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By correlating the signals from a pair of gravitational-wave detectors, one can undertake sensitive searches
for a stochastic background of gravitational radiation. If the stochastic background is anisotropic, then this
correlated signal varies harmonically with Earth’s rotation. We calculate how the harmonics of this varying
signal are related to the multipole moments which characterize the anisotropy, and give a formula for the
signal-to-noise ratio of a given harmonic. The specific case of the two LIGO~Laser Interferometric Gravita-
tional Observatory! detectors, which will begin operation around the year 2000, is analyzed in detail. We
consider two possible examples of anisotropy. If the gravitational-wave stochastic background contains a
dipole intensity anisotropy whose origin~like that of the cosmic background radiation! is the motion of our
local system, then that anisotropy will be observable by the advanced LIGO detector~with 90% confidence in
one year of observation! if VGW.5.331028h100

22 . We also study the signal produced by stochastic sources
distributed in the same way as the luminous matter in the galactic disk, and in the same way as the galactic
halo. The anisotropy due to sources distributed as the galactic disk or as the galactic halo will be observable by
the advanced LIGO detector~with 90% confidence in one year of observation! if VGW.1.8310210h100

22 or
VGW.6.731028h100

22 , respectively.@S0556-2821~97!02812-9#

PACS number~s!: 04.80.Nn, 04.30.Db, 97.80.2d, 98.80.Es

I. INTRODUCTION

The design and construction of a number of new and more
sensitive detectors of gravitational radiation is currently un-
derway. These include the Laser Interferometric Gravita-
tional Wave Observatory~LIGO! detector being built in the
United States by a joint Caltech-MIT Collaboration@1#, the
VIRGO detector being built near Pisa by an Italian-French
Collaboration@2#, the GEO-600 detector being built in Han-
nover by an Anglo-German Collaboration@3#, and the
TAMA-300 detector being built near Tokyo@4#. There are
also several resonant bar detectors currently in operation, and
several more refined bar and interferometric detectors pres-
ently in the planning and proposal stages.

When two or more of these detectors are operating, it will
become possible to correlate their signals, and in this way, to
search for a stochastic background of gravitational radiation.
The technique for such a search was originally described in
work by Michelson@5#, Cristensen@6#, and Flanagan@7#. A
review of these techniques may be found in@8#. Such radia-
tion might be the result of processes that took place during
the very early universe. It might also result from the inco-
herent superposition of many faint unresolvable present-day
sources such as coalescing binary systems.

The stochastic gravitational-wave background might be

isotropic on the sky, or it might be anisotropic. For example,
if the background results from early-universe processes, then
it might be isotropic to about the same degree as the 2.7 K
electromagnetic background radiation. On the other hand, if
the background is due to white-dwarf binaries in our own
galaxy, then they might be distributed in a pancake or bar
which mimics the shape of the observed luminous matter in
our galaxy. In this paper, we show how the correlated signal
from a pair of gravitational wave detectors is related to mul-
tipole moments which characterize the anisotropy. This
should permit a signal to be analyzed to search for~or place
upper limits on! the multipole moments which characterize
the anisotropy. In this paper, we will assume that the reader
is already familiar with the work previously cited~Refs.
@5–8#! on stochastic background detection.

These paper is organized as follows. In Sec. II we show
how a background of stochastic gravitational radiation may
be decomposed in a plane-wave expansion, with the coeffi-
cients of the expansion treated as stochastic random vari-
ables. In Sec. III the properties of these random variables are
related to the~frequency! spectrum and spatial distribution of
the radiation, and a set of multipole moments are introduced
which characterize the anisotropies of the stochastic back-
ground. These anisotropies may be searched for by studying
the variations of the detector outputs as the Earth rotates
relative to the fixed cosmic frame. In Sec. IV we show how
the correlation between a pair of detectors fixed on the Earth
varies with time as the Earth rotates, and detail how that
correlation is related to the anisotropies of the stochastic
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gravitational background. The variation of the correlation
with Earth’s rotation may be decomposed into harmonics of
Earth’s period. In Sec. V we introduce a set of functions
g l m( f ) which are generalizations of the well-known overlap
reduction functiong( f ) of Refs. @5–8#. These functions
characterize the effect of thel ,m anisotropy multipole on
themth harmonic of the detector correlation. The principal
result of this paper is to compute these functions for the
LIGO pair of detectors. This is done by introducing two
special frames of reference, fixed with respect to the Earth,
in Sec. VI, and then performing a set of integrations in
Sec. VII. The final integrations are performed and explicit
formulas for theg l m( f ) are obtained in Sec. VIII. In Sec. IX
we analyze the signal-to-noise ratios associated with the
mth harmonic, and give a formula which may be used to
determine if a given anisotropy is detectable or not. Follow-
ing this, we consider two specific examples of anisotropy. In
Sec. X we consider a dipole anisotropy in the stochastic
background resulting from our local proper motion. In order
to predict the harmonics which result, it is necessary to adopt
conventions for the normalization of the optimal filters; these
choices are detailed in Sec. XI. In Sec. XII we then consider
the anisotropies in the stochastic gravitational wave back-
ground that would arise from sources distributed in the same
way as our galaxy, and its halo. This is followed by a short
conclusion. Throughout this paper,c denotes the speed of
light andG denotes Newton’s gravitational constant.

II. THE STOCHASTIC BACKGROUND

The gravitational wave background may be described in
terms of a perturbation to the Minkowski metric of space-
time:

ds252c2dt21dxW21hab~ t,xW !dxadxb. ~2.1!

In transverse traceless gauge, this can be written in the form
of a plane wave expansion as

hab~ t,xW !5(
A

E
2`

`

d fE
S2
dV̂ hA~ f ,V̂!

3e2p i f ~ t2V̂•xW /c!eab
A ~V̂ !. ~2.2!

HerehA( f ,V̂) is an arbitrary complex function satisfying the

relation hA(2 f ,V̂)5hA* ( f ,V̂). The polarization states are

labeled byA51,3, and V̂ is a unit vector on the two
sphere. The wave vector of the corresponding component of

the perturbation iskW52p f V̂/c. The polarization tensors
eab
A appearing in these relations may be given explicitly. In
standard angular coordinates (u,f) on the two sphere one
may write

V̂5cosfsinu x̂1sinfsinu ŷ1cosu ẑ, ~2.3!

m̂5sinf x̂2cosf ŷ, ~2.4!

n̂5cosfcosu x̂1sinfcosu ŷ2sinu ẑ ~2.5!

and then choose

eab
1 ~V̂ !5mamb2nanb , ~2.6!

eab
3 ~V̂ !5manb1namb . ~2.7!

To simplify matters later~but without any loss of generality!
we assume that theẑ vector points along the direction of the
Earth’s rotation axis. One can verify by inspection thatm̂

andn̂ are a pair of orthogonal unit-length vectors in the plane

perpendicular toV̂. It is simple to show that any rotation of
the vectorsm̂ andn̂ within the plane that they define simply
corresponds to a trivial redefinition of the complex wave
amplitudesh1 andh3 .

To describe a stochastic source, we treat the complex am-

plitudehA( f ,V̂) as a random variable with zero mean value.
In this paper, we consider stochastic sources which arenot
isotropic. In principle, such a source has spectral properties
which depends upon amplitude and frequency in an arbitrary
way. For simplicity, in this paperwe consider only stochastic
sources whose directional dependence is frequency indepen-
dent. The dependence of the stochastic background on fre-
quency and direction may be stated in terms of the expecta-
tion value of the product of two random variables

hA( f ,V̂):

^hA* ~ f ,V̂!hA8~ f 8,V̂8!&

5dAA8d~ f2 f 8!d2~V̂,V̂8!H~ f !P~V̂ !. ~2.8!

Here d2(V̂,V̂8) is a covariant two-dimensional delta-
function on the unit two-sphere. For a general stochastic

source, the quantityH( f )P(V̂) which appears on the right-
hand side~RHS! would be an arbitrary function of frequency
and direction. However, our assumption that the directional
dependence is frequency independent implies that the RHS
factors as shown.~Note that the expressions which we later
derive for signal-to-noise ratios and expected signal strengths
may be trivially extended to include the most general case.!

III. SPECTRUM OF THE STOCHASTIC BACKGROUND

The functionH( f ) determines the spectrum of the gravi-
tational radiation. The energy density in gravitational waves
is given by

rGW5
c2

32pG
^ḣabḣ

ab&, ~3.1!

where the overdot denotes a time derivative, and both tensors
are evaluated at the same space-time point (t,xW ). Substituting
the plane wave expansion~2.2! into this formula and using
Eq. ~2.8! yields

^ḣab~ t,xW !ḣab~ t,xW !&

5(
A

E
2`

`

d fE
S2
dV̂ 4p2f 2H~ f !P~V̂ !eab

A ~V̂ !eA
ab~V̂ !.

~3.2!

Since(Aeab
A eA

ab54 one has
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^ḣabḣ
ab&516p2E dV̂P~V̂ !E

2`

`

d f f2H~ f !

532p2E dV̂P~V̂ !E
0

`

d f f2H~ f !. ~3.3!

In describing gravitational wave stochastic backgrounds, it is
conventional to compare the energy density to the critical
energy densityrcritical required~today! to close the universe.
This critical energy density is determined by the rate at
which the universe is expanding today. Let us denote the
Hubble expansion rate today by

H05100h100
km sec21

Mpc
53.2310218h100 sec

21

51.1310228ch100 cm
21. ~3.4!

The value ofH0 is determined by the dimensionless factor of
h100 which probably lies within the range 1/2,h100,1. The
critical energy density required to just close the universe is

rcritical5
3c2H0

2

8pG
'1.631028h100

2 ergs/cm3. ~3.5!

The spectrum of anisotropic stochastic gravitational wave
background is defined by a dimensionless function of fre-
quencyf :

VGW~ f ![
1

rcritical

drGW
dlnf

. ~3.6!

HeredrGW is the energy density in gravitational waves con-
tained within the frequency interval (f , f1d f). Using the
definition VGW one obtains the relationship between the
spectrumVGW andH( f ). For f>0 one has

VGW~ f !5
f

rcritical

drGW
d f

5 f
8pG

3c2H0
2

c2

32pG
32p2f 2H~ f !E dV̂P~V̂ !

5
8p2

3H0
2 f

3H~ f !E dV̂P~V̂ !. ~3.7!

This formula shows the precise interpretation ofP(V̂). The
stochastic background energy density is made of contribu-

tions arriving from all directionsV̂ on the sky. The actual
value of VGW( f ) is determined by the average value of

P(V̂); the direction dependence of this function is the same
as the direction dependence of the arriving radiation inten-
sity.

For this reason, wedefine the multipole moments pl m of
the stochastic background radiation by the expansion of

P(V̂) in terms of spherical harmonic functions:

P~V̂ ![(
l m

pl mYl m~V̂ !, ~3.8!

where the sum is defined by

(
l m

[ (
l 50

`

(
m52l

l

5 (
m52`

`

(
l 5umu

`

. ~3.9!

In addition, without loss of generality we adopt the conven-
tion that the monopole moment is normalized by the condi-
tion

p00[A4p⇒E dV̂P~V̂ ![4p, ~3.10!

where we assume that the spherical harmonic functions are
normalized in the conventional way, so that the integrals of
their squares over the unit sphere gives unity. Hence the
spectrum of radiation is determined entirely byH( f ) since
for f>0 one has

VGW~ f !5
32p3

3H0
2 f

3H~ f !. ~3.11!

The directionality of the arriving radiation is determined en-

tirely by the functionP(V̂). Our fundamental assumption
here is that the pattern of the intensity of the stochastic back-
ground isfixed in a frame of reference at rest with respect to
the cosmological fluid.In other words, formula~3.8! for

P(V̂) is expressed in a set of coordinatesx,y,z which are
fixed with respect to the distant stars. In those coordinates,
the multipole momentspl m are constants, independent of
time. The problem we address in this paper is this: how do
we determine, from the data stream of a pair of interferomet-
ric detectors which are rotating with the Earth, the values of
~or bounds on! the multipole momentspl m?

IV. DETECTION STRATEGY

To determine the multipole momentspl m the basic idea is
to correlate the outputs of two gravitational wave detectors,
and to look for variations of this correlated signal that are
harmonics of Earth’s rotational frequency. For this purpose,
we need to consider the relationship between two different
time ~or frequency! scales that occur.

The first time scale is that defined by the light travel time
DT between the two sites. For the remainder of this section,
we will assume that the two sites are the Hanford and Liv-
ingston LIGO detectors, so thatDT510.00 msec. The sec-
ond time scale is the period of Earth’s rotation about its axis
relative to the cosmic frame,Te58.63104 sec51
sidereal day. Because of the enormous disparity between
these two time scales, we can define a third time scale, which
we will refer to as the averaging time scalet. We choose
t in the range

DT!t!Te, ~4.1!

for example,t530 sec. It is then possible to examine corre-
lations between the two detectors as a function of time, av-
eraged over periods of lengtht. Becauset is much shorter
thanTe, the correlation between the two detectors will vary
as the Earth rotates relative to the fixed cosmological frame,

because of the anisotropy inP(V̂). On the other hand, be-
causet is much longer than the light travel time between the
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two detectors, and because the detectors are sensitive to fre-
quenciesf'1/DT, there is a significant correlated signal on
time scales shorter thant.

Denote the output of the first detector by

s1~ t !5h1~ t !1n1~ t !, ~4.2!

whereh1 is the strain due to the stochastic background and
n1 is the intrinsic noise of the first detector. In similar fash-
ion, the output of the second detector is

s2~ t !5h2~ t !1n2~ t !. ~4.3!

Let us use the subscripti51,2 to label the detectors, so, for
example,i51 denotes the Hanford, WA LIGO detector and
i52 denotes the Livingston, LA LIGO detector. The re-
sponsehi of detectori to the gravitational radiation is given
by

hi~ t !5di
ab~ t !hab@ t,xW i~ t !#, ~4.4!

where the position of detectori ’s corner station is denoted by
xW i(t). In this expression, the symmetric traceless tensors
di
ab(t) are given by

di
ab~ t !5 1

2 @X̂i
a~ t !X̂i

b~ t !2Ŷi
a~ t !Ŷi

b~ t !#, ~4.5!

where the directions of detectori ’s arms are defined by the
unit spatial vectorsX̂i

a(t) and Ŷi
a(t). Note thatboth di

ab(t)

and xW i(t) are functions of time, because the Earth rotates
with respect to the cosmological rest frame.

Define quantities which are the Fourier transforms of the
signals, evaluated over an interval of one averaging timet
centered at timet:

s̃ i~ f ,t !5E
t2t/2

t1t/2

dt8e22p i f t 8si~ t8! for i51,2. ~4.6!

These Fourier transforms are easily evaluated. Substituting
the plane wave expansion~2.2! into the formula for the strain
~4.4! and taking the Fourier transform~4.6! we obtain

s̃ i~ f ,t !5(
A

E dV̂E
2`

`

d f8e2p i ~ f 82 f !tdt~ f2 f 8!

3hA~ f 8,V̂!di
ab~ t !eab

A ~V̂ !e22p i f 8V̂•xW i ~ t !/c

1noise term. ~4.7!

In this expression, we have made use of the fact that the
averaging timet is much less than the rotation period of the
EarthDTe, so that the vectorsXi

a(t), Yi
a(t), andxW i(t) may

be treated as constants and taken outside of the time integra-
tion in the Fourier transform~4.6!. We have also defined the
‘‘finite time’’ approximation to the Dirac delta function

dt~ f ![E
2t/2

t/2

dt8e22p i f t 85
sin~p f t!

p f
, ~4.8!

which reduces to the Dirac delta functiond( f ) in the limit
t→`, but has the property thatdt(0)5t. The final term on
the right-hand side of Eq.~4.7! is linearly proportional to the
noise in detectori .

We now define the ‘‘signal’’

S~ t !5E
2`

`

d f s̃1* ~ f ,t ! s̃2~ f ,t !Q̃~ f !, ~4.9!

whereQ̃( f ) is an optimal filter function, to be determined.
Let us now determine the expectation value ofS(t) and show
how it incorporates information about the multipole mo-
ments of the stochastic background. To find the expected
valueS(t) we begin by assuming that the noise in each de-
tector has zero mean value, and is uncorrelated with noise
and gravitational strain in the other detector. Under these
assumptions, we find

^S~ t !&5E
2`

`

d f Q̃~ f !(
A

(
A8

E
2`

`

d f8E
2`

`

d f9E dV̂

3E dV̂8e22p i ~ f 82 f !te2p i ~ f 92 f !tdt~ f2 f 8!dt~ f2 f 9!

3d1
ab~ t !d2

cd~ t !eab
A ~V̂ !ecd

A8~V̂8!exp$2p i @ f 8V̂•xW1~ t !

2 f 9V̂8•xW2~ t !#/c%^hA* ~ f 8,V̂!hA8~ f 9,V̂8!&.

We now substitute in the expectation value for the product of
the amplitudes~2.8!. The integration overf 9 is now trivial.
In the resulting expression, because 1/t is much smaller than
the ‘‘bandwidth’’ 1/DT of the signals, one of the finite-width
delta functionsdt may be replaced by a Diracd function.
The integration overf 8 is then trivial. The other finite-width
d function is then evaluated at zero argument, giving rise to
a factor oft. One thus obtains

^S~ t !&5td1
ab~ t !d2

cd~ t !E
2`

`

d f Q̃~ f !H~ f !

3E dV̂P~V̂ !e2p i f V̂•DxW~ t !/c(
A

eab
A ~V̂ !ecd

A ~V̂ !,

~4.10!

whereDxW (t)5xW1(t)2xW2(t) is the time-dependent separation
vector between the two interferometer sites.

Not surprisingly, this previous expression can be easily

simplified for the isotropic caseP(V̂)51. In this instance,
the sum over polarizations and integral over directions can
be performed explicitly, yielding (8p/5 times! a time-
independent function of frequency known as the overlap re-
duction functiong( f ). This overlap reduction function is
given by

g~ f ![
5

8p
d1
abd2

cdE
S2
dV̂ e2p i f V̂•DxW /c

3@eab
1 ~V̂ !ecd

1 ~V̂ !1eab
3 ~V̂ !ecd

3 ~V̂ !#. ~4.11!

Notice that in Eq.~4.11! the dependence of the positions and
orientations of the detectors upon timet is not shown; this is
becauseg( f ) depends only upon therelative positions and
orientations, which is time~or Earth-position! independent.
Thus, in the case of an isotropic stochastic background, one
finds
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P~V̂ !51⇒^S~ t !&5
8p

5
tE

2`

`

d f Q̃~ f !H~ f !g~ f !. ~4.12!

This is Eq.~30! of Ref. @8#. In the present paper, we are most

interested in the anisotropic case whereP(V̂) varies with
direction. In this case, the time variation of the tensors
di
ab(t) andDxW (t) will provide a time-dependent variation of
the signalS(t).

V. ROTATION HARMONICS

Because the rotation of the Earth is periodic with period
Te and angular frequencyve52p/Te the expected signal
~4.10! varies with the same period. It can therefore be repre-
sented by the Fourier series

^S~ t !&5 (
m52`

`

^Sm&eimvet. ~5.1!

Because the signal is real, the amplitudes of the different
harmonics satisfySm5S2m* . The amplitudes are quantities
which would be determined by Fourier transforming the ac-
tual data:

Sm5
1

TE0
T

dt e2 imv etS~ t !. ~5.2!

HereT represents the total observation time, which later en-
ters into Eq.~9.4! and which is assumed to be is a multiple of
Earth’s rotation periodTe. The harmonic amplitudesSm are
the ~at least in principle! observable quantities on which any
data analysis must be based; it is their expected values
^Sm& which arise in the formula for the expected signal. Note
that in an actual observation or measurement, instrumental
noise in the gravitational-wave detectors would preventSm
from taking on itsexpectedvalue. In Sec. IX we analyze the
typical deviations ofSm from ^Sm& and in this way determine
how accuratelySm may in fact be measured.

Because we have assumed that thez axis of our~cosmic!
coordinate system points along the direction of Earth’s axis,
themth rotation harmonic can only result from anisotropies
whose phase varies with anglef as exp(imf). These are the
anisotropies associated with theYl m . Hence

^Sm&5
8p

5
tE

2`

`

d f Q̃~ f !H~ f ! (
l 5umu

`

pl mg l m~ f !. ~5.3!

The functionsg l m( f ) are generalizations of the overlap re-
duction function g( f ), which express the~frequency-
dependent! contribution of thel th multipole moment to the
mth harmonic of the signal, with respect to Earth’s rotation.
These are given by

g l m~ f !5
5

8p

1

2pE0
2p

da e2 imad1
ab~a!d2

cd~a!

3E dV̂ Yl m~V̂ !e2p i f V̂•DxW~a!/c

3(
A

eab
A ~V̂ !ecd

A ~V̂ !. ~5.4!

In this expression, the angle of rotation of the earth about its
axis~measured from some arbitrary fiducial point! is denoted
by aP@0,2p) so a5vet1const (mod 2p ). The ‘‘time-
dependent’’ quantitiesdi

ab andDxW may equivalently be ex-
pressed as functions ofa.

The problem at hand is now a mathematical one—to cal-
culate the functionsg l m( f ) which are generalizations of the
overlap reduction functiong( f ). For the monopole moment
(l 5m50) it is easy to see that the integrand above is in-
dependent of Earth positiona because the overlap reduction
function~4.11! only depends upon the relative orientations of
the detectors, which isa independent, giving

g00~ f !5~4p!21/2g~ f !. ~5.5!

In the next parts of this paper, we will show how to evaluate
the otherg l m .

Our first task is to evaluate the integrals that appear in Eq.
~5.4!. The productd1

ab(a)d2
cd(a) is a quartic polynomial in

sina and cosa. One approach would be to attempt to perform

the integral overV̂, to obtain the resulting function ofa, and
then to evaluate the integral overa. However, this approach
is rather cumbersome.

A more promising method is to consider the projector

onto the plane perpendicular toV̂, which may be calculated
in terms of the vectors defined by Eqs.~2.3! and ~2.4!:

Qab5dab2V̂aV̂b5m̂am̂b1n̂an̂b . ~5.6!

A couple minutes of algebra starting with Eqs.~2.6! and
~2.7! quickly establishes the identity

(
A

eab
A ~V̂ !ecd

A ~V̂ !5QacQbd1QadQbc2QabQcd . ~5.7!

We then define the set of integrals

Cabcd~a!5E dV̂ Yl m~V̂ !e2p i f V̂•DxW~a!/cV̂aV̂bV̂cV̂d .

~5.8!

The desired integrals can then be expressed in terms of this
quantity. For convenience, we introduce a symbol to handle
the contractions that occur. This is a constant tensor defined
by

Qabcd
pqrs52dacdbdd

pqd rs24dacd
pqdb

r dd
s1da

pdb
qdc

rdd
s.

~5.9!

Making use of the fact that each of thedi
ab is symmetric in

its tensor indices, and traceless, we may then write

g l m~ f !5
5

8p

1

2pE0
2p

da e2 imad1
ab~a!

3d2
cd~a!Qabcd

pqrsCpqrs~a!. ~5.10!

From this definition it is easy to show that
g l ,2m5(21)l 1mg l ,m* . This follows from the parity trans-
formation property of the spherical harmonics

56 549DETECTION OF ANISOTROPIES IN THE . . .



Yl m(2V̂)5(21)l Yl m(V̂). In order to now evaluate
Cabcd it is convenient to introduce some additional coordi-
nate systems.

VI. COORDINATE FRAMES

The vectors being used in this calculation are three-
dimensional spatial vectors in flat CartesianR3. Up to this
point, we have been using a coordinate system which is fixed
with respect to the cosmological fluid, and in which the spa-
tial pattern of the perturbations of the stochastic background
is assumed to be time independent. This frame of reference is
the ‘‘unprimed’’ frame; vectors expressed with respect to
these cosmic coordinates have unprimed indices. We have
also assumed~without any loss of generality! that thez axis
of this cosmic frame points along the direction of Earth’s
rotation axis.

At this point, for calculational purposes, it is convenient
to consider two additional coordinate systems. Thus, a given
vector V may be expressed in terms of its components in
three different frames:

Cosmic frame: Va,

Earth frame: Vā,

Computational frame: Va8.

The ‘‘Earth frame’’ is a coordinate system fixed to the Earth,
in which the third (z coordinate! points along the axis of
Earth’s rotation, in the direction of the north pole. Compo-
nents of vectors in this frame are denoted with ‘‘barred’’
indices. The second of these new coordinate systems will be
referred to as the ‘‘calculational’’ coordinate system. In this
frame, the components of vectors are ‘‘primed.’’ This frame
is fixed with respect to the Earth, and has its third (z coor-
dinate! pointing along the line between the two gravitational-
wave detectors.

The relationship between components of vectors in these
three coordinate frames may be written as matrix equations.
Each of the matrices which appears is a special case of a
rotation matrix which may be parametrized by Euler angles.
Throughout this paper, we use the Euler angle conventions
given by Eqs.~4.83!–~4.86! of Afkin @9# which are also the
conventions used in Eqs.~4.5! and ~4.43! of Rose@10#. It is
convenient to define a pair of rotations about thez and y
axes, respectively, by

Rz~a![S cosa sina 0

2sina cosa 0

0 0 1
D ,

Ry~b![S cosb 0 2sinb

0 1 0

sinb 0 cosb
D . ~6.1!

The most general possible rotation may be parametrized by
Euler angles and is defined by the matrix
R(a,b,g)5Rz(g)Ry(b)Rz(a). Note that the boldface sym-
bols here denote 333 square matrices.

The matrix which relates components of vectors in the
cosmic and Earth frames is simply rotation through angle
a about thez axis:

Xā5Ra
āXa, Ra

ā5R~a,0,0!5Rz~a!, ~6.2!

where the first index onR labels rows and the second index
labels columns, so that the operation appearing in the previ-
ous equation is ordinary multiplication of a column vector on
the right by a square matrix on the left. Note that the angle
a5vet varies with time.

Without loss of generality, assume that the freedom to
choose thex̄ and ȳ axis in the Earth frame has been used to
ensure that in this frame the separation vectorDxā between
the two detector sites has noȳ component. Using the two
LIGO sites as an example, the Earth-framex̄ axis would
point out from the center of the Earth at an angle 38.6881°
East of the 0° line of longitude~Greenwich, England!. In
this frame, the coordinates of the two detector sites and the
detector arms directions are

Hanford, Washington:x1
ā5S 707.41

24329.11

4614.74
D ā

km,

X̂1
ā5S 20.684779

0.476172

0.55167
D ā

,

Ŷ1
ā5S 20.720231

20.557622

20.412703
D ā

,

Livingston, Louisiana:x2
ā5S 3371.80

24329.11

3240.36
D ā

km,

X̂2
ā5S 20.65377

20.708366

20.266085
D ā

,

Ŷ2
ā5S 0.540953

20.191642

20.81893
D ā

.

It is obvious that, as claimed, the separation vector between

the two sitesx1
ā2x2

ā has vanishingȳ component. The matrix
which relates the components of the vectors in the computa-
tional and Earth frames is a rotation about theȳ axis:

Xā5Ra8
ā Xa8, Ra8

ā 5R~0,2b,0!5Ry~2b!, ~6.3!

whereb is a time-independent~or a-independent! angle, de-
termined by the relative orientation of the line between the
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two detector sites and Earth’s axis. For the two LIGO detec-
tors, the angle relating the Earth frame and the computational
frame is

b5262.71383°. ~6.4!

Within the computational frame, the separation vector be-
tween the two sites is

x1
a82x2

a852997.98 kmS 00
1
D ~6.5!

and the unit-length vectors defining the arm directions are

X̂1
a85S 0.1763580.476171

0.861486
D a8

, Ŷ1
a85S 20.69696

20.557623

0.450893
D a8

,

X̂2
a85S 20.536188

20.708366

0.459042
D a8

, Ŷ2
a85S 20.479814

20.191642

20.856185
D a8

.

~6.6!

These quantities will become useful later.

VII. COMPUTATION OF C

Our goal now is to calculateCabcd as defined in Eq.~5.8!.
To do this, we will express the spherical harmonic functions
Yl m(V)5Yl m(u,f) in terms of the ‘‘primed’’ coordinates
in the computational frame. Combining the transformations
~6.2! and~6.3! we obtain the relationship between vectors in
the cosmic and computational frames:

Va85Ry~b!Rz~a!Va5R~a,b,0!Va. ~7.1!

This transformation through Euler anglesa,b,0 induces a
simple change in the spherical harmonics. For a given value
of l the spherical harmonic functions in one frame are sim-
ply a sum of all the spherical harmonics with the same value
of l in the other frame. The relation between these two sets
of functions is given by the rotation matricesDmn

l , which are
closely related to Clebsch-Gordan coefficients

Yl m~u8,f8!5 (
k52l

l

Dkm
l ~a,b,0!Yl k~u,f!. ~7.2!

„See equation~4.260! of Arfkin @9#.… The inverse transfor-
mation is obtained by reversing the lower two indices on the
rotation matrix and complex conjugating:

Yl m~u,f!5 (
k52l

l

@Dmk
l ~a,b,0!#*Yl k~u8,f8!. ~7.3!

The rotation matrices are conveniently expressed by Eq.
~4.12! of Rose@10#:

Dmk
l ~a,b,g!5e2 imadmk

l ~b!e2 ikg. ~7.4!

Explicit formulas for thedmk
l may be given either in the form

of a sum or in ‘‘summed’’ form. The latter expression, given
by Eq. ~4.14! of Rose@10# is the most useful one for us. For
m>k,

dmk
l 5F ~ l 2k!! ~ l 1m!!

~ l 1k!! ~ l 2m!! G
1/2

3
~cosb/2!2l 1k2m~2sinb/2!m2k

~m2k!!

32F1Sm2l ,2k2l ;m2k11;2tan2
b

2 D . ~7.5!

Notice that because them<l the first argument of the Gauss
hypergeometric function2F1 is a nonpositive integer the hy-
pergeometric series2F1 terminates after a finite number of
terms. In fact it is possible to rewrite Eq.~7.5! in terms of
Jacobi polynomialsPn

(a,b) @11#, for m>k

dmk
l 5~21! l2mF ~ l 2m!! ~ l 1m!!

~ l 2k!! ~ l 1k!! G1/2S cosb2 Dm1k

3S 2sin
b

2 Dm2k

Pl 2m
~m1k,m2k!~2cosb!. ~7.6!

In the event thatm,k the dmk
l may be obtained from the

unitarity property, Eq.~4.15! of Rose@10#,

dmk
l ~b!5dkm

l ~2b!5~21!m2kdkm
l ~b!. ~7.7!

Note also that thedmk
l are real, so that we can drop the

complex conjugation that would otherwise have appeared.
The integral over the two-sphere which appears in Eq.

~5.8! can also be expressed as an integral over all directions
in the computational~primed! frame. In other words,

*dV̂5*dV̂8. So our integral may be expressed as

Cabcd~a!5 (
k52l

l

dmk
l ~b!3eimaNl

k

3E
0

p

sinu8du8e2p i fDTcosu8Pl
k ~cosu8!

3E
0

2p

df8eikf8V̂aV̂bV̂cV̂d , ~7.8!

where we have expressed the spherical harmonic functions in
terms of associated Legendre functionsPl

k , and
DT5ux12x2u/c denotes the light travel time between the
two detector sites~10.00 msec for the two LIGO detectors!.
The normalization constantsNl

k which relate the spherical
harmonics and the Legendre polynomials are

Nl
k5A2l11

4p

~ l2k!!

~ l1k!!
. ~7.9!

We will eventually be contracting the four indices ofC
with each other and with the indices of other tensors. Of
course such contractions yield the same result in any
coordinate frame, and it is easier to calculateC in the
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calculational ~primed! frame. Hence we may write
Cabcd(a)5Ra

a8Rb
b8Rc

c8Rd
d8Ca8b8c8d8, where Ra

a8
5Rz(2a)Ry(2b), and

Ca8b8c8d85eima (
k52l

l

dmk
l ~b!Nl

k E
0

p

sinu8du8

3e2p i fDTcosu8Pl
k ~cosu8!

3E
0

2p

df8eikf8V̂a8V̂b8V̂c8V̂d8. ~7.10!

The vectorV̂a8 is

V̂a85S cosf8sinu8

sinf8sinu8

cosu8
D a8

. ~7.11!

It is clear that the integral overf8 in Eq. ~7.10! vanishes
unlessk524,23, . . .,3,4. Thus even for largel the range
of summation overk only includes these values. There is a
sense in which this reflects the fact that our signal is a prod-
uct of the outputs of a pair of detectors, each of which has a
quadrupole antenna pattern. It is also noteworthy that the
remaining integral, over the variableu8, can also be done
explicitly for any distinct values ofl andk.

VIII. THE REMAINING INTEGRATIONS

We are now in a position to evaluate the remaining inte-
grals. We begin with the integral overa. We can rewrite
g l m from Eq. ~5.10! as

g l m~ f !5
5

8p

1

2pE0
2p

da e2 imaeimad1
a8b8~b!d2

c8d8~b!

3Qa8b8c8d8
p8q8r 8s8 (

k52l

l

dmk
l ~b!Nl

k E
0

p

sinu8du8

3e2p i fDTcosu8Pl
k ~cosu8!

3E
0

2p

df8eikf8V̂p8V̂q8V̂ r 8V̂s8.

In this integral, we have explicitly indicated all of the depen-
dence ona. Notice that whiledi

ab is a function ofa, in

computational coordinatesdi
a8b8(b) is independent ofa and

depends only uponb. Likewise, the tensorQa8b8c8d8
p8q8r 8s8 defined

by Eq. ~5.9! has constant components in the computational
frame. Hence the integral overa give a factor 2p:

g l m~ f !5
5

8p
d1
a8b8~b!d2

c8d8~b!

3Qa8b8c8d8
p8q8r 8s8 (

k52l

l

dmk
l ~b!Nl

k E
0

p

sinu8du8

3e2p i fDTcosu8Pl
k ~cosu8!

3E
0

2p

df8eikf8V̂p8V̂q8V̂ r 8V̂s8. ~8.1!

The form of this integral is interesting. The integral over
f8 will vanish unlessk524, . . . ,4, inwhich case it yields a
product of at most four factors of sinu8 and cosu8. Introduc-
ing a new variableu5cosu8 the two integrals appearing in
Eq. ~8.1! may be expressed as linear combinations of the
integrals

E
21

1

du e2p i fDTuPl
k ~u!uN~12u2! uku/2, ~8.2!

whereN is a non-negative integer bounded byN1uku<4.
Such integrals can be expressed in closed form as we show
in the Appendix.

From this point on, we consider only the case of the two
LIGO detectors. In this case the simplest way to proceed is to
compute

sk~u8!5d1
a8b8~b!d2

c8d8~b!Qa8b8c8d8
p8q8r 8s8

3E
0

2p

df8eikf8V̂p8V̂q8V̂ r 8V̂s8. ~8.3!

To evaluate this, we use definition~4.5! of thedi
ab , the con-

traction operator~5.9!, and the arm directions~6.6!. Substi-

tuting in the vectorV̂a8 given by Eq.~7.11! gives elementary
integrals overf8. The results are easily written in terms of
the variableu5cosu8:

s0~u!523.0130811.75421u210.945109u4,

s1~u!5@0.545110.543353i

2~1.695411.73284i ! u2# u ~12u2!1/2,

s2~u!5@20.042870511.41125i

1~0.011960420.670812i ! u2#~12u2!,

s3~u!5~20.24574410.227815i ! u ~12u2!3/2,

s4~u!5~0.049270910.00345516i ! ~12u2!2,

s2k~u!5sk* ~u!,

sk~u!50 for uku.4.

We then have

g l m~ f !5
5

8p (
k52l

l

dmk
l ~b!Nl

k

3E
21

1

du e2p i fDTuPl
k ~u!sk~u!. ~8.4!

We now evaluate these functions for the first few multipoles.
For this purpose we introduce a dimensionless frequency
variable x52p fDT. Becauseg l m5(21)l 1mg l ,2m* we
give these functions only form50, . . . ,l . They may be
conveniently written in terms of spherical Bessel functions
j n . For l 50 one has
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g0,0~x!520.0352174j 0~x!20.818115
j1~x!

x

10.848647
j 2~x!

x2
.

A graph of this function is shown in Fig. 1.
For l 51 one has

g1,0~x!520.0279637i j 1~x!20.252119i
j 2~x!

x

21.66955i
j 3~x!

x2
,

g1,1~x!50.0383329i j 1~x!2~0.32703321.03547i !
j 2~x!

x

1~1.9056821.77847i !
j 3~x!

x2
.

A graph of these functions is shown in Fig. 2.
For l 52 one has

g2,0~x!50.0145494j 0~x!11.00009
j 1~x!

x
29.39901

j 2~x!

x2

128.0344
j 3~x!

x3
,

g2,1~x!50.0392947j 0~x!1~0.38501510.335238i !
j 1~x!

x

2~2.3828812.48534i !
j 2~x!

x2

2~6.01443216.1191i !
j 3~x!

x3
,

g2,2~x!520.0380887j 0~x!2~1.0586710.649899i !
j 1~x!

x

1~9.0548316.80403i !
j 2~x!

x2

2~18.5056120.4538i !
j 3~x!

x3
.

A graph of these functions is shown in Fig. 3.
For l 53 one has

g3,0~x!50.0416301i j 1~x!10.805209i
j 2~x!

x

211.2779i
j 3~x!

x2
118.399i

j 4~x!

x3
,

g3,1~x!50.00182185i j 1~x!2~0.015542911.03107i !
j 2~x!

x

2~1.38339211.1549i !
j 3~x!

x2
2~7.72558

145.6531i !
j 4~x!

x3
,

g3,2~x!520.0461979i j 1~x!1~0.78826320.534988i !
j 2~x!

x

2~7.1383928.50643i !
j 3~x!

x2

1~42.945821.80521i !
j 4~x!

x3
,

g3,3~x!50.0365627i j 1~x!2~0.93579221.08142i !
j 2~x!

x

1~11.3339213.8287i !
j 3~x!

x2

2~33.6244232.4339i !
j 4~x!

x3
.

A graph of these functions is shown in Fig. 4.
For l 54 one has

FIG. 1. The~real! function g0,0( f ) is shown for the LIGO pair
of detectors.

FIG. 2. The functionsg1,m( f )
are shown for the LIGO pair of
detectors. The real parts are
shown as the solid curves and the
imaginary parts as the dotted
curves.
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g4,0~x!50.0232299j 0~x!20.899008
j 1~x!

x
19.78424

j 2~x!

x2

288.696
j 3~x!

x3
1438.555

j 4~x!

x4
,

g4,1~x!520.0367891j 0~x!2~1.1093210.313862i !
j 1~x!

x

1~27.354215.98172i !
j 2~x!

x2
2~204.205

148.3679i !
j 3~x!

x3
1~496.2861149.558i !

j 4~x!

x4
,

g4,2~x!520.0155407j 0~x!1~1.0563920.265167i !
j 1~x!

x

2~14.27620.635514i !
j 2~x!

x2
1~127.588

228.9739i !
j 3~x!

x3
2~551.6472310.656i !

j 4~x!

x4
,

g4,3~x!50.0502848j 0~x!1~0.52108111.287i !
j 1~x!

x

2~20.3464120.2033i !
j 2~x!

x2
1~135.553

1177.464i !
j 3~x!

x3
2~156.4291719.091i !

j 4~x!

x4
,

FIG. 4. The functionsg3,m( f )
are shown for the LIGO pair of
detectors. The real parts are
shown as the solid curves and the
imaginary parts as the dotted
curves.

FIG. 3. The functionsg2,m( f )
are shown for the LIGO pair of
detectors. The real parts are
shown as the solid curves and the
imaginary parts as the dotted
curves.
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g4,4~x!520.0344655j 0~x!2~0.97741611.17615i !
j 1~x!

x

1~24.322122.0573i !
j 2~x!

x2
2~183.738

1163.238i !
j 3~x!

x3
1~458.0281438.49i !

j 4~x!

x4
.

Note that theg l m with l odd vanish asf→0, in contrast
with the functions withl even, which approach constant
values at zero frequency.

IX. OBSERVABILITY AND SIGNAL-TO-NOISE RATIOS

Up to this point, we have shown how anisotropies in the
gravitational-wave stochastic background give rise to peri-
odic variations in the ‘‘signal’’ obtained by correlating a pair
of detectors. These periodic variations are described by the
Fourier series~5.1!, with coefficientsSm . In this section, we
address the question: how precisely can the values of these
coefficients be determined, in the presence of noise in the
two detectors? We answer this question by calculating the
signal-to-noise (S/N) ratios that would arise in measure-
ments of theSm , which also permits us to determine the best
choice of the optimal filter functionsQ̃( f ).

In carrying out this analysis, we follow the technique used
in Sec. 3.2 of Ref.@8#. The following presentation will be
somewhat cryptic as we will assume that the reader is famil-
iar with that material.

The noise in the detectors is characterized by a cross-
correlation function

^ ñ i* ~ f ! ñ j~ f 8!&5 1
2d i jd~ f2 f 8!Pi~ u f u!. ~9.1!

Here i51,2 labels the two detector sites andPi( f ) is the
~one-sided, real! noise power spectrum of thei th detector.
For the initial and advanced LIGO detectors, these power

spectra are shown in Fig. 5. For our calculations ofS/N we
will need to know the noise properties of the detectors aver-
aged over our ‘‘windowing time’’t. To obtain these, we first
characterize the detector noise in the time domain, by Fou-
rier transforming Eq.~9.1!. This gives

^ni~ t !nj~ t8!&

5E
2`

`

d f e22p i f tE
2`

`

d f8 e2p i f 8t8^ ñ i* ~ f ! ñ j~ f 8!&

5
1

2
d i j E

2`

`

d fe22p i f ~ t2t8!Pi~ u f u!. ~9.2!

In words, this says that the Fourier transform of the noise
auto-correlation function is the noise power spectrum.

We can now find the ‘‘windowed’’ version of these for-
mulas, using the definition~4.6! of the windowed transform.
Taking the windowed transforms of Eq.~9.2! yields

^ ñ i* ~ f ,t ! ñ j~ f 8,t8!&

5E
t2t/2

t1t/2

dt9 e2p i f t 9

3E
t82t/2

t81t/2
dt- e22p i f 8t-^ni~ t9!nj~ t-!&

5
1

2
d i j e

2p i ~ f t2 f 8t8!E
2`

`

dp e22p ip~ t2t8!dt~ f2p!

3dt~ f 82p!Pi~ upu!. ~9.3!

Note that in the long averaging time limitt→` this repro-
duces Eq.~9.1!.

In virtually any realistic scenario, the intrinsic instrumen-
tal detector noise is expected to be much larger than the
strain arising from the stochastic background of gravity
waves. For this reason, if we define the ‘‘noise’’ in a given
measurement ofSm byNm[Sm2^Sm& then to good approxi-
mation a formula forNm may be obtained by replacing the
total detector outputsi(t) which appears in Eq.~4.2! by
ni(t). Using the definition of the ‘‘signal’’~4.9! and the defi-
nition of themth harmonic~5.2! one obtains

Nm5
1

TE0
T

dt e2 imv etE
2`

`

d f ñ1* ~ f ,t ! ñ2~ f ,t !Q̃~ f !. ~9.4!

~Note that in this formula, we assume that the total observa-
tion time T is large compared with Earth’s rotation timeTe
and that during the observation time the Earth has made an
integral number of rotations, so thatT/Te is a large integer.
We will typically takeT to be 1 sidereal year.! The approxi-
mation that we make here is obviously consistent with
^Nm&50 since the noise in the two detectors is assumed to
be uncorrelated, so that^ ñ1* ( f ,t) ñ2( f 8,t8)&50.

The ‘‘noise’’ arising in the measurement ofSm may be
characterized bŷuNmu2&5^uSmu2&2u^Sm&u2. We now calcu-
late ^Nm*Nm8&. Substituting Eq.~9.3! into Eq. ~9.4! and
‘‘squaring’’ yields

FIG. 5. The predicted noise power spectra of the initial and
advanced LIGO detectors. The horizontal axis is log10 of frequency
f , in Hz. The vertical axis shows log10 @P( f )/sec#1/2, or strain per
root Hz. These noise power spectra are the published design goals.
The bumps appearing in the low-frequency part of the advanced
LIGO noise curve are obtained by folding measured seismic noise
data with the predicted transfer function of the seismic isolation
~stack! system.
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^Nm*Nm8&5
1

T2E0
T

dt E
0

T

dt8eive~mt2m8t8!E
2`

`

d f Q̃* ~ f !E
2`

`

d f8Q̃~ f 8!^ ñ1* ~ f ,t ! ñ1~ f 8,t8!&^ ñ2* ~ f ,t ! ñ2~ f 8,t8!&

5
1

4T2E0
T

dt E
0

T

dt8E
2`

`

d f E
2`

`

d f8 E
2`

`

dp E
2`

`

dp8Q̃* ~ f !Q̃~ f 8!eive~mt2m8t8!12p i ~p2p8!~ t2t8!dt~ f2p!

3dt~ f 82p!dt~ f2p8!dt~ f 82p8!P1~ upu!P2~ up8u!. ~9.5!

We can simplify this expression to the point where it is use-
ful, however, this is somewhat tricky—there is only one or-
der in which the integrals above can be simply evaluated to
yield useful approximations. We first do the integrals with
respect tot and t8 exactly. This gives

^Nm*Nm8&

5
1

4T2E2`

`

d f E
2`

`

d f8 E
2`

`

dp E
2`

`

3dp8 Q̃* ~ f !Q̃~ f 8!P1~ upu!P2~ up8u!

3exp@2 iveT~m2m8!/2#dT~p2p81mve/2p!

3dT~p2p81m8ve/2p!dt~ f2p!dt~ f 82p!

3dt~ f2p8!dt~ f 82p8!. ~9.6!

Now we note that the effective support ofdT( f ) extends over
a very narrow range of frequencies~typically, u f u,1027 Hz!
compared with the effective support ofdt( f ) ~whose support
is typically u f u,1022 Hz!. In addition, none of the remain-
ing integrand varies over such a narrow frequency range. So
we are justified in replacingdT(p2p81mve/2p) by the or-
dinary Dirac delta functiond(p2p81mve/2p). This gives

^Nm*Nm8&

5
1

4T2E2`

`

d f E
2`

`

d f8 Q̃* ~ f !Q̃~ f 8!

3E
2`

`

dp8 dt~ f2p8!dt~ f 82p8!

3exp@2 iveT~m2m8!/2#dTS ve~m2m8!

2p D
3dtS f2p81

mve

2p D dtS f 82p81
mve

2p D
3P1S Up82

mve

2p U DP2~ up8u!. ~9.7!

If we now additionally assume that the observation timeT is
much greater than the period of a single rotation
Te52p/ve then to good approximation
dT(ve(m2m8)/2p)'Tdmm8. Thus

^Nm*Nm8&

5
1

4T
dmm8E

2`

`

d f E
2`

`

d f8 Q̃* ~ f !Q̃~ f 8!

3E
2`

`

dp dt~ f2p!dt~ f 82p!dtS f2p1
mve

2p D
3dtS f 82p1

mve

2p DP1S Up2
mve

2p U D
3P2~ upu!. ~9.8!

Next we note that the width of thedt( f ) in frequency space
is quite large compared tomve provided that we restrictm to
be fairly small: umu,Te/t. We also assume that the noise
power spectrumP1( f ) does not vary significantly over fre-
quency scales ofve'1025 Hz. In this case we can neglect
the shifting of the arguments bymve above, obtaining

^Nm*Nm8&5
1

4

t

T
dmm8E

2`

`

d f E
2`

`

d f8Q̃* ~ f !Q̃~ f 8!

3dt
2~ f2 f 8!P1~ u f u!P2~ f u!

5dmm8

t2

4TE2`

`

d f uQ̃~ f !u2P1~ u f u!P2~ u f u!.

~9.9!

Settingm5m8 we finally obtain an expression for the ex-
pected ‘‘squared noise’’ in a measurement ofSm :

^uNmu2&5
t2

4TE2`

`

d f uQ̃~ f !u2P1~ u f u!P2~ u f u!. ~9.10!

We can make use of this expression to find the optimal filter
Q̃( f ).

The ~squared! signal-to-noise ratioS/N for themth har-
monic is now defined via the ratio of expected signal~mag-
nitude squared! divided by expected~squared! noise. Making
use of Eq.~5.3! for the former quantity, and Eq.~9.10! for
the latter yields
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S SND
m

2

[
u^Sm&u2

^uNmu2&

5

4T~8p/5!2UtE
2`

`

d f Q̃~ f !H~ f ! (
l 5umu

`

pl mg l m~ f !U2
t2E

2`

`

d f uQ̃~ f !u2P1~ u f u!P2~ u f u!
.

~9.11!

Notice that the averaging timet ~which was earlier chosen in
a rather arbitrary manner! drops out of this expression. Pro-

vided that the assumptions aboutt ~4.1! used in deriving this
equation are satisfied, the actual value is irrelevant.

In order to find the optimal filter function, it is useful to
introduce an inner product. For any complex functions of
frequencyA( f ) and B( f ), this defines a complex number
which is denoted by (A,B). The definition is

~A,B![E
2`

`

d f A* ~ f !B~ f !P1~ u f u!P2~ u f u!. ~9.12!

This inner product is positive definite because (A,A) is real
and non-negative, vanishing only ifA is zero. In terms of this
inner product, the signal-to-noise ratio may be written as

S SND
m

2

54TS 8p

5 D 2US Q̃,H~ f !/P1~ u f u!P2~ u f u! (
l 5umu

`

pl m* g l m* ~ f !DU2
~Q̃,Q̃!

. ~9.13!

The optimal choice of filter functionQ( f ) for determining
themth harmonic is the one which maximizes this ratio. The
largest value is obtained by choosing

Q̃m~ f !5
H~ f !

P1~ u f u!P2~ u f u! (
l 5umu

`

pl m* g l m* ~ f !. ~9.14!

Using the definition~3.11! of H( f ) in terms of the spectral
functionVGW( f ), and substituting the optimal filterQ̃m into
the expression forS/N yields

S SND
m

2

5
9H0

4

50p4TE
0

`

d f
VGW

2 ~ f !

f 6P1~ f !P2~ f !

3U (
l 5mu

`

pl mg l m~ f !U2. ~9.15!

For any given source of stochastic gravitational waves, one
can use this formula for (S/N)m to determine the observation
timeT required to observe themth harmonic of the signal as
the Earth rotates relative to the cosmological frame. In pre-
cise analogy with the analysis given in@8#, themth harmonic
is observable with 90% confidence if (S/N)m exceeds 1.65.

X. EXAMPLE: DIPOLE INDUCED BY PROPER MOTION

It is well known that the electromagnetic background ra-
diation, generally referred to as the cosmic microwave back-

ground radiation~CMBR!, is highly isotropic. The largest
deviation from isotropy results from the motion of our local
system~the solar system barycenter! with respect to the cos-
mological rest frame. Analysis of data from the Cosmic
Background Explorer~COBE! satellite shows that our local
system is moving with a velocitybproper[v/c50.001 236 in
the direction (l5264°,b548°) in galactic coordinates, or
equivalently (a5168°,d527°) in celestial coordinates
@12#. To lowest order in our proper velocity, this gives rise to
an anisotropy in the CMBR described by the temperature
distribution

T~g!5T0~11bpropercosg!, ~10.1!

whereg is the angle between a point on the sky and the
velocity vector of our local system, andT052.73 K is the
mean temperature of the CMBR.

In this section, we address the question: would a corre-
sponding dipole moment in the stochastic gravity wave back-
ground, arising from the proper motion of the solar system
barycenter, be observable with either the initial or advanced
LIGO detectors? In the previous section, we calculated the
signal-to-noise ratio for observations of themth harmonic
Sm ~with respect to Earth’s rotation! of the signal~obtained
by correlating two gravitational-wave detectors!. This is de-
termined entirely by the quantities

H05Hubble expansion rate, sec21,

T5Total observation time, sec,

g l m~ f !5Overlap reduction functions, dimensionless,

VGW5Fractional energy density in gravitational waves, dimensionless,

pl m5Normalized multipoles of GW stochastic background, dimensionless,

Pi5Noise power spectral density of detectori , sec.
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As an example, we use this formula to answer the question
posed above.

Let us make the following reasonable assumptions:~1!
VGW( f ) is constant in the LIGO band and~2! the stochastic
gravitational-wave background is isotropic in the same rest
frame as the CMBR. The anisotropies in the stochastic back-
ground resulting from our proper motion are then described
by

(
l m

pl mYl m~ ū ,f̄ !

511bproper~cosū cos97°1sinū sin97°cosf̄ !,
~10.2!

where the angles above are standard spherical coordinates in
the ~barred! Earth frame. One thus obtains the following
multipole moments:

p005A4p,

p1,215bproperA2p

3
sin97°,

p1,05bproperA4p

3
cos97°,

p1,152bproperA2p

3
sin97°,

pl m50 for l .1. ~10.3!

To detect this signal, the optimal filter functions are

Qm~ f !5Cm

1

f 3P1~ u f u!P2~ u f u! (
l 5umu

`

pl m* g l m* , ~10.4!

whereCm is an ~irrelevant! normalization constant. Making
use of the optimal filter functionsQ0 andQ1 for the mono-
pole and dipole terms, we can make predictions about how
largeVgw needs to be in order thatS0 andS1 are observable
with a given level of confidence in a given observation time.

We can express the sensitivity of a search for themth
harmonic in terms of the minimum value ofVGW necessary
to observe it with 90% confidence. For 90% confidence we
need a signal-to-noise of 1.65. The minimum value ofVGW
is then given for themth harmonic by

V90%
~m! 5~1.65!A 9

50

H0
2

p2TF E
0

` d f

f 6P1~ f !P2~ f !

3U (
l 5mu

`

pl mg l m~ f !U2G21/2

. ~10.5!

These values are shown in Table I for the initial and ad-
vanced LIGO detectors. We note that there are potential
sources of sufficient intensity that a dipole might be observ-
able with the advanced LIGO detector. These include sto-
chastic backgrounds due to cosmic strings or to a population
of unresolved cosmological-distance supernovae.

XI. FILTER NORMALIZATIONS
AND SIGNAL STRENGTHS

Specific models for an anisotropic background predict
signal harmonicsSm of definite amplitudes and phases. The
phase of a givenSm depends upon the chosen origin of time;

shifting the origin of time changes the phase ofSm but not its
amplitude. In order to falsify or confirm a particular aniso-
tropic model, one needs to predict the set of complex num-
bersSm . However, these numbers depend upon the normal-
izationCm of the optimal filter functionQm( f ) so in order to
make predictions, we need to adopt a convention for these.

We have already chosen optimal filters for which the ex-
pected value ofSm is real. At least upon first inspection,
there do not appear to be any very convenient choices for the
overall scale of normalization. Here, for illustrative purposes
we adopt~what appears to us as! the least disagreeable of
these.We choose the normalization Cm so that the expected
amplitude of the noise2 is unity: ^uNmu2&51. We also as-
sume thatCm is positive and real. Note that with this choice,
the ‘‘signal’’ is dimensionless. From Eq.~9.10! this gives

Cm52AT

t F E
2`

` d f

P1~ u f u!P2~ u f u!U (
l 5umu

`

pl mg l m~ f !U2G21/2

.

~11.1!

Having chosen a normalization, we can list the expected sig-
nals for a given detector. If the actual signal value exceeds
1.65 then it has been detected with 90% confidence. For
example, in the case of the dipole source just discussed, the
expected signals are given by Eq.~5.3! as

^Sm&5
3H0

2

10p2ATVGWF E
2`

` d f

P1~ u f u!P2~ u f u!

3U (
l 5umu

`

pl mg l m~ f !U2G1/2. ~11.2!

Evaluating this for our previous example gives

^S0&55 1.65A
T

1 year

VGWh100
2

1.631026 for initial LIGO,

1.65A T

1 year

VGWh100
2

1.6310211 for advanced LIGO,

^S1&55 1.65A
T

1 year

VGWh100
2

2.531023 for initial LIGO,

1.65A T

1 year

VGWh100
2

5.331028 for advanced LIGO,

^Sm&50 for m>2. ~11.3!

XII. GALACTIC SOURCES

In this section we consider the possibility of detecting
anisotropies in the stochastic gravitational wave background
assuming that this background either originates in, or is scat-
tered in the same way as, the luminous matter in our galaxy,
and for sources distributed in the same way as the galactic
halo. It appears very unlikely that in the LIGO-VIRGO-GEO
frequency band there are any sources of a stochastic
gravitational-wave background distributed in this way. How-
ever, the absence of such harmonics would be one way to
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demonstrate that a stochastic background had extra-galactic
origin.

For the distribution of luminous matter in the galaxy we
consider a set of three models constructed by Kent, Dame,
and Fazio@13# to model 2.4mm data from the infrared tele-
scope taken as part of the Spacelab 2 mission. These models
all assume cylindrical symmetry and take the total luminos-
ity to consist of two components; one,nD(r ,z), modeling the
disk and the other,nB(r ,z), modeling the central bulge,
wherer andz denote cylindrical polar coordinates based at
the center of the galaxy.

The first model, which we refer to as Kent-Dame-Fazio 1
~KDF1!, takes

nD~r ,z!5mDe
2r /hr

sech2@z/~2hz!#

4hz
, ~12.1!

nB~r ,z!5mB

K0„$r
41@z/~12eB!#4%1/4/hB…

phB
, ~12.2!

where mD51072L( pc22, hr52775 pc, hz5121 pc, mB
56208L( pc22, hB5634 pc, andeB50.26. HereK0 de-
notes the modified Bessel function of order 0.

The second model~KDF2! takes

nD~r ,z!5mDe
2r /hr

exp@2uz/~2hz!u#
2hz

, ~12.3!

nB~r ,z!5mB

K0„$r
41@z/~12eB!#4%1/4/hB…

phB
, ~12.4!

where mD51208L( pc22, hr52694 pc, hz5204 pc, mB
57710L( pc22, hB5500 pc, andeB50.19.

The third model~KDF3! takes

nD~r ,z!5mDe
2r /hr

exp$2uz/@2hz~r !#u%
2hz~r !

, ~12.5!

TABLE I. Sensitivity of initial and advanced LIGO detectors to a dipole term in the gravitational sto-
chastic background, arising from motion of our local system. This table shows the intensity of stochastic
background required to detect either the monopole (S0) or dipole (S1) term in the signal, with 90% confi-
dence, in one year of observation.

Initial LIGO Advanced LIGO

Monopole (m50) V90%51.631026h100
22 V90%51.6310211h100

22

Dipole (m51) V90%52.531023h100
22 V90%55.331028h100

22

TABLE II. Sensitivity of the initial LIGO detector to the first 25 multipoles in the gravitational stochastic
background, assumed to follow the luminosity of the galaxy or galactic halo. This table shows the intensity
of stochastic background required to detect the multipoleSm with 90% confidence in one year of observation.

m h100
2 V90% KDF1 h100

2 V90% KDF2 h100
2 V90% KDF3 h100

2 V90% halo

0 1.431025 1.431025 1.431025 3.931023

1 1.431025 1.331025 1.331025 3.431023

2 1.931025 1.931025 1.831025 3.631023

3 3.031025 2.931025 2.931025 4.231023

4 4.631025 4.431025 4.631025 5.031023

5 7.331025 6.931025 7.131025 6.131023

6 7.831025 7.431025 7.531025 8.131023

7 8.631025 8.031025 8.331025 1.231022

8 1.231024 1.131024 1.131024 1.731022

9 2.031024 2.031024 1.931024 2.731022

10 3.631024 4.031024 3.531024 4.331022

11 5.031024 5.231024 4.931024 7.031022

12 6.331024 6.231024 6.231024 1.231021

13 9.231024 8.931024 9.031024 2.031021

14 1.531023 1.531023 1.531023 3.131021

15 2.431023 2.531023 2.431023 5.031021

16 3.631023 3.731023 3.631023 7.831021

17 5.131023 5.231023 5.131023 1.23100

18 7.331023 7.231023 7.131023 1.73100

19 1.031022 1.031022 1.031022 2.43100

20 1.431022 1.431022 1.431022 3.63100

21 2.131022 2.131022 2.031022 5.03100

22 2.931022 2.931022 2.831022 6.53100

23 4.031022 3.931022 3.831022 8.93100

24 5.131022 5.031022 4.931022 1.23101
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nB~r ,z!5mB

K0„$r
41@z/~12eB!#4%1/4/hB…

phB
, ~12.6!

where mD5978L( pc22, hr53001 pc, mB57395L(

pc22, hB5667 pc, eB50.39, andhz(r ) is now a function
given by

hz~r !5H hmin , r,rmin ,

hmin1~h(2hmin!
~r2rmin!

~r(2rmin!
, r>rmin ,

~12.7!

with hmin5165 pc, rmin55300 pc, h(5247 pc, and
r(58000 pc, the last two quantities being the height of the
galactic disk at the position of the Sun and the distance of the
Sun from the galactic center, respectively.

Finally, as a model for the galactic halo we take the model
of Young @15#:

nhalo5mhalo

exp@27.669~R/Re!
1/4#

~R/Re!
7/8 , R.0.2Re ,

~12.8!

whereR5(r 21z2)1/2 denotes the distance from the galactic
center andRe52700 pc.

The final piece of information we need before we can
calculate the multipole momentspl m for such a distribution
is the direction to the galactic center and the orientation of

the galaxy. It is standard to express this in terms of the equa-
torial coordinate system@14# in which the z axis is taken
along the celestial north pole, thex axis is taken in the di-
rection of the~1950! vernal equinox. 90°2d anda are taken
as the spherical polar coordinates corresponding to these
axes. In terms of these, the direction to the galactic center is
given by

a5265.6°, d5228.9°, ~12.9!

and the direction of the galactic north pole by

a5192.25°, d527.4°. ~12.10!

We take the equatorial coordinate system to define our cos-

mic frame. We now determineP(V̂) by choosing a direction

V̂ and integrating the intensity along that direction. The
number of sources in an element of solid angledV at dis-
tance isD from the Earth is proportional ton D2dDdV.
The intensity of the source drops like 1/D2 and hence the
integrated intensity is just proportional to*ndD. In this way
we arrive atpl m for each model and hence by Eq.~10.5! the
minimum value ofVgw necessary for detection of each mul-
tipole. To ensure convergence of the sum in this case it was
necessary to include contributions to the sum forl up to of
order 100 ~dependent onm). Tables II and III show the
intensity of the stochastic background distributed in this way
required to detect multipole moments fromm50 tom524
for the four models with 90% confidence in one year of
observation for initial and advanced LIGO, respectively.

TABLE III. Sensitivity of the advanced LIGO detector to the first 25 multipoles in the gravitational
stochastic background, assumed to follow the luminosity of the galaxy or galactic halo. This table shows the
intensity of stochastic background required to detect the multipoleSm with 90% confidence in one year of
observation.

m h100
2 V90% KDF1 h100

2 V90% KDF2 h100
2 V90% KDF3 h100

2 V90% halo

0 1.8310210 1.7310210 1.7310210 6.731028

1 4.8310210 4.7310210 4.7310210 7.831028

2 1.131029 1.031029 1.031029 1.131027

3 5.331029 5.031029 5.431029 2.631027

4 6.431029 6.031029 6.331029 6.431027

5 1.131028 1.031028 1.031028 1.631026

6 3.131028 3.031028 3.031028 4.431026

7 1.231027 1.331027 1.231027 1.331025

8 2.431027 2.431027 2.431027 2.731025

9 4.531027 4.231027 4.531027 6.331025

10 1.131026 1.031026 1.131026 1.331024

11 3.031026 3.331026 3.131026 2.631024

12 5.531026 5.531026 5.731026 4.531024

13 8.331026 7.731026 8.731026 7.731024

14 1.531025 1.531025 1.631025 1.331023

15 3.031025 3.231025 3.131025 2.031023

16 4.431025 4.431025 4.731025 3.031023

17 6.031025 5.631025 6.431025 4.431023

18 9.431025 9.031025 1.031024 6.431023

19 1.631024 1.631024 1.731024 9.031023

20 2.131024 2.131024 2.331024 1.231022

21 2.731024 2.531024 3.031024 1.731022

22 3.931024 3.731024 4.231024 2.331022

23 5.931024 5.831024 6.431024 3.031022

24 7.831024 7.531024 8.431024 3.931022
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XIII. CONCLUSION

In this paper, we have shown how the signals from a pair
of gravitational wave detectors may be analyzed to search for
anisotropies in the stochastic gravitational wave background.
We have shown how the correlation between two detectors
may be determined with an averaging time short compared to
a day but long compared to the light travel time between the
detectors, and how this correlation may be decomposed into
harmonics of Earth’s rotation. We have calculated the signal-
to-noise ratios associated with such measurements, and
shown that certain types of anisotropy might reasonably be
detected with instruments that will be available in the not-
too-distant future. For example the anisotropy due to our
motion with respect to the cosmological rest frame might
well be observable with a second-generation LIGO detector.

At this point, it is difficult to proceed further without a
more detailed knowledge of the instrumental data that will be
forthcoming. The results given in this paper make it straight-
forward to predict the expected harmonic amplitudesSm of
the detector correlation for a given anisotropic distribution
pl m of gravitational wave background. It is more difficult to
go the other way. This would involve using a given set of
observed harmonic amplitudesSm to obtain the values of~or
constraints on! the pl m . There are a variety of fitting tech-
niques that could be used—making the appropriate choice
will probably require real data.
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APPENDIX: ANALYTIC EVALUATION OF INTEGRALS

In this appendix we derive a closed form expression for
the integral

Ilk ~x!5E
21

1

du eiuxPl
k ~u!uN~12u2! uku/2, ~A1!

whereN is a non-negative integer.
First we note that

Pl
2k~u!5~21!k

~ l2k!!

~ l1k!!
Pl
k ~u! ~A2!

so that it is only necessary to deal with the casek>0. For
k>0 we have

Pl
k ~u!5~21!k~12u2!k/2

dk

duk
Pl ~u! ~A3!

giving

Ilk ~x!5~21!kE
21

1

du eiuxuN~12u2!k
dk

duk
Pl ~u!.

~A4!

The presence of the factor (12u2)k now ensures that when
we integrate by partsk times no boundary terms appear so
that

Ilk ~x!5E
21

1

du Pl ~u!
dk

duk
@eiuxuN~12u2!k#. ~A5!

The derivative can be expanded by the Liebniz rule to give

(
r50

k

~ ix !rpN1k1r~u!eiux, ~A6!

wherepN1k1r(u) is a polynomial of degreeN1k1r . Our
problem is thus reduced to that of finding

JlM~x!5E
21

1

du eiuxuMPl ~u!. ~A7!

ForM50 this is an elementary integral given by

J l
0 ~x!52i l j l ~x!, ~A8!

where j l (x) denotes the spherical Bessel function of order
l @16#. HigherM values may then be obtained by differen-
tiation

J lM~x!5~2 i !M
dM

dxM
J l0 ~x!. ~A9!

These derivatives may in turn be expressed back in terms of
~undifferentiated! spherical Bessel functions using the rela-
tions @16#

d

dx
j l ~x!5

1

2l 11
@ l j l 21~x!2~ l 11! j l 11~x!#

5
l

x
j l ~x!2 j l 11~x!. ~A10!

ForM51 to 8 we have

J l1 ~x!5
l

~2l 11!
j l 21~x!2

~ l 11!

~2l 11!
j l 11~x!,

J l
2 ~x!5

~ l 21!l

~2l 21!~2l 11!
j l 22~x!2

~2l 212l 21!

~2l 21!~2l 13!
j l ~x!1

~ l 11!~ l 12!

~2l 11!~2l 13!
j l 12~x!,

J l
3 ~x!5

l ~ l 21!~ l 22!

~2l 23!~2l 21!~2l 11!
j l 23~x!2

3l ~ l 222!

~2l 23!~2l 11!~2l 13!
j l 21~x!1

3~ l 11!~ l 212l 21!

~2l 21!~2l 11!~2l 15!
j l 11~x!

2
~ l 11!~ l 12!~ l 13!

~2l 11!~2l 13!~2l 15!
j l 13~x!,
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J l
4 ~x!5

l ~ l 21!~ l 22!~ l 23!

~2l 11!~2l 21!~2l 23!~2l 25!
j l 24~x!2

2l ~ l 21!~2l 222l 27!)

~2l 13!~2l 11!~2l 21!~2l 25!
j l 22~x!

1
3~2l 414l 326l 228l 13!

~2l 15!~2l 13!~2l 21!~2l 23!
j l ~x!2

2~ l 11!~ l 12!~2l 216l 23!

~2l 17!~2l 13!~2l 11!~2l 21!
j l 12~x!

1
~ l 11!~ l 12!~ l 13!~ l 14!

~2l 17!~2l 15!~2l 13!~2l 11!
j l 14~x!,

J l
5 ~x!5

l ~ l 21!~ l 22!~ l 23!~ l 24!

~2l 27!~2l 25!~2l 23!~2l 21!~2l 11!
j l 25~x!2

5l ~ l 21!~ l 22!~ l 222l 25!

~2l 27!~2l 23!~2l 21!~2l 11!~2l 13!
j l 23~x!

1
5l ~2l 4216l 2123!

~2l 25!~2l 23!~2l 11!~2l 13!~2l 15!
j l 21~x!2

5~ l 11!~2l 418l 324l 2224l 19!

~2l 23!~2l 21!~2l 11!~2l 15!~2l 17!
j l 11~x!

1
5~ l 11!~ l 12!~ l 13!~ l 214l 22!

~2l 21!~2l 11!~2l 13!~2l 15!~2l 19!
j l 13~x!2

~ l 11!~ l 12!~ l 13!~ l 14!~ l 15!

~2l 11!~2l 13!~2l 15!~2l 17!~2l 19!
j l 15~x!,

J l
6 ~x!5

l ~ l 21!~ l 22!~ l 23!~ l 24!~ l 25!

~2l 29!~2l 27!~2l 25!~2l 23!~2l 21!~2l 11!
j l 26~x!

2
3l ~ l 21!~ l 22!~ l 23!~2l 226l 213!

~2l 29!~2l 25!~2l 23!~2l 21!~2l 11!~2l 13!
j l 24~x!

1
15l ~ l 21!~ l 422l 3211l 2112l 129!

~2l 27!~2l 25!~2l 21!~2l 11!~2l 13!~2l 15!
j l 22~x!

2
5~4l 6112l 5238l 4296l 3188l 21138l 245!

~2l 25!~2l 23!~2l 21!~2l 13!~2l 15!~2l 17!
j l ~x!

1
15~ l 11!~ l 12!~ l 416l 31l 2224l 19!

~2l 23!~2l 21!~2l 11!~2l 13!~2l 17!~2l 19!
j l 12~x!

2
3~ l 11!~ l 12!~ l 13!~ l 14!~2l 2110l 25!

~2l 21!~2l 11!~2l 13!~2l 15!~2l 17!~2l 111!
j l 14~x!

1
~ l 11!~ l 12!~ l 13!~ l 14!~ l 15!~ l 16!

~2l 11!~2l 13!~2l 15!~2l 17!~2l 19!~2l 111!
j l 16~x!,

Jl7 ~x!5
l ~ l 21!~ l 22!~ l 23!~ l 24!~ l 25!~ l 26!

~2l 211!~2l 29!~2l 27!~2l 25!~2l 23!~2l 21!~2l 11!
j l 27~x!

2
7l ~ l 21!~ l 22!~ l 23!~ l 24!~ l 224l 28!

~2l 211!~2l 27!~2l 25!~2l 23!~2l 21!~2l 11!~2l 13!
j l 25~x!

1
21l ~ l 21!~ l 22!~ l 424l 3212l 2132l 154!

~2l 29!~2l 27!~2l 23!~2l 21!~2l 11!~2l 13!~2l 15!
j l 23~x!

2
35l ~ l 226!~ l 4214l 2122!

~2l 27!~2l 25!~2l 23!~2l 11!~2l 13!~2l 15!~2l 17!
j l 21~x!

1
35~ l 11!~ l 212l 25!* ~ l 414l 328l 2224l 19!

~2l 25!~2l 23!~2l 21!~2l 11!~2l 15!~2l 17!~2l 19!
j l 11~x!

2
21~ l 11!~ l 12!~ l 13!~ l 418l 316l 2240l 115!

~2l 23!~2l 21!~2l 11!~2l 13!~2l 15!~2l 19!~2l 111!
j l 13~x!

1
7~ l 11!~ l 12!~ l 13!~ l 14!~ l 15!~ l 216l 23!

~2l 21!~2l 11!~2l 13!~2l 15!~2l 17!~2l 19!~2l 113!
j l 15~x!

2
~ l 11!~ l 12!~ l 13!~ l 14!~ l 15!~ l 16!~ l 17!

~2l 11!~2l 13!~2l 15!~2l 17!~2l 19!~2l 111!~2l 113!
j l 17~x!,
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Jl8 ~x!5
l ~ l 21!~ l 22!~ l 23!~ l 24!~ l 25!~ l 26!~ l 27!

~2l 213!~2l 211!~2l 29!~2l 27!~2l 25!~2l 23!~2l 21!~2l 11!
j l 28~x!

2
4l ~ l 21!~ l 22!~ l 23!~ l 24!~ l 25!~2l 2210l 219!

~2l 213!~2l 29!~2l 27!~2l 25!~2l 23!~2l 21!~2l 11!~2l 13!
j l 26~x!

1
14l ~ l 21!~ l 22!~ l 23!~2l 4212l 3222l 21120l 1173!

~2l 211!~2l 29!~2l 25!~2l 23!~2l 21!~2l 11!~2l 13!~2l 15!
j l 24~x!

2
28l ~ l 21!~2l 626l 5249l 41108l 31371l 22426l 2873!

~2l 29!~2l 27!~2l 25!~2l 21!~2l 11!~2l 13!~2l 15!~2l 17!
j l 22~x!

1
35~2l 818l 7244l 62160l 51286l 41848l 32604l 221056l 1315!

~2l 27!~2l 25!~2l 23!~2l 21!~2l 13!~2l 15!~2l 17!~2l 19!
j l ~x!

2
28~ l 11!~ l 12!~2l 6118l 5111l 42204l 32157l 21690l 2225!

~2l 25!~2l 23!~2l 21!~2l 11!~2l 13!~2l 17!~2l 19!~2l 111!
j l 12~x!

1
14~ l 11!~ l 12!~ l 13!~ l 14!~2l 4120l 3126l 22120l 145!

~2l 23!~2l 21!~2l 11!~2l 13!~2l 15!~2l 17!~2l 111!~2l 113!
j l 14~x!

2
4~ l 11!~ l 12!~ l 13!~ l 14!~ l 15!~ l 16!~2l 2114l 27!

~2l 21!~2l 11!~2l 13!~2l 15!~2l 17!~2l 19!~2l 111!~2l 115!
j l 16~x!

1
~ l 11!~ l 12!~ l 13!~ l 14!~ l 15!~ l 16!~ l 17!~ l 18!

~2l 11!~2l 13!~2l 15!~2l 17!~2l 19!~2l 111!~2l 113!~2l 115!
j l 18~x!.

Alternative forms may by obtained by use of Eq.~A10!.
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