o
of / the spherical harmonic functions in one frame are sim- T ATeow K ’
ply a sum of all the spherical harmonics with the same value X fo sing’d¢’e”” P, (co¥’)

of / in the other frame. The relation between these two sets
of functions is given by the rotation matric@ﬁm, which are 2r K6'D A D A
closely related to Clebsch-Gordan coefficients X Jo d¢'e™? 00,00y, (7.8

/
ropy— / where we have expressed the spherical harmonic functions in
Ym0, 4) k;/ Dinl .80V A(6.4). (7.2 terms of associated Legendre function®%, and
AT=|x;—X,|/c denotes the light travel time between the
(See equatior(4.260 of Arfkin [9].) The inverse transfor- two detector site$10.00 msec for the two LIGO detectors
mation is obtained by reversing the lower two indices on therhe normalization constants® which relate the spherical
rotation matrix and complex conjugating: harmonics and the Legendre polynomials are

/
Vo 09)= 3 (Dl @BOTY A0 ). (73 NE= o E:;B: 7.9

The rotation matrices are conveniently expressed by Eqwne will eventually be contracting the four indices 6f
(4.12 of Rose[10]: with each other and with the indices of other tensors. Of
, imans i course such contractions yield the same result in any

D@, B,y)=e "mdp (B)e 7. (7.4 coordinate frame, and it is easier to calcul@ein the
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calculational (primed frame. Hence we may write The form of this integral is interesting. The integral over

Cabed @) =R¥RE'RYRY Carprerar where R ¢’ will vanish unlesk=—4, . .. 4, inwhich case it yields a
=R, (—a)Ry(—B), and product of at most four factors of sihand co#'. Introduc-
y ing a new variableu=cos¥’ the two integrals appearing in
_ Aima / kK [ 7 iarq g Eqg. (8.1) may be expressed as linear combinations of the
bretd = N in .
Carprcrar =€ k;/ dm(B) /fo sing’d 6 integrals
% eZWifATCO%"Pk cosy’ 1 _
/( ) f du eZ”'fAT”P5(u)uN(1—u2)|k|’2, (8.2
2 A N A -1
xf dep' €' 00 0Oy (7.10
0 whereN is a non-negative integer bounded biy+|k|<4.
A, Such integrals can be expressed in closed form as we show
The vectorQ? is in the Appendix.
cosp’sing’ \ @ From this point on, we consider only the case of the two
~ T LIGO detectors. In this case the simplest way to proceed is to
0% =| sing’sing” | . (7.1)  compute
coy’

1 qa'b’ c'd’ p'q’r’s’
It is clear that the integral oves’ in Eq. (7.10 vanishes S 07)=di " (B)dz " (B)Ouprca
unlessk=—-4,-3, ...,3,4. Thus even for large the range 2T kA A A A
of summation ovek only includes these values. There is a X 0 de'e™" 05 Qg0 Q. 8.3
sense in which this reflects the fact that our signal is a prod-
uct of the outputs of a pair of detectors, each of which has
guadrupole antenna pattern. It is also noteworthy that th
remaining integral, over the variabl, can also be done

%o evaluate this, we use definitiga.5) of the diab, the con-
fraction operator5.9), and the arm direction&.6). Substi-

explicitly for any distinct values of” andk. tuting in the vecto)? given by Eq.(7.11) gives elementary
integrals overg’. The results are easily written in terms of
VIIl. THE REMAINING INTEGRATIONS the variableu= cosy':
We are now in a position to evaluate the remaining inte- So(u) = —3.01308+ 1.75421u°+0.945109u*,
grals. We begin with the integral over. We can rewrite
v,m from Eq.(5.10 as $1(u)=[0.5451+0.543353
5 1 (2= L - —(1.6954+1.73284i) u?] u (1—u?)'?,
VoD =gr 5= | da e meemas™ (5)d5 (p) ( R
8m 2o
, S,(u)=[—0.042870% 1.41125i
x@g,g,g,g,k;/ dgkg;)mjo sing’d ¢’ +(0.0119604- 0.670812i) u?](1—u?),

X e271ATCow' P ey S3(U)=(—0.245744-0.227815) u (1-u?)%,

2 e . S4(U)=(0.0492709 0.00345518) (1—u?)?,
xf dep' €% 0, Q0 Qg
0
S_(u)=sg (u),
In this integral, we have explicitly indicated all of the depen-
dence ona. Notice that whiled®® is a function ofa, in s(u)=0 for |k|>4.
computational coordinatectf"b/(ﬁ) is independent o and

I p'a'r's' o . We then have
depends only upog. Likewise, the tenso® defined

/b/c/d/
by Eg. (5.9 has constant components in the computational 5 7 , ’
frame. Hence the integral over give a factor 2r: YD) =g~ kZ/ din BNy

5 I rq’
m f — da b dC d .
Y/m(F) gr 1 (B)d; " (B) XJl du ezﬂ'fATulﬂ;(u)sk(u). (8.9
-1

/
p'g'r's / kK | "ainrqpr
X®a’b’0’d’k=2/ dmk(ﬁ)N/jo sing"do We now evaluate these functions for the first few multipoles.
_ For this purpose we introduce a dimensionless frequency
x @2mifaTeow pk (g’ variable x=27fAT. Becausey,,=(—1)"""ys . we
) give these functions only fom=0, ... /. They may be
Xf d¢/eik¢'ﬁp,ﬁq,ﬁr'ﬁs,. (8.1) gonvenlently written in terms of spherical Bessel functions
0 in. For/=0 one has
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¥ F f (H j1(x
0,0 N\ rea f (HY yzvz(x)=—0.03808870(x)—(1.05867!—0.649899)Jl( )
100~—_ 200 300 X
-0.05 i2(x)
+(9.05483+ 6.80403) ~—~
-0.1 X
- j3(x
0.15 — (18.5056+ 20.4538) 13)53 ).
-0.2
-0.25 A graph of these functions is shown in Fig. 3.
For /=3 one has
FIG. 1. The(rea) function vy, (f) is shown for the LIGO pair
of detectors. (%)
¥3,dX) =0.0416301; (x) +0.805200
j1(X
Yo.o(X) = —0.0352174(x) — 0.81811 1) . .
’ X Ja(x) Ja(x)
—11.2779——— +18.399 —5—,
. X X
712(X)
+0.848647— 5.
J2(x)
A graph of this function is shown in Fig. 1. 31(x)=0.0018218§;(x) — (0.0155428- 1.03107) —
For /=1 one has _
J2(x) Ja(x)
y1,0X) = —0.0279637] 1(x) — 0.252119 ~ —(1.38339-11.1549) 2 —(7.72558
i (X Ja(X)
—1.6695% %r) +45.6531) = 3,
! J2(X) ,
y1.1(X)=0.0383329 1(x) — (0.327033- 1.03547) i5(X)
X ¥s.4X)=—0.0461978 1(x) + (0.788263-0.534988)
+(1.90568- 1.77847) 12 i3(%)
X —(7.13839- 8.50643) 13X2
A graph of these functions is shown in Fig. 2. %)
/— X
For /=2 one has + (42,9458 1.80521) 40
i i X
, 1(X) 2(X)
72,dX) =0.01454945(x) +1.00009~ —9.3990i—x2
. J2(X)
X X)=0.0365627] 1(x)—(0.935792-1.08142
+28.0345‘3)E3), Y3.4X) 10— ( ) X
; Ja(x)
X
75 1(x) =0.0392947,(x) + (0.385015+ 0.335238)115( ) +(11.3339-13.82817) =
. Jja(x)
X _
—(2.38288F 2.48534) J 2)52 ) (33.6244-32.4339) = 5~
H X . . . .
—(6.01443-16.1191) Ja(3 ) , A graph/gf these functions is shown in Fig. 4.
X For /=4 one has
Yl, 0 Yl, 1 ,"\\
0.02 0.08f /%
. {0 FIG. 2. The functionsy; q(f)
A PEET s 0.06 '." ‘\‘ are shown for the LIGO pair of
\ ,100 200 300 0.04}! 5 detectors. The real parts are
-0.02H /'I Freq f (Hz) ! ' shown as the solid curves and the
o os ".“ /, 0.02p '\‘ o~ Freq £ (Hz) imaginary parts as the dotted
’ \ H ) i curves.
v 00 / 200 300
-0.061 \_/ -0.02
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oo \.2/070 N300 0.050
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Freq f (Hz) 0.025 .
-0.02 >
0.03 -0.025
-0.05
-0.04

Freq f (Hz)
Loeoy

1‘v 200" 300

AN

-0.02

FIG. 3. The functionsy, (f)
are shown for the LIGO pair of
detectors. The real parts are
shown as the solid curves and the
imaginary parts as the dotted
curves.

j1(x j2(X j1(x
V4,0(X)=0.02322994(x) — 0.89900é¥ + 9.78424% Y4,4X)=—0.0155407,(x) + (1.05639- 0.265167) ) 15( )
—88-69§3)Eg +438'55£4>E4 , (14.276-0.635514) 7 +(127.588
j3(x) j 4(X)
—28.9739)]3)£3 —(551.647—310.6565)J4X4 ,
Ja(x) .
¥4 1(X)=—0.036789]4(x) — (1.10932+ 0.313862) J1(x)
’ X v4,3(X)=0.0502848,(x) + (0.521081 1.287) ”
212 j2(%)
+(27.3542+5.98172) — 7~ —(204.205 ~(20.3464- 20.2033) - 7~ +(135.553
j3(X j (X j3(x) Ja(X)
+48.3679)J3)53) +(496.286¢ 149.558)14)54), +177.464) 3X3 —(156.429- 719.091) 4X4 ,
¥3,0 73,1
0.02 0.01 .
'/' ‘\ Lo . ,," \‘\ P /'—-\\ .
\ 100/ 2007 %00 \ S 10 “ /"QTO Seae” “300
-0.02 \'\ ,:'l Freq f (Hz) “0. 01N - Freq f (Hz)
\ ! -0.02
-0.04} % /.
5\ ! -0.03 FIG. 4. The functionsy; (f)
-0.06 \\ '," are shown for the LIGO pair of
" -0.04 detectors. The real parts are
T3 5 shown as the solid curves and the
! imaginary parts as the dotted
0.04 curves.
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spectra are shown in Fig. 5. For our calculationsSafl we

will need to know the noise properties of the detectors aver-
aged over our “windowing time’r. To obtain these, we first
characterize the detector noise in the time domain, by Fou-
rier transforming Eq(9.1). This gives

(ni(Hn;(t"))

:JL df e*ZWiftJl df’ eZwif't'(ﬁi*(f)'ﬁj(fr))

1 (= N
:Eﬁijﬁ dfe 2™ t=p([f]). 9.2

FIG. 5. The predicted noise power spectra of the initial andjn words, this says that the Fourier transform of the noise

advanced LIGO detectors. The horizontal axis is dag frequency
f, in Hz. The vertical axis shows lgg[ P(f)/sed*?, or strain per

root Hz. These noise power spectra are the published design goa
The bumps appearing in the low-frequency part of the advance
LIGO noise curve are obtained by folding measured seismic noise

auto-correlation function is the noise power spectrum.

We can now find the “windowed” version of these for-
iulas, using the definitiot4.6) of the windowed transform.
aking the windowed transforms of E(P.2) yields

data with the predicted transfer function of the seismic isolation _

(stack system.

J1(x)

X

¥4.4X) = —0.0344655(x) — (0.977416- 1.17615)

jo(X
+(24.322+22.0573) %r) —(183.738

j3(x)

X3

ja(x)

x4

+163.238) +(458.028+ 438.49)

Note that they,,, with /" odd vanish af—0, in contrast
with the functions with/” even, which approach constant
values at zero frequency.

IX. OBSERVABILITY AND SIGNAL-TO-NOISE RATIOS

(nF(f,0n;(f7.t)

t+17/2 .
f dt” e27r|ft"
t

—17/2

t'+7/2 g ram
XJ; 7 dt” e72mf t <ni(tn)nj(tm)>

"—1/2

_15ijezwi(ft—f’t’)fx dp e—ZTrip(t—t’)gT(f_p)

2

X 3" =p)Pi(|p)). 9.3
Note that in the long averaging time limit— this repro-
duces Eq(9.1).

In virtually any realistic scenario, the intrinsic instrumen-
tal detector noise is expected to be much larger than the
strain arising from the stochastic background of gravity

Up to this point, we have shown how anisotropies in thewaves. For this reason, if we define the “noise” in a given
gravitational-wave stochastic background give rise to perimeasurement d§,, by N,,=S,,—(S,,) then to good approxi-

odic variations in the “signal” obtained by correlating a pair

mation a formula foN,, may be obtained by replacing the

of detectors. These periodic variations are described by thtal detector outpus;(t) which appears in Eq(4.2 by

Fourier serieg5.1), with coefficientsS,,. In this section, we

n;(t). Using the definition of the “signal'(4.9) and the defi-

address the question: how precisely can the values of thesgtion of the mth harmonic(5.2) one obtains

coefficients be determined, in the presence of noise in the
two detectors? We answer this question by calculating the
signal-to-noise $/N) ratios that would arise in measure-

1(7 . ® _ _
Nm=?J dt e"”‘“’etj dfni (f,t)n,(f,1)Q(f). (9.9
ments of theS,,, which also permits us to determine the best 0 o

choice of the optimal filter function®(f).

in Sec. 3.2 of Ref[8]. The following presentation will be

somewhat cryptic as we will assume that the reader is famil

iar with that material.
The noise in the detectors is characterized by a cros
correlation function
(nr(Hn(t)=38;0(f—tHP(f]). (9.1

Herei=1,2 labels the two detector sites aRg(f) is the
(one-sided, realnoise power spectrum of thieh detector.

S_

(Note that in this formula, we assume that the total observa-

dtion time T is large compared with Earth’s rotation tinfg

and that during the observation time the Earth has made an
integral number of rotations, so th@tT, is a large integer.
We will typically takeT to be 1 sidereal yearThe approxi-
mation that we make here is obviously consistent with
(Nmy=0 since the noise in the two detectors is assumed to
be uncorrelated, so thah? (f,t)n,(f’,t"))=0.

The “noise” arising in the measurement &, may be
characterized by|N /%) ={|Sn|?) — [{Sm}|?. We now calcu-
late (N¥N/). Substituting Eq.(9.3) into Eq. (9.4 and

For the initial and advanced LIGO detectors, these powelsquaring” yields
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1 (7 T ) v [ _ o _ ~ ~ ~ ~
<N:;Nmr>=;zjodt fodt'e'we““‘-m”ﬁ df Q*(f)Jf df Q)R (FORL(F )RS (FORL(F,t)

1 T T o) ) ) 0 - — . " . , ,
:WJ’O dt fo dt/J_ df j_ df’ f_ dp f_ dp/Q*(f)Q(f/)elwe(mt—m t)+2mi(p—p’)(t—t )5T(f_p)

X8t =p)8(f=p") 8t =p")P(Ip)P2(|p']). 9.5

We can simplify this expression to the point where it is use-(N*N,,/)

ful, however, this is somewhat tricky—there is only one or-

der in which the integrals above can be simply evaluated to o o

yield useful approximations. We first do the integrals with =—5mm,f df f df’ Q*(£)Q(f)
respect ta andt’ exactly. This gives odl - -

o Mw
(NN %[ ap &(f—p)&(f’—p)&(f—w 2;)
A A
A Rl U R —p+ 2elp [ |p— T
B B X&' —p+ 27_r)Pl(p 5
xdp” Q*(HQF")P1(|p))P2(|p'])
- : : X Pa(Ip]). (9.9
XexX —iwsT(m—m")/2]5:(p—p’' + Mwd27)
X or(p—p'+m wf2m) 8 (f—p)d.(f'—p) Next we note that the width of thé (f) in frequency space
, ., is quite large compared 1w, provided that we restrigh to
X8(f=p") (1" =p"). 9.8 pe fairly small:|m|<T./7. We also assume that the noise

power spectrunP,(f) does not vary significantly over fre-
quency scales ob,~10° Hz. In this case we can neglect

Now we note that the effective support &f(f) extends over J <
the shifting of the arguments byw, above, obtaining

a very narrow range of frequenciégpically, | f|<10™ ' Hz)
compared with the effective support 8§(f) (whose support
is typically |[f|<10 2 Hz). In addition, none of the remain-
ing integrand varies over such a narrow frequency range. So . 17 o P
we are justified in replacing(p—p’ + mwJ27) by the or- <NmNm’>:ZT5mm/ fﬁxdf fﬁwdf Q*(HQ(f")
dinary Dirac delta functiorS(p—p’ +mwJ27). This gives
x 82(t—11)Py(|f)Pa(f])
<N:€nNm’> >
T * ~
Lo ~ e 37| A [Pyl 1))
2| ot [T ar@na -
474 ) _» —w

o 9.9
x| apr sut-pat-pn

- Settingm=m’ we finally obtain an expression for the ex-

wm—m’) pected “squared noise” in a measurementSyf:

xexp{—iweT(m—m’)IZ]&T(eT)

. Mo ., Mo ) 2 (= ~ s
XO\f=p'+ 5o T'=p'+ o (INml*)= 27 _af |Q(O[*P(f)P2(|f]). (9.10
Mw
XPy||p'— 27: )P2(|p'|)- (9.7 We can make use of this expression to find the optimal filter
Q(f).

The (squared signal-to-noise ratic&/N for the mth har-
If we now additionally assume that the observation tims  monic is now defined via the ratio of expected sigfrahg-
much greater than the period of a single rotationnitude squareddivided by expectedsquared noise. Making
Te=27we then to good approximation use of Eq.(5.3 for the former quantity, and Eq9.10 for
St(wd(m—m")27)~T Sy - Thus the latter yields
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S\2 [(Swl? vided that the assumptions abaut4.1) used in deriving this
N Em equation are satisfied, the actual value is irrelevant.
m m In order to find the optimal filter function, it is useful to
" o 2 introduce an inner product. For any complex functions of
AT(87/5)? Tf dfO(f)H(f) 2} P /m¥/m( ) frequencyA(f) and B(f), this defines a complex number
_ —o /=[m| " which is denoted byA,B). The definition is
7 f "t 1B(H1PL(| )P *
_AFIQMPPLFhPTh (AB)= [ at A HBIPLIPAL). (912
(9.1)

This inner product is positive definite becauggA) is real
Notice that the averaging time(which was earlier chosen in and non-negative, vanishing onlyAfis zero. In terms of this
a rather arbitrary mannedrops out of this expression. Pro- inner product, the signal-to-noise ratio may be written as

2

(§)2:4T(8_7T)2 (Q.H<f>/F>1<|fl)Pz(Ifl)/;m| pﬁmvimm) ors
N/ 5 (Q,Q) ' '

The optimal choice of filter functioQ(f) for determining ground radiation(CMBR), is highly isotropic. The largest
themth harmonic is the one which maximizes this ratio. Thedeviation from isotropy results from the motion of our local

largest value is obtained by choosing system(the solar system barycentawvith respect to the cos-
H(f) o mological rest frame. Analysis of data from the Cosmic
Qm(f)=m/;m‘ P*yim(f).  (9.14  Background ExplorefCOBE) satellite shows that our local

system is moving with a velocitg,,pe=v/c=0.001 236 in
Using the definition(3.11) of H(f) in terms of the spectral the direction (=264°b=48°) in galactic coordinates, or

function Qy(f), and substituting the optimal filtd),,, into ~ €duivalently @=168°6=-7°) in celestial coordinates

the expression foB/N yields [12]. To lowest order in our proper velocity, this gives rise to
2 a 2 an anisotropy in the CMBR described by the temperature
S)7_SHo f " g ewlD distribution
N/ 507" " Jo ~ fOPy(f)P,(f)
2 T(7)=T0(1+Bpropepos)’)v (10.1

X

. (9.19

/Zml P/mY/m(f)
where vy is the angle between a point on the sky and the

For any given source of stochastic gravitational waves, on¥elocity vector of our local system, aniy=2.73 K is the

can use this formula forg/N) ., to determine the observation Mean temperature of the CMBR. .

time T required to observe theth harmonic of the signal as !N this section, we address the question: would a corre-

the Earth rotates relative to the cosmological frame. In preSPonding dipole moment in the stochastic gravity wave back-

cise analogy with the analysis given[i8], themth harmonic ground, arising from the proper motion of the solar system

is observable with 90% confidence B/(N),, exceeds 1.65. barycenter, be observable with either the initial or advanced
m LIGO detectors? In the previous section, we calculated the

X EXAMPLE: DIPOLE INDUCED BY PROPER MOTION 5|gnal.-to-n0|se ratio for (,)bserva}tlons of theth harmpnlc
S, (with respect to Earth’s rotatigrof the signal(obtained
It is well known that the electromagnetic background ra-by correlating two gravitational-wave detectorghis is de-

diation, generally referred to as the cosmic microwave backtermined entirely by the quantities

H,=Hubble expansion rate, set;
T=Total observation time, sec,
v,m(f)=Overlap reduction functions, dimensionless,
Q= Fractional energy density in gravitational waves, dimensionless,
P, = Normalized multipoles of GW stochastic background, dimensionless,

P;=Noise power spectral density of detectir sec.
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As an example, we use this formula to answer the questioshifting the origin of time changes the phaseSgfbut not its
posed above. amplitude. In order to falsify or confirm a particular aniso-
Let us make the following reasonable assumptidds: tropic model, one needs to predict the set of complex num-
Qew(f) is constant in the LIGO band ari@) the stochastic bersS,,. However, these numbers depend upon the normal-
gravitational-wave background is isotropic in the same resization C,, of the optimal filter functiorQ,,(f) so in order to
frame as the CMBR. The anisotropies in the stochastic backnake predictions, we need to adopt a convention for these.
ground resulting from our proper motion are then described We have already chosen optimal filters for which the ex-

by pected value ofS,, is real. At least upon first inspection,
D — there do not appear to be any very convenient choices for the
<~ P/mY m(0,®) overall scale of normalization. Here, for illustrative purposes

— o e — we adopt(what appears to us ashe least disagreeable of
=1+ Bpropef COS#COSI7% SiN#sin97°cogh), these.We choose the normalization,Go that the expected

(10.2 amplitude of the noiseis unity: (|Ny|?)=1. We also as-
where the angles above are standard spherical coordinatesJHM€ _tha’C,,’n_ls positive and real. Note that with this choice,
the (barred Earth frame. One thus obtains the following the “signal” is dimensionless. From E¢9.10 this gives

multipole moments: -
Poo= V4, Cpn=2 \ﬁ
T

2} -1/2

* df °°
| e B P

2 4
pl,—lzﬁproper ?Smg?", (11
4 Having chosen a normalization, we can list the expected sig-
P1,0= Bproper\| 370977, nals for a given detector. If the actual signal value exceeds
o 1.65 then it has been detected with 90% confidence. For
P11=— Bproper |~ sin97e, example, in the case of the dipole source just discussed, the
’ 3 expected signals are given by H§.3) as
p,m=0 for />1. (10.3
d his signal, th imal filter functi BHg\/ﬂ) fw af
To detect this signal, the cl)ptlma iiter functions are (Sm =72V T ow —=P1(|f)P(If])
* *
Qm(f)_cmf3P1(|f|)P2(|f|)/;m| P /mY/m» (104> 0 27112
x| 2, Prm¥on(f) (11.2
whereC,, is an (irrelevan} normalization constant. Making 7 =Iml
use of the pptimal filter function®, and Q, for the mono- Evaluating this for our previous example gives
pole and dipole terms, we can make predictions about how
large (), needs to be in order th&, andS, are observable T Qewhioo
with a given level of confidence in a given observation time. 1.654/ — for initial LIGO,
1 yearl.6X10

We can express the sensitivity of a search for it
harmonic in terms of the minimum value 6fg,, necessary (So)= T Qewhioo
to observe it with 90% confidence. For 90% confidence we L85V T Veariox 10 ™ for advanced LIGO,
need a signal-to-noise of 1.65. The minimum value)gd, '
is then given for themth harmonic by

T  Qgwh?
OH3 [ (=  df \/ SW 100 for initial LIGO
(m) _ ~ .0 1.65 — for initia ,
Qgg9=(1.69 SO?T o FPLHPAT) s 1 year2.5><1(2
1)~ Qewh
. 21-112 165y W00 o advanced LIGO,
X /zm‘ p/my/m(f) . (105) 1 year5.3>< 10
These values are shown in Table | for the initial and ad- (Sm)=0 for m=2. (11.3
vanced LIGO detectors. We note that there are potential
sources of sufficient intensity that a dipole might be observ- XIl. GALACTIC SOURCES

able with the advanced LIGO detector. These include sto- . . _ o .
chastic backgrounds due to cosmic strings or to a population In this section we consider the possibility of detecting

of unresolved cosmological-distance supernovae. anisotropies in the stochastic gravitational wave background
assuming that this background either originates in, or is scat-

XI. FILTER NORMALIZATIONS ter((jed]c in the samedyvaybas,c;h.e Iuhmmous matter in (?]ur gallaxy,

AND SIGNAL STRENGTHS and for sources distributed in the same way as the galactic

halo. It appears very unlikely that in the LIGO-VIRGO-GEO
Specific models for an anisotropic background predictfrequency band there are any sources of a stochastic
signal harmonicss,, of definite amplitudes and phases. The gravitational-wave background distributed in this way. How-
phase of a givel$,, depends upon the chosen origin of time; ever, the absence of such harmonics would be one way to
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TABLE I. Sensitivity of initial and advanced LIGO detectors to a dipole term in the gravitational sto-
chastic background, arising from motion of our local system. This table shows the intensity of stochastic
background required to detect either the monop&g ©r dipole (S;) term in the signal, with 90% confi-
dence, in one year of observation.

Initial LIGO Advanced LIGO
Monopole fn=0) Qo00o=1.6X10 ;3 Qgye=1.6X10" ;2
Dipole (m=1) Qgo0=2.5X103h; Qg00,="5.3X10 h;

demonstrate that a stochastic background had extra-galactichere up=1072L pc 2, h,=2775 pc, h,=121 pc, ug

origin. =6208L, pc 2, hg=634 pc, andeg=0.26. HereK, de-
For the distribution of luminous matter in the galaxy we notes the modified Bessel function of order O.

consider a set of three models constructed by Kent, Dame, The second moddKDF2) takes

and Fazid 13] to model 2.4 um data from the infrared tele-

scope taken as part of the Spacelab 2 mission. These models exd —|Z/(2h,)|]

all assume cylindrical symmetry and take the total luminos- vo(r,2)=ppe "M ———— 2 - (12.3

ity to consist of two components; oney(r,z), modeling the 2h,

disk and the otherpg(r,z), modeling the central bulge,

wherer andz denote cylindrical polar coordinates based at K((r4+72/(1— RN
the center of the galaxy. ve(r,2)=pg or#lzi o))} B)y (124
The first model, which we refer to as Kent-Dame-Fazio 1 mhg

(KDF1), takes
where up=1208L pc 2, h,=2694 pc, h,=204 pc, ug

sech[z/(2h,)] =7710L pc 2, hg=500 pc, andeg=0.19.
— —r/h, O] ’ B ) B
vo(r2)=ppe " ——p—— (12D The third mode(KDF3) takes
Ko({r*+[2/(1- eg)]*}"Ihg) exp{— |Z/[2h,(D) 1]}
r,z)= , 12. — —r/h, z
vp(r,2)=pg hs (12.2 vp(r,2)=pupe 2h.(1) , (125

TABLE Il. Sensitivity of the initial LIGO detector to the first 25 multipoles in the gravitational stochastic
background, assumed to follow the luminosity of the galaxy or galactic halo. This table shows the intensity
of stochastic background required to detect the multigg/evith 90% confidence in one year of observation.

m hZo6200 KDF1 hZ06Q00 KDF2 hZooa00 KDF3 hZo62e00 halo
0 1.4¢10°° 1.4x10°5 1.4x10°° 3.9x10°3
1 1.4x10°° 1.3x10°% 1.3x10°° 3.4x10°°
2 1.9x10°° 1.9x10°5 1.8x10°5 3.6x10°3
3 3.0x10°° 2.9x10°° 2.9x10°° 4.2x10°3
4 4.6x10°° 4.4x10°° 4.6x107° 5.0x10°3
5 7.3x10°° 6.9x10°5 7.1x10°° 6.1x10°°
6 7.8x10°° 7.4x<10°5 7.5x10°° 8.1x 1073
7 8.6x107° 8.0x107° 8.3x10°° 1.2x10°2
8 1.2x1074 1.1x10°* 1.1x10°* 1.7x1072
9 2.0x107* 2.0x10°4 1.9x10°4 2.7x107°2
10 3.6x10°4 4.0x1074 3.5x10°* 4.3x10°?
11 5.0<10°* 5.2x10°4 4.9x10°% 7.0x10°2
12 6.3x10°4 6.2x10°4 6.2x10°4 1.2x1071
13 9.2x10°4 8.9x10™4 9.0x10°4 2.0x10!
14 1.5x10°3 1.5x10°2 1.5x10°2 3.1x10°1
15 2.4x10°8 2.5x10°3 2.4x10°8 5.0x10°!
16 3.6x10°8 3.7x10°8 3.6x10°° 7.8x10°1
17 5.1x10°3 5.2x10°° 5.1x10°° 1.2x10°
18 7.3x10°8 7.2x10°8 7.1x10°3 1.7x10°
19 1.0x1072 1.0x1072 1.0x10°2 2.4x10°
20 1.4 1072 1.4x10°2 1.4x10°2 3.6x10°
21 2.1x 1072 2.1x 1072 2.0 1072 5.0 10°
22 2.9x107°2 2.9x10°2 2.8x10°2 6.5x 10°
23 4.0<107? 3.9x10°? 3.8x107? 8.9x 1

24 5.1x 102 5.0<10°? 4.9x1072 1.2x10
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TABLE lll. Sensitivity of the advanced LIGO detector to the first 25 multipoles in the gravitational
stochastic background, assumed to follow the luminosity of the galaxy or galactic halo. This table shows the
intensity of stochastic background required to detect the multiBglevith 90% confidence in one year of

observation.

m hZ06000s KDF1 hZ00 o006 KDF2 hZ,6Qg0 KDF3 hZ6g0y halo
0 1.8x10° %0 1.7x10°1° 1.7x10°1° 6.7x10°8
1 4.8x10°10 4.7x10°10 4.7x10°10 7.8x10°8

2 1.1x10°° 1.0x10°° 1.0x10°° 1.1x10°7
3 5.3x107° 5.0<10°° 5.4x10°° 2.6x10°7
4 6.4x10°° 6.0x107° 6.3x10°° 6.4x10°7

5 1.1x10°8 1.0x10°8 1.0x10°8 1.6x10°°
6 3.1x10°8 3.0x10°8 3.0x10°8 4.4x10°°

7 1.2x10°7 1.3x10°7 1.2x10°7 1.3x10°°
8 2.4x10°7 2.4x10°7 2.4x10°7 2.7X10°°
9 4.5x<10°7 4.2x10°7 4.5%x1077 6.3x10°°
10 1.1x10°° 1.0x10°6 1.1x10°6 1.3x10°*
11 3.0<10°6 3.3x10°° 3.1x10°° 2.6x10°4
12 5.5<10°° 5.5x10°° 5.7x10°° 4.5x10°4
13 8.3x10°° 7.7x10°6 8.7x10°° 7.7x1074
14 151075 1.5x10°3 1.6x10°5 1.3x10°8
15 3.0<10°% 3.2x10°° 3.1x10°° 2.0x10°3
16 4.4¢10°° 4.4%x10°° 4.7x107° 3.0x10°3
17 6.0<10°° 5.6x10°° 6.4x10°° 4.4x10°3
18 9.4<10°5 9.0x10°° 1.0x10°* 6.4x10°°
19 1.6x10°4 1.6x10°4 1.7x1074 9.0x10°3
20 2.1x10°4 2.1x10°4 2.3x10°4 1.2x10°2
21 271074 2.5x10°4 3.0x1074 1.7x1072
22 3.9x10°4 3.7x10°4 4.2x1074 2.3x10°2
23 5.9<10°* 5.8x10°4 6.4x10°* 3.0x10°?
24 7.8x10°4 7.5x10°4 8.4x10°4 3.9x 102

Ko(r4+[z/(1- 65)]4}1/4/h5) the galaxy. It is standard to express this in terms of the equa-
vp(r,z)=ug , (12.6  torial coordinate systerfil4] in which the z axis is taken

h i L . :
e along the celestial north pole, theaxis is taken in the di-

where pup=978Lg pc 2, h,=3001pc, pmg=7395L¢ rection of the(1950 vernal equinox. 90% § anda are taken
pc 2, hg=667 pc, eg=0.39, andh,(r) is now a function &S the spherical polar coordinates corresponding to these

given by axes. In terms of these, the direction to the galactic center is
given by
Pmins T <I'min, a=265.6°, &5=—28.9° (12.9
h,(r)= (r =T min) and the direction of the galactic north pole by
it (o =)= e 15 i 192.25°, 5=27.4° (12.10
min a= . , = K .
(12.7

. We take the equatorial coordinate system to define our cos-
with hmin= 165 pc, rmin=5300 pc, ho=247 pc, and

r o =8000 pc, the last two quantities being the height of theTiC frame. We now determinié((2) by choosing a direction
galactic disk at the position of the Sun and the distance of thé€ and integrating the intensity along that direction. The
Sun from the galactic center, respectively. number of sources in an element of solid and{@ at dis-
Finally, as a model for the galactic halo we take the modetance isD from the Earth is proportional te D2dDdQ.
of Young[15]: The intensity of the source drops likeDl7 and hence the
integrated intensity is just proportional fardD. In this way
we arrive atp -, for each model and hence by E40.5 the
minimum value of(},, necessary for detection of each mul-
(12.9 tipole. To ensure convergence of the sum in this case it was
necessary to include contributions to the sumAoup to of
whereR=(r2+z?)¥? denotes the distance from the galactic order 100(dependent omm). Tables Il and Ill show the
center andR.= 2700 pc. intensity of the stochastic background distributed in this way
The final piece of information we need before we canrequired to detect multipole moments fram=0 to m=24
calculate the multipole momenfs ,, for such a distribution for the four models with 90% confidence in one year of
is the direction to the galactic center and the orientation obbservation for initial and advanced LIGO, respectively.

exf — 7.669R/Ro) Y]
(R/ Re)7/8 ’

Vhalo— Mhalo R>0.2R,,



56 DETECTION OF ANISOTROPIES IN THE ... 561

XIlI. CONCLUSION so that it is only necessary to deal with the case0. For
. . k=0 we have
In this paper, we have shown how the signals from a pair "
of gravitational wave detectors may be analyzed to search for PK(U) = (= 1)%(1— u2)k2 P.(u A3
anisotropies in the stochastic gravitational wave background. AW=(=1X ) duf AW (A3)

We have shown how the correlation between two detectors. .
may be determined with an averaging time short compared t8'/'"9 "
a day but long compared to the light travel time between the 1 -
detectors, and how this correlation may be decomposed into Z‘}(x)=(—1)kJ71du éuxuN(l_uz)kWP/(u)'
harmonics of Earth’s rotation. We have calculated the signal- (A4)
to-noise ratios associated with such measurements, and
shown that certain types of anisotropy might reasonably bdhe presence of the factor {u©)“ now ensures that when
detected with instruments that will be available in the not-we integrate by partk times no boundary terms appear so
too-distant future. For example the anisotropy due to outhat
motion with respect to the cosmological rest frame might 1 ko
well be observable with a second-generation LIGO detector. Z‘,;(X):f 1dU P/(U)W[G'UXUN(l—UZ)k]- (A5)

At this point, it is difficult to proceed further without a -
more detailed knowledge of the instrumental data that will beThe derivative can be expanded by the Liebniz rule to give

Z)k

forthcoming. The results given in this paper make it straight- k
forward to predict the expected harmonic amplitu@gsof > (%) Prsrsr(U)EYX, (AB)
the detector correlation for a given anisotropic distribution r=0

p,m of gravitational wave background. It is more difficult to
go the other way. This would involve using a given set o
observed harmonic amplitud&s, to obtain the values dfor )
constraints onthe p,,,. There are a variety of fitting tech- :f jux, M
nigues that could be used—making the appropriate choice j}I(X) _1du TP A(u). (A7)
will probably require real data.

fwhere Pna ks r(U) is a polynomial of degre&l+k+r. Our
problem is thus reduced to that of finding

For M =0 this is an elementary integral given by
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T = (=M ST 2(%). (A9)
APPENDIX: ANALYTIC EVALUATION OF INTEGRALS
In this appendix we derive a closed form expression forThes-e deriv_atives may in turn be exprefssed ba_lck in terms of
the integral (undifferentiategl spherical Bessel functions using the rela-

. tions[16]
I‘}(x)=f du PX(uyuN(a—-ud)k2, (A1) d 1 o

-1 axl =577l = (7 D) 4a(X)]
whereN is a non-negative integer.

First we note that ko = ;J/(X)—J/H(x). (A10)
P/ (W)= (=) P W (A2)

ForM=1 to 8 we have

1t (/+1)
TA= 7yl 00~ gy ),
N Gt VA (277+2/-1) (/+1)(/+2)
T0= g perrn Y ermneva) W s ey o
A Gt O () 3/(/%-2) _ 3(/+1)(/P+2/-1)
Y T T L A P T N T e A PV P VR N TPV LA
(/+1)(/+2)(/+3)

T2/ D2/ +3) (27 +5) )
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N A/ =1)(/=2)(/=3) , 2/(/=1)(2/%=2/-T))
TG~ -3 -5 N @reses ne/-ne-5) W
3(2/4+4/3-6/2-8/+3) 2(/+1)(/+2)(2/°+6/-3)

R VU e LA vV S PV T Ve VI Vs VAL

(D7 +2)(/+3)(/+4)
(2/+7)(2/+5)(2/ +3) (27 + 1) 1+

(/=) =2)(/=3)(/~4) _ 5/(/~1)(/~2)(/?*~2/~5) _
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(/+D)(7+2)(/+3)(/+4)(/+5)(/+6)(/+T)(/+8) _
(2/+1)(2/+3)(2/ +5)(2/+7)(2/+9)(2/ +11)(2/ + 13 (2/ + 18]/ *8¥)-

)

(x)

(x)

Alternative forms may by obtained by use of EA10).
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